1
|
Moalem Y, Katz R, Subramaniam AG, Malis Y, Yaffe Y, Borenstein-Auerbach N, Tadmor K, Raved R, Maoz BM, Yoo JS, Lustig Y, Luxenburg C, Perlson E, Einav S, Sklan EH. Numb-associated kinases regulate sandfly-borne Toscana virus entry. Emerg Microbes Infect 2024; 13:2382237. [PMID: 39017647 PMCID: PMC11285224 DOI: 10.1080/22221751.2024.2382237] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Revised: 07/08/2024] [Accepted: 07/16/2024] [Indexed: 07/18/2024]
Abstract
Sandfly-borne Toscana virus (TOSV) is an enveloped tri-segmented negative single-strand RNA Phlebovirus. It is an emerging virus predominantly endemic in southwestern Europe and Northern Africa. Although TOSV infection is typically asymptomatic or results in mild febrile disease, it is neurovirulent and ranks among the three most common causes of summer meningitis in certain regions. Despite this clinical significance, our understanding of the molecular aspects and host factors regulating phlebovirus infection is limited. This study characterized the early steps of TOSV infection. Our findings reveal that two members of the Numb-associated kinases family of Ser/Thr kinases, namely adaptor-associated kinase 1 (AAK1) and cyclin G-associated kinase (GAK), play a role in regulating the early stages of TOSV entry. FDA-approved inhibitors targeting these kinases demonstrated significant inhibition of TOSV infection. This study suggests that AAK1 and GAK represent druggable targets for inhibiting TOSV infection and, potentially, related Phleboviruses.
Collapse
Affiliation(s)
- Yarden Moalem
- Department of Clinical Microbiology and Immunology, Faculty of Medical & Health Sciences, Tel Aviv University, Tel Aviv, Israel
| | - Rodolfo Katz
- Department of Clinical Microbiology and Immunology, Faculty of Medical & Health Sciences, Tel Aviv University, Tel Aviv, Israel
| | - Anand G. Subramaniam
- Department of Physiology and Pharmacology, Faculty of Medical & Health Sciences, Tel Aviv University, Tel Aviv, Israel
| | - Yehonathan Malis
- Department of Pathology, Faculty of Medical & Health Sciences, Tel Aviv University, Tel Aviv, Israel
| | - Yakey Yaffe
- The Drimmer-Fischler Family Stem Cell Core Laboratory for Regenerative Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Nofit Borenstein-Auerbach
- Department of Cell and Developmental Biology, Faculty of Medical & Health Sciences, Tel Aviv University, Tel Aviv, Israel
| | - Keshet Tadmor
- Sagol School of Neuroscience, Tel Aviv University, Tel Aviv, Israel
| | - Roey Raved
- School of Neurobiology, Biochemistry and Biophysics, George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv, Israel
| | - Ben M. Maoz
- The Drimmer-Fischler Family Stem Cell Core Laboratory for Regenerative Medicine, Tel Aviv University, Tel Aviv, Israel
- Sagol School of Neuroscience, Tel Aviv University, Tel Aviv, Israel
- Department of Biomedical Engineering, Tel Aviv University, Tel Aviv, Israel
| | - Ji Seung Yoo
- School of Life Sciences, BK21 FOUR KNU Creative BioResearch Group, Kyungpook National University, Daegu, Republic of Korea
| | - Yaniv Lustig
- Central Virology Laboratory, Ministry of Health, Chaim Sheba Medical Center, Tel Hashomer, Israel
- School of Public Health, School of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Chen Luxenburg
- Department of Cell and Developmental Biology, Faculty of Medical & Health Sciences, Tel Aviv University, Tel Aviv, Israel
| | - Eran Perlson
- Department of Physiology and Pharmacology, Faculty of Medical & Health Sciences, Tel Aviv University, Tel Aviv, Israel
| | - Shirit Einav
- Department of Medicine, Division of Infectious Diseases and Geographic Medicine, Stanford University, Stanford, CA, USA
- Department of Microbiology and Immunology, Stanford University, Stanford, CA, USA
- Chan Zuckerberg Biohub, San Francisco, CA, USA
| | - Ella H. Sklan
- Department of Clinical Microbiology and Immunology, Faculty of Medical & Health Sciences, Tel Aviv University, Tel Aviv, Israel
| |
Collapse
|
2
|
McGraw E, Roberts JD, Kunte N, Westerfield M, Streety X, Held D, Avila LA. Insight into Cellular Uptake and Transcytosis of Peptide Nanoparticles in Spodoptera frugiperda Cells and Isolated Midgut. ACS OMEGA 2022; 7:10933-10943. [PMID: 35415340 PMCID: PMC8991906 DOI: 10.1021/acsomega.1c06638] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Accepted: 02/28/2022] [Indexed: 06/14/2023]
Abstract
Silencing genes in insects by introducing double-stranded RNA (dsRNA) in the diet holds promise as a new pest management method. It has been demonstrated that nanoparticles (NPs) can potentiate dsRNA silencing effects by promoting cellular internalization and protecting dsRNA against early degradation. However, many mysteries of how NPs and dsRNA are internalized by gut epithelial cells and, subsequently, transported across the midgut epithelium remain to be unraveled. The sole purpose of the current study is to investigate the role of endocytosis and transcytosis in the transport of branched amphipathic peptide nanocapsules (BAPCs) associated with dsRNA through midgut epithelium cells. Spodoptera frugiperda midguts and the epithelial cell line Sf9, derived from S. frugiperda, were used to study transcytosis and endocytosis, respectively. Results suggest that clathrin-mediated endocytosis and macropinocytosis are largely responsible for cellular uptake, and once within the midgut, transcytosis is involved in shuttling BAPCs-dsRNA from the lumen to the hemolymph. In addition, BAPCs were not found to be toxic to Sf9 cells or generate damaging reactive species once internalized.
Collapse
Affiliation(s)
- Erin McGraw
- Department
of Biological Sciences, Auburn University, 101 Rouse Life Sciences, Auburn, Alabama 36849-5412, United States
| | - Jonathan D. Roberts
- Department
of Biological Sciences, Auburn University, 101 Rouse Life Sciences, Auburn, Alabama 36849-5412, United States
| | - Nitish Kunte
- Department
of Biological Sciences, Auburn University, 101 Rouse Life Sciences, Auburn, Alabama 36849-5412, United States
| | - Matthew Westerfield
- Department
of Biological Sciences, Auburn University, 101 Rouse Life Sciences, Auburn, Alabama 36849-5412, United States
| | - Xavier Streety
- Department
of Biological Sciences, Auburn University, 101 Rouse Life Sciences, Auburn, Alabama 36849-5412, United States
| | - David Held
- Department
of Entomology and Plant Pathology, Auburn
University, Auburn, Alabama 36849-5412, United States
| | - L. Adriana Avila
- Department
of Biological Sciences, Auburn University, 101 Rouse Life Sciences, Auburn, Alabama 36849-5412, United States
| |
Collapse
|
3
|
The Protein Toxins Ricin and Shiga Toxin as Tools to Explore Cellular Mechanisms of Internalization and Intracellular Transport. Toxins (Basel) 2021; 13:toxins13060377. [PMID: 34070659 PMCID: PMC8227415 DOI: 10.3390/toxins13060377] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Revised: 05/12/2021] [Accepted: 05/22/2021] [Indexed: 12/18/2022] Open
Abstract
Protein toxins secreted by bacteria and found in plants can be threats to human health. However, their extreme toxicity can also be exploited in different ways, e.g., to produce hybrid toxins directed against cancer cells and to study transport mechanisms in cells. Investigations during the last decades have shown how powerful these molecules are as tools in cell biological research. Here, we first present a partly historical overview, with emphasis on Shiga toxin and ricin, of how such toxins have been used to characterize processes and proteins of importance for their trafficking. In the second half of the article, we describe how one can now use toxins to investigate the role of lipid classes for intracellular transport. In recent years, it has become possible to quantify hundreds of lipid species using mass spectrometry analysis. Thus, it is also now possible to explore the importance of lipid species in intracellular transport. The detailed analyses of changes in lipids seen under conditions of inhibited toxin transport reveal previously unknown connections between syntheses of lipid classes and demonstrate the ability of cells to compensate under given conditions.
Collapse
|
4
|
Sheth V, Wang L, Bhattacharya R, Mukherjee P, Wilhelm S. Strategies for Delivering Nanoparticles across Tumor Blood Vessels. ADVANCED FUNCTIONAL MATERIALS 2021; 31:2007363. [PMID: 37197212 PMCID: PMC10187772 DOI: 10.1002/adfm.202007363] [Citation(s) in RCA: 53] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/28/2020] [Indexed: 05/19/2023]
Abstract
Nanoparticle transport across tumor blood vessels is a key step in nanoparticle delivery to solid tumors. However, the specific pathways and mechanisms of this nanoparticle delivery process are not fully understood. Here, the biological and physical characteristics of the tumor vasculature and the tumor microenvironment are explored and how these features affect nanoparticle transport across tumor blood vessels is discussed. The biological and physical methods to deliver nanoparticles into tumors are reviewed and paracellular and transcellular nanoparticle transport pathways are explored. Understanding the underlying pathways and mechanisms of nanoparticle tumor delivery will inform the engineering of safer and more effective nanomedicines for clinical translation.
Collapse
Affiliation(s)
- Vinit Sheth
- Stephenson School of Biomedical Engineering, University of Oklahoma, 173 Felgar St, Norman, OK 73019, USA
| | - Lin Wang
- Stephenson School of Biomedical Engineering, University of Oklahoma, 173 Felgar St, Norman, OK 73019, USA
| | - Resham Bhattacharya
- Department of Obstetrics and Gynecology, Peggy and Charles Stephenson Cancer Center, University of Oklahoma Health Science Center, 800 NE 10th St, Oklahoma City, OK 73104, USA
| | - Priyabrata Mukherjee
- Department of Pathology, Peggy and Charles Stephenson Cancer Center, University of Oklahoma Health Science Center, 800 NE 10th St, Oklahoma City, OK 73104, USA
| | - Stefan Wilhelm
- Stephenson School of Biomedical Engineering, University of Oklahoma, 173 Felgar St, Norman, OK 73019, USA
| |
Collapse
|
5
|
Biswas S, Mandal G, Payne KK, Anadon CM, Gatenbee CD, Chaurio RA, Costich TL, Moran C, Harro CM, Rigolizzo KE, Mine JA, Trillo-Tinoco J, Sasamoto N, Terry KL, Marchion D, Buras A, Wenham RM, Yu X, Townsend MK, Tworoger SS, Rodriguez PC, Anderson AR, Conejo-Garcia JR. IgA transcytosis and antigen recognition govern ovarian cancer immunity. Nature 2021; 591:464-470. [PMID: 33536615 PMCID: PMC7969354 DOI: 10.1038/s41586-020-03144-0] [Citation(s) in RCA: 148] [Impact Index Per Article: 37.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2019] [Accepted: 12/17/2020] [Indexed: 12/31/2022]
Abstract
Most ovarian cancers are infiltrated by prognostically relevant activated T cells1–3, yet exhibit low response rates to immune checkpoint inhibitors4. Memory B cell and plasma cell infiltrates have previously been associated with better outcomes in ovarian cancer5,6, but the nature and functional relevance of these responses are controversial. Here, using 3 independent cohorts that in total comprise 534 patients with high-grade serous ovarian cancer, we show that robust, protective humoral responses are dominated by the production of polyclonal IgA, which binds to polymeric IgA receptors that are universally expressed on ovarian cancer cells. Notably, tumour B-cell-derived IgA redirects myeloid cells against extracellular oncogenic drivers, which causes tumour cell death. In addition, IgA transcytosis through malignant epithelial cells elicits transcriptional changes that antagonize the RAS pathway and sensitize tumour cells to cytolytic killing by T cells, which also contributes to hindering malignant progression. Thus, tumour-antigen-specific and -antigen-independent IgA responses antagonize the growth of ovarian cancer by governing coordinated tumour cell, T cell and B cell responses. These findings provide a platform for identifying targets that are spontaneously recognized by intratumoural B-cell-derived antibodies, and suggest that immunotherapies that augment B cell responses may be more effective than approaches that focus on T cells, particularly for malignancies that are resistant to checkpoint inhibitors. In patients with high-grade serous ovarian cancer, robust and protective humoral responses are dominated by B-cell-derived polyclonal IgA that binds to polymeric IgA receptors that are universally expressed on ovarian cancer cells.
