1
|
Zhang P, Zhang Z, Wang Y, Du W, Song X, Lai W, Wang H, Zhu B, Xiong J. A CRISPR-Cas9 screen reveals genetic determinants of the cellular response to decitabine. EMBO Rep 2025; 26:1528-1565. [PMID: 39930152 PMCID: PMC11933316 DOI: 10.1038/s44319-025-00385-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2024] [Revised: 01/27/2025] [Accepted: 01/28/2025] [Indexed: 03/26/2025] Open
Abstract
Decitabine (DAC), a well-recognized DNA hypomethylating agent, has been applied to treat acute myeloid leukemia. However, clinic investigations revealed that DNA methylation reduction does not correlate with a clinical response, and relapse is prevalent. To gain a better understanding of its anti-tumor mechanism, we perform a temporally resolved CRISPR-Cas9 screen to identify factors governing the DAC response. We show that DNA damage generated by DNMT-DNA adducts and 5-aza-dUTP misincorporation through the dCMP deaminase DCTD act as drivers of DAC-induced acute cytotoxicity. The DNA damage that arises during the next S phase is dependent on DNA replication, unveiling a trans-cell cycle effect of DAC on genome stability. By exploring candidates for synthetic lethality, we unexpectedly uncover that KDM1A promotes survival after DAC treatment through interactions with ZMYM3 and CoREST, independent of its demethylase activity or regulation of viral mimicry. These findings emphasize the importance of DNA repair pathways in DAC response and provide potential biomarkers.
Collapse
Affiliation(s)
- Pinqi Zhang
- State Key Laboratory of Epigenetic Regulation and Intervention, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Zhuqiang Zhang
- State Key Laboratory of Epigenetic Regulation and Intervention, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China
| | - Yiyi Wang
- State Key Laboratory of Epigenetic Regulation and Intervention, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Wenlong Du
- State Key Laboratory of Epigenetic Regulation and Intervention, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China
| | - Xingrui Song
- The State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China
| | - Weiyi Lai
- The State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China
| | - Hailin Wang
- The State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China
| | - Bing Zhu
- State Key Laboratory of Epigenetic Regulation and Intervention, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China.
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China.
- New Cornerstone Science Laboratory, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China.
| | - Jun Xiong
- State Key Laboratory of Epigenetic Regulation and Intervention, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China.
| |
Collapse
|
2
|
Moreno AT, Loparo JJ. Measuring protein stoichiometry with single-molecule imaging in Xenopus egg extracts. Methods Enzymol 2024; 705:427-474. [PMID: 39389672 DOI: 10.1016/bs.mie.2024.07.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/12/2024]
Abstract
In human cells, DNA double-strand breaks are rapidly bound by the highly abundant non-homologous end joining (NHEJ) factor Ku70/Ku80 (Ku). Cellular imaging and structural data revealed a single Ku molecule is bound to a free DNA end and yet the mechanism regulating Ku remains unclear. Here, we describe how to utilize the cell-free Xenopus laevis egg extract system in conjunction with single-molecule microscopy to investigate regulation of Ku stoichiometry during non-homologous end joining. Egg extract is an excellent model system to study DNA repair as it contains the soluble proteome including core and accessory NHEJ factors, and efficiently repairs double-strand breaks in an NHEJ-dependent manner. To examine the Ku stoichiometry in the extract system, we developed a single-molecule photobleaching assay, which reports on the number of stable associated Ku molecules by monitoring the intensity of fluorescently labeled Ku molecules bound to double-stranded DNA over time. Photobleaching is distinguishable as step decreases in fluorescence intensity and the number of photobleaching events indicate fluorophore stoichiometry. In this paper we describe sample preparation, experimental methodology, and data analysis to discern Ku stoichiometry and the regulatory mechanism controlling its loading. These approaches can be readily adopted to determine stoichiometry of molecular factors within other macromolecular complexes.
Collapse
Affiliation(s)
- Andrew T Moreno
- Department of Biological Chemistry and Molecular Pharmacology, Blavatnik Institute, Harvard Medical School, Boston, MA, United States
| | - Joseph J Loparo
- Department of Biological Chemistry and Molecular Pharmacology, Blavatnik Institute, Harvard Medical School, Boston, MA, United States.
| |
Collapse
|
3
|
Ivancevic A, Simpson DM, Joyner OM, Bagby SM, Nguyen LL, Bitler BG, Pitts TM, Chuong EB. Endogenous retroviruses mediate transcriptional rewiring in response to oncogenic signaling in colorectal cancer. SCIENCE ADVANCES 2024; 10:eado1218. [PMID: 39018396 PMCID: PMC466953 DOI: 10.1126/sciadv.ado1218] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Accepted: 06/13/2024] [Indexed: 07/19/2024]
Abstract
Cancer cells exhibit rewired transcriptional regulatory networks that promote tumor growth and survival. However, the mechanisms underlying the formation of these pathological networks remain poorly understood. Through a pan-cancer epigenomic analysis, we found that primate-specific endogenous retroviruses (ERVs) are a rich source of enhancers displaying cancer-specific activity. In colorectal cancer and other epithelial tumors, oncogenic MAPK/AP1 signaling drives the activation of enhancers derived from the primate-specific ERV family LTR10. Functional studies in colorectal cancer cells revealed that LTR10 elements regulate tumor-specific expression of multiple genes associated with tumorigenesis, such as ATG12 and XRCC4. Within the human population, individual LTR10 elements exhibit germline and somatic structural variation resulting from a highly mutable internal tandem repeat region, which affects AP1 binding activity. Our findings reveal that ERV-derived enhancers contribute to transcriptional dysregulation in response to oncogenic signaling and shape the evolution of cancer-specific regulatory networks.
Collapse
Affiliation(s)
- Atma Ivancevic
- BioFrontiers Institute and Department of Molecular, Cellular and Developmental Biology, University of Colorado Boulder, Boulder, CO, USA
| | - David M. Simpson
- BioFrontiers Institute and Department of Molecular, Cellular and Developmental Biology, University of Colorado Boulder, Boulder, CO, USA
| | - Olivia M. Joyner
- BioFrontiers Institute and Department of Molecular, Cellular and Developmental Biology, University of Colorado Boulder, Boulder, CO, USA
| | - Stacey M. Bagby
- Division of Medical Oncology, Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Lily L. Nguyen
- BioFrontiers Institute and Department of Molecular, Cellular and Developmental Biology, University of Colorado Boulder, Boulder, CO, USA
- Division of Reproductive Sciences, Department of Obstetrics and Gynecology, University of Colorado School of Medicine, Aurora, CO, USA
| | - Ben G. Bitler
- Division of Reproductive Sciences, Department of Obstetrics and Gynecology, University of Colorado School of Medicine, Aurora, CO, USA
| | - Todd M. Pitts
- Division of Medical Oncology, Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Edward B. Chuong
- BioFrontiers Institute and Department of Molecular, Cellular and Developmental Biology, University of Colorado Boulder, Boulder, CO, USA
| |
Collapse
|
4
|
Kabrani E, Saha T, Di Virgilio M. DNA repair and antibody diversification: the 53BP1 paradigm. Trends Immunol 2023; 44:782-791. [PMID: 37640588 DOI: 10.1016/j.it.2023.08.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 08/01/2023] [Accepted: 08/03/2023] [Indexed: 08/31/2023]
Abstract
The DNA double-strand break (DSB) repair factor 53BP1 has long been implicated in V(D)J and class switch recombination (CSR) of mammalian lymphocyte receptors. However, the dissection of the underlying molecular activities is hampered by a paucity of studies [V(D)J] and plurality of phenotypes (CSR) associated with 53BP1 deficiency. Here, we revisit the currently accepted roles of 53BP1 in antibody diversification in view of the recent identification of its downstream effectors in DSB protection and latest advances in genome architecture. We propose that, in addition to end protection, 53BP1-mediated end-tethering stabilization is essential for CSR. Furthermore, we support a pre-DSB role during V(D)J recombination. Our perspective underscores the importance of evaluating repair of DSBs in relation to their dynamic architectural contexts.
