1
|
Myasnikova E, Spirov A. Robustness of expression pattern formation due to dynamic equilibrium in gap gene system of an early Drosophila embryo. Biosystems 2018; 166:50-60. [DOI: 10.1016/j.biosystems.2018.02.001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2017] [Revised: 01/08/2018] [Accepted: 02/01/2018] [Indexed: 11/24/2022]
|
2
|
Abstract
The distinction between long-germ and short-germ insects is a classic one in evo-devo, yet a common genetic mechanism may underlie germband extension in all insects, even all arthropods.
Collapse
Affiliation(s)
- Qiyan Mao
- Aix-Marseille Université, CNRS, IBDM UMR7288, Campus de Luminy, case 907. 13009, Marseille, France
| | - Thomas Lecuit
- Aix-Marseille Université, CNRS, IBDM UMR7288, Campus de Luminy, case 907. 13009, Marseille, France.
| |
Collapse
|
3
|
Shin H, Haupt KA, Kershner AM, Kroll-Conner P, Wickens M, Kimble J. SYGL-1 and LST-1 link niche signaling to PUF RNA repression for stem cell maintenance in Caenorhabditis elegans. PLoS Genet 2017; 13:e1007121. [PMID: 29232700 PMCID: PMC5741267 DOI: 10.1371/journal.pgen.1007121] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2017] [Revised: 12/22/2017] [Accepted: 11/20/2017] [Indexed: 01/14/2023] Open
Abstract
Central questions in regenerative biology include how stem cells are maintained and how they transition from self-renewal to differentiation. Germline stem cells (GSCs) in Caeno-rhabditis elegans provide a tractable in vivo model to address these questions. In this system, Notch signaling and PUF RNA binding proteins, FBF-1 and FBF-2 (collectively FBF), maintain a pool of GSCs in a naïve state. An open question has been how Notch signaling modulates FBF activity to promote stem cell self-renewal. Here we report that two Notch targets, SYGL-1 and LST-1, link niche signaling to FBF. We find that SYGL-1 and LST-1 proteins are cytoplasmic and normally restricted to the GSC pool region. Increasing the distribution of SYGL-1 expands the pool correspondingly, and vast overexpression of either SYGL-1 or LST-1 generates a germline tumor. Thus, SYGL-1 and LST-1 are each sufficient to drive "stemness" and their spatial restriction prevents tumor formation. Importantly, SYGL-1 and LST-1 can only drive tumor formation when FBF is present. Moreover, both proteins interact physically with FBF, and both are required to repress a signature FBF mRNA target. Together, our results support a model in which SYGL-1 and LST-1 form a repressive complex with FBF that is crucial for stem cell maintenance. We further propose that progression from a naïve stem cell state to a state primed for differentiation relies on loss of SYGL-1 and LST-1, which in turn relieves FBF target RNAs from repression. Broadly, our results provide new insights into the link between niche signaling and a downstream RNA regulatory network and how this circuitry governs the balance between self-renewal and differentiation.
Collapse
Affiliation(s)
- Heaji Shin
- Department of Biochemistry, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - Kimberly A. Haupt
- Department of Biochemistry, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - Aaron M. Kershner
- Howard Hughes Medical Institute, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - Peggy Kroll-Conner
- Howard Hughes Medical Institute, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - Marvin Wickens
- Department of Biochemistry, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - Judith Kimble
- Department of Biochemistry, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
- Howard Hughes Medical Institute, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| |
Collapse
|
4
|
Martin C, Gross V, Hering L, Tepper B, Jahn H, de Sena Oliveira I, Stevenson PA, Mayer G. The nervous and visual systems of onychophorans and tardigrades: learning about arthropod evolution from their closest relatives. J Comp Physiol A Neuroethol Sens Neural Behav Physiol 2017; 203:565-590. [DOI: 10.1007/s00359-017-1186-4] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2017] [Revised: 05/02/2017] [Accepted: 05/29/2017] [Indexed: 12/19/2022]
|
5
|
Williams TA, Nagy LM. Linking gene regulation to cell behaviors in the posterior growth zone of sequentially segmenting arthropods. ARTHROPOD STRUCTURE & DEVELOPMENT 2017; 46:380-394. [PMID: 27720841 DOI: 10.1016/j.asd.2016.10.003] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2016] [Accepted: 10/03/2016] [Indexed: 06/06/2023]
Abstract
Virtually all arthropods all arthropods add their body segments sequentially, one by one in an anterior to posterior progression. That process requires not only segment specification but typically growth and elongation. Here we review the functions of some of the key genes that regulate segmentation: Wnt, caudal, Notch pathway, and pair-rule genes, and discuss what can be inferred about their evolution. We focus on how these regulatory factors are integrated with growth and elongation and discuss the importance and challenges of baseline measures of growth and elongation. We emphasize a perspective that integrates the genetic regulation of segment patterning with the cellular mechanisms of growth and elongation.
Collapse
Affiliation(s)
| | - Lisa M Nagy
- Department of Molecular and Cellular Biology, The University of Arizona, Tucson, AZ 85721, USA.
| |
Collapse
|
6
|
Nunes-da-Fonseca R, Berni M, Tobias-Santos V, Pane A, Araujo HM. Rhodnius prolixus: From classical physiology to modern developmental biology. Genesis 2017; 55. [DOI: 10.1002/dvg.22995] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2016] [Revised: 11/10/2016] [Accepted: 11/10/2016] [Indexed: 12/20/2022]
Affiliation(s)
- Rodrigo Nunes-da-Fonseca
- Laboratório Integrado de Ciências Morfofuncionais; Núcleo em Ecologia e Desenvolvimento Socio-Ambiental de Macaé, Campus Macaé, Federal University of Rio de Janeiro; Rio de Janeiro Brazil
- Laboratório de Biologia Molecular do Desenvolvimento Instituto de Ciências Biomédicas, Federal University of Rio de Janeiro; Rio de Janeiro Brazil
| | - Mateus Berni
- Institute of Molecular Entomology; INCT-EM
- Laboratório de Biologia Molecular do Desenvolvimento Instituto de Ciências Biomédicas, Federal University of Rio de Janeiro; Rio de Janeiro Brazil
| | - Vitória Tobias-Santos
- Laboratório Integrado de Ciências Morfofuncionais; Núcleo em Ecologia e Desenvolvimento Socio-Ambiental de Macaé, Campus Macaé, Federal University of Rio de Janeiro; Rio de Janeiro Brazil
- Institute of Molecular Entomology; INCT-EM
| | - Attilio Pane
- Institute of Molecular Entomology; INCT-EM
- Laboratório de Biologia Molecular do Desenvolvimento Instituto de Ciências Biomédicas, Federal University of Rio de Janeiro; Rio de Janeiro Brazil
| | - Helena Marcolla Araujo
- Institute of Molecular Entomology; INCT-EM
- Laboratório de Biologia Molecular do Desenvolvimento Instituto de Ciências Biomédicas, Federal University of Rio de Janeiro; Rio de Janeiro Brazil
| |
Collapse
|
7
|
Kiecker C, Graham A, Logan M. Differential Cellular Responses to Hedgehog Signalling in Vertebrates-What is the Role of Competence? J Dev Biol 2016; 4:E36. [PMID: 29615599 PMCID: PMC5831800 DOI: 10.3390/jdb4040036] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2016] [Revised: 11/24/2016] [Accepted: 12/01/2016] [Indexed: 12/21/2022] Open
Abstract
A surprisingly small number of signalling pathways generate a plethora of cellular responses ranging from the acquisition of multiple cell fates to proliferation, differentiation, morphogenesis and cell death. These diverse responses may be due to the dose-dependent activities of signalling factors, or to intrinsic differences in the response of cells to a given signal-a phenomenon called differential cellular competence. In this review, we focus on temporal and spatial differences in competence for Hedgehog (HH) signalling, a signalling pathway that is reiteratively employed in embryos and adult organisms. We discuss the upstream signals and mechanisms that may establish differential competence for HHs in a range of different tissues. We argue that the changing competence for HH signalling provides a four-dimensional framework for the interpretation of the signal that is essential for the emergence of functional anatomy. A number of diseases-including several types of cancer-are caused by malfunctions of the HH pathway. A better understanding of what provides differential competence for this signal may reveal HH-related disease mechanisms and equip us with more specific tools to manipulate HH signalling in the clinic.