Collapse
Affiliation(s)
- Subir Biswas
- Department of Immunology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, USA
| | - Gunjan Mandal
- Department of Immunology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, USA
| | - Kyle K Payne
- Department of Immunology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, USA
| | - Carmen M Anadon
- Department of Immunology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, USA
| | - Chandler D Gatenbee
- Department of Mathematical Oncology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, USA
| | - Ricardo A Chaurio
- Department of Immunology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, USA
| | - Tara Lee Costich
- Department of Immunology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, USA
| | - Carlos Moran
- Department of Pathology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, USA
| | - Carly M Harro
- Department of Immunology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, USA
| | - Kristen E Rigolizzo
- Department of Immunology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, USA
| | - Jessica A Mine
- Department of Immunology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, USA
| | - Jimena Trillo-Tinoco
- Department of Immunology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, USA
| | - Naoko Sasamoto
- Obstetrics and Gynecology Epidemiology Center, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - Kathryn L Terry
- Obstetrics and Gynecology Epidemiology Center, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - Douglas Marchion
- Obstetrics and Gynecology Epidemiology Center, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - Andrea Buras
- Department of Gynecology Oncology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, USA
| | - Robert M Wenham
- Department of Gynecology Oncology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, USA
| | - Xiaoqing Yu
- Department of Biostatistics and Bioinformatics, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, USA
| | - Mary K Townsend
- Department of Cancer Epidemiology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, USA
| | - Shelley S Tworoger
- Department of Cancer Epidemiology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, USA.,Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Paulo C Rodriguez
- Department of Immunology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, USA
| | - Alexander R Anderson
- Department of Mathematical Oncology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, USA
| | - Jose R Conejo-Garcia
- Department of Immunology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, USA.
| |
Collapse
|
6
|
Fujii S, Kurokawa K, Tago T, Inaba R, Takiguchi A, Nakano A, Satoh T, Satoh AK. Sec71 separates Golgi stacks in Drosophila S2 cells. J Cell Sci 2020; 133:jcs245571. [PMID: 33262309 PMCID: PMC10668125 DOI: 10.1242/jcs.245571] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2020] [Accepted: 11/18/2020] [Indexed: 01/19/2023] Open
Abstract
Golgi stacks are the basic structural units of the Golgi. Golgi stacks are separated from each other and scattered in the cytoplasm of Drosophila cells. Here, we report that the ARF-GEF inhibitor Brefeldin A (BFA) induces the formation of BFA bodies, which are aggregates of Golgi stacks, trans-Golgi networks and recycling endosomes. Recycling endosomes are located in the centers of BFA bodies, while Golgi stacks surround them on their trans sides. Live imaging of S2 cells revealed that Golgi stacks repeatedly merged and separated on their trans sides, and BFA caused successive merger by inhibiting separation, forming BFA bodies. S2 cells carrying genome-edited BFA-resistant mutant Sec71M717L did not form BFA bodies at high concentrations of BFA; S2 cells carrying genome-edited BFA-hypersensitive mutant Sec71F713Y produced BFA bodies at low concentrations of BFA. These results indicate that Sec71 is the sole BFA target for BFA body formation and controls Golgi stack separation. Finally, we showed that impairment of Sec71 in fly photoreceptors induces BFA body formation, with accumulation of both apical and basolateral cargoes, resulting in inhibition of polarized transport.
Collapse
Affiliation(s)
- Syara Fujii
- Program of Life and Environmental Science, Graduate School of Integral Science for Life, Hiroshima University, 1-7-1 Kagamiyama, Higashi-Hiroshima, Hiroshima 739-8521, Japan
| | - Kazuo Kurokawa
- Live Cell Super-Resolution Imaging Research Team, RIKEN Center for Advanced Photonics, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
| | - Tatsuya Tago
- Program of Life and Environmental Science, Graduate School of Integral Science for Life, Hiroshima University, 1-7-1 Kagamiyama, Higashi-Hiroshima, Hiroshima 739-8521, Japan
| | - Ryota Inaba
- Program of Life and Environmental Science, Graduate School of Integral Science for Life, Hiroshima University, 1-7-1 Kagamiyama, Higashi-Hiroshima, Hiroshima 739-8521, Japan
| | - Arata Takiguchi
- Program of Life and Environmental Science, Graduate School of Integral Science for Life, Hiroshima University, 1-7-1 Kagamiyama, Higashi-Hiroshima, Hiroshima 739-8521, Japan
| | - Akihiko Nakano
- Live Cell Super-Resolution Imaging Research Team, RIKEN Center for Advanced Photonics, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
| | - Takunori Satoh
- Program of Life and Environmental Science, Graduate School of Integral Science for Life, Hiroshima University, 1-7-1 Kagamiyama, Higashi-Hiroshima, Hiroshima 739-8521, Japan
| | - Akiko K Satoh
- Program of Life and Environmental Science, Graduate School of Integral Science for Life, Hiroshima University, 1-7-1 Kagamiyama, Higashi-Hiroshima, Hiroshima 739-8521, Japan
| |
Collapse
|
7
|
Fletcher-Jones A, Hildick KL, Evans AJ, Nakamura Y, Henley JM, Wilkinson KA. Protein Interactors and Trafficking Pathways That Regulate the Cannabinoid Type 1 Receptor (CB1R). Front Mol Neurosci 2020; 13:108. [PMID: 32595453 PMCID: PMC7304349 DOI: 10.3389/fnmol.2020.00108] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2020] [Accepted: 05/20/2020] [Indexed: 12/29/2022] Open
Abstract
The endocannabinoid system (ECS) acts as a negative feedback mechanism to suppress synaptic transmission and plays a major role in a diverse range of brain functions including, for example, the regulation of mood, energy balance, and learning and memory. The function and dysfunction of the ECS are strongly implicated in multiple psychiatric, neurological, and neurodegenerative diseases. Cannabinoid type 1 receptor (CB1R) is the most abundant G protein-coupled receptor (GPCR) expressed in the brain and, as for any synaptic receptor, CB1R needs to be in the right place at the right time to respond appropriately to changing synaptic circumstances. While CB1R is found intracellularly throughout neurons, its surface expression is highly polarized to the axonal membrane, consistent with its functional expression at presynaptic sites. Surprisingly, despite the importance of CB1R, the interacting proteins and molecular mechanisms that regulate the highly polarized distribution and function of CB1R remain relatively poorly understood. Here we set out what is currently known about the trafficking pathways and protein interactions that underpin the surface expression and axonal polarity of CB1R, and highlight key questions that still need to be addressed.
Collapse
Affiliation(s)
- Alexandra Fletcher-Jones
- Centre for Synaptic Plasticity, School of Biochemistry, University of Bristol, Bristol, United Kingdom
| | - Keri L Hildick
- Centre for Synaptic Plasticity, School of Biochemistry, University of Bristol, Bristol, United Kingdom
| | - Ashley J Evans
- Centre for Synaptic Plasticity, School of Biochemistry, University of Bristol, Bristol, United Kingdom
| | - Yasuko Nakamura
- Centre for Synaptic Plasticity, School of Biochemistry, University of Bristol, Bristol, United Kingdom
| | - Jeremy M Henley
- Centre for Synaptic Plasticity, School of Biochemistry, University of Bristol, Bristol, United Kingdom
| | - Kevin A Wilkinson
- Centre for Synaptic Plasticity, School of Biochemistry, University of Bristol, Bristol, United Kingdom
| |
Collapse
|
8
|
Shigella promotes major alteration of gut epithelial physiology and tissue invasion by shutting off host intracellular transport. Proc Natl Acad Sci U S A 2019; 116:13582-13591. [PMID: 31209035 DOI: 10.1073/pnas.1902922116] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Intracellular trafficking pathways in eukaryotic cells are essential to maintain organelle identity and structure, and to regulate cell communication with its environment. Shigella flexneri invades and subverts the human colonic epithelium by the injection of virulence factors through a type 3 secretion system (T3SS). In this work, we report the multiple effects of two S. flexneri effectors, IpaJ and VirA, which target small GTPases of the Arf and Rab families, consequently inhibiting several intracellular trafficking pathways. IpaJ and VirA induce large-scale impairment of host protein secretion and block the recycling of surface receptors. Moreover, these two effectors decrease clathrin-dependent and -independent endocytosis. Therefore, S. flexneri infection induces a global blockage of host cell intracellular transport, affecting the exchange between cells and their external environment. The combined action of these effectors disorganizes the epithelial cell polarity, disturbs epithelial barrier integrity, promotes multiple invasion events, and enhances the pathogen capacity to penetrate into the colonic tissue in vivo.
Collapse
|
9
|
Witzgall R. Golgi bypass of ciliary proteins. Semin Cell Dev Biol 2018; 83:51-58. [PMID: 29559335 DOI: 10.1016/j.semcdb.2018.03.010] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2017] [Revised: 03/11/2018] [Accepted: 03/14/2018] [Indexed: 11/30/2022]
Abstract
Primary cilia represent small, yet distinct compartments of the plasma membrane. They are speculated to exercise chemo- and mechanosensory functions and to serve as signaling hubs for crucial pathways such as the Wnt and hedgehog cascades. It is therefore necessary that specific integral membrane proteins, in particular sensors and receptors, are sorted to the cilium and not to the surrounding somatic plasma membrane upon being synthesized at the rough endoplasmic reticulum. Apparently no singular "zip code" for the primary cilium exists but rather several ciliary targeting signals whose biochemical and cell biological implications are just about being unravelled. Among the better understood proteins residing in the primary cilium is polycystin-2 which is mutated in patients suffering from autosomal-dominant polycystic kidney disease. A special case in the context of this review concerns the connecting cilium which serves as the trafficking pathway for proteins involved in visual sensation of retinal photoreceptor cells. In order to efficiently capture photons, the photopigments are organized in discs or membrane invaginations. Mutations in certain proteins involved in these processes lead to retinal degeneration and ultimately to blindness. One example is peripherin/rds which is mutated in the rds (retinal degeneration slow) mouse. The trafficking of peripherin/rds from the inner to the outer segment of photoreceptor cells by way of the connecting cilium also seems to diverge at the Golgi apparatus, and the routes of polycystin-2 and peripherin/rds may represent paradigms of ciliary proteins for the type IV pathway of unconventional protein "secretion". This review is part of a special issue of Seminars in Cell and Developmental Biology edited by Walter Nickel and Catherine Rabouille.
Collapse
Affiliation(s)
- Ralph Witzgall
- Institute for Molecular and Cellular Anatomy, University of Regensburg, Universitätsstr. 31, 93053 Regensburg, Germany.
| |
Collapse
|
10
|
Song OR, Queval CJ, Iantomasi R, Delorme V, Marion S, Veyron-Churlet R, Werkmeister E, Popoff M, Ricard I, Jouny S, Deboosere N, Lafont F, Baulard A, Yeramian E, Marsollier L, Hoffmann E, Brodin P. ArfGAP1 restricts Mycobacterium tuberculosis entry by controlling the actin cytoskeleton. EMBO Rep 2017; 19:29-42. [PMID: 29141986 DOI: 10.15252/embr.201744371] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2017] [Revised: 10/03/2017] [Accepted: 10/23/2017] [Indexed: 11/09/2022] Open
Abstract
The interaction of Mycobacterium tuberculosis (Mtb) with pulmonary epithelial cells is critical for early stages of bacillus colonization and during the progression of tuberculosis. Entry of Mtb into epithelial cells has been shown to depend on F-actin polymerization, though the molecular mechanisms are still unclear. Here, we demonstrate that mycobacterial uptake into epithelial cells requires rearrangements of the actin cytoskeleton, which are regulated by ADP-ribosylation factor 1 (Arf1) and phospholipase D1 (PLD1), and is dependent on the M3 muscarinic receptor (M3R). We show that this pathway is controlled by Arf GTPase-activating protein 1 (ArfGAP1), as its silencing has an impact on actin cytoskeleton reorganization leading to uncontrolled uptake and replication of Mtb. Furthermore, we provide evidence that this pathway is critical for mycobacterial entry, while the cellular infection with other pathogens, such as Shigella flexneri and Yersinia pseudotuberculosis, is not affected. Altogether, these results reveal how cortical actin plays the role of a barrier to prevent mycobacterial entry into epithelial cells and indicate a novel role for ArfGAP1 as a restriction factor of host-pathogen interactions.