Collapse
Affiliation(s)
- Eleni Kabrani
- Laboratory of Genome Diversification and Integrity, Max Delbrück Center for Molecular Medicine in the Helmholtz Association, Berlin 13125, Germany.
| | - Tannishtha Saha
- Laboratory of Genome Diversification and Integrity, Max Delbrück Center for Molecular Medicine in the Helmholtz Association, Berlin 13125, Germany; Freie Universität Berlin, Berlin 14195, Germany
| | - Michela Di Virgilio
- Laboratory of Genome Diversification and Integrity, Max Delbrück Center for Molecular Medicine in the Helmholtz Association, Berlin 13125, Germany; Charité-Universitätsmedizin Berlin, Berlin 10117, Germany.
| |
Collapse
|
5
|
Nishikubo K, Hasegawa M, Izumi Y, Fujii K, Matsuo K, Matsumoto Y, Yokoya A. Structural study of wild-type and phospho-mimic XRCC4 dimer and multimer proteins using circular dichroism spectroscopy. Int J Radiat Biol 2023; 99:1684-1691. [PMID: 37171809 DOI: 10.1080/09553002.2023.2214210] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Accepted: 05/05/2023] [Indexed: 05/13/2023]
Abstract
PURPOSE To investigate the structural features of wild-type and phospho-mimicking mutated XRCC4 protein, a protein involved in DNA double-strand break repair. MATERIALS AND METHODS XRCC4 with a HisTag were expressed by E. coli harboring plasmid DNA and purified. Phospho-mimicking mutants in which one phosphorylation site was replaced with aspartic acid were also prepared in order to reproduce the negative charge resulting from phosphorylation. The proteins were separated into dimers and multimers by gel filtration chromatography. Circular dichroism (CD) spectroscopy was performed in the region from ultraviolet to vacuum-ultraviolet. The CD spectra were analyzed with two analysis programs to evaluate the secondary structures of the wild-type and phospho-mimicked dimers and multimers. RESULT AND DISCUSSION The proportion of β-strand in the wild-type dimers was very low, particularly in their C-terminal region, including the five phosphorylation sites. The secondary structure of the phospho-mimic hardly changed in the dimeric form. In contrast, the β-strand content increased and the α-helix content decreased upon multimerization of the wild-type protein. The structural change of multimers slightly depended on the phospho-mimic site. These results suggest that the β-strand structure stabilizes the multimerization of XRCC4 and it is regulated by phosphorylation at the C-terminal site in living cells. CONCLUSION An increase in the β-strand content in XRCC4 is essential for stabilization of the multimeric form through C-terminal phosphorylation, allowing the formation of the large double-strand break repair machinery.
Collapse
Affiliation(s)
- Kai Nishikubo
- Graduate School of Science and Engineering, Ibaraki University, Mito, Ibaraki, Japan
- Institute for Quantum Life Science, Quantum Life and Medical Science Directorate, National Institutes of Quantum Sciences and Technology (QST), Tokai, Ibaraki, Japan
| | - Maho Hasegawa
- Graduate School of Science and Engineering, Ibaraki University, Mito, Ibaraki, Japan
- Institute for Quantum Life Science, Quantum Life and Medical Science Directorate, National Institutes of Quantum Sciences and Technology (QST), Tokai, Ibaraki, Japan
| | - Yudai Izumi
- Institute for Quantum Life Science, Quantum Life and Medical Science Directorate, National Institutes of Quantum Sciences and Technology (QST), Tokai, Ibaraki, Japan
| | - Kentaro Fujii
- Institute for Quantum Life Science, Quantum Life and Medical Science Directorate, National Institutes of Quantum Sciences and Technology (QST), Tokai, Ibaraki, Japan
| | - Koichi Matsuo
- Hiroshima Synchrotron Radiation Center, Hiroshima University, Higashi-Hiroshima, Hiroshima, Japan
| | - Yoshihisa Matsumoto
- Laboratory for Zero-Carbon Energy, Institute of Innovative Research, Tokyo Institute of Technology, Meguro-ku, Tokyo, Japan
| | - Akinari Yokoya
- Graduate School of Science and Engineering, Ibaraki University, Mito, Ibaraki, Japan
- Institute for Quantum Life Science, Quantum Life and Medical Science Directorate, National Institutes of Quantum Sciences and Technology (QST), Tokai, Ibaraki, Japan
| |
Collapse
|
6
|
Yu Y, Sun Y, Li Z, Li J, Tian D. Systematic analysis identifies XRCC4 as a potential immunological and prognostic biomarker associated with pan-cancer. BMC Bioinformatics 2023; 24:44. [PMID: 36765282 PMCID: PMC9921312 DOI: 10.1186/s12859-023-05165-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Accepted: 01/30/2023] [Indexed: 02/12/2023] Open
Abstract
BACKGROUND XRCC4 is a NHEJ factor identified recently that plays a vital role in repairing DNA double-stranded breaks. Studies have reported the associations between abnormal expression of XRCC4 and tumor susceptibility and radiosensitivity, but the potential biological mechanisms by which XRCC4 exerts effects on tumorigenesis are not fully understood. This study aimed to systematically investigate the role of XRCC4 across cancer types. METHODS The TIMER, GTEX and Xiantao Academic database were used to interpret the expression of XRCC4. Genomic alterations and protein expression in human organic and tumor tissues were applied in cBioPortal and the Human Protein Atlas databases. Correlations between XRCC4 expression and immune and molecular subtypes were analyzed by using the TISIDB database. Protein-protein interactions, GO and KEGG enrichment were also applied for XRCC4-related genes. The TIMER and the Tumor Immune Single Cell Hub (TISCH) online databases were used to explore the relationship between XRCC4 and tumor immune microenvironment. Drug sensitivity information was acquired from the CellMiner database to analyze the effect of XRCC4 on sensitivity analysis. RESULTS The XRCC4 expression was significantly upregulated in 15 tumor types and downregulated in two tumor types compared with the normal tissues, most of which were validated by the results of Xiantao academic platform. XRCC4 was expressed at intermediate level in malignant cells. The XRCC4 expression was related to the molecular and immune subtypes of human cancers, and the survival outcome of 11 types of cancers, including KIRC, STAD and LIHC. The main type of frequent genetic alteration is amplification. Strong correlations were also found between XRCC4 and immune checkpoint genes in 33 human cancers. Furthermore, the abnormal expression of XRCC4 was related to immune cell infiltration and drug sensitivity. Enrichment analysis showed that XRCC4 was significantly correlated with DNA damage response. CONCLUSIONS This comprehensive pan-cancer analysis suggested that XRCC4 may play a vital role in the prognosis and immunotherapy response in cancer patients, and it is a promising therapy target in the future.