Collapse
Affiliation(s)
- Clemens Kiecker
- Department of Developmental Neurobiology, King's College London, Hodgkin Building, Guy's Hospital Campus, London SE1 1UL, UK.
| | - Anthony Graham
- Department of Developmental Neurobiology, King's College London, Hodgkin Building, Guy's Hospital Campus, London SE1 1UL, UK.
| | - Malcolm Logan
- Randall Division of Cell & Molecular Biophysics, King's College London, Hodgkin Building, Guy's Hospital Campus, London SE1 1UL, UK.
| |
Collapse
|
8
|
Expression of segment polarity genes in brachiopods supports a non-segmental ancestral role of engrailed for bilaterians. Sci Rep 2016; 6:32387. [PMID: 27561213 PMCID: PMC4999882 DOI: 10.1038/srep32387] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2016] [Accepted: 08/09/2016] [Indexed: 01/25/2023] Open
Abstract
The diverse and complex developmental mechanisms of segmentation have been more thoroughly studied in arthropods, vertebrates and annelids-distantly related animals considered to be segmented. Far less is known about the role of "segmentation genes" in organisms that lack a segmented body. Here we investigate the expression of the arthropod segment polarity genes engrailed, wnt1 and hedgehog in the development of brachiopods-marine invertebrates without a subdivided trunk but closely related to the segmented annelids. We found that a stripe of engrailed expression demarcates the ectodermal boundary that delimits the anterior region of Terebratalia transversa and Novocrania anomala embryos. In T. transversa, this engrailed domain is abutted by a stripe of wnt1 expression in a pattern similar to the parasegment boundaries of insects-except for the expression of hedgehog, which is restricted to endodermal tissues of the brachiopod embryos. We found that pax6 and pax2/5/8, putative regulators of engrailed, also demarcate the anterior boundary in the two species, indicating these genes might be involved in the anterior patterning of brachiopod larvae. In a comparative phylogenetic context, these findings suggest that bilaterians might share an ancestral, non-segmental domain of engrailed expression during early embryogenesis.
Collapse
|
9
|
Abstract
The study of Drosophila imaginal discs has contributed to a number of discoveries in developmental and cellular biology. In addition to the elucidation of the role of tissue compartments and organ-specific master regulator genes during development, imaginal discs have also become well established as models for studying cellular interactions and complex genetic pathways. Here, we review key discoveries resulting from investigations of these epithelial precursor organs, ranging from cell fate determination and transdetermination to tissue patterning. Furthermore, the design of increasingly sophisticated genetic tools over the last decades has added value to the use of imaginal discs as model systems. As a result of tissue-specific genetic screens, several components of developmentally regulated signaling pathways were identified and epistasis revealed the levels at which they function. Discs have been widely used to assess cellular interactions in their natural tissue context, contributing to a better understanding of growth regulation, tissue regeneration, and cancer. With the continuous implementation of novel tools, imaginal discs retain significant potential as model systems to address emerging questions in biology and medicine.
Collapse
|
10
|
Saavedra P, Brittle A, Palacios IM, Strutt D, Casal J, Lawrence PA. Planar cell polarity: the Dachsous/Fat system contributes differently to the embryonic and larval stages of Drosophila. Biol Open 2016; 5:397-408. [PMID: 26935392 PMCID: PMC4890672 DOI: 10.1242/bio.017152] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2016] [Accepted: 02/01/2016] [Indexed: 11/20/2022] Open
Abstract
The epidermal patterns of all three larval instars (L1-L3) ofDrosophilaare made by one unchanging set of cells. The seven rows of cuticular denticles of all larval stages are consistently planar polarised, some pointing forwards, others backwards. In L1 all the predenticles originate at the back of the cells but, in L2 and L3, they form at the front or the back of the cell depending on the polarity of the forthcoming denticles. We find that, to polarise all rows, the Dachsous/Fat system is differentially utilised; in L1 it is active in the placement of the actin-based predenticles but is not crucial for the final orientation of the cuticular denticles, in L2 and L3 it is needed for placement and polarity. We find Four-jointed to be strongly expressed in the tendon cells and show how this might explain the orientation of all seven rows. Unexpectedly, we find that L3 that lack Dachsous differ from larvae lacking Fat and we present evidence that this is due to differently mislocalised Dachs. We make some progress in understanding how Dachs contributes to phenotypes of wildtype and mutant larvae and adults.
Collapse
Affiliation(s)
- Pedro Saavedra
- Department of Zoology, University of Cambridge, Downing Street, Cambridge CB2 2EJ, UK
| | - Amy Brittle
- Department of Biomedical Science, The University of Sheffield, Sheffield S10 2TN, UK
| | - Isabel M Palacios
- Department of Zoology, University of Cambridge, Downing Street, Cambridge CB2 2EJ, UK
| | - David Strutt
- Department of Biomedical Science, The University of Sheffield, Sheffield S10 2TN, UK
| | - José Casal
- Department of Zoology, University of Cambridge, Downing Street, Cambridge CB2 2EJ, UK
| | - Peter A Lawrence
- Department of Zoology, University of Cambridge, Downing Street, Cambridge CB2 2EJ, UK
| |
Collapse
|
11
|
Li L, Li P, Xue L. The RED domain of Paired is specifically required for Drosophila accessory gland maturation. Open Biol 2015; 5:140179. [PMID: 25694546 PMCID: PMC4345280 DOI: 10.1098/rsob.140179] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
The evolutionarily conserved paired domain consists of the N-terminal PAI and the C-terminal RED domains, each containing a helix–turn–helix motif capable of binding DNA. Despite its conserved sequence, the physiological functions of the RED domain remain elusive. Here, we constructed a prd transgene expressing a truncated Paired (Prd) protein without the RED domain, and examined its rescue ability in prd mutants. We found that the RED domain is specifically required for the expression of Acp26Aa and sex peptide in male accessory glands, and the induction of female post-mating response. Our data thus identified an important physiological function for the evolutionarily conserved RED domain.
Collapse
Affiliation(s)
- Li Li
- Institute of Intervention Vessel, Shanghai 10th People's Hospital, Shanghai Key Laboratory of Signaling and Disease Research, School of Life Science and Technology, Tongji University, 1239 Siping Road, Shanghai 200092, People's Republic of China
| | - Ping Li
- Institute of Intervention Vessel, Shanghai 10th People's Hospital, Shanghai Key Laboratory of Signaling and Disease Research, School of Life Science and Technology, Tongji University, 1239 Siping Road, Shanghai 200092, People's Republic of China
| | - Lei Xue
- Institute of Intervention Vessel, Shanghai 10th People's Hospital, Shanghai Key Laboratory of Signaling and Disease Research, School of Life Science and Technology, Tongji University, 1239 Siping Road, Shanghai 200092, People's Republic of China
| |
Collapse
|
12
|
Franke FA, Mayer G. Controversies surrounding segments and parasegments in onychophora: insights from the expression patterns of four "segment polarity genes" in the peripatopsid Euperipatoides rowelli. PLoS One 2014; 9:e114383. [PMID: 25470738 PMCID: PMC4255022 DOI: 10.1371/journal.pone.0114383] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2014] [Accepted: 11/10/2014] [Indexed: 12/20/2022] Open
Abstract
Arthropods typically show two types of segmentation: the embryonic parasegments and the adult segments that lie out of register with each other. Such a dual nature of body segmentation has not been described from Onychophora, one of the closest arthropod relatives. Hence, it is unclear whether onychophorans have segments, parasegments, or both, and which of these features was present in the last common ancestor of Onychophora and Arthropoda. To address this issue, we analysed the expression patterns of the "segment polarity genes" engrailed, cubitus interruptus, wingless and hedgehog in embryos of the onychophoran Euperipatoides rowelli. Our data revealed that these genes are expressed in repeated sets with a specific anterior-to-posterior order along the body in embryos of E. rowelli. In contrast to arthropods, the expression occurs after the segmental boundaries have formed. Moreover, the initial segmental furrow retains its position within the engrailed domain throughout development, whereas no new furrow is formed posterior to this domain. This suggests that no re-segmentation of the embryo occurs in E. rowelli. Irrespective of whether or not there is a morphological or genetic manifestation of parasegments in Onychophora, our data clearly show that parasegments, even if present, cannot be regarded as the initial metameric units of the onychophoran embryo, because the expression of key genes that define the parasegmental boundaries in arthropods occurs after the segmental boundaries have formed. This is in contrast to arthropods, in which parasegments rather than segments are the initial metameric units of the embryo. Our data further revealed that the expression patterns of "segment polarity genes" correspond to organogenesis rather than segment formation. This is in line with the concept of segmentation as a result of concerted evolution of individual periodic structures rather than with the interpretation of 'segments' as holistic units.
