1
|
Marquez J, O’Sullivan L, Squire AE, Ryan GL, Debiec KE, Amies Oelschlager AM, Adam MP. Case Report: a novel variant in WT1 leads to focal segmental glomerulosclerosis and uterovaginal anomalies through exon skipping. FRONTIERS IN NEPHROLOGY 2025; 5:1542475. [PMID: 40235736 PMCID: PMC11997443 DOI: 10.3389/fneph.2025.1542475] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/09/2024] [Accepted: 02/28/2025] [Indexed: 04/17/2025]
Abstract
Background Podocytopathies are a varied set of renal diseases in which podocytes are unable to perform their typical filtration function within the glomerulus. This typically leads to edema, proteinuria, and hypoalbuminemia early in life. Among podocytopathies, focal segmental glomerulosclerosis (FSGS) is characterized by histology demonstrating segmental and focal sclerosis of the glomerular tuft. FSGS affects an estimated 1-20 per one million individuals and leads to significant morbidity and mortality related to renal failure. While FSGS can be attributed to many causes, such as drug reactions and infections, underlying pathogenic genetic variants play an increasingly well-recognized role in this disease. Case A 38-year-old 46,XX female patient of self-reported Cambodian ancestry was evaluated due to her history of atypical uterovaginal morphology. She had a history of hypertension and nephrotic range proteinuria that was diagnosed early in adulthood. A kidney biopsy at that time revealed FSGS. Following worsening renal function and subsequent end-stage renal disease (ESRD), she underwent a kidney transplant at 33 years of age. After kidney transplant, she presented with hematocolpos and was found to have distal vaginal atresia and an arcuate uterus. She underwent vaginoplasty and then had regular menses. She was noted to have persistently elevated follicle stimulating hormone levels, consistent with primary ovarian insufficiency, but with normal anti-Müllerian hormone levels. Assessment of her family history was suggestive of other individuals in her family with similar renal disease and uterine differences. Genetic analysis identified a WT1 variant (c.1338A>C; p. =) of uncertain significance that is also present in her similarly affected mother. To help clarify the potential impact of this variant, we completed a mini-gene assay to detect in vitro splicing changes in the presence of the WT1 variant sequence uncovered in this individual. This demonstrated resultant aberrant splicing that further supports the pathogenicity of the uncovered variant for this individual. Conclusions To our knowledge, this represents the first case of a podocytopathy with co-occurring uterovaginal anomalies due to exon skipping in WT1. The patient exhibited a severe course of chronic kidney dysfunction requiring a kidney transplant. Clinical RNA sequencing to clarify variants impacting splicing remains challenging due to tissue- specific gene expression for genes such as WT1, thus, research-based assays may be beneficial to understand the consequence of rare or previously uncharacterized variants.
Collapse
Affiliation(s)
- Jonathan Marquez
- Department of Pediatrics, Division of Genetic Medicine, University of Washington and Seattle Children’s Hospital, Seattle, WA, United States
| | - Lauren O’Sullivan
- Department of Pediatrics, Division of Genetic Medicine, University of Washington and Seattle Children’s Hospital, Seattle, WA, United States
| | - Audrey E. Squire
- Department of Pediatrics, Division of Genetic Medicine, University of Washington and Seattle Children’s Hospital, Seattle, WA, United States
| | - Ginny L. Ryan
- Department of Obstetrics and Gynecology, Division of Reproductive Endocrinology and Infertility, University of Washington, Seattle, WA, United States
| | - Katherine E. Debiec
- Department of Obstetrics and Gynecology, Division of Pediatric and Adolescent Gynecology, University of Washington and Seattle Children’s Hospital, Seattle, WA, United States
| | - Anne-Marie Amies Oelschlager
- Department of Obstetrics and Gynecology, Division of Reproductive Endocrinology and Infertility, University of Washington, Seattle, WA, United States
| | - Margaret P. Adam
- Department of Pediatrics, Division of Genetic Medicine, University of Washington and Seattle Children’s Hospital, Seattle, WA, United States
| |
Collapse
|
2
|
Nagano C, Nozu K. A review of the genetic background in complicated WT1-related disorders. Clin Exp Nephrol 2025; 29:1-9. [PMID: 39002031 PMCID: PMC11807054 DOI: 10.1007/s10157-024-02539-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Accepted: 07/05/2024] [Indexed: 07/15/2024]
Abstract
The Wilms tumor 1 (WT1) gene was first identified in 1990 as a strong candidate for conferring a predisposition to Wilms tumor. The WT1 protein has four zinc finger structures (DNA binding domain) at the C-terminus, which bind to transcriptional regulatory sequences on DNA, and acts as a transcription factor. WT1 is expressed during kidney development and regulates differentiation, and is also expressed in glomerular epithelial cells after birth to maintain the structure of podocytes. WT1-related disorders are a group of conditions associated with an aberrant or absent copy of the WT1 gene. This group of conditions encompasses a wide phenotypic spectrum that includes Denys-Drash syndrome (DDS), Frasier syndrome (FS), Wilms-aniridia-genitourinary-mental retardation syndrome, and isolated manifestations of nephropathy or Wilms tumor. The genotype-phenotype correlation is becoming clearer: patients with missense variants in DNA binding sites including C2H2 sites manifest DDS and develop early-onset and rapidly developing end-stage kidney disease. A deeper understanding of the genotype-phenotype correlation has also been obtained in DDS, but no such correlation has been observed in FS. The incidence of Wilms tumor is higher in patients with DDS and exon-truncating variants than in those with non-truncating variants. Here, we briefly describe the genetic background of this highly complicated WT1-related disorders.
Collapse
Affiliation(s)
- China Nagano
- Department of Pediatrics, Kobe University Graduate School of Medicine, 7-5-2 Kusunoki-Cho, Chuo-Ku, Kobe, 650-0017, Japan.
| | - Kandai Nozu
- Department of Pediatrics, Kobe University Graduate School of Medicine, 7-5-2 Kusunoki-Cho, Chuo-Ku, Kobe, 650-0017, Japan
| |
Collapse
|
3
|
van Peer SE, Kuiper RP, Hol JA, Egging S, van der Zwaag B, Lilien MR, Lombardi MP, van den Heuvel-Eibrink MM, Jongmans MC. Clinical Characterization of a National Cohort of Patients With Germline WT1 Variants Including Late-Onset Phenotypes. Kidney Int Rep 2024; 9:3570-3579. [PMID: 39698353 PMCID: PMC11652072 DOI: 10.1016/j.ekir.2024.09.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Revised: 08/27/2024] [Accepted: 09/09/2024] [Indexed: 12/20/2024] Open
Abstract
Introduction WT1 disorder is a recently introduced term for phenotypes associated with germline Wilms Tumor 1 (WT1) variants, including glomerulopathy, urogenital anomalies, and Wilms tumor. Previous studies showed a bias toward missense variants in the DNA-binding/Zinc-finger domain of WT1 (exon 8 and 9) and patients with early-onset glomerulopathy. Thorough genotype-phenotype correlations including follow-up data on late-onset glomerulopathy risk are lacking. To characterize the genotypic and phenotypic spectrum of WT1 disorder, we describe a national cohort of individuals with WT1 variants. Methods We requested clinical and genetic data of all patients with germline WT1 variants at all Dutch genetic laboratories. Results We identified 43 patients with pathogenic WT1 variants (truncating, n = 19; missense, n = 13; splice-site, n = 7; and deletions, n = 4). Wilms tumor was the only clinical manifestation in 10 patients, of whom 9 were female. Wilms tumor occurred in 18 of 19 patients with truncating variants, in 4 of 4 patients with deletions, and was rarer in patients with missense or splice-site variants. All patients with missense and 6 of 7 with splice-site variants developed chronic kidney disease (CKD) versus 5 of 19 patients with truncating variants (3 in adulthood, with kidney failure at the age of 24, 26, and 41 years) and 1 of 4 with a deletion. Urogenital malformations occurred predominantly in 46,XY individuals. Conclusion Among patients with WT1 variants, a genotype-phenotype correlation was observed for Wilms tumor risk and age of CKD onset. Although childhood-onset CKD was more common in patients with missense variants in the DNA-binding/Zinc-finger domain, other patients may develop CKD and kidney failure later in life. Therefore, life-long surveillance of kidney function is recommended. Being alert about WT1 variants is especially important for girls with Wilms tumor who often miss additional phenotypes.
Collapse
Affiliation(s)
| | - Roland P. Kuiper
- Princess Máxima Center for Pediatric Oncology, Utrecht, the Netherlands
| | - Janna A. Hol
- Princess Máxima Center for Pediatric Oncology, Utrecht, the Netherlands
- Department of Clinical Genetics, Erasmus MC, Rotterdam, the Netherlands
| | - Sanne Egging
- Princess Máxima Center for Pediatric Oncology, Utrecht, the Netherlands
| | - Bert van der Zwaag
- Department of Genetics, University Medical Center Utrecht, Utrecht, the Netherlands
| | - Marc R. Lilien
- Department of Pediatric Nephrology, Wilhelmina Children's Hospital/University Medical Center Utrecht, Utrecht, the Netherlands
| | - M. Paola Lombardi
- Department of Human Genetics, Laboratory for Genome Diagnostics, Amsterdam UMC, Amsterdam, the Netherlands
| | - Marry M. van den Heuvel-Eibrink
- Princess Máxima Center for Pediatric Oncology, Utrecht, the Netherlands
- Division of Child Health, Wilhelmina Children's Hospital/University Medical Center Utrecht, Utrecht, the Netherlands
| | - Marjolijn C.J. Jongmans
- Princess Máxima Center for Pediatric Oncology, Utrecht, the Netherlands
- Department of Genetics, University Medical Center Utrecht, Utrecht, the Netherlands
| |
Collapse
|
4
|
Finn LS. Nephrotic Syndrome Throughout Childhood: Diagnosing Podocytopathies From the Womb to the Dorm. Pediatr Dev Pathol 2024; 27:426-458. [PMID: 38745407 DOI: 10.1177/10935266241242669] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 05/16/2024]
Abstract
The etiologies of podocyte dysfunction that lead to pediatric nephrotic syndrome (NS) are vast and vary with age at presentation. The discovery of numerous novel genetic podocytopathies and the evolution of diagnostic technologies has transformed the investigation of steroid-resistant NS while simultaneously promoting the replacement of traditional morphology-based disease classifications with a mechanistic approach. Podocytopathies associated with primary and secondary steroid-resistant NS manifest as diffuse mesangial sclerosis, minimal change disease, focal segmental glomerulosclerosis, and collapsing glomerulopathy. Molecular testing, once an ancillary option, has become a vital component of the clinical investigation and when paired with kidney biopsy findings, provides data that can optimize treatment and prognosis. This review focuses on the causes including selected monogenic defects, clinical phenotypes, histopathologic findings, and age-appropriate differential diagnoses of nephrotic syndrome in the pediatric population with an emphasis on podocytopathies.
Collapse
Affiliation(s)
- Laura S Finn
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine at The University of Pennsylvania, The Children's Hospital of Philadelphia, Philadelphia, PA, USA
| |
Collapse
|
5
|
Al Zabali S, Alseneidi S, Faqeehi H, Albatati S, Al Anazi A. Association of Atypical Hemolytic Uremic Syndrome With Wilms' Tumor 1 Gene Mutations: A Case Series and Literature Review. Cureus 2024; 16:e70016. [PMID: 39445256 PMCID: PMC11498079 DOI: 10.7759/cureus.70016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/23/2024] [Indexed: 10/25/2024] Open
Abstract
Atypical hemolytic uremic syndrome (aHUS) is a life‑threatening condition characterized by microangiopathic hemolytic anemia, thrombocytopenia, as well as acute kidney injury (AKI). It can occur primarily due to complement gene mutations or secondary to another underlying condition. Several cases with Wilms' tumor gene 1 (WT1) mutations that presented with aHUS have been reported. Here, we report four cases of children diagnosed with WT1 mutations and presented initially with aHUS. There are two boys and two girls who presented with thrombotic microangiopathy (TMA), high lactate dehydrogenase, fragmented red blood cell (RBCs), and severe hypertension. All of them were anuric from the first presentation. Therapy with C5 inhibitors was initiated immediately and was associated with hematological remission without renal recovery. Renal replacement therapy (RRT) was started for all of the patients. A renal biopsy was conducted on two patients and showed global glomerulosclerosis. A genetic study identified pathogenic mutations in the WT1 gene. Two of the patients became dialysis dependent, and two patients underwent renal transplantation without the recurrence of aHUS. Our case series emphasizes that a diagnosis of WT1 mutation can be considered in children with aHUS with severe renal manifestations without a response to C5 inhibitors and with global glomerulosclerosis on renal biopsy. To our knowledge, this is the first report of a series of cases of WT1 mutations in pediatric patients presenting with clinical manifestation manifestations of aHUS. This unique finding highlights an association between HUS and WT1 mutation.
Collapse
Affiliation(s)
| | | | - Hassan Faqeehi
- Pediatric Nephrology, King Fahad Medical City, Riyadh, SAU
| | | | | |
Collapse
|
6
|
Wankanit S, Zidoune H, Bignon-Topalovic J, Schlick L, Houzelstein D, Fusée L, Boukri A, Nouri N, McElreavey K, Bashamboo A, Elzaiat M. Evidence for NR2F2/COUP-TFII involvement in human testis development. Sci Rep 2024; 14:17869. [PMID: 39090159 PMCID: PMC11294483 DOI: 10.1038/s41598-024-68860-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Accepted: 07/29/2024] [Indexed: 08/04/2024] Open
Abstract
NR2F2 encodes COUP-TFII, an orphan nuclear receptor required for the development of the steroidogenic lineages of the murine fetal testes and ovaries. Pathogenic variants in human NR2F2 are associated with testis formation in 46,XX individuals, however, the function of COUP-TFII in the human testis is unknown. We report a de novo heterozygous variant in NR2F2 (c.737G > A, p.Arg246His) in a 46,XY under-masculinized boy with primary hypogonadism. The variant, located within the ligand-binding domain, is predicted to be highly damaging. In vitro studies indicated that the mutation does not impact the stability or subcellular localization of the protein. NR5A1, a related nuclear receptor that is a key factor in gonad formation and function, is known to physically interact with COUP-TFII to regulate gene expression. The mutant protein did not affect the physical interaction with NR5A1. However, in-vitro assays demonstrated that the mutant protein significantly loses the inhibitory effect on NR5A1-mediated activation of both the LHB and INSL3 promoters. The data support a role for COUP-TFII in human testis formation. Although mutually antagonistic sets of genes are known to regulate testis and ovarian pathways, we extend the list of genes, that together with NR5A1 and WT1, are associated with both 46,XX and 46,XY DSD.