Collapse
Affiliation(s)
- Yang Yu
- Organ Transplant Center, Tianjin First Central Hospital, Nankai University, Tianjin, 300190 China
| | - Yanyan Sun
- Organ Transplant Center, Tianjin First Central Hospital, Nankai University, Tianjin, 300190 China
| | - Zhaoxian Li
- Organ Transplant Center, Tianjin First Central Hospital, Nankai University, Tianjin, 300190 China ,grid.216938.70000 0000 9878 7032School of Medicine, Nankai University, 94 Weijin Road, Tianjin, 300071 China
| | - Jiang Li
- Organ Transplant Center, Tianjin First Central Hospital, Nankai University, Tianjin, 300190 China
| | - Dazhi Tian
- Organ Transplant Center, Tianjin First Central Hospital, Nankai University, Tianjin, 300190, China.
| |
Collapse
|
7
|
Wang Y, Abolhassani H, Hammarström L, Pan-Hammarström Q. SARS-CoV-2 infection in patients with inborn errors of immunity due to DNA repair defects. Acta Biochim Biophys Sin (Shanghai) 2022; 54:836-846. [PMID: 35713311 PMCID: PMC9827799 DOI: 10.3724/abbs.2022071] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Clinical information on severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection in patients with inborn errors of immunity (IEI) during the current Coronavirus disease 2019 (COVID-19) pandemic is still limited. Proper DNA repair machinery is required for the development of the adaptive immune system, which provides specific and long-term protection against SARS-CoV-2. This review highlights the impact of SARS-CoV-2 infections on IEI patients with DNA repair disorders and summarizes susceptibility risk factors, pathogenic mechanisms, clinical manifestations and management strategies of COVID-19 in this special patient population.
Collapse
|
8
|
Abstract
The rapid development of CRISPR-Cas genome editing tools has greatly changed the way to conduct research and holds tremendous promise for clinical applications. During genome editing, CRISPR-Cas enzymes induce DNA breaks at the target sites and subsequently the DNA repair pathways are recruited to generate diverse editing outcomes. Besides off-target cleavage, unwanted editing outcomes including chromosomal structural variations and exogenous DNA integrations have recently raised concerns for clinical safety. To eliminate these unwanted editing byproducts, we need to explore the underlying mechanisms for the formation of diverse editing outcomes from the perspective of DNA repair. Here, we describe the involved DNA repair pathways in sealing Cas enzyme-induced DNA double-stranded breaks and discuss the origins and effects of unwanted editing byproducts on genome stability. Furthermore, we propose the potential risk of inhibiting DNA repair pathways to enhance gene editing. The recent combined studies of DNA repair and CRISPR-Cas editing provide a framework for further optimizing genome editing to enhance editing safety.
Collapse
|
9
|
Matsumoto Y. Development and Evolution of DNA-Dependent Protein Kinase Inhibitors toward Cancer Therapy. Int J Mol Sci 2022; 23:ijms23084264. [PMID: 35457081 PMCID: PMC9032228 DOI: 10.3390/ijms23084264] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Revised: 04/07/2022] [Accepted: 04/09/2022] [Indexed: 12/04/2022] Open
Abstract
DNA double-strand break (DSB) is considered the most deleterious type of DNA damage, which is generated by ionizing radiation (IR) and a subset of anticancer drugs. DNA-dependent protein kinase (DNA-PK), which is composed of a DNA-PK catalytic subunit (DNA-PKcs) and Ku80-Ku70 heterodimer, acts as the molecular sensor for DSB and plays a pivotal role in DSB repair through non-homologous end joining (NHEJ). Cells deficient for DNA-PKcs show hypersensitivity to IR and several DNA-damaging agents. Cellular sensitivity to IR and DNA-damaging agents can be augmented by the inhibition of DNA-PK. A number of small molecules that inhibit DNA-PK have been developed. Here, the development and evolution of inhibitors targeting DNA-PK for cancer therapy is reviewed. Significant parts of the inhibitors were developed based on the structural similarity of DNA-PK to phosphatidylinositol 3-kinases (PI3Ks) and PI3K-related kinases (PIKKs), including Ataxia-telangiectasia mutated (ATM). Some of DNA-PK inhibitors, e.g., NU7026 and NU7441, have been used extensively in the studies for cellular function of DNA-PK. Recently developed inhibitors, e.g., M3814 and AZD7648, are in clinical trials and on the way to be utilized in cancer therapy in combination with radiotherapy and chemotherapy.
Collapse
Affiliation(s)
- Yoshihisa Matsumoto
- Laboratory for Zero-Carbon Energy, Institute of Innovative Research, Tokyo Institute of Technology, Tokyo 152-8550, Japan
| |
Collapse
|
10
|
Koike M, Yutoku Y, Koike A. Feline XRCC4 undergoes rapid Ku-dependent recruitment to DNA damage sites. FEBS Open Bio 2022; 12:798-810. [PMID: 35000298 PMCID: PMC8972062 DOI: 10.1002/2211-5463.13363] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Revised: 11/30/2021] [Accepted: 01/07/2022] [Indexed: 11/16/2022] Open
Abstract
Radiation and chemotherapy resistance remain some of the greatest challenges in human and veterinary cancer therapies. XRCC4, an essential molecule for nonhomologous end joining repair, is a promising target for radiosensitizers. Genetic variants and mutations of XRCC4 contribute to cancer susceptibility, and XRCC4 is also the causative gene of microcephalic primordial dwarfism (MPD) in humans. The development of clinically effective molecular‐targeted drugs requires accurate understanding of the functions and regulatory mechanisms of XRCC4. In this study, we cloned and sequenced the cDNA of feline XRCC4. Comparative analysis indicated that sequences and post‐translational modification sites that are predicted to be involved in regulating the localization of human XRCC4, including the nuclear localization signal, are mostly conserved in feline XRCC4. All examined target amino acids responsible for human MPD are completely conserved in feline XRCC4. Furthermore, we found that the localization of feline XRCC4 dynamically changes during the cell cycle. Soon after irradiation, feline XRCC4 accumulated at laser‐induced DNA double‐strand break (DSB) sites in both the interphase and mitotic phase, and this accumulation was dependent on the presence of Ku. Additionally, XRCC4 superfamily proteins XLF and PAXX accumulated at the DSB sites. Collectively, these findings suggest that mechanisms regulating the spatiotemporal localization of XRCC4 are crucial for XRCC4 function in humans and cats. Our findings contribute to elucidating the functions of XRCC4 and the role of abnormal XRCC4 in diseases, including cancers and MPD, and may help in developing XRCC4‐targeted drugs, such as radiosensitizers, for humans and cats.