Collapse
Affiliation(s)
- Franziska Anni Franke
- Animal Evolution & Development, Institute of Biology, University of Leipzig, Talstraße 33, D-04103 Leipzig, Germany
| | - Georg Mayer
- Animal Evolution & Development, Institute of Biology, University of Leipzig, Talstraße 33, D-04103 Leipzig, Germany
| |
Collapse
|
13
|
Kozlov K, Surkova S, Myasnikova E, Reinitz J, Samsonova M. Modeling of gap gene expression in Drosophila Kruppel mutants. PLoS Comput Biol 2012; 8:e1002635. [PMID: 22927803 PMCID: PMC3426564 DOI: 10.1371/journal.pcbi.1002635] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2012] [Accepted: 06/25/2012] [Indexed: 12/24/2022] Open
Abstract
The segmentation gene network in Drosophila embryo solves the fundamental problem of embryonic patterning: how to establish a periodic pattern of gene expression, which determines both the positions and the identities of body segments. The gap gene network constitutes the first zygotic regulatory tier in this process. Here we have applied the systems-level approach to investigate the regulatory effect of gap gene Kruppel (Kr) on segmentation gene expression. We acquired a large dataset on the expression of gap genes in Kr null mutants and demonstrated that the expression levels of these genes are significantly reduced in the second half of cycle 14A. To explain this novel biological result we applied the gene circuit method which extracts regulatory information from spatial gene expression data. Previous attempts to use this formalism to correctly and quantitatively reproduce gap gene expression in mutants for a trunk gap gene failed, therefore here we constructed a revised model and showed that it correctly reproduces the expression patterns of gap genes in Kr null mutants. We found that the remarkable alteration of gap gene expression patterns in Kr mutants can be explained by the dynamic decrease of activating effect of Cad on a target gene and exclusion of Kr gene from the complex network of gap gene interactions, that makes it possible for other interactions, in particular, between hb and gt, to come into effect. The successful modeling of the quantitative aspects of gap gene expression in mutant for the trunk gap gene Kr is a significant achievement of this work. This result also clearly indicates that the oversimplified representation of transcriptional regulation in the previous models is one of the reasons for unsuccessful attempts of mutant simulations. Systems biology is aimed to develop an understanding of biological function or process as a system of interacting components. Here we apply the systems-level approach to understand how the blueprints for segments in the fruit fly Drosophila embryo arise. We obtain gene expression data and use the gene circuits method which allow us to reconstruct the segment determination process in the computer. To understand the system we need not only to describe it in detail, but also to comprehend what happens when certain stimuli or disruptions occur. Previous attempts to model segmentation gene expression patterns in a mutant for a trunk gap gene were unsuccessful. Here we describe the extension of the model that allows us to solve this problem in the context of Kruppel (Kr) gene. We show that remarkable alteration of gap gene expression patterns in Kr mutants can be explained by dynamic decrease of the activating effect of Cad on a target gene and exclusion of Kr from the complex network of gap gene interactions, that makes it possible for other interactions, in particular between hb and gt, to come into effect.
Collapse
Affiliation(s)
- Konstantin Kozlov
- Department of Computational Biology/Center for Advanced Studies, St. Petersburg State Polytechnical University, St. Petersburg, Russia
| | | | | | | | | |
Collapse
|
14
|
Abstract
The Wingless (Wg) pathway represents one of the best-characterized intercellular signaling networks. Studies performed in Drosophila over the last 30 years have contributed to our understanding of the role of Wg signaling in the regulation of tissue growth, polarity, and patterning. These studies have revealed mechanisms conserved in the vertebrate Wnt pathways and illustrate the elegance of using the Drosophila model to understand evolutionarily conserved modes of gene regulation. In this article, we describe the function of Wg signaling in patterning the Drosophila embryonic epidermis and wing imaginal disc. As well, we present an overview of the establishment of the Wg morphogen gradient and discuss the differential modes of Wg-regulated gene expression.
Collapse
Affiliation(s)
- Sharan Swarup
- Department of Molecular Biology and Biochemistry, Simon Fraser University, Burnaby, British Columbia, Canada
| | | |
Collapse
|
15
|
Yang Y, Primrose DA, Leung AC, Fitzsimmons RB, McDermand MC, Missellbrook A, Haskins J, Smylie AS, Hughes SC. The PP1 phosphatase flapwing regulates the activity of Merlin and Moesin in Drosophila. Dev Biol 2011; 361:412-26. [PMID: 22133918 DOI: 10.1016/j.ydbio.2011.11.007] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2011] [Revised: 11/09/2011] [Accepted: 11/10/2011] [Indexed: 01/21/2023]
Abstract
The signalling activities of Merlin and Moesin, two closely related members of the protein 4.1 Ezrin/Radixin/Moesin family, are regulated by conformational changes. These changes are regulated in turn by phosphorylation. The same sterile 20 kinase-Slik co-regulates Merlin or Moesin activity whereby phosphorylation inactivates Merlin, but activates Moesin. Thus, the corresponding coordinate activation of Merlin and inactivation of Moesin would require coordinated phosphatase activity. We find that Drosophila melanogaster protein phosphatase type 1 β (flapwing) fulfils this role, co-regulating dephosphorylation and altered activity of both Merlin and Moesin. Merlin or Moesin are detected in a complex with Flapwing both in-vitro and in-vivo. Directed changes in flapwing expression result in altered phosphorylation of both Merlin and Moesin. These changes in the levels of Merlin and Moesin phosphorylation following reduction of flapwing expression are associated with concomitant defects in epithelial integrity and increase in apoptosis in developing tissues such as wing imaginal discs. Functionally, the defects can be partially recapitulated by over expression of proteins that mimic constitutively phosphorylated or unphosphorylated Merlin or Moesin. Our results suggest that changes in the phosphorylation levels of Merlin and Moesin lead to changes in epithelial organization.
Collapse
Affiliation(s)
- Yang Yang
- Department of Cell Biology, University of Alberta, Edmonton, AB, Canada T6G 2H7
| | | | | | | | | | | | | | | | | |
Collapse
|
16
|
Hengenius JB, Gribskov M, Rundell AE, Fowlkes CC, Umulis DM. Analysis of gap gene regulation in a 3D organism-scale model of the Drosophila melanogaster embryo. PLoS One 2011; 6:e26797. [PMID: 22110594 PMCID: PMC3217930 DOI: 10.1371/journal.pone.0026797] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2011] [Accepted: 10/04/2011] [Indexed: 01/30/2023] Open
Abstract
The axial bodyplan of Drosophila melanogaster is determined during a process called morphogenesis. Shortly after fertilization, maternal bicoid mRNA is translated into Bicoid (Bcd). This protein establishes a spatially graded morphogen distribution along the anterior-posterior (AP) axis of the embryo. Bcd initiates AP axis determination by triggering expression of gap genes that subsequently regulate each other's expression to form a precisely controlled spatial distribution of gene products. Reaction-diffusion models of gap gene expression on a 1D domain have previously been used to infer complex genetic regulatory network (GRN) interactions by optimizing model parameters with respect to 1D gap gene expression data. Here we construct a finite element reaction-diffusion model with a realistic 3D geometry fit to full 3D gap gene expression data. Though gap gene products exhibit dorsal-ventral asymmetries, we discover that previously inferred gap GRNs yield qualitatively correct AP distributions on the 3D domain only when DV-symmetric initial conditions are employed. Model patterning loses qualitative agreement with experimental data when we incorporate a realistic DV-asymmetric distribution of Bcd. Further, we find that geometry alone is insufficient to account for DV-asymmetries in the final gap gene distribution. Additional GRN optimization confirms that the 3D model remains sensitive to GRN parameter perturbations. Finally, we find that incorporation of 3D data in simulation and optimization does not constrain the search space or improve optimization results.
Collapse
Affiliation(s)
- James B. Hengenius
- Department of Biological Sciences, Purdue University, West Lafayette, Indiana, United States of America
| | - Michael Gribskov
- Department of Biological Sciences, Purdue University, West Lafayette, Indiana, United States of America
| | - Ann E. Rundell
- Department of Biomedical Engineering, Purdue University, West Lafayette, Indiana, United States of America
| | - Charless C. Fowlkes
- Department of Computer Science, University of California Irvine, Irvine, California, United States of America
| | - David M. Umulis
- Department of Agricultural and Biological Engineering, Purdue University, West Lafayette, Indiana, United States of America
- * E-mail:
| |
Collapse
|
17
|
Abstract
Gap genes are involved in segment determination during the early development of the fruit fly Drosophila melanogaster as well as in other insects. This review attempts to synthesize the current knowledge of the gap gene network through a comprehensive survey of the experimental literature. I focus on genetic and molecular evidence, which provides us with an almost-complete picture of the regulatory interactions responsible for trunk gap gene expression. I discuss the regulatory mechanisms involved, and highlight the remaining ambiguities and gaps in the evidence. This is followed by a brief discussion of molecular regulatory mechanisms for transcriptional regulation, as well as precision and size-regulation provided by the system. Finally, I discuss evidence on the evolution of gap gene expression from species other than Drosophila. My survey concludes that studies of the gap gene system continue to reveal interesting and important new insights into the role of gene regulatory networks in development and evolution.