Collapse
Affiliation(s)
- Ok-Ryul Song
- CNRS, Inserm, CHU Lille, U1019 - UMR8204 - CIIL - Centre d'Infection et d'Immunité de Lille, Institut Pasteur de Lille, Univ. Lille, Lille, France.,Equipe ATIP AVENIR, CRCINA, INSERM, Université de Nantes, Université d'Angers, Angers, France.,CRCINA, INSERM, Université de Nantes, Université d'Angers, Angers, France.,Institute Pasteur Korea, Seongnam-si Gyeonggi-do, South Korea
| | - Christophe J Queval
- CNRS, Inserm, CHU Lille, U1019 - UMR8204 - CIIL - Centre d'Infection et d'Immunité de Lille, Institut Pasteur de Lille, Univ. Lille, Lille, France
| | - Raffaella Iantomasi
- CNRS, Inserm, CHU Lille, U1019 - UMR8204 - CIIL - Centre d'Infection et d'Immunité de Lille, Institut Pasteur de Lille, Univ. Lille, Lille, France
| | - Vincent Delorme
- CNRS, Inserm, CHU Lille, U1019 - UMR8204 - CIIL - Centre d'Infection et d'Immunité de Lille, Institut Pasteur de Lille, Univ. Lille, Lille, France.,Institute Pasteur Korea, Seongnam-si Gyeonggi-do, South Korea
| | - Sabrina Marion
- CNRS, Inserm, CHU Lille, U1019 - UMR8204 - CIIL - Centre d'Infection et d'Immunité de Lille, Institut Pasteur de Lille, Univ. Lille, Lille, France
| | - Romain Veyron-Churlet
- CNRS, Inserm, CHU Lille, U1019 - UMR8204 - CIIL - Centre d'Infection et d'Immunité de Lille, Institut Pasteur de Lille, Univ. Lille, Lille, France
| | - Elisabeth Werkmeister
- CNRS, Inserm, CHU Lille, U1019 - UMR8204 - CIIL - Centre d'Infection et d'Immunité de Lille, Institut Pasteur de Lille, Univ. Lille, Lille, France
| | - Michka Popoff
- CNRS, Inserm, CHU Lille, U1019 - UMR8204 - CIIL - Centre d'Infection et d'Immunité de Lille, Institut Pasteur de Lille, Univ. Lille, Lille, France.,CNRS, UMR8520, Institut d'électronique, de microélectronique et de nanotechnologie, Villeneuve d'Ascq, France
| | - Isabelle Ricard
- CNRS, Inserm, CHU Lille, U1019 - UMR8204 - CIIL - Centre d'Infection et d'Immunité de Lille, Institut Pasteur de Lille, Univ. Lille, Lille, France
| | - Samuel Jouny
- CNRS, Inserm, CHU Lille, U1019 - UMR8204 - CIIL - Centre d'Infection et d'Immunité de Lille, Institut Pasteur de Lille, Univ. Lille, Lille, France
| | - Nathalie Deboosere
- CNRS, Inserm, CHU Lille, U1019 - UMR8204 - CIIL - Centre d'Infection et d'Immunité de Lille, Institut Pasteur de Lille, Univ. Lille, Lille, France
| | - Frank Lafont
- CNRS, Inserm, CHU Lille, U1019 - UMR8204 - CIIL - Centre d'Infection et d'Immunité de Lille, Institut Pasteur de Lille, Univ. Lille, Lille, France
| | - Alain Baulard
- CNRS, Inserm, CHU Lille, U1019 - UMR8204 - CIIL - Centre d'Infection et d'Immunité de Lille, Institut Pasteur de Lille, Univ. Lille, Lille, France
| | - Edouard Yeramian
- Unité de Microbiologie Structurale, CNRS UMR3528, Institut Pasteur, Paris, France
| | - Laurent Marsollier
- Equipe ATIP AVENIR, CRCINA, INSERM, Université de Nantes, Université d'Angers, Angers, France .,CRCINA, INSERM, Université de Nantes, Université d'Angers, Angers, France
| | - Eik Hoffmann
- CNRS, Inserm, CHU Lille, U1019 - UMR8204 - CIIL - Centre d'Infection et d'Immunité de Lille, Institut Pasteur de Lille, Univ. Lille, Lille, France
| | - Priscille Brodin
- CNRS, Inserm, CHU Lille, U1019 - UMR8204 - CIIL - Centre d'Infection et d'Immunité de Lille, Institut Pasteur de Lille, Univ. Lille, Lille, France .,Institute Pasteur Korea, Seongnam-si Gyeonggi-do, South Korea
| |
Collapse
|
11
|
Akula S, Hellman L. The Appearance and Diversification of Receptors for IgM During Vertebrate Evolution. Curr Top Microbiol Immunol 2017; 408:1-23. [PMID: 28884191 DOI: 10.1007/82_2017_22] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Three different receptors that interact with the constant domains of IgM have been identified: the polymeric immunoglobulin (Ig) receptor (PIGR), the dual receptor for IgA/IgM (FcαµR) and the IgM receptor (FcµR). All of them are related in structure and located in the same chromosomal region in mammals. The functions of the PIGRs are to transport IgM and IgA into the intestinal lumen and to saliva and tears, whereas the FcαµRs enhance uptake of immune complexes and antibody coated bacteria and viruses by B220+ B cells and phagocytes, as well as dampening the Ig response to thymus-independent antigens. The FcµRs have broad-spectrum effects on B-cell development including effects on IgM homeostasis, B-cell survival, humoral immune responses and also in autoantibody formation. The PIGR is the first of these receptors to appear during vertebrate evolution and is found in bony fish and all tetrapods but not in cartilaginous fish. The FcµR is present in all extant mammalian lineages and also in the Chinese and American alligators, suggesting its appearance with early reptiles. Currently the FcαµR has only been found in mammals and is most likely the evolutionary youngest of the three receptors. In bony fish, the PIGR has either 2, 3, 4, 5 or 6 extracellular Ig-like domains, whereas in amphibians, reptiles and birds it has 4 domains, and 5 in all mammals. The increase in domain number from 4 to 5 in mammals has been proposed to enhance the interaction with IgA. Both the FcαµRs and the FcµRs contain only one Ig domain; the domain that confers Ig binding. In both of these receptors this domain shows the highest degree of sequence similarity to domain 1 of the PIGR. All Ig domains of these three receptors are V type domains, indicating they all have the same origin although they have diversified extensively in function during vertebrate evolution by changing expression patterns and cytoplasmic signaling motifs.
Collapse
Affiliation(s)
- Srinivas Akula
- Department of Cell and Molecular Biology, Uppsala University, The Biomedical Center, Box 596, 751 24, Uppsala, Sweden
| | - Lars Hellman
- Department of Cell and Molecular Biology, Uppsala University, The Biomedical Center, Box 596, 751 24, Uppsala, Sweden.
| |
Collapse
|
12
|
Miller K, Dixit S, Bredlau AL, Moore A, McKinnon E, Broome AM. Delivery of a drug cache to glioma cells overexpressing platelet-derived growth factor receptor using lipid nanocarriers. Nanomedicine (Lond) 2016; 11:581-95. [PMID: 27003178 DOI: 10.2217/nnm.15.218] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
AIM Glioblastoma multiforme is a devastating disease with no curative options due to the difficulty in achieving sufficient quantities of effective chemotherapies into the tumor past the blood-brain barrier. Micelles loaded with temozolomide (TMZ) were designed to increase the delivery of this drug into the brain. MATERIALS & METHODS pH-responsive micelles composed of distearoyl phosphoethanolamine-PEG-2000-amine and N-palmitoyl homocysteine were surface-functionalized with PDGF peptide and Dylight 680 fluorophore. RESULTS & CONCLUSION PDGF-micelles containing TMZ have specific uptake and increased killing in glial cells compared with untargeted micelles. In vivo studies demonstrated selective accumulation of PDGF-micelles containing TMZ in orthotopic gliomas implanted in mice. Targeted micelle-based drug carrier systems hold potential for delivery of a wide variety of hydrophobic drugs thereby reducing its systemic toxicity.
Collapse
Affiliation(s)
- Kayla Miller
- Department of Radiology & Radiological Sciences, Medical University of South Carolina, 68 President Street, MSC 120/BEB 213, Charleston, SC 29425, USA
| | - Suraj Dixit
- Department of Radiology & Radiological Sciences, Medical University of South Carolina, 68 President Street, MSC 120/BEB 213, Charleston, SC 29425, USA.,Center for Biomedical Imaging, Medical University of South Carolina, Charleston, SC 29425, USA
| | - Amy-Lee Bredlau
- Department of Pediatrics, Medical University of South Carolina, Charleston, SC 29425, USA.,Department of Neurosciences, Medical University of South Carolina, Charleston, SC 29425, USA
| | - Alfred Moore
- Department of Radiology & Radiological Sciences, Medical University of South Carolina, 68 President Street, MSC 120/BEB 213, Charleston, SC 29425, USA.,Center for Biomedical Imaging, Medical University of South Carolina, Charleston, SC 29425, USA
| | - Emilie McKinnon
- Center for Biomedical Imaging, Medical University of South Carolina, Charleston, SC 29425, USA
| | - Ann-Marie Broome
- Department of Radiology & Radiological Sciences, Medical University of South Carolina, 68 President Street, MSC 120/BEB 213, Charleston, SC 29425, USA.,Center for Biomedical Imaging, Medical University of South Carolina, Charleston, SC 29425, USA.,Department of Neurosciences, Medical University of South Carolina, Charleston, SC 29425, USA
| |
Collapse
|
13
|
Farr GA, Hull M, Stoops EH, Bateson R, Caplan MJ. Dual pulse-chase microscopy reveals early divergence in the biosynthetic trafficking of the Na,K-ATPase and E-cadherin. Mol Biol Cell 2015; 26:4401-11. [PMID: 26424804 PMCID: PMC4666135 DOI: 10.1091/mbc.e14-09-1385] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2014] [Accepted: 09/24/2015] [Indexed: 11/14/2022] Open
Abstract
The trafficking of newly synthesized Na,K-ATPase and E-cadherin is observed in polarized epithelial cells. E-cadherin’s exit from the Golgi complex is not susceptible to 19°C temperature block. Furthermore, these proteins exit the Golgi and are delivered to the basolateral cell surface in separate vascular carriers. Recent evidence indicates that newly synthesized membrane proteins that share the same distributions in the plasma membranes of polarized epithelial cells can pursue a variety of distinct trafficking routes as they travel from the Golgi complex to their common destination at the cell surface. In most polarized epithelial cells, both the Na,K-ATPase and E-cadherin are localized to the basolateral domains of the plasma membrane. To examine the itineraries pursued by newly synthesized Na,K-ATPase and E-cadherin in polarized MDCK epithelial cells, we used the SNAP and CLIP labeling systems to fluorescently tag temporally defined cohorts of these proteins and observe their behaviors simultaneously as they traverse the secretory pathway. These experiments reveal that E-cadherin is delivered to the cell surface substantially faster than is the Na,K-ATPase. Furthermore, the surface delivery of newly synthesized E-cadherin to the plasma membrane was not prevented by the 19°C temperature block that inhibits the trafficking of most proteins, including the Na,K-ATPase, out of the trans-Golgi network. Consistent with these distinct behaviors, populations of newly synthesized E-cadherin and Na,K-ATPase become separated from one another within the trans-Golgi network, suggesting that they are sorted into different carrier vesicles that mediate their post-Golgi trafficking.
Collapse
Affiliation(s)
- Glen A Farr
- Department of Cellular and Molecular Physiology, Yale University School of Medicine, New Haven, CT 06520-8026
| | - Michael Hull
- Department of Cellular and Molecular Physiology, Yale University School of Medicine, New Haven, CT 06520-8026
| | - Emily H Stoops
- Department of Cellular and Molecular Physiology, Yale University School of Medicine, New Haven, CT 06520-8026
| | - Rosalie Bateson
- Department of Cellular and Molecular Physiology, Yale University School of Medicine, New Haven, CT 06520-8026
| | - Michael J Caplan
- Department of Cellular and Molecular Physiology, Yale University School of Medicine, New Haven, CT 06520-8026 )
| |
Collapse
|
14
|
Nadig SN, Dixit SK, Levey N, Esckilsen S, Miller K, Dennis W, Atkinson C, Broome AM. Immunosuppressive nano-therapeutic micelles downregulate endothelial cell inflammation and immunogenicity. RSC Adv 2015; 5:43552-43562. [PMID: 26167278 PMCID: PMC4494678 DOI: 10.1039/c5ra04057d] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
In this study, we developed a stable, nontoxic novel micelle nanoparticle to attenuate responses of endothelial cell (EC) inflammation when subjected to oxidative stress, such as observed in organ transplantation. Targeted Rapamycin Micelles (TRaM) were synthesized using PEG-PE-amine and N-palmitoyl homocysteine (PHC) with further tailoring of the micelle using targeting peptides (cRGD) and labeling with far-red fluorescent dye for tracking during cellular uptake studies. Our results revealed that the TRaM was approximately 10 nm in diameter and underwent successful internalization in Human Umbilical Vein EC (HUVEC) lines. Uptake efficiency of TRaM nanoparticles was improved with the addition of a targeting moiety. In addition, our TRaM therapy was able to downregulate both mouse cardiac endothelial cell (MCEC) and HUVEC production and release of the pro-inflammatory cytokines, IL-6 and IL-8 in normal oxygen tension and hypoxic conditions. We were also able to demonstrate a dose-dependent uptake of TRaM therapy into biologic tissues ex vivo. Taken together, these data demonstrate the feasibility of targeted drug delivery in transplantation, which has the potential for conferring local immunosuppressive effects without systemic consequences while also dampening endothelial cell injury responses.