Collapse
Affiliation(s)
- Manabu Koike
- Institute for Quantum Medical Science, National Institutes for Quantum and Radiological Science and Technology, 4-9-1 Anagawa, Inage-ku, Chiba, 263-8555, Japan.,Department of Regulatory Biology, Faculty of Science, Saitama University, Saitama, Saitama, 338-8570, Japan
| | - Yasutomo Yutoku
- Institute for Quantum Medical Science, National Institutes for Quantum and Radiological Science and Technology, 4-9-1 Anagawa, Inage-ku, Chiba, 263-8555, Japan
| | - Aki Koike
- Institute for Quantum Medical Science, National Institutes for Quantum and Radiological Science and Technology, 4-9-1 Anagawa, Inage-ku, Chiba, 263-8555, Japan
| |
Collapse
|
11
|
Chen WT, Tseng HY, Jiang CL, Lee CY, Chi P, Chen LY, Lo KY, Wang IC, Lin FJ. Elp1 facilitates RAD51-mediated homologous recombination repair via translational regulation. J Biomed Sci 2021; 28:81. [PMID: 34819065 PMCID: PMC8613991 DOI: 10.1186/s12929-021-00773-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Accepted: 11/02/2021] [Indexed: 11/25/2022] Open
Abstract
Background RAD51-dependent homologous recombination (HR) is one of the most important pathways for repairing DNA double-strand breaks (DSBs), and its regulation is crucial to maintain genome integrity. Elp1 gene encodes IKAP/ELP1, a core subunit of the Elongator complex, which has been implicated in translational regulation. However, how ELP1 contributes to genome maintenance is unclear. Methods To investigate the function of Elp1, Elp1-deficient mouse embryonic fibroblasts (MEFs) were generated. Metaphase chromosome spreading, immunofluorescence, and comet assays were used to access chromosome abnormalities and DSB formation. Functional roles of Elp1 in MEFs were evaluated by cell viability, colony forming capacity, and apoptosis assays. HR-dependent DNA repair was assessed by reporter assay, immunofluorescence, and western blot. Polysome profiling was used to evaluate translational efficiency. Differentially expressed proteins and signaling pathways were identified using a label-free liquid chromatography–tandem mass spectrometry (LC–MS/MS) proteomics approach. Results Here, we report that Elp1 depletion enhanced genomic instability, manifested as chromosome breakage and genotoxic stress-induced genomic DNA fragmentation upon ionizing radiation (IR) exposure. Elp1-deficient cells were hypersensitive to DNA damage and exhibited impaired cell proliferation and defective HR repair. Moreover, Elp1 depletion reduced the formation of IR-induced RAD51 foci and decreased RAD51 protein levels. Polysome profiling analysis revealed that ELP1 regulated RAD51 expression by promoting its translation in response to DNA damage. Notably, the requirement for ELP1 in DSB repair could be partially rescued in Elp1-deficient cells by reintroducing RAD51, suggesting that Elp1-mediated HR-directed repair of DSBs is RAD51-dependent. Finally, using proteome analyses, we identified several proteins involved in cancer pathways and DNA damage responses as being differentially expressed upon Elp1 depletion. Conclusions Our study uncovered a molecular mechanism underlying Elp1-mediated regulation of HR activity and provides a novel link between translational regulation and genome stability. Supplementary Information The online version contains supplementary material available at 10.1186/s12929-021-00773-z.
Collapse
Affiliation(s)
- Wei-Ting Chen
- Department of Biochemical Science and Technology, National Taiwan University, No.1, Sec.4, Roosevelt Rd., Taipei, 10617, Taiwan
| | - Huan-Yi Tseng
- Department of Biochemical Science and Technology, National Taiwan University, No.1, Sec.4, Roosevelt Rd., Taipei, 10617, Taiwan
| | - Chung-Lin Jiang
- Department of Biochemical Science and Technology, National Taiwan University, No.1, Sec.4, Roosevelt Rd., Taipei, 10617, Taiwan
| | - Chih-Ying Lee
- Institute of Biochemical Sciences, National Taiwan University, Taipei, 10617, Taiwan
| | - Peter Chi
- Institute of Biochemical Sciences, National Taiwan University, Taipei, 10617, Taiwan.,Institute of Biological Chemistry, Academia Sinica, Taipei, 11529, Taiwan
| | - Liuh-Yow Chen
- Institute of Molecular Biology, Academia Sinica, Taipei, 11529, Taiwan
| | - Kai-Yin Lo
- Department of Agricultural Chemistry, National Taiwan University, Taipei, 10617, Taiwan
| | - I-Ching Wang
- Institute of Biotechnology, National Tsing Hua University, Hsinchu, 30013, Taiwan
| | - Fu-Jung Lin
- Department of Biochemical Science and Technology, National Taiwan University, No.1, Sec.4, Roosevelt Rd., Taipei, 10617, Taiwan. .,Research Center for Development Biology and Regenerative Medicine, National Taiwan University, Taipei, 10617, Taiwan.
| |
Collapse
|
12
|
Cabello-Lobato MJ, Schmidt CK, Cliff MJ. 1H, 13C, 15N backbone resonance assignment for the 1-164 construct of human XRCC4. BIOMOLECULAR NMR ASSIGNMENTS 2021; 15:389-395. [PMID: 34173222 PMCID: PMC8481219 DOI: 10.1007/s12104-021-10035-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Accepted: 06/14/2021] [Indexed: 06/13/2023]
Abstract
DNA double-strand breaks (DSBs) represent the most cytotoxic DNA lesions, as-if mis- or unrepaired-they can cause cell death or lead to genome instability, which in turn can cause cancer. DSBs are repaired by two major pathways termed homologous recombination and non-homologous end-joining (NHEJ). NHEJ is responsible for repairing the vast majority of DSBs arising in human cells. Defects in NHEJ factors are also associated with microcephaly, primordial dwarfism and immune deficiencies. One of the key proteins important for mediating NHEJ is XRCC4. XRCC4 is a dimer, with the dimer interface mediated by an extended coiled-coil. The N-terminal head domain forms a mixed alpha-beta globular structure. Numerous factors interact with the C-terminus of the coiled-coil domain, which is also associated with significant self-association between XRCC4 dimers. A range of construct lengths of human XRCC4 were expressed and purified, and the 1-164 variant had the best NMR properties, as judged by consistent linewidths, and chemical shift dispersion. In this work we report the 1H, 15 N and 13C backbone resonance assignments of human XRCC4 in the solution form of the 1-164 construct. Assignments were obtained by heteronuclear multidimensional NMR spectroscopy. In total, 156 of 161 assignable residues of XRCC4 were assigned to resonances in the TROSY spectrum, with an additional 11 resonances assigned to His-Tag residues. Prediction of solution secondary structure from a chemical shift analysis using the TALOS + webserver is in good agreement with the published X-ray crystal structures of this protein.
Collapse
Affiliation(s)
- Maria Jose Cabello-Lobato
- Manchester Cancer Research Centre, Division of Cancer Sciences, School of Medical Sciences, Faculty of Biology, Medicine and Health, University of Manchester, 555 Wilmslow Road, Manchester, M20 4GJ, UK
| | - Christine K Schmidt
- Manchester Cancer Research Centre, Division of Cancer Sciences, School of Medical Sciences, Faculty of Biology, Medicine and Health, University of Manchester, 555 Wilmslow Road, Manchester, M20 4GJ, UK.
| | - Matthew J Cliff
- Manchester Institute of Biotechnology (MIB), University of Manchester, 131 Princess St, Manchester, M1 7DN, UK.
| |
Collapse
|
13
|
Liang S, Chaplin AK, Stavridi AK, Appleby R, Hnizda A, Blundell TL. Stages, scaffolds and strings in the spatial organisation of non-homologous end joining: Insights from X-ray diffraction and Cryo-EM. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2021; 163:60-73. [PMID: 33285184 PMCID: PMC8224183 DOI: 10.1016/j.pbiomolbio.2020.11.008] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/26/2020] [Accepted: 11/26/2020] [Indexed: 01/10/2023]
Abstract
Non-homologous end joining (NHEJ) is the preferred pathway for the repair of DNA double-strand breaks in humans. Here we describe three structural aspects of the repair pathway: stages, scaffolds and strings. We discuss the orchestration of DNA repair to guarantee robust and efficient NHEJ. We focus on structural studies over the past two decades, not only using X-ray diffraction, but also increasingly exploiting cryo-EM to investigate the macromolecular assemblies.