Collapse
Affiliation(s)
- Somboon Wankanit
- Human Developmental Genetics Unit, CNRS UMR 3738, Institut Pasteur, 75015, Paris, France
- Department of Pediatrics, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Bangkok, 10400, Thailand
| | - Housna Zidoune
- Human Developmental Genetics Unit, CNRS UMR 3738, Institut Pasteur, 75015, Paris, France
- Department of Animal Biology, Laboratory of Molecular and Cellular Biology, University Frères Mentouri Constantine 1, 25017, Constantine, Algeria
| | | | - Laurène Schlick
- Human Developmental Genetics Unit, CNRS UMR 3738, Institut Pasteur, 75015, Paris, France
| | - Denis Houzelstein
- Human Developmental Genetics Unit, CNRS UMR 3738, Institut Pasteur, 75015, Paris, France
| | - Leila Fusée
- Human Developmental Genetics Unit, CNRS UMR 3738, Institut Pasteur, 75015, Paris, France
| | - Asma Boukri
- Department of Endocrinology and Diabetology, CHU Ibn Badis Constantine, Constantine, Algeria
- Metabolic Disease Research Laboratory, Salah Boubnider Constantine 3 University, El Khroub, Algeria
| | - Nassim Nouri
- Department of Endocrinology and Diabetology, CHU Ibn Badis Constantine, Constantine, Algeria
- Metabolic Disease Research Laboratory, Salah Boubnider Constantine 3 University, El Khroub, Algeria
| | - Ken McElreavey
- Human Developmental Genetics Unit, CNRS UMR 3738, Institut Pasteur, 75015, Paris, France
| | - Anu Bashamboo
- Human Developmental Genetics Unit, CNRS UMR 3738, Institut Pasteur, 75015, Paris, France
| | - Maëva Elzaiat
- Human Developmental Genetics Unit, CNRS UMR 3738, Institut Pasteur, 75015, Paris, France.
| |
Collapse
|
7
|
Jakhotia S, Kavvuri R, Raviraj S, Baishya S, Pasupulati AK, Reddy GB. Obesity-related glomerulopathy is associated with elevated WT1 expression in podocytes. Int J Obes (Lond) 2024; 48:1080-1091. [PMID: 38504059 DOI: 10.1038/s41366-024-01509-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/22/2023] [Revised: 02/26/2024] [Accepted: 03/01/2024] [Indexed: 03/21/2024]
Abstract
BACKGROUND The prevalence of obesity is increasing worldwide at an alarming rate. In addition to the increased incidence of cardiovascular and metabolic diseases, obesity is the most potent risk factor for developing chronic kidney disease (CKD). Although systemic events such as hemodynamic factors, metabolic effects, and lipotoxicity were implicated in the pathophysiology of obesity-related glomerulopathy (ORG) and kidney dysfunction, the precise mechanisms underlying the association between obesity and CKD remain unexplored. METHODS In this study, we employed spontaneous WNIN/Ob rats to investigate the molecular events that promote ORG. Further, we fed a high-fat diet to mice and analyzed the incidence of ORG. Kidney functional parameters, micro-anatomical manifestations, and podocyte morphology were investigated in both experimental animal models. Gene expression analysis in the rodents was compared with human subjects by data mining using Nephroseq and Kidney Precision Medicine Project database. RESULTS WNIN/Ob rats were presented with proteinuria and several glomerular deformities, such as adaptive glomerulosclerosis, decreased expression of podocyte-specific markers, and effacement of podocyte foot process. Similarly, high-fat-fed mice also showed glomerular injury and proteinuria. Both experimental animal models showed increased expression of podocyte-specific transcription factor WT1. The altered expression of putative targets of WT1 such as E-cadherin, podocin (reduced), and α-SMA (increased) suggests elevated expression of WT1 in podocytes elicits mesenchymal phenotype. Curated data from CKD patients revealed increased expression of WT1 in the podocytes and its precursors, parietal epithelial cells. CONCLUSION WT1 is crucial during nephron development and has minimal expression in adult podocytes. Our study discovered elevated expression of WT1 in podocytes in obesity settings. Our analysis suggests a novel function for WT1 in the pathogenesis of ORG; however, the precise mechanism of WT1 induction and its involvement in podocyte pathobiology needs further investigation.
Collapse
Affiliation(s)
- Sneha Jakhotia
- Department of Biochemistry, ICMR-National Institute of Nutrition, Hyderabad, 500007, TS, India
| | - Rajesh Kavvuri
- Department of Biochemistry, University of Hyderabad, Hyderabad, 500046, TS, India
| | - Sumathi Raviraj
- Department of Biochemistry, University of Hyderabad, Hyderabad, 500046, TS, India
| | - Somorita Baishya
- Department of Biochemistry, University of Hyderabad, Hyderabad, 500046, TS, India
| | | | - G Bhanuprakash Reddy
- Department of Biochemistry, ICMR-National Institute of Nutrition, Hyderabad, 500007, TS, India.
| |
Collapse
|
8
|
Буянова АА, Воронцова ИГ, Самитова АФ, Василиадис ЮА, Петряйкина ЕЕ, Демина ЕС, Тюльпаков АН. [A case of 46,XX testicular disorders of sex development due to an apparent synonymous variant in the WT1 gene: difficulties of differential diagnosis of intrauterine virililzation syndrome in a girl]. PROBLEMY ENDOKRINOLOGII 2024; 71:60-65. [PMID: 40089886 PMCID: PMC11931460 DOI: 10.14341/probl13436] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/24/2024] [Revised: 03/31/2024] [Accepted: 04/02/2024] [Indexed: 03/17/2025]
Abstract
Disorders of sex development (DSD) represent a group of congenital conditions in which there is a discrepancy between the chromosomal and (or) gonadal sex and the structure of the genitals. Within the DSD there is a subgroup of 46,XX testicular DSD (46,XX TDSD), which may be caused by the translocation of the SRY gene, and more rarely - due to other causes (SRY-negative forms). In this report, we present an observation of a patient with SRY-negative 46,XX TDSD, in whom the condition was initially regarded as a virile form of congenital adrenal hyperplasia, then as idiopathic intrauterine virilization in a girl. Due to the development of virilization at the age of 11, the presence of testicular tissue was suspected. Molecular genetic analysis (whole exome sequencing with Sanger validation) revealed a de novo variant in exon 9 of the WT1 gene (chr11:32413528T>C), which, according to predictions, did not lead to a change in the amino acid sequence (p.Thr479=, NM_024426.6), but disrupted splicing, resulting in a previously described in 46,XX TDSD a change in the C-terminal domain of WT1. After verification of the diagnosis, a gonadectomy was performed and estrogen replacement therapy was prescribed. Thus, we have described a patient with a rare form of 46,XX TDSD caused by a variant in the WT1 gene. The presented observation illustrates the difficulties of differential diagnosis of intrauterine virilization syndrome in female karyotype.
Collapse
Affiliation(s)
- А. А. Буянова
- Центр высокоточного редактирования и генетических технологий для биомедицины
| | | | - А. Ф. Самитова
- Центр высокоточного редактирования и генетических технологий для биомедицины
| | - Ю. А. Василиадис
- Центр высокоточного редактирования и генетических технологий для биомедицины
| | | | | | - А. Н. Тюльпаков
- Российская детская клиническая больница; Медико-генетический научный центр им. акад. Н.П. Бочкова
| |
Collapse
|
9
|
Mecca M, Picerno S, Cortellino S. The Killer's Web: Interconnection between Inflammation, Epigenetics and Nutrition in Cancer. Int J Mol Sci 2024; 25:2750. [PMID: 38473997 DOI: 10.3390/ijms25052750] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 02/21/2024] [Accepted: 02/23/2024] [Indexed: 03/14/2024] Open
Abstract
Inflammation is a key contributor to both the initiation and progression of tumors, and it can be triggered by genetic instability within tumors, as well as by lifestyle and dietary factors. The inflammatory response plays a critical role in the genetic and epigenetic reprogramming of tumor cells, as well as in the cells that comprise the tumor microenvironment. Cells in the microenvironment acquire a phenotype that promotes immune evasion, progression, and metastasis. We will review the mechanisms and pathways involved in the interaction between tumors, inflammation, and nutrition, the limitations of current therapies, and discuss potential future therapeutic approaches.
Collapse
Affiliation(s)
- Marisabel Mecca
- Laboratory of Preclinical and Translational Research, Centro di Riferimento Oncologico della Basilicata (IRCCS-CROB), 85028 Rionero in Vulture, PZ, Italy
| | - Simona Picerno
- Laboratory of Preclinical and Translational Research, Centro di Riferimento Oncologico della Basilicata (IRCCS-CROB), 85028 Rionero in Vulture, PZ, Italy
| | - Salvatore Cortellino
- Laboratory of Preclinical and Translational Research, Responsible Research Hospital, 86100 Campobasso, CB, Italy
- Scuola Superiore Meridionale (SSM), Clinical and Translational Oncology, 80138 Naples, NA, Italy
- S.H.R.O. Italia Foundation ETS, 10060 Candiolo, TO, Italy
| |
Collapse
|
10
|
Torban E, Goodyer P. Wilms' tumor gene 1: lessons from the interface between kidney development and cancer. Am J Physiol Renal Physiol 2024; 326:F3-F19. [PMID: 37916284 DOI: 10.1152/ajprenal.00248.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Revised: 10/27/2023] [Accepted: 10/27/2023] [Indexed: 11/03/2023] Open
Abstract
In 1990, mutations of the Wilms' tumor-1 gene (WT1), encoding a transcription factor in the embryonic kidney, were found in 10-15% of Wilms' tumors; germline WT1 mutations were associated with hereditary syndromes involving glomerular and reproductive tract dysplasia. For more than three decades, these discoveries prompted investigators to explore the embryonic role of WT1 and the mechanisms by which loss of WT1 leads to malignant transformation. Here, we discuss how alternative splicing of WT1 generates isoforms that act in a context-specific manner to activate or repress target gene transcription. WT1 also regulates posttranscriptional regulation, alters the epigenetic landscape, and activates miRNA expression. WT1 functions at multiple stages of kidney development, including the transition from resting stem cells to committed nephron progenitor, which it primes to respond to WNT9b signals from the ureteric bud. WT1 then drives nephrogenesis by activating WNT4 expression and directing the development of glomerular podocytes. We review the WT1 mutations that account for Denys-Drash syndrome, Frasier syndrome, and WAGR syndrome. Although the WT1 story began with Wilms' tumors, an understanding of the pathways that link aberrant kidney development to malignant transformation still has some important gaps. Loss of WT1 in nephrogenic rests may leave these premalignant clones with inadequate DNA repair enzymes and may disturb the epigenetic landscape. Yet none of these observations provide a complete picture of Wilms' tumor pathogenesis. It appears that the WT1 odyssey is unfinished and still holds a great deal of untilled ground to be explored.
Collapse
Affiliation(s)
- Elena Torban
- Department of Medicine, McGill University and Research Institute of McGill University Health Center, Montreal, Quebec, Canada
| | - Paul Goodyer
- Department of Human Genetics, Montreal Children's Hospital and McGill University, Montreal, Quebec, Canada
- Department of Pediatrics, Montreal Children's Hospital and McGill University, Montreal, Quebec, Canada
| |
Collapse
|
11
|
Holterhus PM, Kulle A, Busch H, Spielmann M. Classic genetic and hormonal switches during fetal sex development and beyond. MED GENET-BERLIN 2023; 35:163-171. [PMID: 38840820 PMCID: PMC10842585 DOI: 10.1515/medgen-2023-2036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/07/2024]
Abstract
Critical genetic and hormonal switches characterize fetal sex development in humans. They are decisive for gonadal sex determination and subsequent differentiation of the genital and somatic sex phenotype. Only at the first glace these switches seem to behave like the dual 0 and 1 system in computer sciences and lead invariably to either typically male or female phenotypes. More recent data indicate that this model is insufficient. In addition, in case of distinct mutations, many of these switches may act variably, causing a functional continuum of alterations of gene functions and -dosages, enzymatic activities, sex hormone levels, and sex hormone sensitivity, giving rise to a broad clinical spectrum of biological differences of sex development (DSD) and potentially diversity of genital and somatic sex phenotypes. The gonadal anlage is initially a bipotential organ that can develop either into a testis or an ovary. Sex-determining region Y (SRY) is the most important upstream switch of gonadal sex determination inducing SOX9 further downstream, leading to testicular Sertoli cell differentiation and the repression of ovarian pathways. If SRY is absent (virtually "switched off"), e. g., in 46,XX females, RSPO1, WNT4, FOXL2, and other factors repress the male pathway and promote ovarian development. Testosterone and its more potent derivative, dihydrotestosterone (DHT) as well as AMH, are the most important upstream hormonal switches in phenotypic sex differentiation. Masculinization of the genitalia, i. e., external genital midline fusion forming the scrotum, growth of the genital tubercle, and Wolffian duct development, occurs in response to testosterone synthesized by steroidogenic cells in the testis. Müllerian ducts will not develop into a uterus and fallopian tubes in males due to Anti-Müllerian-Hormone (AMH) produced by the Sertoli cells. The functionality of these two hormone-dependent switches is ensured by their corresponding receptors, the intracellular androgen receptor (AR) and the transmembrane AMH type II receptor. The absence of high testosterone and high AMH is crucial for anatomically female genital development during fetal life. Recent technological advances, including single-cell and spatial transcriptomics, will likely shed more light on the nature of these molecular switches.
Collapse
Affiliation(s)
- Paul-Martin Holterhus
- Christian-Albrechts University of Kiel (CAU)Pediatric Endocrinology and Diabetes, Department of Pediatrics IKielGermany
| | - Alexandra Kulle
- Christian-Albrechts University of Kiel (CAU)Pediatric Endocrinology and Diabetes, Department of Pediatrics IKielGermany
| | - Hauke Busch
- University of LübeckMedical Systems Biology Group, Lübeck Institute of Experimental Dermatology (LIED)Ratzeburger Allee 16023562LübeckGermany
| | - Malte Spielmann
- University of LübeckInstitute of Human GeneticsLübeckGermany
| |
Collapse
|
12
|
Zheng H, Liu J, Pan X, Cui X. Biomarkers for patients with Wilms tumor: a review. Front Oncol 2023; 13:1137346. [PMID: 37554168 PMCID: PMC10405734 DOI: 10.3389/fonc.2023.1137346] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Accepted: 06/27/2023] [Indexed: 08/10/2023] Open
Abstract
Wilms tumor, originating from aberrant fetal nephrogenesis, is the most common renal malignancy in childhood. The overall survival of children is approximately 90%. Although existing risk-stratification systems are helpful in identifying patients with poor prognosis, the recurrence rate of Wilms tumors remains as high as 15%. To resolve this clinical problem, diverse studies on the occurrence and progression of the disease have been conducted, and the results are encouraging. A series of molecular biomarkers have been identified with further studies on the mechanism of tumorigenesis. Some of these show prognostic value and have been introduced into clinical practice. Identification of these biomarkers can supplement the existing risk-stratification systems. In the future, more biomarkers will be discovered, and more studies are required to validate their roles in improving the detection rate of occurrence or recurrence of Wilms tumor and to enhance clinical outcomes.
Collapse
Affiliation(s)
| | | | - Xiuwu Pan
- Department of Urology, Xinhua Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Xingang Cui
- Department of Urology, Xinhua Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| |
Collapse
|
13
|
Ulbright TM, Young RH. Reflections on Historical and Other Aspects of a Remarkable Gonadal Abnormality on the 70th Anniversary of its Description by Dr Robert E. Scully. Int J Gynecol Pathol 2023; 42:221-233. [PMID: 36730525 DOI: 10.1097/pgp.0000000000000929] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
|
14
|
Ikhuoriah T, Oboh D, Musheyev Y, Abramowitz C, Ilyaev B. Wilms tumor: A case report with typical clinical and radiologic features in a 3-year-old male. Radiol Case Rep 2023; 18:1898-1904. [PMID: 36942007 PMCID: PMC10023853 DOI: 10.1016/j.radcr.2023.02.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2023] [Revised: 02/01/2023] [Accepted: 02/03/2023] [Indexed: 03/12/2023] Open
Abstract
Wilms' tumor, also known as nephroblastoma, is a rare cancer of the kidney that occurs almost exclusively in children. In this case report, a 3-year-old male presented to the hospital with left flank swelling and recurrent fever of 4 months duration. On examination, the abdomen was distended, with associated left flank fullness and distension of the anterior abdominal wall veins. A left nontender firm flank mass was palpated. Upon extensive imaging, the mass was revealed to be a nephroblastoma. The study reviews the use of imaging as a means of achieving a diagnosis and accurately measuring the size and magnitude of the tumor in order that treatment, whether surgery or chemotherapy, be commenced.
Collapse
Affiliation(s)
- Teddy Ikhuoriah
- New York Institute of Technology College of Osteopathic Medicine, 101 Northern Blvd Glen Head, Old Westbury, NY, USA
| | - David Oboh
- Medical Imaging Department, Prince Faisal Bin Khalid Cardiac Center (PFKCC), Abha, Aseer Saudi Arabia
| | - Yakubmiyer Musheyev
- New York Institute of Technology College of Osteopathic Medicine, 101 Northern Blvd Glen Head, Old Westbury, NY, USA
- Corresponding author.
| | - Chiya Abramowitz
- New York Institute of Technology College of Osteopathic Medicine, 101 Northern Blvd Glen Head, Old Westbury, NY, USA
| | - Benjamin Ilyaev
- Hofstra University, 1000 Hempstead Tpke, Hempstead, NY 11549, USA
| |
Collapse
|
15
|
Yoshino M, Shimabukuro W, Takeichi M, Omura J, Yokota C, Yamamoto J, Nakanishi K, Morisada N, Nozu K, Iijima K, Takahashi Y. A case of Potter sequence with WT1 mutation. CEN Case Rep 2023; 12:184-188. [PMID: 36227513 PMCID: PMC10151295 DOI: 10.1007/s13730-022-00742-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Accepted: 10/03/2022] [Indexed: 05/02/2023] Open
Abstract
Wilms tumor 1 (WT1) is the causative gene of Denys-Drash syndrome and Frasier syndrome, and in most cases, kidney failure develops after birth. We report an unusual case of Potter sequence due to fetal nephropathy and kidney failure with a WT1 mutation. The neonate was born at 37 weeks of gestation, and had no distinctive facial appearance or anomalies of the extremities. The external genitalia were ambiguous. Presence of a penile-like structure or hypertrophic clitoris was noted, and the urethra opened at the base of the penis or clitoris. On ultrasonographic examination, the kidney sizes were small. No kidney cysts were noted, but the kidney parenchymal luminosity was increased. Although the neonate received mechanical ventilation because of severe retractive breathing after birth, he died of poor oxygenation due to air leak syndrome at 60 h after birth. The congenital anomalies of the kidney and urinary tract (CAKUT) gene panel revealed a heterozygous missense mutation in WT1 [NM_024426.6:exon9:c.1400G > A, p.(Arg467Gln)]. In WT1, missense mutations are associated with earlier onset of nephropathy than nonsense or splicing mutations. However, severe cases of fetal onset and early neonatal death with WT1 mutations are rare, and only one severe case with the same missense mutation in WT1 has been reported. Therefore, WT1 mutation may be suspected in Potter sequence patients with external genital abnormalities, and the WT1 missense mutation in our case [NM_024426.6:exon9:c.1400G > A, p.(Arg467Gln)] may indicate a severe case with fetal onset of nephropathy and kidney failure.