Collapse
Affiliation(s)
- Satish N Nadig
- Department of Surgery, Division of Transplant, Medical University of South Carolina, 96 Jonathan Lucas Street, Charleston, SC 29425, USA. ; Tel: 01 843 792 8596;
- Department of Microbiology and Immunology, Medical University of South Carolina, 173 Ashley Avenue, Charleston, SC 29425, USA. ; Tel: 01 843 792 1716;
- South Carolina Investigators in Transplantation (SCIT), Medical University of South Carolina, 96 Jonathan Lucas Street, Charleston, SC 29425, USA. ; Tel: 01 843 792 3553;
| | - Suraj K Dixit
- Department of Radiology & Radiological Science, Medical University of South Carolina, 68 President Street MSC 120, Charleston, SC 29425, USA. ; Tel: 01 843 876 2481;
- Center for Biomedical Imaging (CBI), Medical University of South Carolina, 68 President Street MSC 120, Charleston, SC 29425, USA. ; Tel: 01 843 876 2481;
| | - Natalie Levey
- Department of Surgery, Division of Transplant, Medical University of South Carolina, 96 Jonathan Lucas Street, Charleston, SC 29425, USA. ; Tel: 01 843 792 8596;
| | - Scott Esckilsen
- Department of Surgery, Division of Transplant, Medical University of South Carolina, 96 Jonathan Lucas Street, Charleston, SC 29425, USA. ; Tel: 01 843 792 8596;
| | - Kayla Miller
- Department of Radiology & Radiological Science, Medical University of South Carolina, 68 President Street MSC 120, Charleston, SC 29425, USA. ; Tel: 01 843 876 2481;
- Center for Biomedical Imaging (CBI), Medical University of South Carolina, 68 President Street MSC 120, Charleston, SC 29425, USA. ; Tel: 01 843 876 2481;
| | - William Dennis
- Department of Surgery, Division of Transplant, Medical University of South Carolina, 96 Jonathan Lucas Street, Charleston, SC 29425, USA. ; Tel: 01 843 792 8596;
| | - Carl Atkinson
- Department of Microbiology and Immunology, Medical University of South Carolina, 173 Ashley Avenue, Charleston, SC 29425, USA. ; Tel: 01 843 792 1716;
- South Carolina Investigators in Transplantation (SCIT), Medical University of South Carolina, 96 Jonathan Lucas Street, Charleston, SC 29425, USA. ; Tel: 01 843 792 3553;
| | - Ann-Marie Broome
- Department of Radiology & Radiological Science, Medical University of South Carolina, 68 President Street MSC 120, Charleston, SC 29425, USA. ; Tel: 01 843 876 2481;
- Center for Biomedical Imaging (CBI), Medical University of South Carolina, 68 President Street MSC 120, Charleston, SC 29425, USA. ; Tel: 01 843 876 2481;
- South Carolina Investigators in Transplantation (SCIT), Medical University of South Carolina, 96 Jonathan Lucas Street, Charleston, SC 29425, USA. ; Tel: 01 843 792 3553;
| |
Collapse
|
15
|
Lu R, Stewart L, Wilson JM. Scaffolding protein GOPC regulates tight junction structure. Cell Tissue Res 2015; 360:321-32. [PMID: 25616555 DOI: 10.1007/s00441-014-2088-1] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2014] [Accepted: 12/04/2014] [Indexed: 11/30/2022]
Abstract
GOPC (FIG/PIST/CAL) is a PDZ-domain scaffolding protein that regulates the trafficking of a wide array of proteins, including small GTPases, receptors and cell surface molecules such as cadherin 23 and cystic fibrosis transmembrane regulator. In Madin-Darby canine kidney (MDCK) cells, we find that GOPC localizes to the trans-Golgi network (TGN) but not to the cis- or trans-Golgi cisternae. Colocalization occurs with the early endosome Rab GTPase Rab5 and a TGN/endosome marker Rab14 but not with Rab11, a marker of recycling endosomes. No localization of GOPC was detected to the lateral membranes or tight junctions. Knockdown of GOPC in MDCK cells results in decreased transepithelial resistance and increased paracellular flux. This might be attributable to the compromised trafficking of tight junction components from the TGN, as GOPC-knockdown cells have decreased lateral labeling of the tight junction protein claudin-1 and decreased protein levels of claudin-2. GOPC might mediate the trafficking of newly synthesized tight junction proteins from the TGN to the cell surface or the recycling of these proteins from specialized endosomal compartments.
Collapse
Affiliation(s)
- Ruifeng Lu
- Department of Cellular and Molecular Medicine, University of Arizona, PO Box 245044, Tucson, AZ 85724, USA
| | | | | |
Collapse
|
16
|
Moran A, Al-Rammahi M, Zhang C, Bravo D, Calsamiglia S, Shirazi-Beechey S. Sweet taste receptor expression in ruminant intestine and its activation by artificial sweeteners to regulate glucose absorption. J Dairy Sci 2014; 97:4955-72. [DOI: 10.3168/jds.2014-8004] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2014] [Accepted: 04/23/2014] [Indexed: 12/30/2022]
|
17
|
Naramoto S, Otegui MS, Kutsuna N, de Rycke R, Dainobu T, Karampelias M, Fujimoto M, Feraru E, Miki D, Fukuda H, Nakano A, Friml J. Insights into the localization and function of the membrane trafficking regulator GNOM ARF-GEF at the Golgi apparatus in Arabidopsis. THE PLANT CELL 2014; 26:3062-76. [PMID: 25012191 PMCID: PMC4145132 DOI: 10.1105/tpc.114.125880] [Citation(s) in RCA: 101] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2014] [Revised: 05/28/2014] [Accepted: 06/04/2014] [Indexed: 05/19/2023]
Abstract
GNOM is one of the most characterized membrane trafficking regulators in plants, with crucial roles in development. GNOM encodes an ARF-guanine nucleotide exchange factor (ARF-GEF) that activates small GTPases of the ARF (ADP ribosylation factor) class to mediate vesicle budding at endomembranes. The crucial role of GNOM in recycling of PIN auxin transporters and other proteins to the plasma membrane was identified in studies using the ARF-GEF inhibitor brefeldin A (BFA). GNOM, the most prominent regulator of recycling in plants, has been proposed to act and localize at so far elusive recycling endosomes. Here, we report the GNOM localization in context of its cellular function in Arabidopsis thaliana. State-of-the-art imaging, pharmacological interference, and ultrastructure analysis show that GNOM predominantly localizes to Golgi apparatus. Super-resolution confocal live imaging microscopy identified GNOM and its closest homolog GNOM-like 1 at distinct subdomains on Golgi cisternae. Short-term BFA treatment stabilizes GNOM at the Golgi apparatus, whereas prolonged exposures results in GNOM translocation to trans-Golgi network (TGN)/early endosomes (EEs). Malformed TGN/EE in gnom mutants suggests a role for GNOM in maintaining TGN/EE function. Our results redefine the subcellular action of GNOM and reevaluate the identity and function of recycling endosomes in plants.
Collapse
Affiliation(s)
- Satoshi Naramoto
- Department of Plant Systems Biology, VIB, and Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052 Gent, Belgium Molecular Membrane Biology laboratory, RIKEN Advanced Science Institute, Wako, Saitama 351-0198, Japan Department of Life Science, International Christian University, Mitaka-shi, Tokyo 181-8585, Japan
| | - Marisa S Otegui
- Department of Botany and Genetics, University of Wisconsin, Madison, Wisconsin 53706
| | - Natsumaro Kutsuna
- Department of Integrated Biosciences, Graduate School of Frontier Sciences, University of Tokyo, Kashiwa, Chiba 277-8562, Japan
| | - Riet de Rycke
- Department of Plant Systems Biology, VIB, and Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052 Gent, Belgium
| | - Tomoko Dainobu
- Department of Biological Sciences, Graduate School of Science, University of Tokyo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Michael Karampelias
- Department of Plant Systems Biology, VIB, and Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052 Gent, Belgium
| | - Masaru Fujimoto
- Laboratory of Plant Molecular Genetics, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Bunkyo-ku, Tokyo 113-8657, Japan
| | - Elena Feraru
- Department of Plant Systems Biology, VIB, and Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052 Gent, Belgium
| | - Daisuke Miki
- Department of Plant Systems Biology, VIB, and Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052 Gent, Belgium
| | - Hiroo Fukuda
- Department of Biological Sciences, Graduate School of Science, University of Tokyo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Akihiko Nakano
- Molecular Membrane Biology laboratory, RIKEN Advanced Science Institute, Wako, Saitama 351-0198, Japan Department of Biological Sciences, Graduate School of Science, University of Tokyo, Bunkyo-ku, Tokyo 113-0033, Japan Live Cell Molecular Imaging Research Team, Extreme Photonics Research Group, RIKEN Center for Advanced Photonics, Wako, Saitama 351-0198, Japan
| | - Jiří Friml
- Department of Plant Systems Biology, VIB, and Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052 Gent, Belgium Institute of Science and Technology Austria, 3400 Klosterneuburg, Austria
| |
Collapse
|
18
|
Krai P, Dalal S, Klemba M. Evidence for a Golgi-to-endosome protein sorting pathway in Plasmodium falciparum. PLoS One 2014; 9:e89771. [PMID: 24587025 PMCID: PMC3934947 DOI: 10.1371/journal.pone.0089771] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2013] [Accepted: 01/24/2014] [Indexed: 12/20/2022] Open
Abstract
During the asexual intraerythrocytic stage, the malaria parasite Plasmodium falciparum must traffic newly-synthesized proteins to a broad array of destinations within and beyond the parasite's plasma membrane. In this study, we have localized two well-conserved protein components of eukaryotic endosomes, the retromer complex and the small GTPase Rab7, to define a previously-undescribed endosomal compartment in P. falciparum. Retromer and Rab7 co-localized to a small number of punctate structures within parasites. These structures, which we refer to as endosomes, lie in close proximity to the Golgi apparatus and, like the Golgi apparatus, are inherited by daughter merozoites. However, the endosome is clearly distinct from the Golgi apparatus as neither retromer nor Rab7 redistributed to the endoplasmic reticulum upon brefeldin A treatment. Nascent rhoptries (specialized secretory organelles required for invasion) developed adjacent to endosomes, an observation that suggests a role for the endosome in rhoptry biogenesis. A P. falciparum homolog of the sortilin family of protein sorting receptors (PfSortilin) was localized to the Golgi apparatus. Together, these results elaborate a putative Golgi-to-endosome protein sorting pathway in asexual blood stage parasites and suggest that one role of retromer is to mediate the retrograde transport of PfSortilin from the endosome to the Golgi apparatus.
Collapse
Affiliation(s)
- Priscilla Krai
- Department of Biochemistry, Virginia Tech, Blacksburg, Virginia, United States of America
| | - Seema Dalal
- Department of Biochemistry, Virginia Tech, Blacksburg, Virginia, United States of America
| | - Michael Klemba
- Department of Biochemistry, Virginia Tech, Blacksburg, Virginia, United States of America
- * E-mail:
| |
Collapse
|
19
|
Role of nutrient-sensing taste 1 receptor (T1R) family members in gastrointestinal chemosensing. Br J Nutr 2014; 111 Suppl 1:S8-15. [DOI: 10.1017/s0007114513002286] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Luminal nutrient sensing by G-protein-coupled receptors (GPCR) expressed on the apical domain of enteroendocrine cells activates intracellular pathways leading to secretion of gut hormones that control vital physiological processes such as digestion, absorption, food intake and glucose homeostasis. The taste 1 receptor (T1R) family of GPCR consists of three members: T1R1; T1R2; T1R3. Expression of T1R1, T1R2 and T1R3 at mRNA and protein levels has been demonstrated in the intestinal tissue of various species. It has been shown that T1R2–T1R3, in association with G-protein gustducin, is expressed in intestinal K and L endocrine cells, where it acts as the intestinal glucose (sweet) sensor. A number of studies have demonstrated that activation of T1R2–T1R3 by natural sugars and artificial sweeteners leads to secretion of glucagon-like peptides 1&2 (GLP-1 and GLP-2) and glucose dependent insulinotropic peptide (GIP). GLP-1 and GIP enhance insulin secretion; GLP-2 increases intestinal growth and glucose absorption. T1R1–T1R3 combination co-expressed on the apical domain of cholecystokinin (CCK) expressing cells is a luminal sensor for a number of l-amino acids; with amino acid-activation of the receptor eliciting CCK secretion. This article focuses on the role of the gut-expressed T1R1, T1R2 and T1R3 in intestinal sweet and l-amino acid sensing. The impact of exploiting T1R2–T1R3 as a nutritional target for enhancing intestinal glucose absorption and gut structural maturity in young animals is also highlighted.
Collapse
|
20
|
Farhat R, Goueslain L, Wychowski C, Belouzard S, Fénéant L, Jackson CL, Dubuisson J, Rouillé Y. Hepatitis C virus replication and Golgi function in brefeldin a-resistant hepatoma-derived cells. PLoS One 2013; 8:e74491. [PMID: 24058576 PMCID: PMC3776844 DOI: 10.1371/journal.pone.0074491] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2013] [Accepted: 08/01/2013] [Indexed: 12/15/2022] Open
Abstract
Recent reports indicate that the replication of hepatitis C virus (HCV) depends on the GBF1-Arf1-COP-I pathway. We generated Huh-7-derived cell lines resistant to brefeldin A (BFA), which is an inhibitor of this pathway. The resistant cell lines could be sorted into two phenotypes regarding BFA-induced toxicity, inhibition of albumin secretion, and inhibition of HCV infection. Two cell lines were more than 100 times more resistant to BFA than the parental Huh-7 cells in these 3 assays. This resistant phenotype was correlated with the presence of a point mutation in the Sec7 domain of GBF1, which is known to impair the binding of BFA. Surprisingly, the morphology of the cis-Golgi of these cells remained sensitive to BFA at concentrations of the drug that allowed albumin secretion, indicating a dichotomy between the phenotypes of secretion and Golgi morphology. Cells of the second group were about 10 times more resistant than parental Huh-7 cells to the BFA-induced toxicity. The EC50 for albumin secretion was only 1.5–1.8 fold higher in these cells than in Huh-7 cells. However their level of secretion in the presence of inhibitory doses of BFA was 5 to 15 times higher. Despite this partially effective secretory pathway in the presence of BFA, the HCV infection was almost as sensitive to BFA as in Huh-7 cells. This suggests that the function of GBF1 in HCV replication does not simply reflect its role of regulator of the secretory pathway of the host cell. Thus, our results confirm the involvement of GBF1 in HCV replication, and suggest that GBF1 might fulfill another function, in addition to the regulation of the secretory pathway, during HCV replication.