Collapse
Affiliation(s)
- Johannes Jaeger
- Centre de Regulació Genòmica, Universtitat Pompeu Fabra, Barcelona, Spain.
| |
Collapse
|
18
|
Senthilkumar R, Mishra RK. Novel motifs distinguish multiple homologues of Polycomb in vertebrates: expansion and diversification of the epigenetic toolkit. BMC Genomics 2009; 10:549. [PMID: 19930571 PMCID: PMC2784810 DOI: 10.1186/1471-2164-10-549] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2009] [Accepted: 11/20/2009] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Polycomb group (PcG) proteins maintain expression pattern of genes set early during development. Although originally isolated as regulators of homeotic genes, PcG members play a key role in epigenetic mechanism that maintains the expression state of a large number of genes. Polycomb (PC) is conserved during evolution and while invertebrates have one PC gene, vertebrates have five or more homologues. It remains unclear if different vertebrate PC homologues have distinct or overlapping functions. We have identified and compared the sequence of PC homologues in various organisms to analyze similarities and differences that shaped the evolutionary history of this key regulatory protein. RESULTS All PC homologues have an N-terminal chromodomain and a C-terminal Polycomb Repressor box. We searched the protein and genome sequence database of various organisms for these signatures and identified approximately 100 PC homologues. Comparative analysis of these sequences led to the identification of a novel insect specific motif and several novel and signature motifs in the vertebrate homologue: two in CBX2 (Cx2.1 and Cx2.2), four in CBX4 (Cx4.1, Cx4.2, Cx4.3 and Cx4.4), three in CBX6 (Cx6.1, Cx6.2 and Cx6.3) and one in CBX8 (Cx8.1). Additionally, adjacent to the chromodomain, all the vertebrate homologues have a DNA binding motif - AT-Hook in case of CBX2, which was known earlier, and 'AT-Hook Like' motif, from this study, in other PC homologues. CONCLUSION Our analysis shows that PC is an ancient gene dating back to pre bilaterian origin that has not only been conserved but has also expanded during the evolution of complexity. Unique motifs acquired by each homologue have been maintained for more than 500 millions years indicating their functional relevance in boosting the epigenetic 'tool kit'. We report the presence of a DNA interaction motif adjacent to chromodomain in all vertebrate PC homologues and suggest a three-way 'PC-histoneH3-DNA' interaction that can restrict nucleosome dynamics. The signature motifs of PC homologues and insect specific motif identified in this study pave the way to understand the molecular basis of epigenetic mechanisms.
Collapse
|
19
|
Hu Z, Dandekar D, O'Shaughnessy PJ, De Gendt K, Verhoeven G, Wilkinson MF. Androgen-induced Rhox homeobox genes modulate the expression of AR-regulated genes. Mol Endocrinol 2009; 24:60-75. [PMID: 19901196 DOI: 10.1210/me.2009-0303] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Rhox5, the founding member of the reproductive homeobox on the X chromosome (Rhox) gene cluster, encodes a homeodomain-containing transcription factor that is selectively expressed in Sertoli cells, where it promotes the survival of male germ cells. To identify Rhox5-regulated genes, we generated 15P-1 Sertoli cell clones expressing physiological levels of Rhox5 from a stably transfected expression vector. Microarray analysis identified many genes altered in expression in response to Rhox5, including those encoding proteins controlling cell cycle regulation, apoptosis, metabolism, and cell-cell interactions. Fifteen of these Rhox5-regulated genes were chosen for further analysis. Analysis of Rhox5-null male mice indicated that at least nine of these are Rhox5-regulated in the testes in vivo. Many of them have distinct postnatal expression patterns and are regulated by Rhox5 at different postnatal time points. Most of them are expressed in Sertoli cells, indicating that they are candidates to be directly regulated by Rhox5. Transfection analysis with expression vectors encoding different mouse and human Rhox family members revealed that the regulatory response of a subset of these Rhox5-regulated genes is both conserved and redundant. Given that Rhox5 depends on androgen receptor (AR) for expression in Sertoli cells, we examined whether some Rhox5-regulated genes are also regulated by AR. We provide several lines of evidence that this is the case, leading us to propose that RHOX5 serves as a key intermediate transcription factor that directs some of the actions of AR in the testes.
Collapse
Affiliation(s)
- Zhiying Hu
- Department of Biochemistry & Molecular Biology, University of Texas M D Anderson Cancer Center, Houston, Texas 77030, USA
| | | | | | | | | | | |
Collapse
|
20
|
Gessert S, Kühl M. Comparative gene expression analysis and fate mapping studies suggest an early segregation of cardiogenic lineages in Xenopus laevis. Dev Biol 2009; 334:395-408. [PMID: 19660447 DOI: 10.1016/j.ydbio.2009.07.037] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2009] [Revised: 07/17/2009] [Accepted: 07/28/2009] [Indexed: 11/24/2022]
Abstract
Retrospective clonal analysis in mice suggested that the vertebrate heart develops from two sources of cells called first and second lineages, respectively. Cells of the first lineage enter the linear heart tube and initiate terminal differentiation earlier than cells of the second lineage. It is thought that both heart lineages arise from a common progenitor cell population prior to the cardiac crescent stage (E7.5 of mouse development). The timing of segregation of different lineages as well as the molecular mechanisms underlying this process is not yet known. Furthermore, gene expression data for those lineages are very limited. Here we provide the first comparative study of cardiac marker gene expression during Xenopus laevis embryogenesis complemented by single cell RT-PCR analysis. In addition we provide fate mapping data of cardiac progenitor cells at different stages of development. Our analysis indicates an early segregation of cardiac lineages and a fairly complex heterogeneity of gene expression in the cardiac progenitor cells. Furthermore, this study sets a reference for all further studies analyzing cardiac development in X. laevis.
Collapse
Affiliation(s)
- Susanne Gessert
- Institute for Biochemistry and Molecular Biology, Ulm University, Albert-Einstein-Allee 11, D-89081 Ulm, Germany
| | | |
Collapse
|
21
|
Marcus JM, Evans TM. A simulation study of mutations in the genetic regulatory hierarchy for butterfly eyespot focus determination. Biosystems 2008; 93:250-5. [PMID: 18586070 DOI: 10.1016/j.biosystems.2008.05.006] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2007] [Revised: 05/21/2008] [Accepted: 05/23/2008] [Indexed: 11/16/2022]
Abstract
The color patterns on the wings of butterflies have been an important model system in evolutionary developmental biology. A recent computational model tested genetic regulatory hierarchies hypothesized to underlie the formation of butterfly eyespot foci [Evans, T.M., Marcus, J.M., 2006. A simulation study of the genetic regulatory hierarchy for butterfly eyespot focus determination. Evol. Dev. 8, 273-283]. The computational model demonstrated that one proposed hierarchy was incapable of reproducing the known patterns of gene expression associated with eyespot focus determination in wild-type butterflies, but that two slightly modified alternative hierarchies were capable of reproducing all of the known gene expressions patterns. Here we extend the computational models previously implemented in Delphi 2.0 to two mutants derived from the squinting bush brown butterfly (Bicyclus anynana). These two mutants, comet and Cyclops, have aberrantly shaped eyespot foci that are produced by different mechanisms. The comet mutation appears to produce a modified interaction between the wing margin and the eyespot focus that results in a series of comet-shaped eyespot foci. The Cyclops mutation causes the failure of wing vein formation between two adjacent wing-cells and the fusion of two adjacent eyespot foci to form a single large elongated focus in their place. The computational approach to modeling pattern formation in these mutants allows us to make predictions about patterns of gene expression, which are largely unstudied in butterfly mutants. It also suggests a critical experiment that will allow us to distinguish between two hypothesized genetic regulatory hierarchies that may underlie all butterfly eyespot foci.
Collapse
Affiliation(s)
- Jeffrey M Marcus
- Department of Biology, Western Kentucky University, 1906 College Heights Boulevard #11080, Bowling Green, KY 42101-1080, USA.
| | | |
Collapse
|
22
|
Zallen JA, Blankenship JT. Multicellular dynamics during epithelial elongation. Semin Cell Dev Biol 2008; 19:263-70. [PMID: 18343171 PMCID: PMC2699999 DOI: 10.1016/j.semcdb.2008.01.005] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2007] [Revised: 12/21/2007] [Accepted: 01/23/2008] [Indexed: 12/24/2022]
Abstract
The reorganization of multicellular populations to produce an elongated tissue structure is a conserved mechanism for shaping the body axis and several organ systems. In the Drosophila germband epithelium, this process is accompanied by the formation of a planar polarized network of junctional and cytoskeletal proteins in response to striped patterns of gene expression. Actomyosin cables and adherens junctions are dynamically remodeled during intercalation, providing the basis for polarized cell behavior. Quantitative analysis of cell behavior in living embryos reveals unexpected cell population dynamics that include the formation of multicellular rosette structures as well as local neighbor exchange.