Collapse
Affiliation(s)
- Miwa Yoshino
- Department of Pediatrics, Kyushu Hospital, Japan Community Healthcare Organization, 1-8-1, Kishinoura, Yahatanishi-ku, Kitakyushu, Fukuoka, 806-8501, Japan.
| | - Wataru Shimabukuro
- Department of Pediatrics, Kyushu Hospital, Japan Community Healthcare Organization, 1-8-1, Kishinoura, Yahatanishi-ku, Kitakyushu, Fukuoka, 806-8501, Japan
- Department of Child Health and Welfare (Pediatrics), Graduate School of Medicine, University of the Ryukyus, Nishihara, Okinawa, Japan
| | - Mina Takeichi
- Department of Pediatrics, Kyushu Hospital, Japan Community Healthcare Organization, 1-8-1, Kishinoura, Yahatanishi-ku, Kitakyushu, Fukuoka, 806-8501, Japan
| | - Junya Omura
- Department of Pediatrics, Kyushu Hospital, Japan Community Healthcare Organization, 1-8-1, Kishinoura, Yahatanishi-ku, Kitakyushu, Fukuoka, 806-8501, Japan
| | - Chie Yokota
- Department of Pediatrics, Kyushu Hospital, Japan Community Healthcare Organization, 1-8-1, Kishinoura, Yahatanishi-ku, Kitakyushu, Fukuoka, 806-8501, Japan
| | - Junko Yamamoto
- Department of Pediatrics, Kyushu Hospital, Japan Community Healthcare Organization, 1-8-1, Kishinoura, Yahatanishi-ku, Kitakyushu, Fukuoka, 806-8501, Japan
| | - Koichi Nakanishi
- Department of Child Health and Welfare (Pediatrics), Graduate School of Medicine, University of the Ryukyus, Nishihara, Okinawa, Japan
| | - Naoya Morisada
- Department of Pediatrics, Graduate School of Medicine, Kobe University, Nada, Hyogo, Japan
| | - Kandai Nozu
- Department of Pediatrics, Graduate School of Medicine, Kobe University, Nada, Hyogo, Japan
| | - Kazumoto Iijima
- Department of Pediatrics, Graduate School of Medicine, Kobe University, Nada, Hyogo, Japan
| | - Yasuhiko Takahashi
- Department of Pediatrics, Kyushu Hospital, Japan Community Healthcare Organization, 1-8-1, Kishinoura, Yahatanishi-ku, Kitakyushu, Fukuoka, 806-8501, Japan
| |
Collapse
|
16
|
Frasier syndrome: A case report. CLINICA E INVESTIGACION EN GINECOLOGIA Y OBSTETRICIA 2023. [DOI: 10.1016/j.gine.2022.100827] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
|
17
|
Schnerwitzki D, Englert C, Schmidt M. Adapting the pantograph limb: Differential robustness of fore- and hindlimb kinematics against genetically induced perturbation in the neural control networks and its evolutionary implications. ZOOLOGY 2023; 157:126076. [PMID: 36842298 DOI: 10.1016/j.zool.2023.126076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2021] [Revised: 01/28/2023] [Accepted: 02/07/2023] [Indexed: 02/19/2023]
Abstract
The evolutionary transformation of limb morphology to the four-segmented pantograph of therians is among the milestones of mammalian evolution. But, it is still unknown if changes of the mechanical limb function were accompanied by corresponding changes in development and sensorimotor control. The impressive locomotor performance of mammals leaves no doubt about the high integration of pattern formation, neural control and mechanics. But, deviations from normal intra- and interlimb coordination (spatial and temporal) become evident in the presence of perturbations. We induced a perturbation in the development of the neural circuits of the spinal cord of mice (Mus musculus) using a deletion of the Wilms tumor suppressor gene Wt1 in a subpopulation of dI6 interneurons. These interneurons are assumed to participate in the intermuscular coordination within the limb and in left-right-coordination between the limbs. We describe the locomotor kinematics in mice with conditional Wt1 knockout and compare them to mice without Wt1 deletion. Unlike knockout neonates, knockout adult mice do not display severe deviations from normal (=control group) interlimb coordination, but the coordinated protraction and retraction of the limbs is altered. The forelimbs are more affected by deviations from the control than the hindlimbs. This observation appears to reflect a different degree of integration and resistance against the induced perturbation between the limbs. Interestingly, the observed effects are similar to locomotor deficits reported to arise when sensory feedback from proprioceptors or cutaneous receptors is impaired. A putative participation of Wt1 positive dI6 interneurons in sensorimotor integration is therefore considered.
Collapse
Affiliation(s)
- Danny Schnerwitzki
- Molecular Genetics Lab, Leibniz Institute on Aging - Fritz Lipmann Institute, Beutenbergstrasse 11, 07745 Jena, Germany.
| | - Christoph Englert
- Molecular Genetics Lab, Leibniz Institute on Aging - Fritz Lipmann Institute, Beutenbergstrasse 11, 07745 Jena, Germany; Institute of Biochemistry and Biophysics, Friedrich-Schiller-University Jena, Jena, Germany.
| | - Manuela Schmidt
- Institute of Zoology and Evolutionary Research with Phyletic Museum, Ernst-Haeckel building and Didactics of Biology, Friedrich Schiller University Jena, Erbertstrasse 1, 07743 Jena, Germany.
| |
Collapse
|
18
|
Feinberg AP, Levchenko A. Epigenetics as a mediator of plasticity in cancer. Science 2023; 379:eaaw3835. [PMID: 36758093 PMCID: PMC10249049 DOI: 10.1126/science.aaw3835] [Citation(s) in RCA: 116] [Impact Index Per Article: 58.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2020] [Accepted: 12/22/2022] [Indexed: 02/11/2023]
Abstract
The concept of an epigenetic landscape describing potential cellular fates arising from pluripotent cells, first advanced by Conrad Waddington, has evolved in light of experiments showing nondeterministic outcomes of regulatory processes and mathematical methods for quantifying stochasticity. In this Review, we discuss modern approaches to epigenetic and gene regulation landscapes and the associated ideas of entropy and attractor states, illustrating how their definitions are both more precise and relevant to understanding cancer etiology and the plasticity of cancerous states. We address the interplay between different types of regulatory landscapes and how their changes underlie cancer progression. We also consider the roles of cellular aging and intrinsic and extrinsic stimuli in modulating cellular states and how landscape alterations can be quantitatively mapped onto phenotypic outcomes and thereby used in therapy development.
Collapse
Affiliation(s)
- Andrew P Feinberg
- Center for Epigenetics, Johns Hopkins University Schools of Medicine, Biomedical Engineering, and Public Health, Baltimore, MD 21205, USA
| | - Andre Levchenko
- Yale Systems Biology Institute and Department of Biomedical Engineering, Yale University, West Haven, CT 06516, USA
| |
Collapse
|
19
|
Splicing-Disrupting Mutations in Inherited Predisposition to Solid Pediatric Cancer. Cancers (Basel) 2022; 14:cancers14235967. [PMID: 36497448 PMCID: PMC9739414 DOI: 10.3390/cancers14235967] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Revised: 11/25/2022] [Accepted: 11/28/2022] [Indexed: 12/09/2022] Open
Abstract
The prevalence of hereditary cancer in children was estimated to be very low until recent studies suggested that at least 10% of pediatric cancer patients carry a germline mutation in a cancer predisposition gene. A significant proportion of pathogenic variants associated with an increased risk of hereditary cancer are variants affecting splicing. RNA splicing is an essential process involved in different cellular processes such as proliferation, survival, and differentiation, and alterations in this pathway have been implicated in many human cancers. Hereditary cancer genes are highly susceptible to splicing mutations, and among them there are several genes that may contribute to pediatric solid tumors when mutated in the germline. In this review, we have focused on the analysis of germline splicing-disrupting mutations found in pediatric solid tumors, as the discovery of pathogenic splice variants in pediatric cancer is a growing field for the development of personalized therapies. Therapies developed to correct aberrant splicing in cancer are also discussed as well as the options to improve the diagnostic yield based on the increase in the knowledge in splicing.
Collapse
|
20
|
Welter N, Furtwängler R, Schneider G, Graf N, Schenk JP. [Tumor predisposition syndromes and nephroblastoma : Early diagnosis with imaging]. RADIOLOGIE (HEIDELBERG, GERMANY) 2022; 62:1033-1042. [PMID: 36008692 DOI: 10.1007/s00117-022-01056-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 07/20/2022] [Indexed: 06/15/2023]
Abstract
CLINICAL/METHODICAL ISSUE The Beckwith-Wiedemann spectrum (BWSp) as well as the WT1-related syndromes, Denys-Drash syndrome (DDS) and WAGR spectrum (Wilms tumor, Aniridia, genitourinary anomalies and a range of developmental delays) are tumor predisposition syndromes (TPS) of Wilms tumor (WT). Patients with associated TPS are at higher risk of developing chronic kidney disease and bilateral and metachronous tumors as well as nephrogenic rests. STANDARD RADIOLOGICAL METHODS Standard imaging diagnostics for WT include renal ultrasound and magnetic resonance imaging (MRI). In the current renal tumor studies Umbrella SIOP-RTSG 2016 and Randomet 2017, thoracic computed tomography (CT) is also recommended as standard. Positron emission tomography (PET)-CT and whole-body MRI, on the other hand, are not part of routine diagnostics. METHODOLOGICAL INNOVATIONS In recent publications, renal ultrasound is recommended every 3 months until the age of 7 years in cases of clinical suspicion or molecularly proven TPS. PERFORMANCE Patients with TPS and regular renal ultrasounds have smaller tumor volumes and lower tumor stages at WT diagnosis than patients without such a screening. This allows a reduction of therapy intensity and facilitates the performance of nephron sparing surgery, which is prognostically relevant especially in bilateral WT. ACHIEVEMENTS Early diagnosis of WT in the context of TPS ensures the greatest possible preservation of healthy and functional renal tissue. Standardized screening by regular renal ultrasounds should therefore be firmly established in clinical practice. PRACTICAL RECOMMENDATIONS The initial diagnosis of TPS is clinical and requires a skilled and attentive examiner in the presence of sometimes subtle clinical manifestations, especially in the case of BWSp. Clinical diagnosis should be followed by genetic testing, which should then be followed by sonographic screening.
Collapse
Affiliation(s)
- N Welter
- Klinik für pädiatrische Onkologie und Hämatologie, Universitätsklinikum des Saarlandes, 66421, Homburg/Saar, Deutschland.
| | - R Furtwängler
- Klinik für pädiatrische Onkologie und Hämatologie, Universitätsklinikum des Saarlandes, 66421, Homburg/Saar, Deutschland
| | - G Schneider
- Klinik für Diagnostische und Interventionelle Radiologie, Universitätsklinikum des Saarlandes, Homburg, Deutschland
| | - N Graf
- Klinik für pädiatrische Onkologie und Hämatologie, Universitätsklinikum des Saarlandes, 66421, Homburg/Saar, Deutschland
| | - J-P Schenk
- Sektion Pädiatrische Radiologie, Klinik für Diagnostische und Interventionelle Radiologie, Universitätsklinikum Heidelberg, Heidelberg, Deutschland
| |
Collapse
|
21
|
Hutzfeldt AD, Tan Y, Bonin LL, Beck BB, Baumbach J, Lassé M, Demir F, Rinschen MM. Consensus draft of the native mouse podocyte-ome. Am J Physiol Renal Physiol 2022; 323:F182-F197. [PMID: 35796460 DOI: 10.1152/ajprenal.00058.2022] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The podocyte is a key cell in maintaining renal filtration barrier integrity. Several recent studies have analyzed the entity of genome-coded molecules in the podocyte at deep resolution. This avenue of "podocyte-ome" research was enabled by a variety of techniques, including single-cell transcriptomics, FACS-sorting with and without genetically encoded markers, and deep acquisition of proteomics. However, data across various omics studies are not well-integrated with each other. Here, we aim to establish a common, simplified knowledgebase for the mouse "podocyte-ome" by integrating bulk RNA sequencing and bulk proteomics of sorted podocytes and single cell transcriptomics. Three datasets of each omics type from different laboratories, respectively, were integrated, visualized and bioinformatically analyzed. The procedure sheds light on conserved processes of podocytes, but also on limitations and specific features of the used technologies. High expression of glycan GPI anchor synthesis and turnover, and retinol metabolism was identified as a relatively understudied feature of podocytes, while there are both podocyte-enriched and podocyte-depleted actin binding molecules. We compiled aggregated data in an application that illustrates the features of the dataset and allows for exploratory analyses through individual gene query of podocyte identity in absolute and relative quantification towards other glomerular cell types, keywords, GO-terms and gene set enrichments. This consensus draft is a first step towards common molecular omics knowledge of kidney cells.
Collapse
Affiliation(s)
- Arvid D Hutzfeldt
- III Department of Medicine, grid.13648.38University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Yifan Tan
- Department of Biomedicine, grid.7048.bAarhus University, Aarhus, Denmark
| | - Léna Lydie Bonin
- Department of Biomedicine, grid.7048.bAarhus University, Aarhus, Denmark
| | - Bodo B Beck
- Institute of Human Genetics, Faculty of Medicine and University Hospital Cologne, grid.6190.eUniversity of Cologne, Cologne, Germany
| | - Jan Baumbach
- Institute for Computational Systems Biology, grid.9026.dUniversität Hamburg, Hamburg, Germany
| | - Moritz Lassé
- III Department of Medicine, grid.13648.38University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Fatih Demir
- Department of Biomedicine, grid.7048.bAarhus University, Aarhus, Denmark
| | - Markus M Rinschen
- Department of Biomedicine, grid.7048.bAarhus University, Aarhus, Denmark
| |
Collapse
|
22
|
Guaragna MS, Ledesma FL, Manzano VZ, Maciel-Guerra AT, Guerra-Júnior G, Silva MM, Luiz de Brito P, Palandi de Mello M. Bilateral Wilms' tumor in a child with Denys-Drash syndrome: novel frameshift variant disrupts the WT1 nuclear location signaling region. J Pediatr Endocrinol Metab 2022; 35:837-843. [PMID: 35304980 DOI: 10.1515/jpem-2021-0673] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/07/2021] [Accepted: 02/19/2022] [Indexed: 11/15/2022]
Abstract
OBJECTIVES Wilm's Tumor (WT) is the most common pediatric kidney cancer. Whereas most WTs are isolated, approximately 5% are associated with syndromes such as Denys-Drash (DDS), characterized by early onset nephropathy, disorders of sex development and predisposition to WT. CASE PRESENTATION A 46,XY patient presenting with bilateral WT and genital ambiguity without nephropathy was heterozygous for the novel c.851_854dup variant in WT1 gene sequence. This variant affects the protein generating the frameshift p.(Ser285Argfs*14) that disrupts a nuclear localization signal (NLS) region. CONCLUSIONS This molecular finding is compatible with the severe scenario regarding the Wilm's tumor presented by the patient even though nephropathy was absent.