Collapse
Affiliation(s)
- Shikang Liang
- Department of Biochemistry, University of Cambridge, Tennis Court Road, Cambridge, CB2 1GA, Cambridgeshire, UK
| | - Amanda K Chaplin
- Department of Biochemistry, University of Cambridge, Tennis Court Road, Cambridge, CB2 1GA, Cambridgeshire, UK
| | - Antonia Kefala Stavridi
- Department of Biochemistry, University of Cambridge, Tennis Court Road, Cambridge, CB2 1GA, Cambridgeshire, UK
| | - Robert Appleby
- Department of Biochemistry, University of Cambridge, Tennis Court Road, Cambridge, CB2 1GA, Cambridgeshire, UK
| | - Ales Hnizda
- Department of Biochemistry, University of Cambridge, Tennis Court Road, Cambridge, CB2 1GA, Cambridgeshire, UK
| | - Tom L Blundell
- Department of Biochemistry, University of Cambridge, Tennis Court Road, Cambridge, CB2 1GA, Cambridgeshire, UK.
| |
Collapse
|
14
|
Matsumoto Y, Asa ADDC, Modak C, Shimada M. DNA-Dependent Protein Kinase Catalytic Subunit: The Sensor for DNA Double-Strand Breaks Structurally and Functionally Related to Ataxia Telangiectasia Mutated. Genes (Basel) 2021; 12:genes12081143. [PMID: 34440313 PMCID: PMC8394720 DOI: 10.3390/genes12081143] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2021] [Revised: 07/19/2021] [Accepted: 07/22/2021] [Indexed: 11/16/2022] Open
Abstract
The DNA-dependent protein kinase (DNA-PK) is composed of a DNA-dependent protein kinase catalytic subunit (DNA-PKcs) and Ku70/Ku80 heterodimer. DNA-PK is thought to act as the “sensor” for DNA double-stranded breaks (DSB), which are considered the most deleterious type of DNA damage. In particular, DNA-PKcs and Ku are shown to be essential for DSB repair through nonhomologous end joining (NHEJ). The phenotypes of animals and human individuals with defective DNA-PKcs or Ku functions indicate their essential roles in these developments, especially in neuronal and immune systems. DNA-PKcs are structurally related to Ataxia–telangiectasia mutated (ATM), which is also implicated in the cellular responses to DSBs. DNA-PKcs and ATM constitute the phosphatidylinositol 3-kinase-like kinases (PIKKs) family with several other molecules. Here, we review the accumulated knowledge on the functions of DNA-PKcs, mainly based on the phenotypes of DNA-PKcs-deficient cells in animals and human individuals, and also discuss its relationship with ATM in the maintenance of genomic stability.
Collapse
|
15
|
Asa ADDC, Wanotayan R, Sharma MK, Tsukada K, Shimada M, Matsumoto Y. Functional analysis of XRCC4 mutations in reported microcephaly and growth defect patients in terms of radiosensitivity. JOURNAL OF RADIATION RESEARCH 2021; 62:380-389. [PMID: 33842963 PMCID: PMC8127669 DOI: 10.1093/jrr/rrab016] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/05/2020] [Revised: 02/01/2021] [Indexed: 05/08/2023]
Abstract
Non-homologous end joining is one of the main pathways for DNA double-strand break (DSB) repair and is also implicated in V(D)J recombination in immune system. Therefore, mutations in non-homologous end-joining (NHEJ) proteins were found to be associated with immunodeficiency in human as well as in model animals. Several human patients with mutations in XRCC4 were reported to exhibit microcephaly and growth defects, but unexpectedly showed normal immune function. Here, to evaluate the functionality of these disease-associated mutations of XRCC4 in terms of radiosensitivity, we generated stable transfectants expressing these mutants in XRCC4-deficient murine M10 cells and measured their radiosensitivity by colony formation assay. V83_S105del, R225X and D254Mfs*68 were expressed at a similar level to wild-type XRCC4, while W43R, R161Q and R275X were expressed at even higher level than wild-type XRCC4. The expression levels of DNA ligase IV in the transfectants with these mutants were comparable to that in the wild-type XRCC4 transfectant. The V83S_S105del transfectant and, to a lesser extent, D254Mfs*68 transfectant, showed substantially increased radiosensitivity compared to the wild-type XRCC4 transfectant. The W43R, R161Q, R225X and R275X transfectants showed a slight but statistically significant increase in radiosensitivity compared to the wild-type XRCC4 transfectant. When expressed as fusion proteins with Green fluorescent protein (GFP), R225X, R275X and D254Mfs*68 localized to the cytoplasm, whereas other mutants localized to the nucleus. These results collectively indicated that the defects of XRCC4 in patients might be mainly due to insufficiency in protein quantity and impaired functionality, underscoring the importance of XRCC4's DSB repair function in normal development.
Collapse
Affiliation(s)
- Anie Day D C Asa
- Laboratory for Advanced Nuclear Energy, Institute of Innovative Research, Tokyo Institute of Technology, Tokyo 152-8550, Japan
| | - Rujira Wanotayan
- Laboratory for Advanced Nuclear Energy, Institute of Innovative Research, Tokyo Institute of Technology, Tokyo 152-8550, Japan
- Department of Radiological Technology, Mahidol University, Nakhon Pathom 73170, Thailand
| | - Mukesh Kumar Sharma
- Laboratory for Advanced Nuclear Energy, Institute of Innovative Research, Tokyo Institute of Technology, Tokyo 152-8550, Japan
- Department of Zoology, SPC Government College, Ajmer-305001, Rajasthan, India
| | - Kaima Tsukada
- Laboratory for Advanced Nuclear Energy, Institute of Innovative Research, Tokyo Institute of Technology, Tokyo 152-8550, Japan
| | - Mikio Shimada
- Laboratory for Advanced Nuclear Energy, Institute of Innovative Research, Tokyo Institute of Technology, Tokyo 152-8550, Japan
| | - Yoshihisa Matsumoto
- Corresponding author. Yoshihisa Matsumoto, Laboratory for Advanced Nuclear Energy, Institute of Innovative Research, Tokyo Institute of Technology, 2-12-1 Ookayama, Meguro-ku, Tokyo 152-8550 Japan. E-mail: ; FAX: +81-3-5734-3703
| |
Collapse
|
16
|
Wang Y, Fu Z, Li X, Liang Y, Pei S, Hao S, Zhu Q, Yu T, Pei Y, Yuan J, Ye J, Fu J, Xu J, Hong J, Yang R, Hou H, Huang X, Peng C, Zheng M, Xiao Y. Cytoplasmic DNA sensing by KU complex in aged CD4 + T cell potentiates T cell activation and aging-related autoimmune inflammation. Immunity 2021; 54:632-647.e9. [PMID: 33667382 DOI: 10.1016/j.immuni.2021.02.003] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2020] [Revised: 09/19/2020] [Accepted: 02/08/2021] [Indexed: 02/06/2023]
Abstract
Aging is associated with DNA accumulation and increased homeostatic proliferation of circulating T cells. Although these attributes are associated with aging-related autoimmunity, their direct contributions remain unclear. Conventionally, KU complex, the regulatory subunit of DNA-dependent protein kinase (DNA-PK), together with the catalytic subunit of DNA-PK (DNA-PKcs), mediates DNA damage repair in the nucleus. Here, we found KU complex abundantly expressed in the cytoplasm, where it recognized accumulated cytoplasmic DNA in aged human and mouse CD4+ T cells. This process enhanced T cell activation and pathology of experimental autoimmune encephalomyelitis (EAE) in aged mice. Mechanistically, KU-mediated DNA sensing facilitated DNA-PKcs recruitment and phosphorylation of the kinase ZAK. This activated AKT and mTOR pathways, promoting CD4+ T cell proliferation and activation. We developed a specific ZAK inhibitor, which dampened EAE pathology in aged mice. Overall, these findings demonstrate a KU-mediated cytoplasmic DNA-sensing pathway in CD4+ T cells that potentiates aging-related autoimmunity.