Collapse
Affiliation(s)
- Jennifer A Zallen
- Developmental Biology Program, Sloan-Kettering Institute, New York, NY 10065, USA.
| | | |
Collapse
|
23
|
Larsen C, Bardet PL, Vincent JP, Alexandre C. Specification and positioning of parasegment grooves in Drosophila. Dev Biol 2008; 321:310-8. [PMID: 18692780 DOI: 10.1016/j.ydbio.2008.04.026] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2007] [Revised: 04/09/2008] [Accepted: 04/14/2008] [Indexed: 10/22/2022]
Abstract
Developmental boundaries ensure that cells fated to participate in a particular structure are brought together or maintained at the appropriate locale within developing embryos. Parasegment grooves mark the position of boundaries that separate every segment of the Drosophila embryo into anterior and posterior compartments. Here, we dissect the genetic hierarchy that controls the formation of this morphological landmark. We report that primary segment polarity genes (engrailed, hedgehog and wingless) are not involved in specifying the position of parasegment grooves. Wingless signalling plays only a permissive role by triggering the formation of grooves at cellular interfaces defined by the ON/OFF state of expression of the earlier acting pair-rule genes eve and ftz. We suggest that the transcription factors encoded by these genes activate two programmes in parallel: a cell fate programme mediated by segment polarity genes and a boundary/epithelial integrity programme mediated by unknown target genes.
Collapse
Affiliation(s)
- Camilla Larsen
- National Institute for Medical Research, The Ridgeway Mill Hill, London NW7 1AA, UK
| | | | | | | |
Collapse
|
24
|
Hu Z, Shanker S, MacLean JA, Ackerman SL, Wilkinson MF. The RHOX5 homeodomain protein mediates transcriptional repression of the netrin-1 receptor gene Unc5c. J Biol Chem 2007; 283:3866-76. [PMID: 18077458 DOI: 10.1074/jbc.m706717200] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
The X-linked mouse Rhox gene cluster contains more than 30 homeobox genes that are candidates to regulate multiple steps in male and female gametogenesis. The founding member of the Rhox gene cluster, Rhox5, is an androgen-dependent gene expressed in Sertoli cells that promotes the survival and differentiation of the adjacent male germ cells. Here, we report the first identification and characterization of a Rhox5-regulated gene. This gene, Unc5c, encodes a pro-apoptotic receptor with tumor suppressor activity that we found is negatively regulated by Rhox5 in the testis in vivo. Transfection analyses in cell lines of different origin indicated that Rhox5-dependent down-regulation of Unc5c requires another Sertoli cell-specific cofactor. Examination of other mouse Rhox family members revealed that mouse RHOX2 and RHOX3 also have the ability to down-regulate Unc5c expression. The human RHOX protein PEPP2 (RHOXF2) also had this ability, indicating that Unc5c repression is a conserved RHOX-dependent response. Deletion analysis identified a Rhox5-responsive element in the Unc5c 5'-untranslated region. Although 5'-untranslated regions typically house post-transcriptional elements, several lines of evidence indicated that Rhox5 down-regulates Unc5c at the transcriptional level. The repression of Unc5c expression by Rhox5 may, in part, mediate the pro-survival function of Rhox5 in the testis, as we found that Unc5c mutant mice have decreased germ cell apoptosis in the testis. Along with our other data, these findings led us to propose a model in which Rhox5 is a negative regulator upstream of Unc5c in a Sertoli-cell pathway that promotes germ-cell survival.
Collapse
Affiliation(s)
- Zhiying Hu
- Department of Biochemistry and Molecular Biology, The University of Texas M.D. Anderson Cancer Center, Houston, Texas 77030, USA
| | | | | | | | | |
Collapse
|
25
|
Meinhardt H. Computational modelling of epithelial patterning. Curr Opin Genet Dev 2007; 17:272-80. [PMID: 17627806 DOI: 10.1016/j.gde.2007.05.004] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2007] [Revised: 04/27/2007] [Accepted: 05/01/2007] [Indexed: 12/20/2022]
Abstract
The generation of polar cell polarity (PCP) can be regarded as a pattern-forming process. Pattern formation requires local self-enhancement and long-range inhibition that can take place either within a cell or between adjacent cells. A comparison of this general condition with implementations in molecular terms in recent PCP models facilitates an understanding of inherent similarities and differences between them. In addition, it is important to integrate the most interesting and still valid results of classical transplantation experiments that were made some 40 years ago. They remind us that the global polarizing signal is based on graded positional identities carried by the individual cells whose molecular nature is still unknown.
Collapse
Affiliation(s)
- Hans Meinhardt
- Max-Planck-Institut für Entwicklungsbiologie, Spemannstr. 35, D-72076 Tübingen, Germany.
| |
Collapse
|
26
|
Breiling A, Sessa L, Orlando V. Biology of Polycomb and Trithorax Group Proteins. INTERNATIONAL REVIEW OF CYTOLOGY 2007; 258:83-136. [PMID: 17338920 DOI: 10.1016/s0074-7696(07)58002-2] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Cellular phenotypes can be ascribed to different patterns of gene expression. Epigenetic mechanisms control the generation of different phenotypes from the same genotype. Thus differentiation is basically a process driven by changes in gene activity during development, often in response to transient factors or environmental stimuli. To keep the specific characteristics of cell types, tissue-specific gene expression patterns must be transmitted stably from one cell to the daughter cells, also in the absence of the early-acting determination factors. This heritability of patterns of active and inactive genes is enabled by epigenetic mechanisms that create a layer of information on top of the DNA sequence that ensures mitotic and sometimes also meiotic transmission of expression patterns. The proteins of the Polycomb and Trithorax group comprise such a cellular memory mechanism that preserves gene expression patterns through many rounds of cell division. This review provides an overview of the genetics and molecular biology of these maintenance proteins, concentrating mainly on mechanisms of Polycomb group-mediated repression.
Collapse
Affiliation(s)
- Achim Breiling
- Dulbecco Telethon Institute, Institute of Genetics and Biophysics, CNR, 80131 Naples, Italy
| | | | | |
Collapse
|
27
|
Abstract
Many of the genes of Drosophila melanogaster have their transcripts deposited in developing oocytes. These maternally loaded gene products enable an otherwise homo-zygous mutant embryo to survive beyond the first stage of development for which the gene product is required. Zygotic mutations that disrupt the Hedgehog signal transduction pathway typically yield a segment polarity 'lawn of denticles' cuticle phenotype. However, an embryo homozygous mutant for a gene can achieve normal embryonic segmentation precluding classification of the gene as a component of the Hh pathway, if wild-type transcripts from the mother are present. This chapter discusses the theory and importance of analyzing germline clone embryos for maternally acting genes involved in Hh signal transduction, and describes in detail the method to generate mutant germline clone embryos.
Collapse
|
28
|
Goodman RM, Thombre S, Firtina Z, Gray D, Betts D, Roebuck J, Spana EP, Selva EM. Sprinter: a novel transmembrane protein required for Wg secretion and signaling. Development 2006; 133:4901-11. [PMID: 17108000 DOI: 10.1242/dev.02674] [Citation(s) in RCA: 174] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Wingless (Wg) is a secreted ligand that differentially activates gene expression in target tissues. It belongs to the Wnt family of secreted signaling molecules that regulate cell-to-cell interactions during development. Activation of Wg targets is dependent on the ligand concentration in the extracellular milieu; cellular mechanisms that govern the synthesis,delivery and receipt of Wg are elaborate and complex. We have identified sprinter (srt), which encodes a novel, evolutionarily conserved transmembrane protein required for the transmission of the Wg signal. Mutations in srt cause the accumulation of Wg in cells that express it, and retention of the ligand prevents activation of its target genes in signal-receiving cells. In the absence of Srt activity, levels of Wg targets (including Engrailed in embryos lacking maternal and zygotic srt, and Senseless and Achaete in wing discs) are reduced. Activation of Wg targets in the receiving cells does not require srt. Hence, the function of Srt is restricted to events occurring within the Wg-producing cells. We show that srt is not required for any aspect of Hedgehog(Hh) signal transduction, suggesting specificity of srt for the Wg pathway. We propose that srt encodes a protein required for Wg secretion that regulates maturation, membrane targeting or delivery of Wg. Loss of srt function in turn diminishes Wg-pathway activation in receiving cells.