Collapse
Affiliation(s)
- Mara Sanches Guaragna
- Center for Molecular Biology and Genetic Engineering - CBMEG, State University of Campinas, São Paulo, Brazil.,Interdisciplinary Group for the Study of Sex Determination and Differentiation - GIEDDS, State University of Campinas, São Paulo, Brazil
| | - Felipe Lourenço Ledesma
- Department of Pathology, Clinical Hospital of the University of São Paulo School of Medicine, São Paulo, Brazil
| | | | - Andréa Trevas Maciel-Guerra
- Interdisciplinary Group for the Study of Sex Determination and Differentiation - GIEDDS, State University of Campinas, São Paulo, Brazil.,Department of Medical Genetics and Genomic Medicine, School of Medical Sciences, State University of Campinas, São Paulo, Brazil
| | - Gil Guerra-Júnior
- Interdisciplinary Group for the Study of Sex Determination and Differentiation - GIEDDS, State University of Campinas, São Paulo, Brazil.,Department of Pediatrics, School of Medical Sciences, State University of Campinas, São Paulo, Brazil
| | - Marcelo Milone Silva
- Children and Adolescents Cancer Center (GACC) São José dos Campos, São Paulo, Brazil
| | - Pedro Luiz de Brito
- Children and Adolescents Cancer Center (GACC) São José dos Campos, São Paulo, Brazil
| | - Maricilda Palandi de Mello
- Center for Molecular Biology and Genetic Engineering - CBMEG, State University of Campinas, São Paulo, Brazil.,Interdisciplinary Group for the Study of Sex Determination and Differentiation - GIEDDS, State University of Campinas, São Paulo, Brazil
| |
Collapse
|
23
|
Li Y, Tian C, Wang Y, Ma G, Chen R. Isolated steroid-resistant nephrotic syndrome in a Chinese child carrying a de novo mutation in WT1 gene:a case report and literature review. BMC Pediatr 2022; 22:349. [PMID: 35710404 PMCID: PMC9204972 DOI: 10.1186/s12887-022-03358-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Accepted: 05/11/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Isolated steroid-resistant nephrotic syndrome (ISRNS) is caused by mutations in the Wilms' tumor-1 (WT1) gene, which encodes glomerular podocytes and podocyte slit diaphragm.We report a novel 8-year-old female patient with ISRNS carrying a de novo missense mutation in WT1 gene and presenting a new type of pathology, have never been reported.We also systematically review previous reports of ISRNS in Chinese children. CASE PRESENTATION A 8-year-old Chinese patient who had steroid-resistant nephrotic syndrome,responded poorly to immunosuppressant, and had no extrarenal manifestations. The patient had a female phenotype and karyotype of 46, XX. A new type of renal pathology, proliferative sclerosing glomerulonephritis (PSG),and a de novo missense mutation in WT1 gene, c.748C > T (p.R250W),which have not yet been reported, were identified. She was diagnosed with ISRNS.The patient progressed to end-stage renal disease at the age of 10 years,underwent dialysis and kidney transplant. Renal function and urine protein were normal during 4-year follow-up. CONCLUSIONS WT1 gene testing should be performed to guide treatment for patients with steroid-resistant nephrotic syndrome, especially for isolated cases and female patients.
Collapse
Affiliation(s)
- Yiyang Li
- Department of Pediatrics, Affiliated Hospital of Guangdong Medical University, Zhanjiang City, Guangdong Province, China
| | - Chuan Tian
- Department of Pediatrics, Affiliated Hospital of Guangdong Medical University, Zhanjiang City, Guangdong Province, China
| | - Yajun Wang
- Department of Pediatrics, Shunde Women and Children's Hospital of Guangdong Medical University (Maternity and Child Healthcare Hospital of Shunde Foshan), Foshan, Guangdong Province, China
| | - Guoda Ma
- Department of Pediatrics, Shunde Women and Children's Hospital of Guangdong Medical University (Maternity and Child Healthcare Hospital of Shunde Foshan), Foshan, Guangdong Province, China
| | - Riling Chen
- Department of Pediatrics, Shunde Women and Children's Hospital of Guangdong Medical University (Maternity and Child Healthcare Hospital of Shunde Foshan), Foshan, Guangdong Province, China.
| |
Collapse
|
24
|
Bezdicka M, Kaufman F, Krizova I, Dostalkova A, Rumlova M, Seeman T, Vondrak K, Fencl F, Zieg J, Soucek O. Alteration in DNA-binding affinity of Wilms tumor 1 protein due to WT1 genetic variants associated with steroid - resistant nephrotic syndrome in children. Sci Rep 2022; 12:8704. [PMID: 35610319 PMCID: PMC9130146 DOI: 10.1038/s41598-022-12760-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Accepted: 05/16/2022] [Indexed: 12/02/2022] Open
Abstract
Approximately one third of children with steroid-resistant nephrotic syndrome (SRNS) carry pathogenic variants in one of the many associated genes. The WT1 gene coding for the WT1 transcription factor is among the most frequently affected genes. Cases from the Czech national SRNS database were sequenced for exons 8 and 9 of the WT1 gene. Eight distinct exonic WT1 variants in nine children were found. Three children presented with isolated SRNS, while the other six manifested with additional features. To analyze the impact of WT1 genetic variants, wild type and mutant WT1 proteins were prepared and the DNA-binding affinity of these proteins to the target EGR1 sequence was measured by microscale thermophoresis. Three WT1 mutants showed significantly decreased DNA-binding affinity (p.Arg439Pro, p.His450Arg and p.Arg463Ter), another three mutants showed significantly increased binding affinity (p.Gln447Pro, p.Asp469Asn and p.His474Arg), and the two remaining mutants (p.Cys433Tyr and p.Arg467Trp) showed no change of DNA-binding affinity. The protein products of WT1 pathogenic variants had variable DNA-binding affinity, and no clear correlation with the clinical symptoms of the patients. Further research is needed to clarify the mechanisms of action of the distinct WT1 mutants; this could potentially lead to individualized treatment of a so far unfavourable disease.
Collapse
Affiliation(s)
- Martin Bezdicka
- Vera Vavrova Lab/VIAL, Department of Pediatrics, Second Faculty of Medicine, Charles University and Motol University Hospital, V Uvalu 84, 150 06, Prague, Czech Republic.
| | - Filip Kaufman
- Department of Biotechnology, University of Chemistry and Technology, Prague, Czech Republic
| | - Ivana Krizova
- Department of Biotechnology, University of Chemistry and Technology, Prague, Czech Republic
| | - Alzbeta Dostalkova
- Department of Biotechnology, University of Chemistry and Technology, Prague, Czech Republic
| | - Michaela Rumlova
- Department of Biotechnology, University of Chemistry and Technology, Prague, Czech Republic
| | - Tomas Seeman
- Department of Pediatrics, Second Faculty of Medicine, Charles University and Motol University Hospital, Prague, Czech Republic
| | - Karel Vondrak
- Department of Pediatrics, Second Faculty of Medicine, Charles University and Motol University Hospital, Prague, Czech Republic
| | - Filip Fencl
- Department of Pediatrics, Second Faculty of Medicine, Charles University and Motol University Hospital, Prague, Czech Republic
| | - Jakub Zieg
- Department of Pediatrics, Second Faculty of Medicine, Charles University and Motol University Hospital, Prague, Czech Republic
| | - Ondrej Soucek
- Vera Vavrova Lab/VIAL, Department of Pediatrics, Second Faculty of Medicine, Charles University and Motol University Hospital, V Uvalu 84, 150 06, Prague, Czech Republic
| |
Collapse
|
25
|
Fang F, Iaquinta PJ, Xia N, Liu L, Diao L, Reijo Pera RA. Transcriptional control of human gametogenesis. Hum Reprod Update 2022; 28:313-345. [PMID: 35297982 PMCID: PMC9071081 DOI: 10.1093/humupd/dmac002] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2021] [Revised: 11/22/2021] [Indexed: 11/14/2022] Open
Abstract
The pathways of gametogenesis encompass elaborate cellular specialization accompanied by precise partitioning of the genome content in order to produce fully matured spermatozoa and oocytes. Transcription factors are an important class of molecules that function in gametogenesis to regulate intrinsic gene expression programs, play essential roles in specifying (or determining) germ cell fate and assist in guiding full maturation of germ cells and maintenance of their populations. Moreover, in order to reinforce or redirect cell fate in vitro, it is transcription factors that are most frequently induced, over-expressed or activated. Many reviews have focused on the molecular development and genetics of gametogenesis, in vivo and in vitro, in model organisms and in humans, including several recent comprehensive reviews: here, we focus specifically on the role of transcription factors. Recent advances in stem cell biology and multi-omic studies have enabled deeper investigation into the unique transcriptional mechanisms of human reproductive development. Moreover, as methods continually improve, in vitro differentiation of germ cells can provide the platform for robust gain- and loss-of-function genetic analyses. These analyses are delineating unique and shared human germ cell transcriptional network components that, together with somatic lineage specifiers and pluripotency transcription factors, function in transitions from pluripotent stem cells to gametes. This grand theme review offers additional insight into human infertility and reproductive disorders that are linked predominantly to defects in the transcription factor networks and thus may potentially contribute to the development of novel treatments for infertility.
Collapse
Affiliation(s)
- Fang Fang
- The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, China
| | - Phillip J Iaquinta
- Division of Research, Economic Development, and Graduate Education, California Polytechnic State University, San Luis Obispo, CA, USA
| | - Ninuo Xia
- The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, China
| | - Lei Liu
- The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, China
| | - Lei Diao
- The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, China
| | - Renee A Reijo Pera
- Division of Research, Economic Development, and Graduate Education, California Polytechnic State University, San Luis Obispo, CA, USA
- McLaughlin Research Institute, Great Falls, MT, USA
| |
Collapse
|
26
|
Evaluating Established Roles, Future Perspectives and Methodological Heterogeneity for Wilms’ Tumor 1 (WT1) Antigen Detection in Adult Renal Cell Carcinoma, Using a Novel N-Terminus Targeted Antibody (Clone WT49). Biomedicines 2022; 10:biomedicines10040912. [PMID: 35453662 PMCID: PMC9026801 DOI: 10.3390/biomedicines10040912] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2021] [Revised: 03/23/2022] [Accepted: 04/11/2022] [Indexed: 11/20/2022] Open
Abstract
Renal cell carcinoma (RCC) is arguably the deadliest form of genitourinary malignancy and is nowadays viewed as a heterogeneous series of cancers, with the same origin but fundamentally different metabolisms and clinical behaviors. Immunohistochemistry (IHC) is increasingly necessary for RCC subtyping and definitive diagnosis. WT1 is a complex gene involved in carcinogenesis. To address reporting heterogeneity and WT1 IHC standardization, we used a recent N-terminus targeted monoclonal antibody (clone WT49) to evaluate WT1 protein expression in 56 adult RCC (aRCC) cases. This is the largest WT1 IHC investigation focusing exclusively on aRCCs and the first report on clone WT49 staining in aRCCs. We found seven (12.5%) positive cases, all clear cell RCCs, showing exclusively nuclear staining for WT1. We did not disregard cytoplasmic staining in any of the negative cases. Extratumoral fibroblasts, connecting tubules and intratumoral endothelial cells showed the same exclusively nuclear WT1 staining pattern. We reviewed WT1 expression patterns in aRCCs and the possible explanatory underlying metabolomics. For now, WT1 protein expression in aRCCs is insufficiently investigated, with significant discrepancies in the little data reported. Emerging WT1-targeted RCC immunotherapy will require adequate case selection and sustained efforts to standardize the quantification of tumor-associated antigens for aRCC and its many subtypes.
Collapse
|
27
|
Falcone MP, Pritchard-Jones K, Brok J, Mifsud W, Williams RD, Nakata K, Tugnait S, Al-Saadi R, Side L, Anderson J, Duncan C, Marks SD, Bockenhauer D, Chowdhury T. Long-term kidney function in children with Wilms tumour and constitutional WT1 pathogenic variant. Pediatr Nephrol 2022; 37:821-832. [PMID: 34608521 PMCID: PMC8960606 DOI: 10.1007/s00467-021-05125-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/05/2018] [Revised: 02/25/2021] [Accepted: 05/05/2021] [Indexed: 12/20/2022]
Abstract
BACKGROUND Wilms tumour (WT) survivors, especially patients with associated syndromes or genitourinary anomalies due to constitutional WT1 pathogenic variant, have increased risk of kidney failure. We describe the long-term kidney function in children with WT and WT1 pathogenic variant to inform the surgical strategy and oncological management of such complex children. METHODS Retrospective analysis of patients with WT and constitutional WT1 pathogenic variant treated at a single centre between 1993 and 2016, reviewing genotype, phenotype, tumour histology, laterality, treatment, patient survival, and kidney outcome. RESULTS We identified 25 patients (60% male, median age at diagnosis 14 months, range 4-74 months) with WT1 deletion (4), missense (2), nonsense (8), frameshift (7), or splice site (4) pathogenic variant. Thirteen (52%) had bilateral disease, 3 (12%) had WT-aniridia, 1 had incomplete Denys-Drash syndrome, 11 (44%) had genitourinary malformation, and 10 (40%) had no phenotypic anomalies. Patient survival was 100% and 3 patients were in remission after relapse at median follow-up of 9 years. Seven patients (28%) commenced chronic dialysis of which 3 were after bilateral nephrectomies. The overall kidney survival for this cohort as mean time to start of dialysis was 13.38 years (95% CI: 10.3-16.4), where 7 patients experienced kidney failure at a median of 5.6 years. All of these 7 patients were subsequently transplanted. In addition, 2 patients have stage III and stage IV chronic kidney disease and 12 patients have albuminuria and/or treatment with ACE inhibitors. Four patients (3 frameshift; 1 WT1 deletion) had normal blood pressure and kidney function without proteinuria at follow-up from 1.5 to 12 years. CONCLUSIONS Despite the known high risk of kidney disease in patients with WT and constitutional WT1 pathogenic variant, nearly two-thirds of patients had sustained native kidney function, suggesting that nephron-sparing surgery (NSS) should be attempted when possible without compromising oncological risk. Larger international studies are needed for accurate assessment of WT1genotype-kidney function phenotype correlation.
Collapse
Affiliation(s)
- Maria Pia Falcone
- Department of Paediatric Oncology Great Ormond Street Hospital, UCL Institute of Child Health, NIHR Great Ormond Street Hospital Biomedical Research Centre, London, UK
- Paediatric Residency Program, University of Foggia, Foggia, Italy
| | - Kathryn Pritchard-Jones
- Department of Paediatric Oncology Great Ormond Street Hospital, UCL Institute of Child Health, NIHR Great Ormond Street Hospital Biomedical Research Centre, London, UK
| | - Jesper Brok
- Department of Paediatric Oncology Great Ormond Street Hospital, UCL Institute of Child Health, NIHR Great Ormond Street Hospital Biomedical Research Centre, London, UK
- Dept. of Paediatric Haematology and Oncology, Rigshospitalet, Copenhagen University Hospital, Copenhagen, Denmark
| | - William Mifsud
- Department of Paediatric Oncology Great Ormond Street Hospital, UCL Institute of Child Health, NIHR Great Ormond Street Hospital Biomedical Research Centre, London, UK
| | - Richard D Williams
- Department of Paediatric Oncology Great Ormond Street Hospital, UCL Institute of Child Health, NIHR Great Ormond Street Hospital Biomedical Research Centre, London, UK
| | - Kayo Nakata
- Department of Paediatric Oncology Great Ormond Street Hospital, UCL Institute of Child Health, NIHR Great Ormond Street Hospital Biomedical Research Centre, London, UK
| | - Suzanne Tugnait
- Department of Paediatric Oncology Great Ormond Street Hospital, UCL Institute of Child Health, NIHR Great Ormond Street Hospital Biomedical Research Centre, London, UK
| | - Reem Al-Saadi
- Department of Paediatric Oncology Great Ormond Street Hospital, UCL Institute of Child Health, NIHR Great Ormond Street Hospital Biomedical Research Centre, London, UK
- Dept. of Histopathology, Great Ormond Street Hospital for Children NHS Foundation Trust, London, UK
| | - Lucy Side
- Dept. of Clinical Genetics, Great Ormond Street Hospital for Children NHS Foundation Trust, London, UK
| | - John Anderson
- Department of Paediatric Oncology Great Ormond Street Hospital, UCL Institute of Child Health, NIHR Great Ormond Street Hospital Biomedical Research Centre, London, UK
| | - Catriona Duncan
- Department of Paediatric Oncology Great Ormond Street Hospital, UCL Institute of Child Health, NIHR Great Ormond Street Hospital Biomedical Research Centre, London, UK
| | - Stephen D Marks
- Department of Paediatric Oncology Great Ormond Street Hospital, UCL Institute of Child Health, NIHR Great Ormond Street Hospital Biomedical Research Centre, London, UK
- Dept. of Paediatric Nephrology, Great Ormond Street Hospital for Children NHS Foundation Trust, London, UK
| | - Detlef Bockenhauer
- Dept. of Paediatric Nephrology, Great Ormond Street Hospital for Children NHS Foundation Trust, London, UK
- UCL Department of Renal Medicine, London, UK
| | - Tanzina Chowdhury
- Department of Paediatric Oncology Great Ormond Street Hospital, UCL Institute of Child Health, NIHR Great Ormond Street Hospital Biomedical Research Centre, London, UK.
| |
Collapse
|
28
|
Chen M, Cen C, Wang N, Shen Z, Wang M, Liu B, Li J, Cui X, Wang Y, Gao F. The functions of Wt1 in mouse gonad development and somatic cells differentiation. Biol Reprod 2022; 107:269-274. [PMID: 35244683 DOI: 10.1093/biolre/ioac050] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Revised: 01/27/2022] [Accepted: 02/24/2022] [Indexed: 11/13/2022] Open
Abstract
Wilms' tumour 1 (Wt1) encodes a zinc finger nuclear transcription factor which is mutated in 15-20% of Wilms' tumor, a pediatric kidney tumor. Wt1 has been found to be involved in the development of many organs. In gonads, Wt1 is expressed in genital ridge somatic cells before sex determination, and its expression is maintained in Sertoli cells and granulosa cells after sex determination. It has been demonstrated that Wt1 is required for the survival of the genital ridge cells. Homozygous mutation of Wt1 causes gonad agenesis. Recent studies find that Wt1 plays important roles in lineage specification and maintenance of gonad somatic cells. In this review, we will summarize the recent research works about Wt1 in gonadal somatic cell differentiation.