Collapse
Affiliation(s)
- Yan Wang
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Zunyun Fu
- Drug Discovery and Design Center, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai 201203, China; School of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Xutong Li
- Drug Discovery and Design Center, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai 201203, China
| | - Yinming Liang
- School of Laboratory Medicine, Xinxiang Medical University, Xinxiang 453003, China
| | - Siyu Pei
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Shumeng Hao
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Qingchen Zhu
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Tao Yu
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Yifei Pei
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Jia Yuan
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Jialin Ye
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Jiemeng Fu
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Jing Xu
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Jin Hong
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200031, China; Comprehensive Breast Health Center, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai 200025, China
| | - Ruirui Yang
- Drug Discovery and Design Center, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai 201203, China; Shanghai Institute for Advanced Immunochemical Studies, and School of Life Science and Technology, ShanghaiTech University, Shanghai 200031, China
| | - Hui Hou
- Drug Discovery and Design Center, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai 201203, China
| | - Xinfang Huang
- Department of Rheumatology, Shanghai East Hospital, Tongji University, School of Medicine, Shanghai 200120, China
| | - Chao Peng
- National Facility for Protein Science in Shanghai, Zhangjiang Lab, Shanghai 201210, China
| | - Mingyue Zheng
- Drug Discovery and Design Center, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai 201203, China.
| | - Yichuan Xiao
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200031, China.
| |
Collapse
|
17
|
Stinson BM, Loparo JJ. Repair of DNA Double-Strand Breaks by the Nonhomologous End Joining Pathway. Annu Rev Biochem 2021; 90:137-164. [PMID: 33556282 DOI: 10.1146/annurev-biochem-080320-110356] [Citation(s) in RCA: 108] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
DNA double-strand breaks pose a serious threat to genome stability. In vertebrates, these breaks are predominantly repaired by nonhomologous end joining (NHEJ), which pairs DNA ends in a multiprotein synaptic complex to promote their direct ligation. NHEJ is a highly versatile pathway that uses an array of processing enzymes to modify damaged DNA ends and enable their ligation. The mechanisms of end synapsis and end processing have important implications for genome stability. Rapid and stable synapsis is necessary to limit chromosome translocations that result from the mispairing of DNA ends. Furthermore, end processing must be tightly regulated to minimize mutations at the break site. Here, we review our current mechanistic understanding of vertebrate NHEJ, with a particular focus on end synapsis and processing.
Collapse
Affiliation(s)
- Benjamin M Stinson
- Department of Biological Chemistry and Molecular Pharmacology, Blavatnik Institute, Harvard Medical School, Boston, Massachusetts 02115, USA; ,
| | - Joseph J Loparo
- Department of Biological Chemistry and Molecular Pharmacology, Blavatnik Institute, Harvard Medical School, Boston, Massachusetts 02115, USA; ,
| |
Collapse
|
18
|
Ochi T, Quarantotti V, Lin H, Jullien J, Rosa E Silva I, Boselli F, Barnabas DD, Johnson CM, McLaughlin SH, Freund SMV, Blackford AN, Kimata Y, Goldstein RE, Jackson SP, Blundell TL, Dutcher SK, Gergely F, van Breugel M. CCDC61/VFL3 Is a Paralog of SAS6 and Promotes Ciliary Functions. Structure 2020; 28:674-689.e11. [PMID: 32375023 PMCID: PMC7267773 DOI: 10.1016/j.str.2020.04.010] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2019] [Revised: 02/24/2020] [Accepted: 04/11/2020] [Indexed: 01/08/2023]
Abstract
Centrioles are cylindrical assemblies whose peripheral microtubule array displays a 9-fold rotational symmetry that is established by the scaffolding protein SAS6. Centriole symmetry can be broken by centriole-associated structures, such as the striated fibers in Chlamydomonas that are important for ciliary function. The conserved protein CCDC61/VFL3 is involved in this process, but its exact role is unclear. Here, we show that CCDC61 is a paralog of SAS6. Crystal structures of CCDC61 demonstrate that it contains two homodimerization interfaces that are similar to those found in SAS6, but result in the formation of linear filaments rather than rings. Furthermore, we show that CCDC61 binds microtubules and that residues involved in CCDC61 microtubule binding are important for ciliary function in Chlamydomonas. Together, our findings suggest that CCDC61 and SAS6 functionally diverged from a common ancestor while retaining the ability to scaffold the assembly of basal body-associated structures or centrioles, respectively.
Collapse
Affiliation(s)
- Takashi Ochi
- MRC Laboratory of Molecular Biology, Cambridge Biomedical Campus, Francis Crick Avenue, Cambridge CB2 0QH, UK.