Collapse
Affiliation(s)
- Rayan Farhat
- Inserm U1019, CNRS UMR8204, Center for Infection and Immunity of Lille (CIIL), Institut Pasteur de Lille, Université Lille Nord de France, Lille, France
| | - Lucie Goueslain
- Institut Jacques Monod, CNRS UMR 7592, Université Paris Diderot, Sorbonne Paris Cité, Paris, France
| | - Czeslaw Wychowski
- Inserm U1019, CNRS UMR8204, Center for Infection and Immunity of Lille (CIIL), Institut Pasteur de Lille, Université Lille Nord de France, Lille, France
| | - Sandrine Belouzard
- Inserm U1019, CNRS UMR8204, Center for Infection and Immunity of Lille (CIIL), Institut Pasteur de Lille, Université Lille Nord de France, Lille, France
| | - Lucie Fénéant
- Inserm U1019, CNRS UMR8204, Center for Infection and Immunity of Lille (CIIL), Institut Pasteur de Lille, Université Lille Nord de France, Lille, France
| | - Catherine L. Jackson
- Institut Jacques Monod, CNRS UMR 7592, Université Paris Diderot, Sorbonne Paris Cité, Paris, France
| | - Jean Dubuisson
- Inserm U1019, CNRS UMR8204, Center for Infection and Immunity of Lille (CIIL), Institut Pasteur de Lille, Université Lille Nord de France, Lille, France
| | - Yves Rouillé
- Inserm U1019, CNRS UMR8204, Center for Infection and Immunity of Lille (CIIL), Institut Pasteur de Lille, Université Lille Nord de France, Lille, France
- * E-mail:
| |
Collapse
|
21
|
Regulation of the Golgi complex by phospholipid remodeling enzymes. Biochim Biophys Acta Mol Cell Biol Lipids 2012; 1821:1078-88. [PMID: 22562055 DOI: 10.1016/j.bbalip.2012.04.004] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2011] [Revised: 03/15/2012] [Accepted: 04/13/2012] [Indexed: 11/23/2022]
Abstract
The mammalian Golgi complex is a highly dynamic organelle consisting of stacks of flattened cisternae with associated coated vesicles and membrane tubules that contribute to cargo import and export, intra-cisternal trafficking, and overall Golgi architecture. At the morphological level, all of these structures are continuously remodeled to carry out these trafficking functions. Recent advances have shown that continual phospholipid remodeling by phospholipase A (PLA) and lysophospholipid acyltransferase (LPAT) enzymes, which deacylate and reacylate Golgi phospholipids, respectively, contributes to this morphological remodeling. Here we review the identification and characterization of four cytoplasmic PLA enzymes and one integral membrane LPAT that participate in the dynamic functional organization of the Golgi complex, and how some of these enzymes are integrated to determine the relative abundance of COPI vesicle and membrane tubule formation. This article is part of a Special Issue entitled Lipids and Vesicular Transport.
Collapse
|
22
|
Klimovich VB. IgM and its receptors: structural and functional aspects. BIOCHEMISTRY (MOSCOW) 2011; 76:534-49. [PMID: 21639833 DOI: 10.1134/s0006297911050038] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
This review combines the data obtained before the beginning of the 1990s with results published during the last two decades. The predominant form of the IgM molecule is a closed ring composed of five 7S subunits and a J chain. The new model of spatial structure of the pentamer postulates nonplanar mushroom-shaped form of the molecule with the plane formed by a radially-directed Fab regions and central protruding portion consisting of Cµ4 domains. Up to the year 2000 the only known Fc-receptor for IgM was pIgR. Interaction of IgM with pIgR results in secretory IgM formation, whose functions are poorly studied. The receptor designated as Fcα/µR is able to bind IgM and IgA. It is expressed on lymphocytes, follicular dendritic cells, and macrophages. A receptor binding IgM only named FcµR has also been described. It is expressed on T- and B-lymphocytes. The discovery of new Fc-receptors for IgM requires revision of notions that interactions between humoral reactions involving IgM and the cells of the immune system are mediated exclusively by complement receptors. In the whole organism, apart from IgM induced by immunization, natural antibodies (NA) are present and comprise in adults a considerable part of the circulating IgM. NA are polyreactive, germ-line-encoded, and emerge during embryogenesis without apparent antigenic stimuli. They demonstrate a broad spectrum of antibacterial activity and serve as first line of defense against microbial and viral infections. NA may be regarded as a transitional molecular form from invariable receptors of innate immunity to highly diverse receptors of adaptive immunity. By means of interaction with autoantigens, NA participate in maintenance of immunological tolerance and in clearance of dying cells. At the same time, NA may act as a pathogenic factor in atherosclerotic lesion formation and in development of tissue damage due to ischemia/reperfusion.
Collapse
Affiliation(s)
- V B Klimovich
- Russian Research Center for Radiology and Surgical Technologies, St. Petersburg.
| |
Collapse
|
23
|
Grieve AG, Rabouille C. Golgi bypass: skirting around the heart of classical secretion. Cold Spring Harb Perspect Biol 2011; 3:cshperspect.a005298. [PMID: 21441587 DOI: 10.1101/cshperspect.a005298] [Citation(s) in RCA: 115] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Classical secretion consists of the delivery of transmembrane and soluble proteins to the plasma membrane and the extracellular medium, respectively, and is mediated by the organelles of the secretory pathway, the Endoplasmic Reticulum (ER), the ER exit sites, and the Golgi, as described by the Nobel Prize winner George Palade (Palade 1975). At the center of this transport route, the Golgi stack has a major role in modifying, processing, sorting, and dispatching newly synthesized proteins to their final destinations. More recently, however, it has become clear that an increasing number of transmembrane proteins reach the plasma membrane unconventionally, either by exiting the ER in non-COPII vesicles or by bypassing the Golgi. Here, we discuss the evidence for Golgi bypass and the possible physiological benefits of it. Intriguingly, at least during Drosophila development, Golgi bypass seems to be mediated by a Golgi protein, dGRASP, which is found ectopically localized to the plasma membrane.
Collapse
Affiliation(s)
- Adam G Grieve
- Cell Microscopy Centre, Department of Cell Biology, University Medical Center Utrecht, The Netherlands
| | | |
Collapse
|
24
|
Boal F, Guetzoyan L, Sessions RB, Zeghouf M, Spooner RA, Lord JM, Cherfils J, Clarkson GJ, Roberts LM, Stephens DJ. LG186: An inhibitor of GBF1 function that causes Golgi disassembly in human and canine cells. Traffic 2010; 11:1537-51. [PMID: 20854417 DOI: 10.1111/j.1600-0854.2010.01122.x] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Brefeldin A-mediated inhibition of ADP ribosylation factor (Arf) GTPases and their guanine nucleotide exchange factors, Arf-GEFs, has been a cornerstone of membrane trafficking research for many years. Brefeldin A (BFA) is relatively non-selective inhibiting at least three targets in human cells, Golgi brefeldin A resistance factor 1 (GBF1), brefeldin A inhibited guanine nucleotide exchange factor 1 (BIG1) and brefeldin A inhibited guanine nucleotide exchange factor 2 (BIG2). Here, we show that the previously described compound Exo2 acts through inhibition of Arf-GEF function, but causes other phenotypic changes that are not GBF1 related. We describe the engineering of Exo2 to produce LG186, a more selective, reversible inhibitor of Arf-GEF function. Using multiple-cell-based assays and GBF1 mutants, our data are most consistent with LG186 acting by selective inhibition of GBF1. Unlike other Arf-GEF and reported GBF1 inhibitors including BFA, Exo2 and Golgicide A, LG186 induces disassembly of the Golgi stack in both human and canine cells.
Collapse
Affiliation(s)
- Frédéric Boal
- Cell Biology Laboratories, School of Biochemistry, Medical Sciences Building, University of Bristol, University Walk, Bristol BS8 1TD, UK
| | | | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Lalo U, Allsopp RC, Mahaut-Smith MP, Evans RJ. P2X1 receptor mobility and trafficking; regulation by receptor insertion and activation. J Neurochem 2010; 113:1177-87. [PMID: 20374431 PMCID: PMC2878604 DOI: 10.1111/j.1471-4159.2010.06730.x] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
P2X1 receptors for ATP contribute to signalling in a variety of cell types and following stimulation undergo rapid desensitisation (within 1 s), and require ∼5 min to recover. In HEK293 cells P2X1 receptors C-terminally tagged with enhanced green fluorescent protein (P2X1-eGFP) were predominantly expressed at the cell surface. Following > 90% photo-bleaching of P2X1-eGFP within a 6 μm2 circle at the cell surface fluorescence recovery after photo-bleaching (FRAP) was fit with a time constant of ∼60 s and recovered to ∼75% of pre-bleach levels. Following activation of the P2X1 receptor with α,β-methylene ATP the associated calcium influx doubled the FRAP recovery rate. The protein synthesis inhibitor cycloheximide had only a small effect on repeated FRAP and indicated a limited contribution of new P2X1 receptors to the FRAP. Inhibition of trafficking with brefeldin A reduced recovery and this effect could be reversed following receptor activation. In contrast, the dynamin inhibitor dynasore had no effect on FRAP under unstimulated conditions but reduced the level of recovery following agonist stimulation. In functional studies both brefeldin A and dynasore increased the recovery time from desensitisation. Taken together these studies demonstrate for the first time an important role of receptor recycling on P2X1 receptor responsiveness.
Collapse
Affiliation(s)
- Ulyana Lalo
- Department of Cell Physiology & Pharmacology, Henry Wellcome Building, University of Leicester, Leicester, UK
| | | | | | | |
Collapse
|
26
|
Boal F, Stephens DJ. Specific functions of BIG1 and BIG2 in endomembrane organization. PLoS One 2010; 5:e9898. [PMID: 20360857 PMCID: PMC2845624 DOI: 10.1371/journal.pone.0009898] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2010] [Accepted: 03/04/2010] [Indexed: 11/29/2022] Open
Abstract
Background Transport of molecules from one subcellular compartment to another involves the recruitment of cytosolic coat protein complexes to a donor membrane to concentrate cargo, deform the membrane and ultimately to form an independent carrier. Small-GTP-binding proteins of the Arf family are central to many membrane trafficking events. Arfs are activated by guanine nucleotide exchange factors (GEFs) which results in their recruitment to membranes and subsequent engagement with Arf-effectors, many of which are coat proteins. Among the human BFA-sensitive large Arf-GEFs, the function of the two closely related BIG1 and BIG2 is still not clear, and recent studies have raised the question of functional redundancy between the two proteins. Methodology/Principal Findings Here we have used small-interfering RNA on human cells and a combination of fixed and live-cell imaging to investigate the differential functions of BIG1 and BIG2 in endomembrane organization and function. Importantly, in this direct comparative study, we show discrete functions for BIG1 and BIG2. Our results show that depletion of BIG2 but not of BIG1 induces a tubulation of the recycling endosomal compartment, consistent with a specific role for BIG2 here. In contrast, suppression of BIG1 induces the formation of Golgi mini-stacks still polarized and functional in terms of cargo export. Conclusions A key finding from our work is that suppression of BIG1 expression results in a fragmentation of the Golgi apparatus. Our data indicate that the human BFA-sensitive large Arf-GEFs have non-redundant functions in cell organization and membrane trafficking. BIG1 is required to maintain the normal morphology of the Golgi; BIG2 is important for endosomal compartment integrity and cannot replace the function of BIG1 in Golgi organization.
Collapse
Affiliation(s)
- Frédéric Boal
- Department of Biochemistry, Cell Biology Laboratories, University of Bristol School of Medical Sciences, Bristol, United Kingdom.
| | | |
Collapse
|
27
|
|
28
|
Luton F, Hexham MJ, Zhang M, Mostov KE. Identification of a cytoplasmic signal for apical transcytosis. Traffic 2009; 10:1128-42. [PMID: 19522755 DOI: 10.1111/j.1600-0854.2009.00941.x] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Polarized epithelial cells contain apical and basolateral surfaces with distinct protein compositions. To establish and maintain this asymmetry, newly made plasma membrane proteins are sorted in the trans Golgi network for delivery to apical or basolateral surfaces. Signals for basolateral sorting are generally located in the cytoplasmic domain of the protein, whereas signals for apical sorting can be in any part of the protein and can depend on N-linked glycosylation of the protein. Signals for constitutive transcytosis to the apical surface have not been reported. In this study, we used the polymeric immunoglobulin receptor (pIgR), which is biosynthetically delivered to the basolateral surface. There the pIgR can bind a ligand and, with or without bound ligand, the pIgR can then be transcytosed to the apical surface. We found that the glycosylation of the pIgR did not affect the biosynthetic transport of the pIgR. However, glycosylation had an effect on pIgR apical transcytosis. Importantly, analysis of the cytoplasmic tail of the pIgR suggested that a short peptide segment was sufficient to transcytose the pIgR or a neutral reporter from the basolateral to the apical surface. This apical transcytosis sorting signal was not involved in polarized biosynthetic traffic of the pIgR.