Collapse
Affiliation(s)
- Min Chen
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, P. R. China.,Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing 100101, P. R. China.,Beijing Institute for Stem Cell and Regenerative Medicine, Beijing, China.,University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Changhuo Cen
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, P. R. China.,Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing 100101, P. R. China.,Beijing Institute for Stem Cell and Regenerative Medicine, Beijing, China.,University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Nan Wang
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, P. R. China.,Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing 100101, P. R. China.,Beijing Institute for Stem Cell and Regenerative Medicine, Beijing, China.,University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Zhiming Shen
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, P. R. China.,Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing 100101, P. R. China.,Beijing Institute for Stem Cell and Regenerative Medicine, Beijing, China.,University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Mengyue Wang
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, P. R. China.,Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing 100101, P. R. China.,Beijing Institute for Stem Cell and Regenerative Medicine, Beijing, China.,University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Bowen Liu
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, P. R. China.,Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing 100101, P. R. China.,Beijing Institute for Stem Cell and Regenerative Medicine, Beijing, China.,University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Jiayi Li
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, P. R. China.,Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing 100101, P. R. China.,Beijing Institute for Stem Cell and Regenerative Medicine, Beijing, China.,University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Xiuhong Cui
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, P. R. China.,Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing 100101, P. R. China.,Beijing Institute for Stem Cell and Regenerative Medicine, Beijing, China
| | - Yanbo Wang
- College of Life Sciences and Food Engineering, Inner Mongolia Minzu University, Tongliao, Inner Mongolia, 028000, China
| | - Fei Gao
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, P. R. China.,Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing 100101, P. R. China.,Beijing Institute for Stem Cell and Regenerative Medicine, Beijing, China.,University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| |
Collapse
|
29
|
Ebefors K, Bergwall L, Nyström J. The Glomerulus According to the Mesangium. Front Med (Lausanne) 2022; 8:740527. [PMID: 35155460 PMCID: PMC8825785 DOI: 10.3389/fmed.2021.740527] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Accepted: 12/27/2021] [Indexed: 02/06/2023] Open
Abstract
The glomerulus is the functional unit for filtration of blood and formation of primary urine. This intricate structure is composed of the endothelium with its glycocalyx facing the blood, the glomerular basement membrane and the podocytes facing the urinary space of Bowman's capsule. The mesangial cells are the central hub connecting and supporting all these structures. The components as a unit ensure a high permselectivity hindering large plasma proteins from passing into the urine while readily filtering water and small solutes. There has been a long-standing interest and discussion regarding the functional contribution of the different cellular components but the mesangial cells have been somewhat overlooked in this context. The mesangium is situated in close proximity to all other cellular components of the glomerulus and should be considered important in pathophysiological events leading to glomerular disease. This review will highlight the role of the mesangium in both glomerular function and intra-glomerular crosstalk. It also aims to explain the role of the mesangium as a central component involved in disease onset and progression as well as signaling to maintain the functions of other glomerular cells to uphold permselectivity and glomerular health.
Collapse
Affiliation(s)
- Kerstin Ebefors
- Department of Physiology, Institute of Neuroscience and Physiology, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Lovisa Bergwall
- Department of Physiology, Institute of Neuroscience and Physiology, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Jenny Nyström
- Department of Physiology, Institute of Neuroscience and Physiology, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| |
Collapse
|
30
|
Theilen TM, Braun Y, Bochennek K, Rolle U, Fiegel HC, Friedmacher F. Multidisciplinary Treatment Strategies for Wilms Tumor: Recent Advances, Technical Innovations and Future Directions. Front Pediatr 2022; 10:852185. [PMID: 35911825 PMCID: PMC9333359 DOI: 10.3389/fped.2022.852185] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Accepted: 05/27/2022] [Indexed: 11/13/2022] Open
Abstract
Significant progress has been made in the management of Wilms tumor (WT) in recent years, mostly as a result of collaborative efforts and the implementation of protocol-driven, multimodal therapy. This article offers a comprehensive overview of current multidisciplinary treatment strategies for WT, whilst also addressing recent technical innovations including nephron-sparing surgery (NSS) and minimally invasive approaches. In addition, surgical concepts for the treatment of metastatic disease, advances in tumor imaging technology and potentially prognostic biomarkers will be discussed. Current evidence suggests that, in experienced hands and selected cases, laparoscopic radical nephrectomy and laparoscopic-assisted partial nephrectomy for WT may offer the same outcome as the traditional open approach. While NSS is the standard procedure for bilateral WT, NSS has evolved as an alternative technique in patients with smaller unilateral WT and in cases with imminent renal failure. Metastatic disease of the lung or liver that is associated with WT is preferably treated with a three-drug chemotherapy and local radiation therapy. However, surgical sampling of lung nodules may be advisable in persistent nodules before whole lung irradiation is commenced. Several tumor markers such as loss of heterozygosity of chromosomes 1p/16q, 11p15 and gain of function at 1q are associated with an increased risk of recurrence or a decreased risk of overall survival in patients with WT. In summary, complete resection with tumor-free margins remains the primary surgical aim in WT, while NSS and minimally invasive approaches are only suitable in a subset of patients with smaller WT and low-risk disease. In the future, advances in tumor imaging technology may assist the surgeon in defining surgical resection margins and additional biomarkers may emerge as targets for development of new diagnostic tests and potential therapies.
Collapse
Affiliation(s)
- Till-Martin Theilen
- Department of Pediatric Surgery and Pediatric Urology, University Hospital Frankfurt, Goethe University Frankfurt, Frankfurt, Germany
| | - Yannick Braun
- Department of Pediatric Surgery and Pediatric Urology, University Hospital Frankfurt, Goethe University Frankfurt, Frankfurt, Germany
| | - Konrad Bochennek
- Division of Pediatric Hematology and Pediatric Oncology, Hospital for Children and Adolescents, University Hospital Frankfurt, Goethe University Frankfurt, Frankfurt, Germany
| | - Udo Rolle
- Department of Pediatric Surgery and Pediatric Urology, University Hospital Frankfurt, Goethe University Frankfurt, Frankfurt, Germany
| | - Henning C Fiegel
- Department of Pediatric Surgery and Pediatric Urology, University Hospital Frankfurt, Goethe University Frankfurt, Frankfurt, Germany
| | - Florian Friedmacher
- Department of Pediatric Surgery and Pediatric Urology, University Hospital Frankfurt, Goethe University Frankfurt, Frankfurt, Germany
| |
Collapse
|
31
|
A Novel WT1 Mutation Identified in a 46,XX Testicular/Ovotesticular DSD Patient Results in the Retention of Intron 9. BIOLOGY 2021; 10:biology10121248. [PMID: 34943163 PMCID: PMC8698877 DOI: 10.3390/biology10121248] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Revised: 11/24/2021] [Accepted: 11/27/2021] [Indexed: 11/17/2022]
Abstract
Simple Summary Disorders/differences of sexual development are very diverse. Among them is a condition characterized by the presence of testicular tissue in people with female chromosomes, which is typically manifested by male or ambiguous genitalia. While genetic counseling is beneficial for these people and their families, the genetic causes of these cases are only partially understood. We describe a new mutation in the WT1 gene that results in the presence of testicular tissue in a child with a female karyotype. We propose molecular mechanisms disrupted by this mutation. This finding widened our understanding of processes that govern sexual development and can be used to develop diagnostic tests for disorders/differences of sexual development. Abstract The 46,XX testicular DSD (disorder/difference of sexual development) and 46,XX ovotesticular DSD (46,XX TDSD and 46,XX OTDSD) phenotypes are caused by genetic rearrangements or point mutations resulting in imbalance between components of the two antagonistic, pro-testicular and pro-ovarian pathways; however, the genetic causes of 46,XX TDSD/OTDSD are not fully understood, and molecular diagnosis for many patients with the conditions is unavailable. Only recently few mutations in the WT1 (WT1 transcription factor; 11p13) gene were described in a group of 46,XX TDSD and 46,XX OTDSD individuals. The WT1 protein contains a DNA/RNA binding domain consisting of four zinc fingers (ZnF) and a three-amino acid (KTS) motif that is present or absent, as a result of alternative splicing, between ZnF3 and ZnF4 (±KTS isoforms). Here, we present a patient with 46,XX TDSD/OTDSD in whom whole exome sequencing revealed a heterozygous de novo WT1 c.1437A>G mutation within an alternative donor splice site which is used for −KTS WT1 isoform formation. So far, no mutation in this splice site has been identified in any patient group. We demonstrated that the mutation results in the retention of intron 9 in the mature mRNA of the 46,XX TDSD/OTDSD patient. In cases when the erroneous mRNA is translated, exclusively the expression of a truncated WT1 +KTS protein lacking ZnF4 and no −KTS protein occurs from the mutated allele of the patient. We discuss potential mechanisms and pathways which can be disturbed upon two conditions: Absence of Zn4F and altered +KTS/−KTS ratio.
Collapse
|
32
|
Poulat F. Non-Coding Genome, Transcription Factors, and Sex Determination. Sex Dev 2021; 15:295-307. [PMID: 34727549 DOI: 10.1159/000519725] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2021] [Accepted: 09/15/2021] [Indexed: 11/19/2022] Open
Abstract
In vertebrates, gonadal sex determination is the process by which transcription factors drive the choice between the testicular and ovarian identity of undifferentiated somatic progenitors through activation of 2 different transcriptional programs. Studies in animal models suggest that sex determination always involves sex-specific transcription factors that activate or repress sex-specific genes. These transcription factors control their target genes by recognizing their regulatory elements in the non-coding genome and their binding motifs within their DNA sequence. In the last 20 years, the development of genomic approaches that allow identifying all the genomic targets of a transcription factor in eukaryotic cells gave the opportunity to globally understand the function of the nuclear proteins that control complex genetic programs. Here, the major transcription factors involved in male and female vertebrate sex determination and the genomic profiling data of mouse gonads that contributed to deciphering their transcriptional regulation role will be reviewed.
Collapse
Affiliation(s)
- Francis Poulat
- Institute of Human Genetics, CNRS UMR9002 University of Montpellier, Montpellier, France
| |
Collapse
|
33
|
Spreafico F, Fernandez CV, Brok J, Nakata K, Vujanic G, Geller JI, Gessler M, Maschietto M, Behjati S, Polanco A, Paintsil V, Luna-Fineman S, Pritchard-Jones K. Wilms tumour. Nat Rev Dis Primers 2021; 7:75. [PMID: 34650095 DOI: 10.1038/s41572-021-00308-8] [Citation(s) in RCA: 99] [Impact Index Per Article: 24.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 09/14/2021] [Indexed: 02/08/2023]
Abstract
Wilms tumour (WT) is a childhood embryonal tumour that is paradigmatic of the intersection between disrupted organogenesis and tumorigenesis. Many WT genes play a critical (non-redundant) role in early nephrogenesis. Improving patient outcomes requires advances in understanding and targeting of the multiple genes and cellular control pathways now identified as active in WT development. Decades of clinical and basic research have helped to gradually optimize clinical care. Curative therapy is achievable in 90% of affected children, even those with disseminated disease, yet survival disparities within and between countries exist and deserve commitment to change. Updated epidemiological studies have also provided novel insights into global incidence variations. Introduction of biology-driven approaches to risk stratification and new drug development has been slower in WT than in other childhood tumours. Current prognostic classification for children with WT is grounded in clinical and pathological findings and in dedicated protocols on molecular alterations. Treatment includes conventional cytotoxic chemotherapy and surgery, and radiation therapy in some cases. Advanced imaging to capture tumour composition, optimizing irradiation techniques to reduce target volumes, and evaluation of newer surgical procedures are key areas for future research.
Collapse
Affiliation(s)
- Filippo Spreafico
- Department of Medical Oncology and Hematology, Paediatric Oncology Unit, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy.
| | - Conrad V Fernandez
- Department of Paediatrics, IWK Health, Dalhousie University, Halifax, Nova Scotia, Canada
| | - Jesper Brok
- Department of Paediatric Haematology and Oncology, Rigshospitalet, Copenhagen, Denmark
| | - Kayo Nakata
- Cancer Control Center, Osaka International Cancer Institute, Osaka, Japan
| | | | - James I Geller
- Cincinnati Children's Hospital Medical Center, University of Cincinnati, Cincinnati, Cincinnati, OH, USA
| | - Manfred Gessler
- Theodor-Boveri-Institute, Developmental Biochemistry, and Comprehensive Cancer Center Mainfranken, University of Wuerzburg, Wuerzburg, Germany
| | - Mariana Maschietto
- Research Center, Boldrini Children's Hospital, Genetics and Molecular Biology, Institute of Biology, State University of Campinas, Campinas, SP, Brazil
| | - Sam Behjati
- Wellcome Sanger Institute, Hinxton, UK
- Cambridge University Hospitals NHS Foundation Trust, Cambridge, UK
- Department of Paediatrics, University of Cambridge, Cambridge, UK
| | - Angela Polanco
- National Cancer Research Institute Children's Group Consumer Representative, London, UK
| | - Vivian Paintsil
- Department of Child Health, School of Medicine and Dentistry, Kwame Nkrumah University of Science and Technology, Kumasi, Ghana
| | - Sandra Luna-Fineman
- Division of Hematology, Oncology and Bone Marrow Transplantation, Department of Paediatrics, University of Colorado, Aurora, CO, USA
| | - Kathy Pritchard-Jones
- Developmental Biology and Cancer Research and Teaching Department, UCL Great Ormond Street Institute of Child Health, University College London, London, UK
| |
Collapse
|
34
|
Characteristics of Nephroblastoma/Nephroblastomatosis in Children with a Clinically Reported Underlying Malformation or Cancer Predisposition Syndrome. Cancers (Basel) 2021; 13:cancers13195016. [PMID: 34638500 PMCID: PMC8507684 DOI: 10.3390/cancers13195016] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2021] [Revised: 09/29/2021] [Accepted: 09/29/2021] [Indexed: 01/03/2023] Open
Abstract
Simple Summary It is well known that different cancer predisposition syndromes are associated with characteristic WT-features. The following findings from our retrospective analysis of patients with nephroblastoma treated according to the SIOP/GPOH trials between 1989 and 2017 are relevant: (1) The outcome of patients with a cancer predisposition syndrome is not always favorable despite early diagnosis, small tumors and less metastatic disease. This finding is partly depending on complications related to the underlying syndrome. (2) Predisposition syndromes seem to be underdiagnosed as several clinical and pathological features of Wilms tumor being clearly linked to a cancer predisposition syndrome did not lead to genetic counseling before and after WT diagnosis. As a conclusion, in children with a nephroblastoma and specific clinical and pathological features that are in line with a nephroblastoma cancer predisposition syndrome such a syndrome should always be considered and ruled out if unknown at the time of tumor diagnosis. Abstract (1) Background: about 10% of Wilms Tumor (WT) patients have a malformation or cancer predisposition syndrome (CPS) with causative germline genetic or epigenetic variants. Knowledge on CPS is essential for genetic counselling. (2) Methods: this retrospective analysis focused on 2927 consecutive patients with WTs registered between 1989 and 2017 in the SIOP/GPOH studies. (3) Results: Genitourinary malformations (GU, N = 66, 2.3%), Beckwith-Wiedemann spectrum (BWS, N = 32, 1.1%), isolated hemihypertrophy (IHH, N = 29, 1.0%), Denys-Drash syndrome (DDS, N = 24, 0.8%) and WAGR syndrome (N = 20, 0.7%) were reported most frequently. Compared to others, these patients were younger at WT diagnosis (median age 24.5 months vs. 39.0 months), had smaller tumors (349.4 mL vs. 487.5 mL), less often metastasis (8.2% vs. 18%), but more often nephroblastomatosis (12.9% vs. 1.9%). WT with IHH was associated with blastemal WT and DDS with stromal subtype. Bilateral WTs were common in WAGR (30%), DDS (29%) and BWS (31%). Chemotherapy induced reduction in tumor volume was poor in DDS (0.4% increase) and favorable in BWS (86.9% reduction). The event-free survival (EFS) of patients with BWS was significantly (p = 0.002) worse than in others. (4) Conclusions: CPS should be considered in WTs with specific clinical features resulting in referral to a geneticist. Their outcome was not always favorable.