| | - Valentina Quarantotti
- Cancer Research UK Cambridge Institute, University of Cambridge, Li Ka Shing Centre, Robinson Way, Cambridge CB2 0RE, UK
| | - Huawen Lin
- Department of Genetics, Washington University School of Medicine, 4523 Clayton Avenue, St Louis, MO 63110, USA
| | - Jerome Jullien
- Wellcome Trust/Cancer Research UK Gurdon Institute, University of Cambridge, Cambridge CB2 1QN, UK; Department of Zoology, University of Cambridge, Downing Street, Cambridge CB2 3EJ, UK; CRTI, INSERM, UNIV Nantes, Nantes, France
| | - Ivan Rosa E Silva
- MRC Laboratory of Molecular Biology, Cambridge Biomedical Campus, Francis Crick Avenue, Cambridge CB2 0QH, UK
| | - Francesco Boselli
- DAMTP, Centre for Mathematical Sciences, Wilberforce Road, Cambridge CB3 0WA, UK
| | - Deepak D Barnabas
- MRC Laboratory of Molecular Biology, Cambridge Biomedical Campus, Francis Crick Avenue, Cambridge CB2 0QH, UK
| | - Christopher M Johnson
- MRC Laboratory of Molecular Biology, Cambridge Biomedical Campus, Francis Crick Avenue, Cambridge CB2 0QH, UK
| | - Stephen H McLaughlin
- MRC Laboratory of Molecular Biology, Cambridge Biomedical Campus, Francis Crick Avenue, Cambridge CB2 0QH, UK
| | - Stefan M V Freund
- MRC Laboratory of Molecular Biology, Cambridge Biomedical Campus, Francis Crick Avenue, Cambridge CB2 0QH, UK
| | - Andrew N Blackford
- Department of Oncology, MRC Weatherall Institute of Molecular Medicine, University of Oxford, John Radcliffe Hospital, Oxford OX3 9DS, UK; Cancer Research UK and Medical Research Council Oxford Institute for Radiation Oncology, University of Oxford, Oxford OX3 7DQ, UK
| | - Yuu Kimata
- Department of Genetics, University of Cambridge, Cambridge CB4 1AR, UK; School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Raymond E Goldstein
- DAMTP, Centre for Mathematical Sciences, Wilberforce Road, Cambridge CB3 0WA, UK
| | - Stephen P Jackson
- Wellcome Trust/Cancer Research UK Gurdon Institute, University of Cambridge, Cambridge CB2 1QN, UK; Department of Biochemistry, University of Cambridge, 80 Tennis Court Road, Cambridge CB2 1GA, UK
| | - Tom L Blundell
- Department of Biochemistry, University of Cambridge, 80 Tennis Court Road, Cambridge CB2 1GA, UK
| | - Susan K Dutcher
- Department of Genetics, Washington University School of Medicine, 4523 Clayton Avenue, St Louis, MO 63110, USA
| | - Fanni Gergely
- Cancer Research UK Cambridge Institute, University of Cambridge, Li Ka Shing Centre, Robinson Way, Cambridge CB2 0RE, UK
| | - Mark van Breugel
- MRC Laboratory of Molecular Biology, Cambridge Biomedical Campus, Francis Crick Avenue, Cambridge CB2 0QH, UK.
| |
Collapse
|
19
|
Ruis B, Molan A, Takasugi T, Hendrickson EA. Absence of XRCC4 and its paralogs in human cells reveal differences in outcomes for DNA repair and V(D)J recombination. DNA Repair (Amst) 2019; 85:102738. [PMID: 31731258 DOI: 10.1016/j.dnarep.2019.102738] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2019] [Revised: 10/15/2019] [Accepted: 10/16/2019] [Indexed: 02/06/2023]
Abstract
The repair of DNA double-stranded breaks (DSBs) is an essential function performed by the Classical Non-Homologous End-Joining (C-NHEJ) pathway in higher eukaryotes. C-NHEJ, in fact, does double duty as it is also required for the repair of the intermediates formed during lymphoid B- and T-cell recombination. Consequently, the failure to properly repair DSBs leads to both genomic instability and immunodeficiency. A critical DSB protein required for C-NHEJ is the DNA Ligase IV (LIGIV) accessory factor, X-Ray Cross Complementing 4 (XRCC4). XRCC4 is believed to stabilize LIGIV, participate in LIGIV activation, and to help tether the broken DSB ends together. XRCC4's role in these processes has been muddied by the identification of two additional XRCC4 paralogs, XRCC4-Like Factor (XLF), and Paralog of XRCC4 and XLF (PAXX). The roles that these paralogs play in C-NHEJ is partially understood, but, in turn, has itself been obscured by species-specific differences observed in the absence of one or the other paralogs. In order to investigate the role(s) that XRCC4 may play, with or without XLF and/or PAXX, in lymphoid variable(diversity)joining [V(D)J] recombination as well as in DNA DSB repair in human somatic cells, we utilized gene targeting to inactivate the XRCC4 gene in both parental and XLF- HCT116 cells and then inactivated PAXX in those same cell lines. The loss of XRCC4 expression by itself led, as anticipated, to increased sensitivity to DNA damaging agents as well as an increased dependence on microhomology-mediated DNA repair whether in the context of DSB repair or during V(D)J recombination. The additional loss of XLF in these cell lines sensitized the cells even more whereas the presence or absence of PAXX was scarcely negligible. These studies demonstrate that, of the three LIG4 accessory factor paralogs, the absence of XRCC4 influences DNA repair and recombination the most in human cells.
Collapse
Affiliation(s)
- Brian Ruis
- Department of Biochemistry, Molecular Biology, and Biophysics, University of Minnesota Medical School, Minneapolis, MN, 55455, United States
| | - Amy Molan
- Department of Biochemistry, Molecular Biology, and Biophysics, University of Minnesota Medical School, Minneapolis, MN, 55455, United States
| | - Taylor Takasugi
- Department of Biochemistry, Molecular Biology, and Biophysics, University of Minnesota Medical School, Minneapolis, MN, 55455, United States
| | - Eric A Hendrickson
- Department of Biochemistry, Molecular Biology, and Biophysics, University of Minnesota Medical School, Minneapolis, MN, 55455, United States.
| |
Collapse
|
20
|
Miyoshi T, Makino T, Moran JV. Poly(ADP-Ribose) Polymerase 2 Recruits Replication Protein A to Sites of LINE-1 Integration to Facilitate Retrotransposition. Mol Cell 2019; 75:1286-1298.e12. [PMID: 31473101 PMCID: PMC6754305 DOI: 10.1016/j.molcel.2019.07.018] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2018] [Revised: 05/23/2019] [Accepted: 07/12/2019] [Indexed: 10/26/2022]
Abstract
Long interspersed element-1 (LINE-1 or L1) retrotransposition poses a threat to genome integrity, and cells have evolved mechanisms to restrict retrotransposition. However, how cellular proteins facilitate L1 retrotransposition requires elucidation. Here, we demonstrate that single-strand DNA breaks induced by the L1 endonuclease trigger the recruitment of poly(ADP-ribose) polymerase 2 (PARP2) to L1 integration sites and that PARP2 activation leads to the subsequent recruitment of the replication protein A (RPA) complex to facilitate retrotransposition. We further demonstrate that RPA directly binds activated PARP2 through poly(ADP-ribosyl)ation and can protect single-strand L1 integration intermediates from APOBEC3-mediated cytidine deamination in vitro. Paradoxically, we provide evidence that RPA can guide APOBEC3A, and perhaps other APOBEC3 proteins, to sites of L1 integration. Thus, the interplay of L1-encoded and evolutionarily conserved cellular proteins is required for efficient retrotransposition; however, these interactions also may be exploited to restrict L1 retrotransposition in the human genome.