Collapse
Affiliation(s)
- Robyn M Goodman
- University of Delaware, Department of Biological Sciences, Newark DE, USA
| | | | | | | | | | | | | | | |
Collapse
|
29
|
Abstract
Morphogenetic fields are among the most fundamental concepts of embryology. However, they are also among the most ill-defined, since they consist of dynamic regulatory processes whose exact nature remains elusive. In order to achieve a more rigorous definition of a developmental field, Lewis Wolpert introduced the concept of positional information illustrated by his French Flag model. Here we argue that Wolpert's positional information - a static coordinate system defining a field - lacks essential properties of the original field concept. We show how data-driven mathematical modeling approaches now enable us to study regulatory processes in a way that is qualitatively different from our previous level of understanding. As an example, we review our recent analysis of segmentation gene expression in the blastoderm embryo of the fruit fly Drosophila melanogaster. Based on this analysis, we propose a revised French Flag, which incorporates the dynamic, feedback-driven nature of pattern formation in the Drosophila blastoderm.
Collapse
Affiliation(s)
- Johannes Jaeger
- Laboratory of Development and Evolution, Department of Zoology, University of Cambridge, Downing Street, Cambridge CB2 3EJ, UK.
| | | |
Collapse
|
30
|
Rogers EM, Brennan CA, Mortimer NT, Cook S, Morris AR, Moses K. Pointed regulates an eye-specific transcriptional enhancer in the Drosophila hedgehog gene, which is required for the movement of the morphogenetic furrow. Development 2005; 132:4833-43. [PMID: 16207753 DOI: 10.1242/dev.02061] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Drosophila development depends on stable boundaries between cellular territories, such as the embryonic parasegment boundaries and the compartment boundaries in the imaginal discs. Patterning in the compound eye is fundamentally different: the boundary is not stable, but moves (the morphogenetic furrow). Paradoxically, Hedgehog signaling is essential to both: Hedgehog is expressed in the posterior compartments in the embryo and in imaginal discs, and posterior to the morphogenetic furrow in the eye. Therefore, uniquely in the eye, cells receiving a Hedgehog signal will eventually produce the same protein. We report that the mechanism that underlies this difference is the special regulation of hedgehog (hh) transcription through the dual regulation of an eye specific enhancer. We show that this enhancer requires the Egfr/Ras pathway transcription factor Pointed. Recently, others have shown that this same enhancer also requires the eye determining transcription factor Sine oculis (So). We discuss these data in terms of a model for a combinatorial code of furrow movement.
Collapse
Affiliation(s)
- Edward M Rogers
- Department of Cell Biology, Emory University School of Medicine, Atlanta, GA 30322, USA
| | | | | | | | | | | |
Collapse
|
31
|
Angelini DR, Kaufman TC. Insect appendages and comparative ontogenetics. Dev Biol 2005; 286:57-77. [PMID: 16112665 DOI: 10.1016/j.ydbio.2005.07.006] [Citation(s) in RCA: 136] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2005] [Revised: 06/23/2005] [Accepted: 07/12/2005] [Indexed: 11/30/2022]
Abstract
It is arguable that the evolutionary and ecological success of insects is due in large part to the versatility of their articulated appendages. Recent advances in our understanding of appendage development in Drosophila melanogaster, as well as functional and expression studies in other insect species have begun to frame the general themes of appendage development in the insects. Here, we review current studies that provide for a comparison of limb developmental mechanisms acting at five levels: (1) the specification of ventral appendage primordia; (2) specification of the limb axes; (3) regulation and interactions of genes expressed in specific domains of the proximal-distal axis, such as Distal-less; (4) the specification of appendage identity; and (5) genetic regulation of appendage allometry.
Collapse
Affiliation(s)
- David R Angelini
- Department of Biology, Indiana University, 1001 E. Third St., Bloomington, IN 47405-7005, USA
| | | |
Collapse
|
32
|
Lopes FJP, Vanario-Alonso CE, Bisch PM, Vieira FMC. A kinetic mechanism for Drosophila bicoid cooperative binding. J Theor Biol 2005; 235:185-98. [PMID: 15862588 DOI: 10.1016/j.jtbi.2005.01.002] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2004] [Revised: 12/21/2004] [Accepted: 01/05/2005] [Indexed: 10/25/2022]
Abstract
The Bicoid (Bcd) protein is a concentration-dependent transcriptional activator in the embryo of Drosophila melanogaster. Bcd regulates the expression of the maternal and zygotic gene hunchback (hb) that shows a step-like-function expression pattern, in the anterior half of the egg. The regulatory region of hb contains six major binding sites for the Bcd protein, named A1, A2, A3 (strong sites), and X1, X2, X3 (weak sites). Cooperativity between Bcd molecules binding to the hb enhancer element has been characterized as an important mechanism for the step-like shape of hb anterior expression domain. The objective of the present report is to analyse the mechanism of this cooperative binding based on a reaction network model. Using this method we have analysed experimental results from the literature describing how the Bcd protein binds to hb enhancer elements containing the A1 or X1 site alone or these two sites together at wild type distance. This approach allows us to estimate the kinetic constants of protein-protein and protein-DNA interactions. Moreover our results suggest that binding of a Bcd dimer to the hb enhancer element is more stable than binding of a monomer. We propose a cooperative kinetic mechanism for binding of Bcd to the hb enhancer element: First, a monomer binds to the site with a relatively low affinity; after that, another monomer binds to the first one with higher affinity, generating a dimer bound to the site. This yet unreported monomer-monomer cooperative mechanism takes place for occupancy of either one-site or two-site enhancer elements. In addition, we find cooperativity between neighbor sites, as previously reported in the literature.
Collapse
Affiliation(s)
- Francisco J P Lopes
- Instituto de Biofísica, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ 21.949-900, Brazil.
| | | | | | | |
Collapse
|
33
|
Déjardin J, Cavalli G. Dsp1 favorise le recrutement des protéines du groupe Polycomb sur la chromatine. Med Sci (Paris) 2005; 21:689-91. [PMID: 16115448 DOI: 10.1051/medsci/2005218-9689] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Affiliation(s)
- Jérôme Déjardin
- Department of Molecular Biology, Massachusetts General Hospital, Boston, MA 02114, USA
| | | |
Collapse
|
34
|
Angelini DR, Kaufman TC. Functional analyses in the milkweed bug Oncopeltus fasciatus (Hemiptera) support a role for Wnt signaling in body segmentation but not appendage development. Dev Biol 2005; 283:409-23. [PMID: 15939417 DOI: 10.1016/j.ydbio.2005.04.034] [Citation(s) in RCA: 92] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2005] [Revised: 04/29/2005] [Accepted: 04/29/2005] [Indexed: 11/16/2022]
Abstract
Specification of the proximal-distal (PD) axis of insect appendages is best understood in Drosophila melanogaster, where conserved signaling molecules encoded by the genes decapentaplegic (dpp) and wingless (wg) play key roles. However, the development of appendages from imaginal discs as in Drosophila is a derived state, while more basal insects produce appendages from embryonic limb buds. Therefore, the universality of the Drosophila limb PD axis specification mechanism has been debated since dpp expression in more basal insect species differs dramatically from Drosophila. Here, we test the function of Wnt signaling in the development of the milkweed bug Oncopeltus fasciatus, a species with the basal state of appendage development from limb buds. RNA interference of wg and pangolin (pan) produce defects in the germband and eyes, but not in the appendages. Distal-less and dachshund, two genes regulated by Wg signaling in Drosophila and expressed in specific PD domains along the limbs of both species, are expressed normally in the limbs of pan-depleted Oncopeltus embryos. Despite these apparently paradoxical results, Armadillo protein, the transducer of Wnt signaling, does not accumulate properly in the nuclei of cells in the legs of pan-depleted embryos. In contrast, engrailed RNAi in Oncopeltus produces cuticular and appendage defects similar to Drosophila. Therefore, our data suggest that Wg signaling is functionally conserved in the development of the germband, while it is not essential in the specification of the limb PD axis in Oncopeltus and perhaps basal insects.