Collapse
Affiliation(s)
- Frédéric Luton
- Department of Anatomy, and Biochemistry and Biophysics, and Cardiovascular Research Institute, University of California, San Francisco, CA 94158-2140, USA
| | | | | | | |
Collapse
|
29
|
Abstract
Synaptic vesicles (SVs) are composed of approximately 10 types of transmembrane proteins that must be recycled after exocytosis of neurotransmitter. The mechanisms for resorting these proteins into synaptic vesicles once incorporated into the plasma membrane after exocytosis are poorly understood. The adaptor complex AP-2 is the major clathrin-associated adaptor for cargo recognition at the plasma membrane. Here, we have investigated its role in synaptic vesicle endocytosis. shRNA-mediated knockdown of the AP-2 complex results in an approximately 96% reduction of this protein complex in primary neurons. We used simultaneous expression of shRNA and pHluorin-tagged vesicle components to show that the absence of AP-2 significantly slows but does not prevent the endocytosis of four of the major synaptic vesicle transmembrane proteins. We show that in the absence of AP-2, the AP-1 adaptor complex appears to functionally substitute for AP-2 but results in complex internalization kinetics that are now sensitive to the guanine-nucleotide exchange factor for ADP-ribosylation factor GTPase (ARF-GEF) inhibitor brefeldin-A (BFA). Simultaneous removal of both AP-2 and AP-1 prevents this compensatory substitution and results in slowed but functional endocytosis. These results demonstrate that in the absence of AP-2, SV proteins still become endocytosed, and synaptic vesicle recycling remains operational.
Collapse
|
30
|
Ferrari A, Veligodskiy A, Berge U, Lucas MS, Kroschewski R. ROCK-mediated contractility, tight junctions and channels contribute to the conversion of a preapical patch into apical surface during isochoric lumen initiation. J Cell Sci 2009; 121:3649-63. [PMID: 18946028 DOI: 10.1242/jcs.018648] [Citation(s) in RCA: 91] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Epithelial cells assemble into three-dimensional aggregates to generate lumen-containing organ substructures. Cells therein contact the extracellular matrix with their basal surface, neighbouring cells with their contact surface and the lumen with their apical surface. We investigated the development of single MDCK cells into aggregates with lumen using quantitative live-cell imaging to identify morphogenetic rules for lumen formation. In two-cell aggregates, membrane insertion into the contact surface established a preapical patch (PAP) characterized by the presence of the apical marker gp135, microvilli and the absence of E-cadherin. This PAP originated from a compartment that had hallmarks of an apical recycling endosome, and matured through Brefeldin-A-sensitive membrane trafficking and the establishment of tight junctions around itself. As a result of the activity of water and ion channels, an optically resolvable lumen formed. Initially, this lumen enlarged without changes in aggregate volume or cell number but with decreasing cell volumes. Additionally, the ROCK1/2-myosin-II pathway counteracted PAP and lumen formation. Thus, lumen formation results from PAP establishment, PAP maturation, lumen initiation and lumen enlargement. These phases correlate with distinct cell surface and volume patterns, which suggests that such morphometric parameters are regulated by trafficking, ROCK-mediated contractility and hydrostatic pressure or vice versa.
Collapse
Affiliation(s)
- Aldo Ferrari
- Institute of Biochemistry, ETH Zurich, Schafmattstrasse 18, 8093 Zurich, Switzerland
| | | | | | | | | |
Collapse
|
31
|
Sáenz JB, Sun WJ, Chang JW, Li J, Bursulaya B, Gray NS, Haslam DB. Golgicide A reveals essential roles for GBF1 in Golgi assembly and function. Nat Chem Biol 2009; 5:157-65. [PMID: 19182783 PMCID: PMC3500152 DOI: 10.1038/nchembio.144] [Citation(s) in RCA: 188] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2008] [Accepted: 01/09/2009] [Indexed: 12/29/2022]
Abstract
ADP-ribosylation factor 1 (Arf1) plays a critical role in regulating secretory traffic and membrane transport within the Golgi of eukaryotic cells. Arf1 is activated by guanine nucleotide exchange factors (ArfGEFs) which confer spatial and temporal specificity to vesicular transport. We describe here the discovery and characterization of Golgicide A (GCA), a potent, highly specific, and reversible inhibitor of the cis-Golgi ArfGEF, GBF1. Inhibition of GBF1 function resulted in rapid dissociation of COPI vesicle coat from Golgi membranes and subsequent disassembly of the Golgi and trans-Golgi network (TGN). Secretion of soluble and membrane-associated proteins was arrested at the ER-Golgi intermediate compartment, whereas endocytosis and recycling of transferrin was unaffected by GBF1 inhibition. Internalized shiga toxin was arrested within the endocytic compartment and was unable to reach the dispersed TGN. Collectively, these results highlight the central role for GBF1 in coordinating bidirectional transport and maintaining structural integrity of the Golgi.
Collapse
Affiliation(s)
- José B Sáenz
- Department of Pediatrics, Washington University School of Medicine, 660 S. Euclid Ave., St. Louis, Missouri 63110, USA
| | | | | | | | | | | | | |
Collapse
|
32
|
Pan H, Yu J, Zhang L, Carpenter A, Zhu H, Li L, Ma D, Yuan J. A novel small molecule regulator of guanine nucleotide exchange activity of the ADP-ribosylation factor and golgi membrane trafficking. J Biol Chem 2008; 283:31087-96. [PMID: 18799457 PMCID: PMC2576541 DOI: 10.1074/jbc.m806592200] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2008] [Revised: 09/15/2008] [Indexed: 11/06/2022] Open
Abstract
An image-based phenotypic screen was developed to identify small molecule regulators of intracellular traffic. Using this screen we found that AG1478, a previously known inhibitor of epidermal growth factor receptor, had epidermal growth factor receptor-independent activity in inducing the disassembly of the Golgi in human cells. Similar to brefeldin A (BFA), a known disrupter of the Golgi, AG1478 inhibits the activity of small GTPase ADP-ribosylation factor. Unlike BFA, AG1478 exhibits low cytotoxicity and selectively targets the cis-Golgi without affecting endosomal compartment. We show that AG1478 inhibits GBF1, a large nucleotide exchange factor for the ADP-ribosylation factor, in a Sec7 domain-dependent manner and mimics the phenotype of a GBF1 mutant that has an inactive mutation. The treatment with AG1478 leads to the recruitment of GBF1 to the vesicular-tubular clusters adjacent to the endoplasmic reticulum exit sites, a step only transiently observed previously in the presence of BFA. We propose that the treatment with AG1478 delineates a membrane trafficking intermediate step that depends upon the Sec7 domain.
Collapse
Affiliation(s)
- Heling Pan
- State Key Laboratory of Bio-organic & Natural Products Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai 200032, China
| | | | | | | | | | | | | | | |
Collapse
|
33
|
Mouse hepatitis coronavirus RNA replication depends on GBF1-mediated ARF1 activation. PLoS Pathog 2008; 4:e1000088. [PMID: 18551169 PMCID: PMC2398782 DOI: 10.1371/journal.ppat.1000088] [Citation(s) in RCA: 122] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2007] [Accepted: 05/09/2008] [Indexed: 12/18/2022] Open
Abstract
Coronaviruses induce in infected cells the formation of double membrane vesicles, which are the sites of RNA replication. Not much is known about the formation of these vesicles, although recent observations indicate an important role for the endoplasmic reticulum in the formation of the mouse hepatitis coronavirus (MHV) replication complexes (RCs). We now show that MHV replication is sensitive to brefeldin A (BFA). Consistently, expression of a dominant-negative mutant of ARF1, known to mimic the action of the drug, inhibited MHV infection profoundly. Immunofluorescence analysis and quantitative electron microscopy demonstrated that BFA did not block the formation of RCs per se, but rather reduced their number. MHV RNA replication was not sensitive to BFA in MDCK cells, which are known to express the BFA-resistant guanine nucleotide exchange factor GBF1. Accordingly, individual knockdown of the Golgi-resident targets of BFA by transfection of small interfering RNAs (siRNAs) showed that GBF1, but not BIG1 or BIG2, was critically involved in MHV RNA replication. ARF1, the cellular effector of GBF1, also appeared to be involved in MHV replication, as siRNAs targeting this small GTPase inhibited MHV infection significantly. Collectively, our results demonstrate that GBF1-mediated ARF1 activation is required for efficient MHV RNA replication and reveal that the early secretory pathway and MHV replication complex formation are closely connected. Coronaviruses are the causative agents of many respiratory and enteric infections in humans and animals. As with all viruses, virtually all of the steps of their infection cycle depend on host cellular factors. As the first and most crucial step after their entry into cells, coronaviruses assemble their replication complexes (RCs) in association with characteristic, newly induced membranous structures. The cellular pathways hijacked by these plus-strand RNA viruses to create these “factories” have not been elucidated. Here, we study the involvement of the secretory pathway in mouse hepatitis coronavirus (MHV) replication by using the drug brefeldin A (BFA), which is known to interfere with ER–Golgi membrane traffic by inhibiting the activation of ADP-ribosylation factor (ARF) small GTPases. Our observations show that MHV RNA replication is sensitive to BFA. In agreement herewith we demonstrate, by using various techniques, that the BFA-sensitive guanidine nucleotide exchange factor GBF1 and its downstream effector ARF1 are of critical importance for coronavirus replication. From our results we conclude that MHV RNA replication depends on GBF1-mediated ARF1 activation. Our study provides new insights into the close connection between MHV replication and the early secretory pathway.
Collapse
|
34
|
Bhat P, Anderson DA. Hepatitis B virus translocates across a trophoblastic barrier. J Virol 2007; 81:7200-7. [PMID: 17442714 PMCID: PMC1933314 DOI: 10.1128/jvi.02371-06] [Citation(s) in RCA: 63] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2006] [Accepted: 04/08/2007] [Indexed: 12/20/2022] Open
Abstract
Mother-infant transmission of hepatitis B virus (HBV) accounts for up to 30% of worldwide chronic infections. The mechanism and high-risk period of HBV transmission from mother to infant are unknown. Although largely prevented by neonatal vaccination, significant transmission continues to occur in high-risk populations. It is unclear whether HBV can traverse an intact epithelial barrier to infect a new host. Transplacental transmission of a number of viruses relies on transcytotic pathways across placental cells. We wished to determine whether infectious HBV can traverse a polarized trophoblast monolayer. We used a human placenta-derived cell line, BeWo, cultured on membranes as polarized monolayers, to model the maternal-fetal barrier. We assessed the effects of placental maturity and maternal immunoglobulin on viral transport. Intracellular viral trafficking pathways were investigated by confocal microscopy. Free HBV (and infectious duck hepatitis B virus) transcytosed across trophoblastic cells at a rate of 5% in 30 min. Viral transport occurred in microtubule-dependent endosomal vesicles. Additionally, confocal microscopy showed that the internalized virus traverses a monensin-sensitive endosomal compartment. Differentiation of the cytotrophoblasts to syncytiotrophoblasts resulted in a 25% reduction in viral transcytosis, suggesting that placental maturity may protect the fetus. Virus translocation was also reduced in the presence of HBV immunoglobulin. We show for the first time that transcytosis of infectious hepadnavirus can occur across a trophoblastic barrier early in gestation, with the risk of transmission being reduced by placental maturity and specific maternal antibody. This study suggests a mechanism by which mother-infant transmission may occur.
Collapse
Affiliation(s)
- Purnima Bhat
- School of Biomedical Sciences, The University of Queensland, St. Lucia 4072, Australia.
| | | |
Collapse
|
35
|
Wallrabe H, Bonamy G, Periasamy A, Barroso M. Receptor complexes cotransported via polarized endocytic pathways form clusters with distinct organizations. Mol Biol Cell 2007; 18:2226-43. [PMID: 17409357 PMCID: PMC1877110 DOI: 10.1091/mbc.e06-08-0700] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
Previously, FRET confocal microscopy has shown that polymeric IgA-receptor (pIgA-R) is distributed in a clustered manner in apical endosomes. To test whether different membrane-bound components form clusters during membrane trafficking, live-cell quantitative FRET was used to characterize the organization of pIgA-R and transferrin receptor (TFR) in endocytic membranes of polarized MDCK cells upon internalization of donor- and acceptor-labeled ligands. We show that pIgA-R and TFR complexes form increasingly organized clusters during cotransport from basolateral to perinuclear endosomes. The organization of these receptor clusters in basolateral versus perinuclear/apical endosomes is significantly different; the former showing a mixed random/clustered distribution while the latter highly organized clusters. Our results indicate that although both perinuclear and apical endosomes comprise pIgA-R and TFR clusters, their E% levels are significantly different suggesting that these receptors are packed into clusters in a distinct manner. The quantitative FRET-based assay presented here suggests that different receptor complexes form clusters, with diverse levels of organization, while being cotransported via the polarized endocytic pathways.