Collapse
|
35
|
Bizzarri C, Antonella Giannone G, Gervasoni J, Benedetti S, Albanese F, Dello Strologo L, Guzzo I, Mucciolo M, Diomedi Camassei F, Emma F, Cappa M, Porzio O. Unusual Presentation of Denys-Drash Syndrome in a Girl with Undisclosed Consumption of Biotin. J Clin Res Pediatr Endocrinol 2021; 13:347-352. [PMID: 32840097 PMCID: PMC8388055 DOI: 10.4274/jcrpe.galenos.2020.2020.0064] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/01/2022] Open
Abstract
We describe a 46,XX girl with Denys-Drash syndrome, showing both kidney disease and genital abnormalities, in whom a misdiagnosis of hyperandrogenism was made. A 15 year-old girl was affected by neonatal nephrotic syndrome, progressing to end stage kidney failure. Hair loss and voice deepening were noted during puberty. Pelvic ultrasound and magnetic resonance imaging showed utero-tubaric agenesis, vaginal atresia and urogenital sinus, with inguinal gonads. Gonadotrophin and estradiol levels were normal, but testosterone was increased up to 285 ng/dL at Tanner stage 3. She underwent prophylactic gonadectomy. Histopathology reported fibrotic ovarian cortex containing numerous follicles in different maturation stages and rudimental remnants of Fallopian tubes. No features of gonadoblastoma were detected. Unexpectedly, testosterone levels were elevated four months after gonadectomy (157 ng/dL). Recent medical history revealed chronic daily comsumption of high dose biotin, as a therapeutic support for hair loss. Laboratory immunoassay instruments used streptavidin-biotin interaction to detect hormones and, in competitive immunoassays, high concentrations of biotin can result in false high results. Total testosterone, measured using liquid chromatography tandem mass spectrometry, was within reference intervals. Similar testosterone levels were detected on repeat immunoassay two weeks after biotin uptake interruption. Discordance between clinical presentation and biochemical results in patients taking biotin, should raise the suspicion of erroneous results. Improved communication among patients, health care providers, and laboratory professionals is required concerning the likelihood of biotin interference with immunoassays.
Collapse
Affiliation(s)
- Carla Bizzarri
- IRCCS Ospedale Pediatrico Bambino Gesù, Unit of Endocrinology, Rome, Italy
| | | | - Jacopo Gervasoni
- Fondazione Policlinico Universitario A. Gemelli IRCCS; Università Cattolica del Sacro Cuore, Rome, Italy
| | - Sabina Benedetti
- IRCCS Ospedale Pediatrico Bambino Gesù, Unit of Medical Laboratory, Rome, Italy
| | - Federica Albanese
- IRCCS Ospedale Pediatrico Bambino Gesù, Unit of Medical Laboratory, Rome, Italy
| | - Luca Dello Strologo
- IRCCS Ospedale Pediatrico Bambino Gesù, Units of Nephrology and Dialysis, Rome, Italy
| | - Isabella Guzzo
- IRCCS Ospedale Pediatrico Bambino Gesù, Units of Nephrology and Dialysis, Rome, Italy
| | - Mafalda Mucciolo
- IRCCS Ospedale Pediatrico Bambino Gesù, Medical Genetics Laboratory, Rome, Italy
| | | | - Francesco Emma
- IRCCS Ospedale Pediatrico Bambino Gesù, Units of Nephrology and Dialysis, Rome, Italy
| | - Marco Cappa
- IRCCS Ospedale Pediatrico Bambino Gesù, Unit of Endocrinology, Rome, Italy
| | - Ottavia Porzio
- IRCCS Ospedale Pediatrico Bambino Gesù, Unit of Medical Laboratory, Rome, Italy,University of Rome “Tor Vergata”, Department of Experimental Medicine, Rome, Italy,* Address for Correspondence: IRCCS Ospedale Pediatrico Bambino Gesù, Unit of Medical Laboratory; University of Rome “Tor Vergata”, Department of Experimental Medicine, Rome, Italy Phone: +390668592210 E-mail:
| |
Collapse
|
36
|
Ferrari MTM, Watanabe A, da Silva TE, Gomes NL, Batista RL, Nishi MY, de Paula LCP, Costa EC, Costa EMF, Cukier P, Onuchic LF, Mendonca BB, Domenice S. WT1 Pathogenic Variants are Associated with a Broad Spectrum of Differences in Sex Development Phenotypes and Heterogeneous Progression of Renal Disease. Sex Dev 2021; 16:46-54. [PMID: 34392242 DOI: 10.1159/000517373] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2020] [Accepted: 05/14/2021] [Indexed: 11/19/2022] Open
Abstract
Wilms' tumor suppressor gene 1 (WT1) plays an essential role in urogenital and kidney development. Heterozygous germline pathogenic allelic variants of WT1 have been classically associated with Denys-Drash syndrome (DDS) and Frasier syndrome (FS). Usually, exonic pathogenic missense variants in the zinc finger region are the cause of DDS, whereas pathogenic variants affecting the canonic donor lysine-threonine-serine splice site in intron 9 cause FS. Phenotypic overlap between WT1 disorders has been frequently observed. New WT1 variant-associated phenotypes, such as 46,XX testicular/ovarian-testicular disorders of sex development (DSD) and primary ovarian insufficiency, have been reported. In this report, we describe the phenotypes and genotypes of 7 Brazilian patients with pathogenic WT1 variants. The molecular study involved Sanger sequencing and massively parallel targeted sequencing using a DSD-associated gene panel. Six patients (5 with a 46,XY karyotype and 1 with a 46,XX karyotype) were initially evaluated for atypical genitalia, and a 46,XY patient with normal female genitalia sought medical attention for primary amenorrhea. Germ cell tumors were identified in 2 patients, both with variants affecting alternative splicing of WT1 between exons 9 and 10. Two pathogenic missense WT1 variants were identified in two 46,XY individuals with Wilms' tumors; both patients were <1 year of age at the time of diagnosis. A novel WT1 variant, c.1453_1456 (p.Arg485Glyfs*14), was identified in a 46,XX patient with testicular DSD. Nephrotic proteinuria was diagnosed in all patients, including 3 who underwent renal transplantation after progressing to end-stage kidney disease. The expanding phenotypic spectrum associated with WT1 variants in XY and XX individuals confirms their pivotal role in gonadal and renal development as well as in tumorigenesis, emphasizing the clinical implications of these variants in genetic diagnosis.
Collapse
Affiliation(s)
- Maria T M Ferrari
- Unidade de Endocrinologia do Desenvolvimento, Laboratório de Hormônios e Genética Molecular/LIM42, Hospital das Clínicas, Faculdade de Medicina da Universidade de São Paulo, São Paulo, Brazil
| | - Andreia Watanabe
- Unidade de Nefrologia Pediátrica do Instituto da Criança, Hospital das Clínicas da Faculdade de Medicina da Universidade de São Paulo, São Paulo, Brazil.,Disciplina de Nefrologia, LIM-29 - Laboratório de Nefrologia Celular, Genética e Molecular, Hospital das Clínicas, Faculdade de Medicina da Universidade de São Paulo, São Paulo, Brazil
| | - Thatiane E da Silva
- Unidade de Endocrinologia do Desenvolvimento, Laboratório de Hormônios e Genética Molecular/LIM42, Hospital das Clínicas, Faculdade de Medicina da Universidade de São Paulo, São Paulo, Brazil
| | - Nathalia L Gomes
- Unidade de Endocrinologia do Desenvolvimento, Laboratório de Hormônios e Genética Molecular/LIM42, Hospital das Clínicas, Faculdade de Medicina da Universidade de São Paulo, São Paulo, Brazil
| | - Rafael L Batista
- Unidade de Endocrinologia do Desenvolvimento, Laboratório de Hormônios e Genética Molecular/LIM42, Hospital das Clínicas, Faculdade de Medicina da Universidade de São Paulo, São Paulo, Brazil
| | - Mirian Y Nishi
- Unidade de Endocrinologia do Desenvolvimento, Laboratório de Hormônios e Genética Molecular/LIM42, Hospital das Clínicas, Faculdade de Medicina da Universidade de São Paulo, São Paulo, Brazil
| | - Leila C P de Paula
- Unidade de Desordens do Desenvolvimento Sexual, UFRGS, Hospital de Clínicas de Porto Alegre, Porto Alegre, Brazil
| | - Eduardo C Costa
- Unidade de Desordens do Desenvolvimento Sexual, UFRGS, Hospital de Clínicas de Porto Alegre, Porto Alegre, Brazil
| | - Elaine M F Costa
- Unidade de Endocrinologia do Desenvolvimento, Laboratório de Hormônios e Genética Molecular/LIM42, Hospital das Clínicas, Faculdade de Medicina da Universidade de São Paulo, São Paulo, Brazil
| | - Priscilla Cukier
- Unidade de Endocrinologia do Desenvolvimento, Laboratório de Hormônios e Genética Molecular/LIM42, Hospital das Clínicas, Faculdade de Medicina da Universidade de São Paulo, São Paulo, Brazil
| | - Luiz F Onuchic
- Unidade de Nefrologia Pediátrica do Instituto da Criança, Hospital das Clínicas da Faculdade de Medicina da Universidade de São Paulo, São Paulo, Brazil.,Disciplina de Nefrologia, LIM-29 - Laboratório de Nefrologia Celular, Genética e Molecular, Hospital das Clínicas, Faculdade de Medicina da Universidade de São Paulo, São Paulo, Brazil
| | - Berenice B Mendonca
- Unidade de Endocrinologia do Desenvolvimento, Laboratório de Hormônios e Genética Molecular/LIM42, Hospital das Clínicas, Faculdade de Medicina da Universidade de São Paulo, São Paulo, Brazil.,Laboratório de Sequenciamento em Larga Escala (SELA), Faculdade de Medicina da Universidade de São Paulo, São Paulo, Brazil
| | - Sorahia Domenice
- Unidade de Endocrinologia do Desenvolvimento, Laboratório de Hormônios e Genética Molecular/LIM42, Hospital das Clínicas, Faculdade de Medicina da Universidade de São Paulo, São Paulo, Brazil
| |
Collapse
|
37
|
Edwards A, Passoni NM, Collins R, Vidi S, Gattineni J, Baker LA. Papers presented at the fall 2020 Pediatric Urologic Oncology Work Group of the Societies of Pediatric Urology meetingNeonatal Serum Electrolyte and Proteinuria Screening on 46,XY Ambiguous Genitalia Patients May Allow Early Diagnosis of Denys-Drash Syndrome: A Case Report. Urology 2021; 153:312-316. [PMID: 33279611 DOI: 10.1016/j.urology.2020.11.035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2020] [Revised: 11/15/2020] [Accepted: 11/18/2020] [Indexed: 10/22/2022]
Abstract
A term infant with prenatally noted ambiguous genitalia and nonpalpable gonads presented with life-threatening hyponatremia, hypertension, acidosis, and anuric renal failure requiring peritoneal dialysis at age 3 months.Sequencing confirmed 46, XY Denys-Drash syndrome (DDS) due to heterozygous Wilms tumor-1 exon 8 mutation encoding p.His445Arg. Renal US identified bilateral multifocal renal masses at age 8 months. Bilateral retroperitoneal nephrectomies found bilateral nephroblastomatosis without Wilms' tumor avoiding chemotherapy, followed by bilateral laparoscopic orchiopexies. We suggest monthly screening of 46, XY DSD cases for DDS by evaluating for proteinuria and electrolyte disarray starting at diagnosis of DSD to prevent acute life-threatening renal failure presentation.
Collapse
Affiliation(s)
| | | | - Rebecca Collins
- Department of Pathology, University of Texas Southwestern, Dallas, TX
| | - Smitha Vidi
- University of Texas Southwestern Department of Pediatrics, Pediatric Nephrology, Dallas, TX
| | - Jyothsna Gattineni
- University of Texas Southwestern Department of Pediatrics, Pediatric Nephrology, Dallas, TX
| | - Linda A Baker
- Department of Urology,University of Texas Southwestern, Dallas, TX
| |
Collapse
|
38
|
Cannata G, Caporilli C, Grassi F, Perrone S, Esposito S. Management of Congenital Diaphragmatic Hernia (CDH): Role of Molecular Genetics. Int J Mol Sci 2021; 22:ijms22126353. [PMID: 34198563 PMCID: PMC8231903 DOI: 10.3390/ijms22126353] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Revised: 06/04/2021] [Accepted: 06/11/2021] [Indexed: 12/11/2022] Open
Abstract
Congenital diaphragmatic hernia (CDH) is a relatively common major life-threatening birth defect that results in significant mortality and morbidity depending primarily on lung hypoplasia, persistent pulmonary hypertension, and cardiac dysfunction. Despite its clinical relevance, CDH multifactorial etiology is still not completely understood. We reviewed current knowledge on normal diaphragm development and summarized genetic mutations and related pathways as well as cellular mechanisms involved in CDH. Our literature analysis showed that the discovery of harmful de novo variants in the fetus could constitute an important tool for the medical team during pregnancy, counselling, and childbirth. A better insight into the mechanisms regulating diaphragm development and genetic causes leading to CDH appeared essential to the development of new therapeutic strategies and evidence-based genetic counselling to parents. Integrated sequencing, development, and bioinformatics strategies could direct future functional studies on CDH; could be applied to cohorts and consortia for CDH and other birth defects; and could pave the way for potential therapies by providing molecular targets for drug discovery.
Collapse
Affiliation(s)
- Giulia Cannata
- Pediatric Clinic, Pietro Barilla Children’s Hospital, University of Parma, Via Gramsci 14, 43126 Parma, Italy; (G.C.); (C.C.); (F.G.)
| | - Chiara Caporilli
- Pediatric Clinic, Pietro Barilla Children’s Hospital, University of Parma, Via Gramsci 14, 43126 Parma, Italy; (G.C.); (C.C.); (F.G.)
| | - Federica Grassi
- Pediatric Clinic, Pietro Barilla Children’s Hospital, University of Parma, Via Gramsci 14, 43126 Parma, Italy; (G.C.); (C.C.); (F.G.)
| | - Serafina Perrone
- Neonatology Unit, Pietro Barilla Children’s Hospital, Department of Medicine and Surgery, University of Parma, 43126 Parma, Italy;
| | - Susanna Esposito
- Pediatric Clinic, Pietro Barilla Children’s Hospital, University of Parma, Via Gramsci 14, 43126 Parma, Italy; (G.C.); (C.C.); (F.G.)
- Correspondence: ; Tel.: +39-0521-7047
| |
Collapse
|
39
|
Nagano C, Takaoka Y, Kamei K, Hamada R, Ichikawa D, Tanaka K, Aoto Y, Ishiko S, Rossanti R, Sakakibara N, Okada E, Horinouchi T, Yamamura T, Tsuji Y, Noguchi Y, Ishimori S, Nagase H, Ninchoji T, Iijima K, Nozu K. Genotype-Phenotype Correlation in WT1 Exon 8 to 9 Missense Variants. Kidney Int Rep 2021; 6:2114-2121. [PMID: 34386660 PMCID: PMC8343804 DOI: 10.1016/j.ekir.2021.05.009] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Revised: 05/04/2021] [Accepted: 05/10/2021] [Indexed: 12/05/2022] Open
Abstract
Introduction WT1 missense mutation in exon 8 or 9 causes infantile nephrotic syndrome with early progression to end-stage kidney disease (ESKD), Wilms tumor, and 46,XY female. However, some patients with missense mutations in exon 8 or 9 progress to ESKD in their teens or later. Therefore, we conducted a systematic review and functional analysis of WT1 transcriptional activity. Methods We conducted a systematic review of 174 cases with WT1 exon 8 or 9 missense variants from our cohort (n=13) and previous reports (n=161). Of these cases, mild and severe genotypes were selected for further in vitro functional analysis using luciferase assay. Results The median age of developing ESKD was 1.17 years. A comparative study was conducted among three WT1 genotype classes: mutations of the DNA-binding site (DBS group), mutations outside the DNA-binding site but at sites important for zinc finger structure formation by 2 cysteines and 2 histidines (C2H2 group), and mutations leading to other amino acid changes (Others group). The DBS group showed the severest phenotype and the C2H2 group was intermediate, whereas the Others group showed the mildest phenotype (developing ESKD at 0.90, 2.00, and 3.92 years, respectively, with significant differences). In vitro functional analysis showed dominant-negative effects for all variants; in addition, the DBS and C2H2 mutations were associated with significantly lower WT1 transcriptional activity than the other mutations. Conclusion Not only the DNA-binding site but also C2H2 zinc finger structure sites are important for maintaining WT1 transcriptional activity, and their mutation causes severe clinical symptoms.