Collapse
Affiliation(s)
- David R Angelini
- Department of Biology, Indiana University, Bloomington, 47405-7005, USA
| | | |
Collapse
|
35
|
Affiliation(s)
- M Akam
- Wellcome/CRC Institute, Tennis Court Road, Cambridge CB2 1QR, UK
| | | |
Collapse
|
36
|
Déjardin J, Cavalli G. Epigenetic inheritance of chromatin states mediated by Polycomb and trithorax group proteins in Drosophila. PROGRESS IN MOLECULAR AND SUBCELLULAR BIOLOGY 2005; 38:31-63. [PMID: 15881890 DOI: 10.1007/3-540-27310-7_2] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/02/2023]
Abstract
Proteins of the Polycomb group (PcG) and of the trithorax group (trxG) are involved in the regulation of key developmental genes, such as homeotic genes. PcG proteins maintain silent states of gene expression, while the trxG of genes counteracts silencing with a chromatin opening function. These factors form multimeric complexes that act on their target chromatin by regulating post-translational modifications of histones as well as ATP-dependent remodelling of nucleosome positions. In Drosophila, PcG and trxG complexes are recruited to specific DNA elements named as PcG and trxG response elements (PREs and TREs, respectively). Once recruited, these complexes seem to be able to establish silent or open chromatin states that can be inherited through multiple cell divisions even after decay of the primary silencing or activating signal. In recent years, many components of both groups of factors have been characterized, and the molecular mechanisms underlying their recruitment as well as their mechanism of action on their target genes have been partly elucidated. This chapter summarizes our current knowledge on these aspects and outlines crucial open questions in the field.
Collapse
Affiliation(s)
- Jérôme Déjardin
- Institute of Human Genetics, CNRS, 34396 Montpellier Cedex 5, France
| | | |
Collapse
|
37
|
Abstract
Many of the patterning mechanisms in plants were discovered while studying postembryonic processes and resemble mechanisms operating during animal development. The emergent role of the plant hormone auxin, however, seems to represent a plant-specific solution to multicellular patterning. This review summarizes our knowledge on how diverse mechanisms that were first dissected at the postembryonic level are now beginning to provide an understanding of plant embryogenesis.
Collapse
Affiliation(s)
- Viola Willemsen
- Department of Molecular Genetics, Utrecht University, 3584 CH Utrecht, The Netherlands.
| | | |
Collapse
|
38
|
Abstract
I review how both the parasegmental and segmental frames are used in constructing the body plan of the arthropods. The parasegment is the primary genetic unit, as shown by Hox gene expression, and the parasegmental design is maintained in the nerve cord. It is, however, not maintained in the epidermis, where the cuticle grooves are segmental, and in the musculature, which is segmental in organisation. This frame shift is reflected in the sensory and motor nerve connections between the ganglia and the periphery. I suggest that the need for movement in an organism equipped with a hard exoskeleton was the functional constraint that shaped this apparently complex mode of development.
Collapse
Affiliation(s)
- Jean S Deutsch
- Equipe Evolution et Développement, CNRS et Universite P et M Curie, 9 quai St-Bernard, case 24, 75252 Paris cedex 05.
| |
Collapse
|
39
|
Abstract
The three major taxa with metameric segmentation (annelids, arthropods, and chordates) appear to use three very different molecular strategies to generate segments. However, unexpected similarities are starting to emerge from characterization of pair-rule patterning and segmental border formation. Moreover, the existence of an ancestral segmentation clock based on Notch signaling has become likely. An old concept of comparative anatomy, the enterocoele theory, is compatible with a single origin of segmentation mechanisms and could therefore provide a conceptual framework for assessing these molecular similarities.
Collapse
Affiliation(s)
- Diethard Tautz
- Institut für Genetik der Universität zu Köln, Weyertal 121, 50931, Germany.
| |
Collapse
|
40
|
Narbonne K, Besse F, Brissard-Zahraoui J, Pret AM, Busson D. polyhomeoticis required for somatic cell proliferation and differentiation during ovarian follicle formation inDrosophila. Development 2004; 131:1389-400. [PMID: 14993188 DOI: 10.1242/dev.01003] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The polyhomeotic (ph) gene of Drosophila is a member of the Polycomb group (Pc-G) genes, which are required for maintenance of a repressed state of homeotic gene transcription, which stabilizes cell identity throughout development. The ph gene was recovered in the course of a gain-of-function screen aimed at identifying genes with a role during ovarian follicle formation in Drosophila, a process that involves coordinated proliferation and differentiation of two cell lineages, somatic and germline. Subsequent analysis revealed that ph loss-of-function mutations lead to production of follicles with greater or fewer than the normal number of germ cells associated with reduced proliferation of somatic prefollicular cells, abnormal prefollicular cell encapsulation of germline cysts and an excess of both interfollicular stalk cells and polar cells. Clonal analysis showed that ph function for follicle formation resides specifically in somatic cells and not in the germline. This is thus the first time that a role has been shown for a Pc-G gene during Drosophila folliculogenesis. In addition,we tested mutations in a number of other Pc-G genes, and two of them, Sex combs extra (Sce) and Sex comb on midleg(Scm), also displayed ovarian defects similar to those observed for ph. Our results provide a new model system, the Drosophilaovary, in which the function of Pc-G genes, distinct from that of control of homeotic gene expression, can be explored.
Collapse
Affiliation(s)
- Karine Narbonne
- Institut Jacques Monod, (UMR 7592 - CNRS/Université Pierre et Marie Curie/Université Denis Diderot Génétique du Développement et Evolution, 2 place Jussieu, 75251 Paris Cedex 05, France
| | | | | | | | | |
Collapse
|
41
|
Sánchez L, Thieffry D. Segmenting the fly embryo: a logical analysis of the pair-rule cross-regulatory module. J Theor Biol 2003; 224:517-37. [PMID: 12957124 DOI: 10.1016/s0022-5193(03)00201-7] [Citation(s) in RCA: 63] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
This manuscript reports a dynamical analysis of the pair-rule cross-regulatory module controlling segmentation in Drosophila melanogaster. We propose a logical model accounting for the ability of the pair-rule module to determine the formation of alternate juxtaposed Engrailed- and Wingless-expressing cells that form the (para)segmental boundaries. This module has the intrinsic capacity to generate four distinct expression states, each characterized by the expression of a particular combination of pair-rule genes or expression mode. The selection of one of these expression modes depends on the maternal and gap inputs, but also crucially on cross-regulations among pair-rule genes. The latter are instrumental in the interpretation of the maternal-gap pre-pattern. Our logical model allows the qualitative reproduction of the patterns of pair-rule gene expressions corresponding to the wild type situation, to loss-of-function and cis-regulatory mutations, and to ectopic pair-rule expressions. Furthermore, this model provides a formal explanation for the morphogenetic role of the initial bell-shaped expression of the gene even-skipped, i.e. for the distinct effects of different levels of the Even-skipped protein on its target pair-rule genes. It also accounts for the requirement of Even-skipped for the formation of all Engrailed-stripes. Finally, it provides new insights into the roles and evolutionary origins of the apparent redundancies in the regulatory architecture of the pair-rule module.
Collapse
Affiliation(s)
- Lucas Sánchez
- Centro de Investigaciones Biológicas, Velázquez 144, 28006 Madrid, Spain.
| | | |
Collapse
|
42
|
Abstract
Cell signaling plays a key role in the development of all multicellular organisms. Numerous studies have established the importance of Hedgehog signaling in a wide variety of regulatory functions during the development of vertebrate and invertebrate organisms. Several reviews have discussed the signaling components in this pathway, their various interactions, and some of the general principles that govern Hedgehog signaling mechanisms. This review focuses on the developing systems themselves, providing a comprehensive survey of the role of Hedgehog signaling in each of these. We also discuss the increasing significance of Hedgehog signaling in the clinical setting.
Collapse
Affiliation(s)
- Andrew P McMahon
- Department of Molecular and Cellular Biology, Harvard University, Cambridge, Massachusetts 02138, USA.
| | | | | |
Collapse
|
43
|
Abstract
Morphogens are diffusible signalling molecules that pattern cellular fields by setting up differential gene expression in a concentration-dependent manner. Members of the Wnt family of signalling molecules are generally considered to be classical morphogens. However, a close analysis of their activity indicates that they do not fulfil all of the critera that are associated with the classical definition.
Collapse
|
44
|
Gallet A, Rodriguez R, Ruel L, Therond PP. Cholesterol modification of hedgehog is required for trafficking and movement, revealing an asymmetric cellular response to hedgehog. Dev Cell 2003; 4:191-204. [PMID: 12586063 DOI: 10.1016/s1534-5807(03)00031-5] [Citation(s) in RCA: 138] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
Hedgehog family members are secreted proteins involved in numerous patterning mechanisms. Different posttranslational modifications have been shown to modulate Hedgehog biological activity. We investigated the role of these modifications in regulating subcellular localization of Hedgehog in the Drosophila embryonic epithelium. We demonstrate that cholesterol modification of Hedgehog is responsible for its assembly in large punctate structures and apical sorting through the activity of the sterol-sensing domain-containing Dispatched protein. We further show that movement of these specialized structures through the cellular field is contingent upon the activity of proteoglycans synthesized by the heparan sulfate polymerase Tout-Velu. Finally, we show that the Hedgehog large punctate structures are necessary only for a subset of Hedgehog target genes across the parasegmental boundary, suggesting that presentation of Hedgehog from different membrane compartments is responsible for Hedgehog functional diversity in epithelial cells.