Collapse
Affiliation(s)
- H Wallrabe
- Department of Biology, W. M. Keck Center for Cellular Imaging, University of Virginia, Charlottesville, VA 22904, USA
| | | | | | | |
Collapse
|
36
|
Tse YC, Lo SW, Hillmer S, Dupree P, Jiang L. Dynamic response of prevacuolar compartments to brefeldin a in plant cells. PLANT PHYSIOLOGY 2006; 142:1442-59. [PMID: 17041023 PMCID: PMC1676059 DOI: 10.1104/pp.106.090423] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2006] [Accepted: 10/09/2006] [Indexed: 05/12/2023]
Abstract
Little is known about the dynamics and molecular components of plant prevacuolar compartments (PVCs) in the secretory pathway. Using transgenic tobacco (Nicotiana tabacum) Bright-Yellow-2 (BY-2) cells expressing membrane-anchored yellow fluorescent protein (YFP) reporters marking Golgi or PVCs, we have recently demonstrated that PVCs are mobile multivesicular bodies defined by vacuolar sorting receptor proteins. Here, we demonstrate that Golgi and PVCs have different sensitivity in response to brefeldin A (BFA) treatment in living tobacco BY-2 cells. BFA at low concentrations (5-10 microg mL(-1)) induced YFP-marked Golgi stacks to form both endoplasmic reticulum-Golgi hybrid structures and BFA-induced aggregates, but had little effect on YFP-marked PVCs in transgenic BY-2 cells at both confocal and immunogold electron microscopy levels. However, BFA at high concentrations (50-100 microg mL(-1)) caused both YFP-marked Golgi stacks and PVCs to form aggregates in a dose- and time-dependent manner. Normal Golgi or PVC signals can be recovered upon removal of BFA from the culture media. Confocal immunofluorescence and immunogold electron microscopy studies with specific organelle markers further demonstrate that the PVC aggregates are distinct, but physically associated, with Golgi aggregates in BFA-treated cells and that PVCs might lose their internal vesicle structures at high BFA concentration. In addition, vacuolar sorting receptor-marked PVCs in root-tip cells of tobacco, pea (Pisum sativum), mung bean (Vigna radiata), and Arabidopsis (Arabidopsis thaliana) upon BFA treatment are also induced to form similar aggregates. Thus, we have demonstrated that the effects of BFA are not limited to endoplasmic reticulum and Golgi, but extend to PVC in the endomembrane system, which might provide a quick tool for distinguishing Golgi from PVC for its identification and characterization, as well as a possible new tool in studying PVC-mediated protein traffic in plant cells.
Collapse
Affiliation(s)
- Yu Chung Tse
- Department of Biology, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, China
| | | | | | | | | |
Collapse
|
37
|
Abstract
A number of protein toxins of bacterial and plant origin have cytosolic targets, and knowledge about these toxins have provided us with essential information about mechanisms that can be used to gain access to the cytosol as well as detailed knowledge about endocytosis and intracellular sorting. Such toxins include those that have two moieties, one (the B-moiety) that binds to cell surface receptors and another (the A-moiety) with enzymatic activity that enters the cytosol, as well as molecules that only have the enzymatically active moiety and therefore are inefficient in cell entry. The toxins discussed in the present article include bacterial toxins such as Shiga toxin and diphtheria toxin, as well as plant toxins such as ricin and ribosome-inactivating proteins without a binding moiety, such as gelonin. Toxins with a binding moiety can be used as vectors to translocate epitopes, intact proteins, and even nucleotides into the cytosol. The toxins fall into two main groups when it comes to cytosolic entry. Some toxins enter from endosomes in response to low endosomal pH, whereas others, including Shiga toxin and ricin, are transported all the way to the Golgi apparatus and the ER before they are translocated to the cytosol. Plant proteins such as gelonin that are without a binding moiety are taken up only by fluid-phase endocytosis, and normally they have a low toxicity. However, they can be used to test for disruption of endosomal membranes leading to cytosolic access of internalized molecules. Similarly to toxins with a binding moiety they are highly toxic when reaching the cytosol, thereby providing the investigator with an efficient tool to study endosomal disruption and induced transport to the cytosol. In conclusion, the protein toxins are useful tools to study transport and cytosolic translocation, and they can be used as vectors for transport to the interior of the cell.
Collapse
Affiliation(s)
- K Sandvig
- Institute for Cancer Research, The Norwegian Radium Hospital, University of Oslo, Montebello
| | | |
Collapse
|
38
|
Guerra L, Teter K, Lilley BN, Stenerlöw B, Holmes RK, Ploegh HL, Sandvig K, Thelestam M, Frisan T. Cellular internalization of cytolethal distending toxin: a new end to a known pathway. Cell Microbiol 2005; 7:921-34. [PMID: 15953025 DOI: 10.1111/j.1462-5822.2005.00520.x] [Citation(s) in RCA: 93] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
The cytolethal distending toxins (CDTs) are unique in their ability to induce DNA damage, activate checkpoint responses and cause cell cycle arrest or apoptosis in intoxicated cells. However, little is known about their cellular internalization pathway. We demonstrate that binding of the Haemophilus ducreyi CDT (HdCDT) on the plasma membrane of sensitive cells was abolished by cholesterol extraction with methyl-beta-cyclodextrin. The toxin was internalized via the Golgi complex, and retrogradely transported to the endoplasmic reticulum (ER), as assessed by N-linked glycosylation. Further translocation from the ER did not require the ER-associated degradation (ERAD) pathway, and was Derlin-1 independent. The genotoxic activity of HdCDT was dependent on its internalization and its DNase activity, as induction of DNA double-stranded breaks was prevented in Brefeldin A-treated cells and in cells exposed to a catalytically inactive toxin. Our data contribute to a better understanding of the CDT mode of action and highlight two important aspects of the biology of this bacterial toxin family: (i) HdCDT translocation from the ER to the nucleus does not involve the classical pathways followed by other retrogradely transported toxins and (ii) toxin internalization is crucial for execution of its genotoxic activity.
Collapse
Affiliation(s)
- Lina Guerra
- Microbiology and Tumorbiology Center, Karolinska Institutet, Stockholm, Sweden
| | | | | | | | | | | | | | | | | |
Collapse
|
39
|
Weixel KM, Blumental-Perry A, Watkins SC, Aridor M, Weisz OA. Distinct Golgi Populations of Phosphatidylinositol 4-Phosphate Regulated by Phosphatidylinositol 4-Kinases. J Biol Chem 2005; 280:10501-8. [PMID: 15634669 DOI: 10.1074/jbc.m414304200] [Citation(s) in RCA: 108] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Phosphatidylinositol 4-phosphate (PI4P) regulates biosynthetic membrane traffic at multiple steps and differentially affects the surface delivery of apically and basolaterally destined proteins in polarized cells. Two phosphatidylinositol 4-kinases (PI4Ks) have been localized to the Golgi complex in mammalian cells, type III PI4Kbeta (PI4KIIIbeta) and type II PI4Kalpha (PI4KIIalpha). Here we report that PI4KIIIbeta and PI4KIIalpha localize to discrete subcompartments of the Golgi complex in Madin-Darby canine kidney (MDCK) cells. PI4KIIIbeta was enriched in early Golgi compartments, whereas PI4KIIalpha colocalized with markers of the trans-Golgi network (TGN). To understand the temporal and spatial control of PI4P generation across the Golgi complex, we quantitated the steady state distribution of a fluorescent PI4P-binding domain relative to cis/medial Golgi and TGN markers in transiently transfected MDCK cells. The density of the signal from this PI4P reporter was roughly 2-fold greater in the early Golgi compartments compared with that of the TGN. Furthermore, this ratio could be modulated in vivo by overexpression of catalytically inactive PI4KIIIbeta and PI4KIIalpha or in vitro by the PI4KIIIbeta inhibitor wortmannin. Our data suggest that both PI4KIIIbeta and PI4KIIalpha contribute to the compartmental regulation of PI4P synthesis within the Golgi complex. We discuss our results with respect to the kinetic effects of modulating PI4K activity on polarized biosynthetic traffic in MDCK cells.
Collapse
Affiliation(s)
- Kelly M Weixel
- Renal-Electrolyte Division, Department of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania 15261, USA
| | | | | | | | | |
Collapse
|
40
|
Shin HW, Morinaga N, Noda M, Nakayama K. BIG2, a guanine nucleotide exchange factor for ADP-ribosylation factors: its localization to recycling endosomes and implication in the endosome integrity. Mol Biol Cell 2004; 15:5283-94. [PMID: 15385626 PMCID: PMC532010 DOI: 10.1091/mbc.e04-05-0388] [Citation(s) in RCA: 108] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Small GTPases of the ADP-ribosylation factor (ARF) family play a key role in membrane trafficking by regulating coated vesicle formation, and guanine nucleotide exchange is essential for the ARF function. Brefeldin A blocks the ARF-triggered coat assembly by inhibiting the guanine nucleotide exchange on ARFs and causes disintegration of the Golgi complex and tubulation of endosomal membranes. BIG2 is one of brefeldin A-inhibited guanine nucleotide exchange factors for the ARF GTPases and is associated mainly with the trans-Golgi network. In the present study, we have revealed that another population of BIG2 is associated with the recycling endosome and found that expression of a catalytically inactive BIG2 mutant, E738K, selectively induces membrane tubules from this compartment. We also have shown that BIG2 has an exchange activity toward class I ARFs (ARF1 and ARF3) in vivo and inactivation of either ARF exaggerates the BIG2(E738K)-induced tubulation of endosomal membranes. These observations together indicate that BIG2 is implicated in the structural integrity of the recycling endosome through activating class I ARFs.
Collapse
Affiliation(s)
- Hye-Won Shin
- Faculty of Pharmaceutical Sciences, Kanazawa University, Ishikawa 920-0934, Japan
| | | | | | | |
Collapse
|
41
|
Wakabayashi Y, Lippincott-Schwartz J, Arias IM. Intracellular trafficking of bile salt export pump (ABCB11) in polarized hepatic cells: constitutive cycling between the canalicular membrane and rab11-positive endosomes. Mol Biol Cell 2004; 15:3485-96. [PMID: 15121884 PMCID: PMC452599 DOI: 10.1091/mbc.e03-10-0737] [Citation(s) in RCA: 94] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
The bile salt export pump (BSEP, ABCB11) couples ATP hydrolysis with transport of bile acids into the bile canaliculus of hepatocytes. Its localization in the apical canalicular membrane is physiologically regulated by the demand to secrete biliary components. To gain insight into how such localization is regulated, we studied the intracellular trafficking of BSEP tagged with yellow fluorescent protein (YFP) in polarized WIF-B9 cells. Confocal imaging revealed that BSEP-YFP was localized at the canalicular membrane and in tubulo-vesicular structures either adjacent to the microtubule-organizing center or widely distributed in the cytoplasm. In the latter two locations, BSEP-YFP colocalized with rab11, an endosomal marker. Selective photobleaching experiments revealed that single BSEP-YFP molecules resided in canalicular membranes only transiently before exchanging with intracellular BSEP-YFP pools. Such exchange was inhibited by microtubule and actin inhibitors and was unaffected by brefeldin A, dibutyryl cyclic AMP, taurocholate, or PI 3-kinase inhibitors. Intracellular carriers enriched in BSEP-YFP elongated and dissociated as tubular elements from a globular structure adjacent to the microtubule-organizing center. They displayed oscillatory movement toward either canalicular or basolateral membranes, but only fused with the canalicular membrane. The pathway between canalicular and intracellular membranes that BSEP constitutively cycles within could serve to regulate apical pools of BSEP as well as other apical membrane transporters.
Collapse
Affiliation(s)
- Yoshiyuki Wakabayashi
- Department of Physiology, Tufts University School of Medicine, Boston, Massachusetts 02111, USA
| | | | | |
Collapse
|
42
|
Larocca MC, Shanks RA, Tian L, Nelson DL, Stewart DM, Goldenring JR. AKAP350 interaction with cdc42 interacting protein 4 at the Golgi apparatus. Mol Biol Cell 2004; 15:2771-81. [PMID: 15047863 PMCID: PMC420101 DOI: 10.1091/mbc.e03-10-0757] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
The A kinase anchoring protein 350 (AKAP350) is a multiply spliced type II protein kinase A anchoring protein that localizes to the centrosomes in most cells and to the Golgi apparatus in epithelial cells. In the present study, we sought to identify AKAP350 interacting proteins that could yield insights into AKAP350 function at the Golgi apparatus. Using yeast two-hybrid and pull-down assays, we found that AKAP350 interacts with a family of structurally related proteins, including FBP17, FBP17b, and cdc42 interacting protein 4 (CIP4). CIP4 interacts with the GTP-bound form of cdc42, with the Wiscott Aldrich Syndrome group of proteins, and with microtubules, and exerts regulatory effects on cytoskeleton and membrane trafficking. CIP4 is phosphorylated by protein kinase A in vitro, and elevation of intracellular cyclic AMP with forskolin stimulates in situ phosphorylation of CIP4. Our results indicate that CIP4 interacts with AKAP350 at the Golgi apparatus and that either disruption of this interaction by expressing the CIP4 binding domain in AKAP350, or reduction of AKAP350 expression by RNA interference leads to changes in Golgi structure. The results suggest that AKAP350 and CIP4 influence the maintenance of normal Golgi apparatus structure.