Collapse
Affiliation(s)
- China Nagano
- Department of Pediatrics, Kobe University Graduate School of Medicine, Kobe, Hyogo, Japan
| | - Yutaka Takaoka
- Division of Medical Informatics and Bioinformatics, Kobe University Hospital, Kobe, Hyogo, Japan
| | - Koichi Kamei
- Division of Nephrology and Rheumatology, National Center for Child Health and Development, Tokyo, Japan
| | - Riku Hamada
- Department of Nephrology, Tokyo Metropolitan Children's Medical Center, Tokyo, Japan
| | - Daisuke Ichikawa
- Division of Nephrology and Hypertension, St. Marianna University Graduate School of Medicine, Kawasaki City, Kanagawa, Japan
| | - Kazuki Tanaka
- Department of Nephrology, Aichi Children's Health and Medical Center, Obu, Aichi, Japan
| | - Yuya Aoto
- Department of Pediatrics, Kobe University Graduate School of Medicine, Kobe, Hyogo, Japan
| | - Shinya Ishiko
- Department of Pediatrics, Kobe University Graduate School of Medicine, Kobe, Hyogo, Japan
| | - Rini Rossanti
- Department of Pediatrics, Kobe University Graduate School of Medicine, Kobe, Hyogo, Japan
| | - Nana Sakakibara
- Department of Pediatrics, Kobe University Graduate School of Medicine, Kobe, Hyogo, Japan
| | - Eri Okada
- Department of Pediatrics, Kobe University Graduate School of Medicine, Kobe, Hyogo, Japan
| | - Tomoko Horinouchi
- Department of Pediatrics, Kobe University Graduate School of Medicine, Kobe, Hyogo, Japan
| | - Tomohiko Yamamura
- Department of Pediatrics, Kobe University Graduate School of Medicine, Kobe, Hyogo, Japan
| | - Yurika Tsuji
- Department of Pediatrics, Kobe University Graduate School of Medicine, Kobe, Hyogo, Japan
| | - Yuko Noguchi
- Department of Pediatrics, Kobe University Graduate School of Medicine, Kobe, Hyogo, Japan
| | - Shingo Ishimori
- Department of Pediatrics, Kobe University Graduate School of Medicine, Kobe, Hyogo, Japan
| | - Hiroaki Nagase
- Department of Pediatrics, Kobe University Graduate School of Medicine, Kobe, Hyogo, Japan
| | - Takeshi Ninchoji
- Department of Pediatrics, Kobe University Graduate School of Medicine, Kobe, Hyogo, Japan
| | - Kazumoto Iijima
- Department of Pediatrics, Kobe University Graduate School of Medicine, Kobe, Hyogo, Japan
| | - Kandai Nozu
- Department of Pediatrics, Kobe University Graduate School of Medicine, Kobe, Hyogo, Japan
| |
Collapse
|
40
|
Mansilla MA, Sompallae RR, Nishimura CJ, Kwitek AE, Kimble MJ, Freese ME, Campbell CA, Smith RJ, Thomas CP. Targeted broad-based genetic testing by next-generation sequencing informs diagnosis and facilitates management in patients with kidney diseases. Nephrol Dial Transplant 2021; 36:295-305. [PMID: 31738409 PMCID: PMC7834596 DOI: 10.1093/ndt/gfz173] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2019] [Accepted: 07/23/2019] [Indexed: 12/15/2022] Open
Abstract
Background The clinical diagnosis of genetic renal diseases may be limited by the overlapping spectrum of manifestations between diseases or by the advancement of disease where clues to the original process are absent. The objective of this study was to determine whether genetic testing informs diagnosis and facilitates management of kidney disease patients. Methods We developed a comprehensive genetic testing panel (KidneySeq) to evaluate patients with various phenotypes including cystic diseases, congenital anomalies of the kidney and urinary tract (CAKUT), tubulointerstitial diseases, transport disorders and glomerular diseases. We evaluated this panel in 127 consecutive patients ranging in age from newborns to 81 years who had samples sent in for genetic testing. Results The performance of the sequencing pipeline for single-nucleotide variants was validated using CEPH (Centre de’Etude du Polymorphism) controls and for indels using Genome-in-a-Bottle. To test the reliability of the copy number variant (CNV) analysis, positive samples were re-sequenced and analyzed. For patient samples, a multidisciplinary review board interpreted genetic results in the context of clinical data. A genetic diagnosis was made in 54 (43%) patients and ranged from 54% for CAKUT, 53% for ciliopathies/tubulointerstitial diseases, 45% for transport disorders to 33% for glomerulopathies. Pathogenic and likely pathogenic variants included 46% missense, 11% nonsense, 6% splice site variants, 23% insertion–deletions and 14% CNVs. In 13 cases, the genetic result changed the clinical diagnosis. Conclusion Broad genetic testing should be considered in the evaluation of renal patients as it complements other tests and provides insight into the underlying disease and its management.
Collapse
Affiliation(s)
- M Adela Mansilla
- Iowa Institute of Human Genetics, University of Iowa, Iowa City, IA, USA
| | | | - Carla J Nishimura
- Iowa Institute of Human Genetics, University of Iowa, Iowa City, IA, USA
| | - Anne E Kwitek
- Physiology, Medical College of Wisconsin, Iowa City, IA, USA
| | - Mycah J Kimble
- Iowa Institute of Human Genetics, University of Iowa, Iowa City, IA, USA
| | | | - Colleen A Campbell
- Iowa Institute of Human Genetics, University of Iowa, Iowa City, IA, USA
| | - Richard J Smith
- Iowa Institute of Human Genetics, University of Iowa, Iowa City, IA, USA.,Internal Medicine, University of Iowa, Iowa City, IA, USA.,Pediatrics, University of Iowa, Iowa City, IA, USA
| | - Christie P Thomas
- Internal Medicine, University of Iowa, Iowa City, IA, USA.,Pediatrics, University of Iowa, Iowa City, IA, USA.,Veterans Affairs Medical Center, Iowa City, IA, USA
| |
Collapse
|
41
|
Wang F, Cai J, Wang J, He M, Mao J, Zhu K, Zhao M, Guan Z, Li L, Jin H, Shu Q. A novel WT1 gene mutation in a chinese girl with denys-drash syndrome. J Clin Lab Anal 2021; 35:e23769. [PMID: 33942367 PMCID: PMC8128316 DOI: 10.1002/jcla.23769] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Revised: 03/03/2021] [Accepted: 03/13/2021] [Indexed: 11/07/2022] Open
Abstract
OBJECTIVE Denys-Drash syndrome (DDS) is defined by the triad of Wilms tumor, nephrotic syndrome, and/or ambiguous genitalia. Genetic testing may help identify new gene mutation sites and play an important role in clinical decision-making. METHODS We present a patient with an XY karyotype and female appearance, nephropathy, and Wilms tumor in the right kidney. Genomic DNA was extracted from peripheral blood cells according to standard protocols. "Next-generation" sequencing (NGS) was performed to identify novel variants. The variant was analyzed with Mutation Taster, and its function was explored by a cell growth inhibition assay. RESULTS We found the first case of Denys-Drash syndrome with the uncommon missense mutation (c.1420C>T, p.His474 Tyr) in the WT1 gene. In silico analysis, the variant was predicted "disease-causing" by Mutation Taster. The mutated variant showed a weaker effect in inhibiting tumor cells than wild-type WT1. CONCLUSIONS The uncommon missense mutation (c.1420C>T, p.His474 Tyr) in the WT1 gene may be a crucial marker in DDS.
Collapse
Affiliation(s)
- Faliang Wang
- Department of Surgical Oncology, Children's Hospital, National Clinical Research Center for Child Health, Zhejiang University School of Medicine, Hangzhou, China
| | - Jiabin Cai
- Department of Surgical Oncology, Children's Hospital, National Clinical Research Center for Child Health, Zhejiang University School of Medicine, Hangzhou, China
| | - Jinhu Wang
- Department of Surgical Oncology, Children's Hospital, National Clinical Research Center for Child Health, Zhejiang University School of Medicine, Hangzhou, China
| | - Min He
- Department of Surgical Oncology, Children's Hospital, National Clinical Research Center for Child Health, Zhejiang University School of Medicine, Hangzhou, China
| | - Junqing Mao
- Department of Surgical Oncology, Children's Hospital, National Clinical Research Center for Child Health, Zhejiang University School of Medicine, Hangzhou, China
| | - Kun Zhu
- Department of Pathology, Children's Hospital, National Clinical Research Center for Child Health, Zhejiang University School of Medicine, Hangzhou, China
| | - Manli Zhao
- Department of Pathology, Children's Hospital, National Clinical Research Center for Child Health, Zhejiang University School of Medicine, Hangzhou, China
| | - Zhonghai Guan
- Department of Surgical Oncology, Children's Hospital, National Clinical Research Center for Child Health, Zhejiang University School of Medicine, Hangzhou, China
| | - Linjie Li
- Department of Surgical Oncology, Children's Hospital, National Clinical Research Center for Child Health, Zhejiang University School of Medicine, Hangzhou, China
| | - Hongchuan Jin
- Laboratory of Cancer Biology, Key Lab of Biotherapy in Zhejiang, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Qiang Shu
- Department of Surgical Oncology, Children's Hospital, National Clinical Research Center for Child Health, Zhejiang University School of Medicine, Hangzhou, China
| |
Collapse
|
42
|
Klämbt V, Mao Y, Schneider R, Buerger F, Shamseldin H, Onuchic-Whitford AC, Deutsch K, Kitzler TM, Nakayama M, Majmundar AJ, Mann N, Hugo H, Widmeier E, Tan W, Rehm HL, Mane S, Lifton RP, Alkuraya FS, Shril S, Hildebrandt F. Generation of Monogenic Candidate Genes for Human Nephrotic Syndrome Using 3 Independent Approaches. Kidney Int Rep 2021; 6:460-471. [PMID: 33615071 PMCID: PMC7879125 DOI: 10.1016/j.ekir.2020.11.013] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2020] [Revised: 10/22/2020] [Accepted: 11/10/2020] [Indexed: 12/18/2022] Open
Abstract
INTRODUCTION Steroid-resistant nephrotic syndrome (SRNS) is the second most common cause of chronic kidney disease during childhood. Identification of 63 monogenic human genes has delineated 12 distinct pathogenic pathways. METHODS Here, we generated 2 independent sets of nephrotic syndrome (NS) candidate genes to augment the discovery of additional monogenic causes based on whole-exome sequencing (WES) data from 1382 families with NS. RESULTS We first identified 63 known monogenic causes of NS in mice from public databases and scientific publications, and 12 of these genes overlapped with the 63 known human monogenic SRNS genes. Second, we used a set of 64 genes that are regulated by the transcription factor Wilms tumor 1 (WT1), which causes SRNS if mutated. Thirteen of these WT1-regulated genes overlapped with human or murine NS genes. Finally, we overlapped these lists of murine and WT1 candidate genes with our list of 120 candidate genes generated from WES in 1382 NS families, to identify novel candidate genes for monogenic human SRNS. Using this approach, we identified 7 overlapping genes, of which 3 genes were shared by all datasets, including SYNPO. We show that loss-of-function of SYNPO leads to decreased CDC42 activity and reduced podocyte migration rate, both of which are rescued by overexpression of wild-type complementary DNA (cDNA), but not by cDNA representing the patient mutation. CONCLUSION Thus, we identified 3 novel candidate genes for human SRNS using 3 independent, nonoverlapping hypotheses, and generated functional evidence for SYNPO as a novel potential monogenic cause of NS.
Collapse
Affiliation(s)
- Verena Klämbt
- Department of Pediatrics, Boston Children’s Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Youying Mao
- Department of Pediatrics, Boston Children’s Hospital, Harvard Medical School, Boston, Massachusetts, USA
- Nephrology Department, Shanghai Children's Medical Center, Shanghai Jiaotong University, Shanghai, China
| | - Ronen Schneider
- Department of Pediatrics, Boston Children’s Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Florian Buerger
- Department of Pediatrics, Boston Children’s Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Hanan Shamseldin
- Department of Genetics, King Faisal Specialist Hospital and Research Center, Riyadh, Saudi Arabia
| | - Ana C. Onuchic-Whitford
- Department of Pediatrics, Boston Children’s Hospital, Harvard Medical School, Boston, Massachusetts, USA
- Renal Division, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Konstantin Deutsch
- Department of Pediatrics, Boston Children’s Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Thomas M. Kitzler
- Department of Pediatrics, Boston Children’s Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Makiko Nakayama
- Department of Pediatrics, Boston Children’s Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Amar J. Majmundar
- Department of Pediatrics, Boston Children’s Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Nina Mann
- Department of Pediatrics, Boston Children’s Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Hannah Hugo
- Department of Pediatrics, Boston Children’s Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Eugen Widmeier
- Department of Pediatrics, Boston Children’s Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Weizhen Tan
- Department of Pediatrics, Boston Children’s Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Heidi L. Rehm
- Program in Medical and Population Genetics, Broad Center for Mendelian Genetics, Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, Massachusetts
- Center for Genomic Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Shrikant Mane
- Department of Genetics, Yale University School of Medicine, New Haven, Connecticut, USA
- Yale Center for Mendelian Genomics, Yale University School of Medicine, New Haven, Connecticut, USA
| | - Richard P. Lifton
- Department of Genetics, Yale University School of Medicine, New Haven, Connecticut, USA
- Yale Center for Mendelian Genomics, Yale University School of Medicine, New Haven, Connecticut, USA
| | - Fowzan S. Alkuraya
- Department of Genetics, King Faisal Specialist Hospital and Research Center, Riyadh, Saudi Arabia
- Department of Anatomy and Cell Biology, College of Medicine Alfaisal University, Riyadh, Saudi Arabia
| | - Shirlee Shril
- Department of Pediatrics, Boston Children’s Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Friedhelm Hildebrandt
- Department of Pediatrics, Boston Children’s Hospital, Harvard Medical School, Boston, Massachusetts, USA
| |
Collapse
|
43
|
Rosenfield RL, Cooke DW, Radovick S. Puberty in the Female and Its Disorders. SPERLING PEDIATRIC ENDOCRINOLOGY 2021:528-626. [DOI: 10.1016/b978-0-323-62520-3.00016-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2025]
|
44
|
Capasso M, Montella A, Tirelli M, Maiorino T, Cantalupo S, Iolascon A. Genetic Predisposition to Solid Pediatric Cancers. Front Oncol 2020; 10:590033. [PMID: 33194750 PMCID: PMC7656777 DOI: 10.3389/fonc.2020.590033] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Accepted: 09/08/2020] [Indexed: 12/15/2022] Open
Abstract
Progresses over the past years have extensively improved our capacity to use genome-scale analyses—including high-density genotyping and exome and genome sequencing—to identify the genetic basis of pediatric tumors. In particular, exome sequencing has contributed to the evidence that about 10% of children and adolescents with tumors have germline genetic variants associated with cancer predisposition. In this review, we provide an overview of genetic variations predisposing to solid pediatric tumors (medulloblastoma, ependymoma, astrocytoma, neuroblastoma, retinoblastoma, Wilms tumor, osteosarcoma, rhabdomyosarcoma, and Ewing sarcoma) and outline the biological processes affected by the involved mutated genes. A careful description of the genetic basis underlying a large number of syndromes associated with an increased risk of pediatric cancer is also reported. We place particular emphasis on the emerging view that interactions between germline and somatic alterations are a key determinant of cancer development. We propose future research directions, which focus on the biological function of pediatric risk alleles and on the potential links between the germline genome and somatic changes. Finally, the importance of developing new molecular diagnostic tests including all the identified risk germline mutations and of considering the genetic predisposition in screening tests and novel therapies is emphasized.