Collapse
Affiliation(s)
- Armel Gallet
- Institute of Signaling, Developmental Biology and Cancer Research, CNRS UMR 6543, Centre de Biochimie, Parc Valrose, 06108 Nice Cedex 02, France
| | | | | | | |
Collapse
|
45
|
Maurange C, Paro R. A cellular memory module conveys epigenetic inheritance of hedgehog expression during Drosophila wing imaginal disc development. Genes Dev 2002; 16:2672-83. [PMID: 12381666 PMCID: PMC187463 DOI: 10.1101/gad.242702] [Citation(s) in RCA: 101] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
In Drosophila, the Trithorax-group (trxG) and Polycomb-group (PcG) proteins interact with chromosomal elements, termed Cellular Memory Modules (CMMs). By modifying chromatin, this ensures a stable heritable maintenance of the transcriptional state of developmental regulators, like the homeotic genes, that is defined embryonically. We asked whether such CMMs could also control expression of genes involved in patterning imaginal discs during larval development. Our results demonstrate that expression of the hedgehog gene, once activated, is maintained by a CMM. In addition, our experiments indicate that the switching of such CMMs to an active state during larval stages, in contrast to embryonic stages, may require specific trans-activators. Our results suggest that the patterning of cells in particular developmental fields in the imaginal discs does not only rely on external cues from morphogens, but also depends on the previous history of the cells, as the control by CMMs ensures a preformatted gene expression pattern.
Collapse
Affiliation(s)
- Cédric Maurange
- Zentrum für Molekulare Biologie Heidelberg (ZMBH), University of Heidelberg, D-69120 Heidelberg, Germany
| | | |
Collapse
|
46
|
Affiliation(s)
- E M Selva
- Department of Genetics and Howard Hughes Medical Institute, Harvard Medical School, Boston, MA 02115, USA
| | | |
Collapse
|
47
|
Abstract
In Drosophila, a cascade of maternal, gap, pair-rule and segment polarity genes subdivides the antero/posterior axis of the embryo into repeating segmental stripes. This review summarizes what happens next, i.e. how an intrasegmental pattern is generated and controls the differentiation of specific cell types in the epidermis. Within each segment, cells secreting the signalling molecules Wingless (the homologue of vertebrate Wnt-1) and Hedgehog are found in narrow stripes on both sides of the parasegmental boundary. The Wingless and Hedgehog organizing activities help to establish two more stripes per segment that localize ligands for the Epidermal Growth Factor and the Notch signalling pathways, respectively. These four signals then act at short range and in concert to control epidermal differentiation at the single cell level across the segment. This example from Drosophila provides a paradigm for how organizers generate precise patterns, and ultimately different cell types, in a naïve field of cells.
Collapse
Affiliation(s)
- B Sanson
- University of Cambridge, Department of Genetics, Downing Site, Cambridge CB2 3EH, UK.
| |
Collapse
|
48
|
Abstract
Embryos of higher metazoans are divided into repeating units early in development. In Drosophila, the earliest segmental units to form are the parasegments. Parasegments are initially defined by alternating stripes of expression of the fushi-tarazu and even-skipped genes. How fushi-tarazu and even-skipped define the parasegment boundaries, and how parasegments are lost when fushi-tarazu or even-skipped fail to function correctly, have never been fully or properly explained. Here we show that parasegment widths are defined early by the relative levels of fushi-tarazu and even-skipped at stripe junctions. Changing these levels results in alternating wide and narrow parasegments. When shifted by 30% or more, the enlarged parasegments remain enlarged and the reduced parasegments are lost. Loss of the reduced parasegments occurs in three steps; delamination of cells from the epithelial layer, apoptosis of the delaminated cells and finally apoptosis of inappropriate cells remaining at the surface. The establishment and maintenance of vertebrate metameres may be governed by similar processes and properties.
Collapse
Affiliation(s)
- S C Hughes
- Banting and Best Department of Medical Research, University of Toronto, Charles H. Best Institute, Toronto, Ontario, M5G 1L6, Canada
| | | |
Collapse
|
49
|
Tang AH, Neufeld TP, Rubin GM, Müller HA. Transcriptional regulation of cytoskeletal functions and segmentation by a novel maternal pair-rule gene, lilliputian. Development 2001; 128:801-13. [PMID: 11171404 DOI: 10.1242/dev.128.5.801] [Citation(s) in RCA: 45] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Transcriptional control during early Drosophila development is governed by maternal and zygotic factors. We have identified a novel maternal transcriptional regulator gene, lilliputian (lilli), which contains an HMG1 (AT-hook) motif and a domain with similarity to the human fragile X mental retardation FMR2 protein and the AF4 proto-oncoprotein. Embryos lacking maternal lilli expression show specific defects in the establishment of a functional cytoskeleton during cellularization, and exhibit a pair-rule segmentation phenotype. These mutant phenotypes correlate with markedly reduced expression of the early zygotic genes serendipity alpha, fushi tarazu and huckebein, which are essential for cellularization and embryonic patterning. In addition, loss of lilli in adult photoreceptor and bristle cells results in a significant decrease in cell size. Our results indicate that lilli represents a novel pair-rule gene that acts in cytoskeleton regulation, segmentation and morphogenesis.
Collapse
MESH Headings
- Actins/metabolism
- Amino Acid Sequence
- Animals
- Body Patterning
- Cell Size
- Cytoskeleton/genetics
- Cytoskeleton/metabolism
- DNA-Binding Proteins/genetics
- DNA-Binding Proteins/metabolism
- Drosophila Proteins
- Drosophila melanogaster/embryology
- Drosophila melanogaster/genetics
- Embryo, Nonmammalian/cytology
- Embryo, Nonmammalian/physiology
- Female
- Flow Cytometry
- Fushi Tarazu Transcription Factors
- Gene Expression Regulation, Developmental
- Genes, Insect
- Genes, Reporter/genetics
- Homeodomain Proteins/genetics
- Homeodomain Proteins/metabolism
- Humans
- In Situ Hybridization
- Male
- Membrane Proteins/genetics
- Membrane Proteins/metabolism
- Microscopy, Confocal
- Microscopy, Fluorescence
- Microscopy, Video
- Microtubules/metabolism
- Molecular Sequence Data
- Nuclear Proteins/chemistry
- Nuclear Proteins/genetics
- Nuclear Proteins/metabolism
- Photoreceptor Cells, Invertebrate/cytology
- Photoreceptor Cells, Invertebrate/embryology
- Photoreceptor Cells, Invertebrate/metabolism
- RNA, Messenger/metabolism
- Sequence Alignment
- Transcription Factors
- Wings, Animal/anatomy & histology
Collapse
Affiliation(s)
- A H Tang
- Howard Hughes Medical Institute, Department of Molecular and Cell Biology, University of California-Berkeley, Berkeley, California 94720-3200, USA.
| | | | | | | |
Collapse
|
50
|
Xue L, Li X, Noll M. Multiple protein functions of paired in Drosophila development and their conservation in the Gooseberry and Pax3 homologs. Development 2001; 128:395-405. [PMID: 11152638 DOI: 10.1242/dev.128.3.395] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The Drosophila segmentation gene paired, whose product is homologous to the Drosophila Gooseberry and mammalian Pax3 proteins, has three general functions: proper development of the larval cuticle, survival to adulthood and male fertility. Both DNA-binding domains, the conserved N-terminal paired-domain and prd-type homeodomain, are required within the same molecule for all general paired functions, whereas a conserved His-Pro repeat located near its C terminus is a transactivation domain potentiating these functions. The C-terminal moiety of Paired includes two additional functional motifs: one, also present in Gooseberry and Pax3, is required for segmentation and cuticle development; the other, retained only in Gooseberry, is necessary for survival. The male fertility function, which cannot be replaced by Gooseberry and Pax3, is specified by the conserved N-terminal rather than the divergent C-terminal moiety of Paired. We conclude that the functional diversification of paired, gooseberry and Pax3, primarily determined by variations in their enhancers, is modified by adaptations of their coding regions as a necessary consequence of their newly acquired spatiotemporal expression.
Collapse
Affiliation(s)
- L Xue
- Institute for Molecular Biology, University of Zürich, Winterthurerstrasse 190, CH-8057 Zürich, Switzerland
| | | | | |
Collapse
|