Collapse
Affiliation(s)
- M Cecilia Larocca
- Department of Surgery, Vanderbilt University School of Medicine, Vanderbilt-Ingram Cancer Center, and the Nashville VA Medical Center, Nashville, Tennessee 37232, USA
| | | | | | | | | | | |
Collapse
|
43
|
Widera A, Norouziyan F, Shen WC. Mechanisms of TfR-mediated transcytosis and sorting in epithelial cells and applications toward drug delivery. Adv Drug Deliv Rev 2003; 55:1439-66. [PMID: 14597140 DOI: 10.1016/j.addr.2003.07.004] [Citation(s) in RCA: 120] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Transferrin receptor has been an important protein for many of the advances made in understanding the intricacies of the intramolecular sorting pathways of endocytosed molecules. The unique internalization and recycling functions of transferrin receptor have also made it an attractive choice for drug targeting and delivery of large protein-based therapeutics and toxins. Recent advances in elucidating the role of the intracellular controllers of transferrin recycling and sorting, such as Rab proteins and their effectors, have led to enhancement of transferrin receptor as a drug delivery vehicle. This review focuses on the use of transferrin receptor as an agent for facilitating drug delivery and targeting, and the role that mechanisms of transferrin receptor sorting and transcytosis play in these events.
Collapse
Affiliation(s)
- A Widera
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Southern California, PSC 404B, 1985 Zonal Avenue, Los Angeles, CA 90033, USA
| | | | | |
Collapse
|
44
|
Hendriks G, Koudijs M, van Balkom BWM, Oorschot V, Klumperman J, Deen PMT, van der Sluijs P. Glycosylation is important for cell surface expression of the water channel aquaporin-2 but is not essential for tetramerization in the endoplasmic reticulum. J Biol Chem 2003; 279:2975-83. [PMID: 14593099 DOI: 10.1074/jbc.m310767200] [Citation(s) in RCA: 124] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Aquaporin-2 (AQP2) is a pore-forming protein that is required for regulated reabsorption of water from urine. Mutations in AQP2 lead to nephrogenic diabetes insipidus, a disorder in which functional AQP2 is not expressed on the apical cell surface of kidney collecting duct principal cells. The mechanisms and pathways directing AQP2 from the endoplasmic reticulum to the Golgi complex and beyond have not been defined. We found that approximately 25% of newly synthesized AQP2 is glycosylated. Nonglycosylated and complex-glycosylated wild-type AQP2 are stable proteins with a half-life of 6-12 h and are both detectable on the cell surface. We show that AQP2 forms tetramers in the endoplasmic reticulum during or very early after synthesis and reaches the Golgi complex in 1-1.5 h. We also report that glycosylation is neither essential for tetramerization nor for transport from the endoplasmic reticulum to the Golgi complex. Instead, the N-linked glycan is important for exit from the Golgi complex and sorting of AQP2 to the plasma membrane. These results are important for understanding the molecular mechanisms responsible for the intracellular retention of AQP2 in nephrogenic diabetes insipidus.
Collapse
Affiliation(s)
- Giel Hendriks
- Department of Cell Biology, University Medical Center Utrecht, Utrecht 3584 CX, The Netherlands
| | | | | | | | | | | | | |
Collapse
|
45
|
Geldner N, Anders N, Wolters H, Keicher J, Kornberger W, Muller P, Delbarre A, Ueda T, Nakano A, Jürgens G. The Arabidopsis GNOM ARF-GEF mediates endosomal recycling, auxin transport, and auxin-dependent plant growth. Cell 2003; 112:219-30. [PMID: 12553910 DOI: 10.1016/s0092-8674(03)00003-5] [Citation(s) in RCA: 773] [Impact Index Per Article: 35.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Exchange factors for ARF GTPases (ARF-GEFs) regulate vesicle trafficking in a variety of organisms. The Arabidopsis protein GNOM is a brefeldin A (BFA) sensitive ARF-GEF that is required for the proper polar localization of PIN1, a candidate transporter of the plant hormone auxin. Mutations in GNOM lead to developmental defects that resemble those caused by interfering with auxin transport. Both PIN1 localization and auxin transport are also sensitive to BFA. In this paper, we show that GNOM localizes to endosomes and is required for their structural integrity. We engineered a BFA-resistant version of GNOM. In plants harboring this fully functional GNOM variant, PIN1 localization and auxin transport are no longer sensitive to BFA, while trafficking of other proteins is still affected by the drug. Our results demonstrate that GNOM is required for the recycling of auxin transport components and suggest that ARF-GEFs regulate specific endosomal trafficking pathways.
Collapse
Affiliation(s)
- Niko Geldner
- ZMBP, Entwicklungsgenetik, Universität Tübingen, Auf der Morgenstelle 3, D-72076, Tübingen, Germany
| | | | | | | | | | | | | | | | | | | |
Collapse
|
46
|
Cheng F, Mani K, van den Born J, Ding K, Belting M, Fransson LA. Nitric oxide-dependent processing of heparan sulfate in recycling S-nitrosylated glypican-1 takes place in caveolin-1-containing endosomes. J Biol Chem 2002; 277:44431-9. [PMID: 12226079 DOI: 10.1074/jbc.m205241200] [Citation(s) in RCA: 62] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
We have previously demonstrated intracellular degradation of the heparan sulfate side chains in recycling glypican-1 by heparanase and by deaminative cleavage at N-unsubstituted glucosamine with nitric oxide derived from intrinsic nitrosothiols (see Ding, K., Mani, K., Cheng, F., Belting, M. and Fransson, L.-A. (2002) J. Biol. Chem. 277, 33353-33360). To determine where and in what order events take place, we have visualized, by using confocal laser-scanning immunofluorescence microscopy, glypican-1 variants in unperturbed cells or arrested at various stages of processing. In unperturbed proliferating cells, glypican-1 was partly S-nitrosylated. Intracellular glypican-1 was enriched in endosomes, colocalized significantly with GM-1 ganglioside, caveolin-1, and Rab9-positive endosomes, and carried side chains rich in N-unsubstituted glucosamine residues. However, such residues were scarce in cell surface glypican-1. Brefeldin A-arrested glypican-1, which was non-S-nitrosylated and carried side chains rich in N-unsubstituted glucosamines, colocalized extensively with caveolin-1 but not with Rab9. Suramin, which inhibits heparanase, induced the appearance of S-nitrosylated glypican-1 in caveolin-1-rich compartments. Inhibition of deaminative cleavage did not prevent heparanase from generating heparan sulfate oligosaccharides that colocalized strongly with caveolin-1. Growth-quiescent cells displayed extensive NO-dependent deaminative cleavage of heparan sulfate-generating anhydromannose-terminating fragments that were partly associated with acidic vesicles. Proliferating cells generated such fragments during polyamine uptake. We conclude that recycling glypican-1 that is associated with caveolin-1-containing endosomes undergoes sequential N-desulfation/N-deacetylation, heparanase cleavage, S-nitrosylation, NO release, and deaminative cleavage of its side chains in conjunction with polyamine uptake.
Collapse
Affiliation(s)
- Fang Cheng
- Department of Cell and Molecular Biology, Lund University, BMC C13, SE-221 84, Lund, Sweden and the Department of Cell Biology, Free University of Amsterdam, Van der Boechorststraat 7, 1081 BT, Amsterdam, The Netherlands
| | | | | | | | | | | |
Collapse
|
47
|
Burdett IDJ. Effects of Brefeldin A on disassembly of the Golgi body in MDCK cells subjected to a Ca2+ shift at low temperature. Eur J Cell Biol 2002; 81:525-8. [PMID: 12437186 DOI: 10.1078/0171-9335-00274] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
When Madin-Darby canine kidney (MDCK) cells were grown in low-Ca2+ medium (LCM) the trans-Golgi cisternae, like those of cells maintained in high-Ca2+ medium (HCM), showed discrete localization of reaction product after thiamine pyrophosphatase (TPPase) staining. After exposure to Brefeldin A (BFA, 5 microg/ml) in LCM at 19 degrees C, the Golgi body dispersed and reaction product was distributed to the nuclear envelope and endoplasmic reticulum. The Golgi body reassembled in cells shifted back to HCM at 37 degrees C, with or without BFA, suggesting that low temperature and LCM exert synergistic effects in aiding dispersal of the Golgi apparatus in the presence of BFA. However, these results appear to be more directly correlated with the lack of defined cell polarity. Cells in LCM are unpolarized and both the centrosomes and the Golgi body are sub-nuclear in position, in contrast to their location in HCM where both organelles lie above the nucleus. The effects of BFA on the disassembly of the Golgi body therefore suggest that MDCK cells grown in LCM at low temperature cells are comparable to those non-polarized cell lines that are sensitive to BFA.
Collapse
|
48
|
Fjeldstad K, Pedersen ME, Vuong TT, Kolset SO, Nordstrand LM, Prydz K. Sulfation in the Golgi lumen of Madin-Darby canine kidney cells is inhibited by brefeldin A and depends on a factor present in the cytoplasm and on Golgi membranes. J Biol Chem 2002; 277:36272-9. [PMID: 12138122 DOI: 10.1074/jbc.m206365200] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Madin-Darby canine kidney cells are more resistant than most other cell types to the classical effects of brefeldin A (BFA) treatment, the induction of retrograde transport of Golgi cisternae components to the endoplasmic reticulum. Here we show that sulfation of heparan sulfate proteoglycans (HSPGs), chondroitin sulfate proteoglycans (CSPGs), and proteins in the Golgi apparatus is dramatically reduced by low concentrations of BFA in which Golgi morphology is unaffected and secretion still takes place. BFA treatment seems to reduce sulfation by inhibition of the uptake of adenosine 3'-phosphate 5'-phosphosulfate (PAPS) into the Golgi lumen, and the inhibitory effect of BFA was similar for HSPGs, CSPGs, and proteins. This was different from the effect of chlorate, a well known inhibitor of PAPS synthesis in the cytoplasm. Low concentrations of chlorate (2-5 mm) inhibited sulfation of CSPGs and proteins only, whereas higher concentrations (15-30 mm) were required to inhibit sulfation of HSPGs. Golgi fractions pretreated with BFA had a reduced capacity for the synthesis of glycosaminoglycans (GAGs), but control level capacity could be restored by the addition of cytosol from various sources. This indicates that the PAPS pathway to the Golgi lumen depends on a BFA-sensitive factor that is present both on Golgi membranes and in the cytoplasm.
Collapse
Affiliation(s)
- Katja Fjeldstad
- Department of Biochemistry and Institute for Nutrition Research, University of Oslo, Oslo 0316, Norway
| | | | | | | | | | | |
Collapse
|
49
|
Abstract
Functional analysis of exocytosis in yeast and animal cells has led to the identification of conserved elements and mechanisms of the trafficking machinery over the last decade. Although functional studies of protein secretion in plants are still fairly limited, the Arabidopsis genome sequence provides an opportunity to identify key players of vesicle trafficking that are conserved across the eukaryotic kingdoms. Here, we review and add to recent genome analyses of trafficking components and highlight some plant-specific modifications of the common eukaryotic machinery. Furthermore, we discuss the evidence for targeted, polarised secretion in plant cells, and speculate about possible underlying cargo sorting processes at the trans-Golgi network and endosomes, based on what is known in animals and yeast.
Collapse
Affiliation(s)
- Gerd Jürgens
- ZMBP, Entwicklungsgenetik, Universität Tübingen, Auf der Morgenstelle 3, D-72076 Tübingen, Federal Republic of Germany.
| | | |
Collapse
|
50
|
Mohrmann K, Leijendekker R, Gerez L, van Der Sluijs P. rab4 regulates transport to the apical plasma membrane in Madin-Darby canine kidney cells. J Biol Chem 2002; 277:10474-81. [PMID: 11790789 DOI: 10.1074/jbc.m111237200] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
The small GTPase rab4 is associated with early endosomes and regulates membrane recycling in fibroblasts. rab4 is present in epithelial cells; however, neither its localization nor function has been established in this cell type. We transfected Madin-Darby canine kidney cells with rab4, the GTPase-deficient mutant rab4Q67L, and the dominant negative mutant rab4S22N that poorly binds guanine nucleotides. Confocal immunofluorescence microscopy showed that rab4 was concentrated on internal structures at the lateral side of the cell around the nucleus. Quantitative immunoelectron microscopy revealed that the majority of rab4 was localized in the upper third of the cytoplasm. In cell surface binding experiments with (125)I-transferrin, we found a redistribution of transferrin receptor from the basolateral to the apical plasma membrane in cells expressing rab4 and rab4Q67L. After accumulation of transferrin at 16 degrees C in basolateral early endosomes, rab4 and rab4Q67L increased the amount of apically targeted transferrin receptor. A qualitatively similar effect was obtained in control cells treated with brefeldin A. The effects of brefeldin A and rab4 on apical targeting of transferrin receptor were not additive, suggesting that brefeldin A and rab4 may act in the same transport pathway from common endosomes.
Collapse
Affiliation(s)
- Karin Mohrmann
- Department of Cell Biology, University Medical Center Utrecht and Institute of Biomembranes, 3584 CX Utrecht, The Netherlands
| | | | | | | |
Collapse
|