Collapse
Affiliation(s)
- Mario Capasso
- Dipartimento di Medicina Molecolare e Biotecnologie Mediche, Università degli Studi di Napoli Federico II, Naples, Italy.,CEINGE Biotecnologie Avanzate, Naples, Italy
| | | | - Matilde Tirelli
- CEINGE Biotecnologie Avanzate, Naples, Italy.,European School of Molecular Medicine, Università Degli Studi di Milano, Milan, Italy
| | - Teresa Maiorino
- Dipartimento di Medicina Molecolare e Biotecnologie Mediche, Università degli Studi di Napoli Federico II, Naples, Italy.,CEINGE Biotecnologie Avanzate, Naples, Italy
| | - Sueva Cantalupo
- Dipartimento di Medicina Molecolare e Biotecnologie Mediche, Università degli Studi di Napoli Federico II, Naples, Italy.,CEINGE Biotecnologie Avanzate, Naples, Italy
| | - Achille Iolascon
- Dipartimento di Medicina Molecolare e Biotecnologie Mediche, Università degli Studi di Napoli Federico II, Naples, Italy.,CEINGE Biotecnologie Avanzate, Naples, Italy
| |
Collapse
|
45
|
Nishikawa T, Wojciak JM, Dyson HJ, Wright PE. RNA Binding by the KTS Splice Variants of Wilms' Tumor Suppressor Protein WT1. Biochemistry 2020; 59:3889-3901. [PMID: 32955251 DOI: 10.1021/acs.biochem.0c00602] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Wilms' tumor suppressor protein WT1 regulates the expression of multiple genes through binding of the Cys2-His2 zinc finger domain to promoter sites. WT1 has also been proposed to be involved in post-transcriptional regulation, by binding to RNA using the same set of zinc fingers. WT1 has two major splice variants, where the Lys-Thr-Ser (KTS) tripeptide is inserted into the linker between the third and fourth zinc fingers. To obtain insights into the mechanism by which the different WT1 splice variants recognize both DNA and RNA, we have determined the solution structure of the WT1 (-KTS) zinc finger domain in complex with a 29mer stem-loop RNA. Zinc fingers 1-3 bind in a widened major groove favored by the presence of a bulge nucleotide in the double-stranded helical stem. Fingers 2 and 3 make specific contacts with the nucleobases in a conserved AUGG sequence in the helical stem. Nuclear magnetic resonance chemical shift mapping and relaxation analysis show that fingers 1-3 of the two splice variants (-KTS and +KTS) of WT1 form similar complexes with RNA. Finger 4 of the -KTS isoform interacts weakly with the RNA loop, an interaction that is abrogated in the +KTS isoform, and both isoforms bind with similar affinity to the RNA. In contrast, finger 4 is required for high-affinity binding to DNA and insertion of KTS into the linker of fingers 3 and 4 abrogates DNA binding. While finger 1 is required for RNA binding, it is dispensable for binding to consensus DNA sites.
Collapse
Affiliation(s)
- Tadateru Nishikawa
- Department of Integrative Structural and Computational Biology and Skaggs Institute of Chemical Biology, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, California 92037, United States
| | - Jonathan M Wojciak
- Department of Integrative Structural and Computational Biology and Skaggs Institute of Chemical Biology, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, California 92037, United States
| | - H Jane Dyson
- Department of Integrative Structural and Computational Biology and Skaggs Institute of Chemical Biology, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, California 92037, United States
| | - Peter E Wright
- Department of Integrative Structural and Computational Biology and Skaggs Institute of Chemical Biology, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, California 92037, United States
| |
Collapse
|
46
|
Weiss AC, Rivera-Reyes R, Englert C, Kispert A. Expansion of the renal capsular stroma, ureteric bud branching defects and cryptorchidism in mice with Wilms tumor 1 gene deletion in the stromal compartment of the developing kidney. J Pathol 2020; 252:290-303. [PMID: 32715478 DOI: 10.1002/path.5518] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2019] [Revised: 07/16/2020] [Accepted: 07/22/2020] [Indexed: 12/15/2022]
Abstract
Development of the mammalian kidney is orchestrated by reciprocal interactions of stromal and nephrogenic mesenchymal cells with the ureteric bud epithelium. Previous work showed that the transcription factor Wilms tumor 1 (WT1) acts in the nephrogenic lineage to maintain precursor cells, to drive the epithelial transition of aggregating precursors into a renal vesicle and to specify and maintain the podocyte fate. However, WT1 is expressed not only in the nephrogenic lineage but also transiently in stromal progenitors in the renal cortex. Here we report that specific deletion of Wt1 in the stromal lineage using the Foxd1cre driver line results at birth in cryptorchidism and hypoplastic kidneys that harbour fewer and enlarged ureteric bud tips and display an expansion of capsular stroma into the cortical region. In vivo and ex vivo analysis at earlier stages revealed that stromal loss of Wt1 reduces stromal proliferation, and delays and alters branching morphogenesis, resulting in a variant architecture of the collecting duct tree with an increase of single at the expense of bifurcated ureteric bud tips. Molecular analysis identified a transient reduction of Aldh1a2 expression and of retinoic acid signalling activity in stromal progenitors, and of Ret in ureteric bud tips. Administration of retinoic acid partly rescued the branching defects of mutant kidneys in culture. We propose that WT1 maintains retinoic acid signalling in the cortical stroma, which, in turn, assures proper levels and dynamics of Ret expression in the ureteric bud tips, and thus normal ramification of the ureteric tree. © 2020 The Authors. The Journal of Pathology published by John Wiley & Sons, Ltd. on behalf of The Pathological Society of Great Britain and Ireland.
Collapse
Affiliation(s)
- Anna-Carina Weiss
- Institut für Molekularbiologie, Medizinische Hochschule Hannover, Hannover, Germany
| | | | - Christoph Englert
- Molecular Genetics, Leibniz Institute on Aging - Fritz Lipmann Institute, Jena, Germany
| | - Andreas Kispert
- Institut für Molekularbiologie, Medizinische Hochschule Hannover, Hannover, Germany
| |
Collapse
|
47
|
Transcription factor 21 expression in injured podocytes of glomerular diseases. Sci Rep 2020; 10:11516. [PMID: 32661376 PMCID: PMC7359327 DOI: 10.1038/s41598-020-68422-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2020] [Accepted: 06/24/2020] [Indexed: 11/08/2022] Open
Abstract
Transcription factor 21 (TCF21) is one of the essential transcription factors in kidney development. To elucidate its influence on glomerular disease, we have investigated TCF21 expression in human and rat kidney tissue, and its urinary concentration. Immunohistological analysis suggested the highest TCF21 expression in nephrotic syndrome along with the urinary protein level. Urinary TCF21 concentration in human showed a positive correlation with its podocyte expression level. In nephrotic rat models, TCF21 expression in podocytes increased along with the severity of nephrotic syndrome. Next, in vitro experiments using Tcf21-expressing murine podocyte cell line, we could observe some Tcf21-dependent effects, related with actin cytoskeleton dysregulation and apoptosis. Our study illustrated TCF21 expression changes in vivo and its in vitro-functional significance injured podocytes.
Collapse
|
48
|
Park E, Lee C, Kim NKD, Ahn YH, Park YS, Lee JH, Kim SH, Cho MH, Cho H, Yoo KH, Shin JI, Kang HG, Ha IS, Park WY, Cheong HI. Genetic Study in Korean Pediatric Patients with Steroid-Resistant Nephrotic Syndrome or Focal Segmental Glomerulosclerosis. J Clin Med 2020; 9:jcm9062013. [PMID: 32604935 PMCID: PMC7355646 DOI: 10.3390/jcm9062013] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2020] [Revised: 06/16/2020] [Accepted: 06/19/2020] [Indexed: 11/17/2022] Open
Abstract
Steroid-resistant nephrotic syndrome (SRNS) is one of the major causes of end-stage renal disease (ESRD) in childhood and is mostly associated with focal segmental glomerulosclerosis (FSGS). More than 50 monogenic causes of SRNS or FSGS have been identified. Recently, the mutation detection rate in pediatric patients with SRNS has been reported to be approximately 30%. In this study, genotype-phenotype correlations in a cohort of 291 Korean pediatric patients with SRNS/FSGS were analyzed. The overall mutation detection rate was 43.6% (127 of 291 patients). WT1 was the most common causative gene (23.6%), followed by COQ6 (8.7%), NPHS1 (8.7%), NUP107 (7.1%), and COQ8B (6.3%). Mutations in COQ6, NUP107, and COQ8B were more frequently detected, and mutations in NPHS2 were less commonly detected in this cohort than in study cohorts from Western countries. The mutation detection rate was higher in patients with congenital onset, those who presented with proteinuria or chronic kidney disease/ESRD, and those who did not receive steroid treatment. Genetic diagnosis in patients with SRNS provides not only definitive diagnosis but also valuable information for decisions on treatment policy and prediction of prognosis. Therefore, further genotype-phenotype correlation studies are required.
Collapse
Affiliation(s)
- Eujin Park
- Department of Pediatrics, Seoul National University College of Medicine, Seoul 03080, Korea; (E.P.); (Y.H.A.); (H.G.K.); (I.-S.H.)
- Department of Pediatrics, Kangnam Sacred Heart Hospital, Hallym University College of Medicine, Seoul 07441, Korea
| | - Chung Lee
- Samsung Genome Institute, Samsung Medical Center, Seoul 06351, Korea; (C.L.); (N.K.D.K.); (W.-Y.P.)
- GENINUS Inc., Seoul 05836, Korea
| | - Nayoung K. D. Kim
- Samsung Genome Institute, Samsung Medical Center, Seoul 06351, Korea; (C.L.); (N.K.D.K.); (W.-Y.P.)
- GENINUS Inc., Seoul 05836, Korea
| | - Yo Han Ahn
- Department of Pediatrics, Seoul National University College of Medicine, Seoul 03080, Korea; (E.P.); (Y.H.A.); (H.G.K.); (I.-S.H.)
| | - Young Seo Park
- Department of Pediatrics, Asan Medical Center Children’s Hospital, University of Ulsan College of Medicine, Seoul 05505, Korea; (Y.S.P.); (J.H.L.)
| | - Joo Hoon Lee
- Department of Pediatrics, Asan Medical Center Children’s Hospital, University of Ulsan College of Medicine, Seoul 05505, Korea; (Y.S.P.); (J.H.L.)
| | - Seong Heon Kim
- Department of Pediatrics, Pusan National University Children’s Hospital, Yangsan 50612, Korea;
| | - Min Hyun Cho
- Department of Pediatrics, Kyungpook National University School of Medicine, Daegu 41944, Korea;
| | - Heeyeon Cho
- Department of Pediatrics, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul 06351, Korea;
| | - Kee Hwan Yoo
- Department of Pediatrics, Korea University Guro Hospital, Seoul 02841, Korea;
| | - Jae Il Shin
- Department of Pediatrics, Yonsei University College of Medicine, Seoul 03722, Korea;
- Division of Pediatric Nephrology, Severance Children’s Hospital, Seoul 03722, Korea
| | - Hee Gyung Kang
- Department of Pediatrics, Seoul National University College of Medicine, Seoul 03080, Korea; (E.P.); (Y.H.A.); (H.G.K.); (I.-S.H.)
| | - Il-Soo Ha
- Department of Pediatrics, Seoul National University College of Medicine, Seoul 03080, Korea; (E.P.); (Y.H.A.); (H.G.K.); (I.-S.H.)
| | - Woong-Yang Park
- Samsung Genome Institute, Samsung Medical Center, Seoul 06351, Korea; (C.L.); (N.K.D.K.); (W.-Y.P.)
- GENINUS Inc., Seoul 05836, Korea
- Department of Molecular Cell Biology, Sungkyunkwan University School of Medicine, Suwon 16419, Korea
| | - Hae Il Cheong
- Department of Pediatrics, Seoul National University College of Medicine, Seoul 03080, Korea; (E.P.); (Y.H.A.); (H.G.K.); (I.-S.H.)
- Correspondence: ; Tel.: +82-2-2072-2810
| |
Collapse
|
49
|
Lee S, Kambhampati M, Yadavilli S, Gordish-Dressman H, Santi M, Cruz CR, Packer RJ, Almira-Suarez MI, Hwang EI, Nazarian J. Differential Expression of Wilms' Tumor Protein in Diffuse Intrinsic Pontine Glioma. J Neuropathol Exp Neurol 2020; 78:380-388. [PMID: 30990879 PMCID: PMC6467196 DOI: 10.1093/jnen/nlz021] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Diffuse intrinsic pontine gliomas (DIPGs) are deadly tumors comprising 10%–15% of all childhood CNS cancers. Standard treatment is considered palliative and prognosis is near universal mortality. DIPGs have been classified into genomic subtypes based on histone variants with the lysine to methionine mutation on position 27 of histone tails (K27M). Given the increasing promise of immunotherapy, there have been ongoing efforts to identify tumor-specific antigens to serve as immunologic targets. We evaluated a large cohort of CNS specimens for Wilms’ tumor protein (WT1) expression. These specimens include primary pediatric CNS tumors (n = 38 midline gliomas and n = 3 non-midline gliomas; n = 23 DIPG, n = 10 low-grade gliomas, n = 8 high-grade gliomas), and DIPG primary cells. Here, we report the validation of WT1 as a tumor-associated antigen in DIPGs. We further report that WT1 expression is significantly correlated with specific oncohistone variants, with the highest expression detected in the H3.3K27M subgroup. WT1 expression was absent in all control specimens (n = 21). Western blot assays using DIPG primary cells (n = 6) showed a trend of higher WT1 expression in H3.3K27M cells when compared with H3.1 K27M cells and H3 wildtype cells. Our data are the first indication of the association between WT1 and DIPG, with specific upregulation in those harboring oncohistone H3.3K27M.
Collapse
Affiliation(s)
- Sulgi Lee
- Children's National Health System, Center for Genetic Medicine Research, Washington, District of Columbia.,The George Washington University School of Medicine and Health Sciences, Institute for Biomedical Sciences, Washington
| | - Madhuri Kambhampati
- Children's National Health System, Center for Genetic Medicine Research, Washington, District of Columbia
| | - Sridevi Yadavilli
- Children's National Health System, Center for Genetic Medicine Research, Washington, District of Columbia
| | - Heather Gordish-Dressman
- Children's National Health System, Center for Genetic Medicine Research, Washington, District of Columbia
| | - Mariarita Santi
- Department of Pathology, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania
| | - Conrad R Cruz
- Children's National Health System, Center for Cancer and Immunology Research, Washington, District of Columbia
| | - Roger J Packer
- Children's National Health System, Brain Tumor Institute, Washington, District of Columbia
| | - M Isabel Almira-Suarez
- Department of Pathology and Laboratory Medicine, Children's National Health System, Washington, District of Columbia (MIA-S)
| | - Eugene I Hwang
- Children's National Health System, Brain Tumor Institute, Washington, District of Columbia
| | - Javad Nazarian
- Children's National Health System, Center for Genetic Medicine Research, Washington, District of Columbia.,The George Washington University School of Medicine and Health Sciences, Institute for Biomedical Sciences, Washington.,Children's National Health System, Brain Tumor Institute, Washington, District of Columbia.,Department of Genomics and Precision Medicine, The George Washington University School of Medicine and Health Sciences, Washington, District of Columbia
| |
Collapse
|
50
|
Testis formation in XX individuals resulting from novel pathogenic variants in Wilms' tumor 1 ( WT1) gene. Proc Natl Acad Sci U S A 2020; 117:13680-13688. [PMID: 32493750 PMCID: PMC7306989 DOI: 10.1073/pnas.1921676117] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Sex determination in mammals is governed by antagonistic interactions of two genetic pathways, imbalance in which may lead to disorders/differences of sex development (DSD) in human. Among 46,XX individuals with testicular DSD (TDSD) or ovotesticular DSD (OTDSD), testicular tissue is present in the gonad. Although the testis-determining gene SRY is present in many cases, the etiology is unknown in most SRY-negative patients. We performed exome sequencing on 78 individuals with 46,XX TDSD/OTDSD of unknown genetic etiology and identified seven (8.97%) with heterozygous variants affecting the fourth zinc finger (ZF4) of Wilms' tumor 1 (WT1) (p.Ser478Thrfs*17, p.Pro481Leufs*15, p.Lys491Glu, p.Arg495Gln [x3], p.Arg495Gly). The variants were de novo in six families (P = 4.4 × 10-6), and the incidence of WT1 variants in 46,XX DSD is enriched compared to control populations (P < 1.8 × 10-4). The introduction of ZF4 mutants into a human granulosa cell line resulted in up-regulation of endogenous Sertoli cell transcripts and Wt1 Arg495Gly/Arg495Gly XX mice display masculinization of the fetal gonads. The phenotype could be explained by the ability of the mutated proteins to physically interact with and sequester a key pro-ovary factor β-CATENIN, which may lead to up-regulation of testis-specific pathway. Our data show that unlike previous association of WT1 and 46,XY DSD, ZF4 variants of WT1 are a relatively common cause of 46,XX TDSD/OTDSD. This expands the spectrum of phenotypes associated with WT1 variants and shows that the WT1 protein affecting ZF4 can function as a protestis factor in an XX chromosomal context.
Collapse
|