Collapse
Affiliation(s)
- Tomoichiro Miyoshi
- Department of Gene Mechanisms, Graduate School of Biostudies, Kyoto University, Kyoto 606-8501, Japan; Department of Stress Response, Graduate School of Biostudies, Kyoto University, Kyoto 606-8501, Japan; Department of Human Genetics, University of Michigan Medical School, Ann Arbor, MI 48109-5618, USA.
| | - Takeshi Makino
- Department of Gene Mechanisms, Graduate School of Biostudies, Kyoto University, Kyoto 606-8501, Japan; Department of Stress Response, Graduate School of Biostudies, Kyoto University, Kyoto 606-8501, Japan
| | - John V Moran
- Department of Human Genetics, University of Michigan Medical School, Ann Arbor, MI 48109-5618, USA; Department of Internal Medicine, University of Michigan Medical School, Ann Arbor, MI 48109-5618, USA.
| |
Collapse
|
21
|
Gupta MK, Kushwah AS, Singh R, Banerjee M. Genotypic analysis of XRCC4 and susceptibility to cervical cancer. Br J Biomed Sci 2019; 77:7-12. [DOI: 10.1080/09674845.2019.1637573] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Affiliation(s)
- MK Gupta
- Molecular and Human Genetics Laboratory, Department of Zoology, University of Lucknow, Lucknow, India
| | - AS Kushwah
- Molecular and Human Genetics Laboratory, Department of Zoology, University of Lucknow, Lucknow, India
- Department of Zoology, Institute of Science, Banaras Hindu University, Varanasi, India
| | - R Singh
- Department of Obstetrics & Gynecology, King George’s Medical University, Lucknow, India
| | - M Banerjee
- Molecular and Human Genetics Laboratory, Department of Zoology, University of Lucknow, Lucknow, India
| |
Collapse
|
22
|
Kitagawa M, Someya M, Hasegawa T, Mikami T, Asaishi K, Hasegawa T, Matsumoto Y, Kutomi G, Takemasa I, Sakata KI. Influence of XRCC4 expression by breast cancer cells on ipsilateral recurrence after breast-conserving therapy. Strahlenther Onkol 2019; 195:648-658. [PMID: 30997540 DOI: 10.1007/s00066-019-01468-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2019] [Accepted: 03/29/2019] [Indexed: 10/27/2022]
Abstract
BACKGROUND We examined the expression of nonhomologous end-joining (NHEJ) proteins by breast cancer cells in patients with or without ipsilateral breast tumor recurrence (IBTR) after breast-conserving therapy. We also investigated whether there was a difference of NHEJ-related protein expression by tumor cells between two types of IBTR, i.e., true recurrence (TR) with regrowth from the tumor bed or development of a new primary tumor (NP). PATIENTS AND METHODS The original cohort comprised 560 breast cancer patients who received breast-conserving therapy between February 1995 and March 2006, including 520 patients without IBTR and 40 patients with IBTR. Propensity score matching was employed to select 40 trios (120 patients) consisting of 1 patient with IBTR and 2 patients without IBTR. Immunohistochemical examination of proteins related to NHEJ was performed in surgical specimens. RESULTS The 40 patients with IBTR included 22 patients who developed TR and 18 who had NP. The 15-year overall survival rate was 85.9% for patients with NP and 95.5% for those with TR, while it was 96.5% for patients without IBTR. Patients with high XRCC4 expression in tumor cells had significantly higher IBTR rates than those with low XRCC4 expression (P < 0.001). The frequency of TR was significantly higher in patients with high expression of XRCC4 than in those with low XRCC4 expression (p < 0.001). XRCC4 expression by tumor cells was not significantly related to development of NP. CONCLUSION IBTR due to TR may be related to low radiosensitivity of tumor cells, possibly related to high XRCC4 expression.
Collapse
Affiliation(s)
- Mio Kitagawa
- Department of Radiology, Sapporo Medical University School of Medicine, 060-8543, Chuo-ku, Sapporo, Hokkaido, Japan
| | - Masanori Someya
- Department of Radiology, Sapporo Medical University School of Medicine, 060-8543, Chuo-ku, Sapporo, Hokkaido, Japan
| | - Tomokazu Hasegawa
- Department of Radiology, Sapporo Medical University School of Medicine, 060-8543, Chuo-ku, Sapporo, Hokkaido, Japan
| | - Toshihiko Mikami
- Sapporo-Kotoni Breast Clinic, 063-0812, Nishi-ku, Sapporo, Hokkaido, Japan
| | - Kazuaki Asaishi
- Sapporo-Kotoni Breast Clinic, 063-0812, Nishi-ku, Sapporo, Hokkaido, Japan
| | - Tadashi Hasegawa
- Department of Surgical Pathology, Sapporo Medical University School of Medicine, 060-8543, Chuo-ku, Sapporo, Hokkaido, Japan
| | - Yoshihisa Matsumoto
- Institute of Innovative Research Laboratory for Advanced Nuclear Energy, Tokyo Institute of Technology, N1-30 2‑12-1 Ookayama, Meguro-ku, 152-8550, Tokyo, Japan
| | - Goro Kutomi
- Department of Surgery, Surgical Oncology and Science, Sapporo Medical University School of Medicine, 060-8543, Chuo-ku, Sapporo, Hokkaido, Japan
| | - Ichiro Takemasa
- Department of Surgery, Surgical Oncology and Science, Sapporo Medical University School of Medicine, 060-8543, Chuo-ku, Sapporo, Hokkaido, Japan
| | - Koh-Ichi Sakata
- Department of Radiology, Sapporo Medical University School of Medicine, 060-8543, Chuo-ku, Sapporo, Hokkaido, Japan.
| |
Collapse
|
23
|
Amiri Moghani AR, Sharma MK, Matsumoto Y. In cellulo phosphorylation of DNA double-strand break repair protein XRCC4 on Ser260 by DNA-PK. JOURNAL OF RADIATION RESEARCH 2018; 59:700-708. [PMID: 30247612 PMCID: PMC6251426 DOI: 10.1093/jrr/rry072] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2017] [Indexed: 05/16/2023]
Abstract
XRCC4 is one of the core factors for DNA double-strand break (DSB) repair through non-homologous end joining (NHEJ). XRCC4 is phosphorylated by DNA-dependent protein kinase (DNA-PK), with Ser260 and Ser320 (Ser318 in the alternatively spliced form) being the major phosphorylation sites in vitro. It was recently reported that Ser320 is phosphorylated by DNA-PK in response to DNA damage; however, it is currently unclear whether Ser260 is phosphorylated in cellulo in response to DNA damage. Herein, we generated an antibody against XRCC4 phosphorylated on Ser260 and examined its phosphorylation status via Western blotting. XRCC4 Ser260 phosphorylation increased after irradiation with 30-300 Gy of γ-rays and was suppressed by DNA-PK inhibitor but not by ATM inhibitor. Moreover, XRCC4 Ser260 phosphorylation decreased in DNA-PKcs-deficient cells. These observations indicate that XRCC4 Ser260 is phosphorylated by DNA-PK in cellulo. The XRCC4S260A mutant reversed the high radiosensitivity of XRCC4-deficient M10 cells to a similar level to that of wild-type XRCC4. However, the clonogenic survival of cells expressing the XRCC4S260A mutant was slightly but significantly lower than that of those expressing wild-type XRCC4. In addition, XRCC4S260A-expressing cells displayed a significantly greater number of γ-H2AX foci than XRCC4WT-expressing cells 4 h after 1 Gy irradiation and without irradiation. The present results suggest a potential role of XRCC4 Ser260 phosphorylation by DNA-PK in DSB repair.
Collapse
Affiliation(s)
- Ali Reza Amiri Moghani
- Laboratory for Advanced Nuclear Energy, Institute of Innovative Research, Tokyo Institute of Technology, 2-12-1-N1–30, Ookayama, Meguro-ku, Tokyo, Japan
| | - Mukesh Kumar Sharma
- Laboratory for Advanced Nuclear Energy, Institute of Innovative Research, Tokyo Institute of Technology, 2-12-1-N1–30, Ookayama, Meguro-ku, Tokyo, Japan
- Department of Zoology, SPC Government College, Ajmer, Rajasthan, India
| | - Yoshihisa Matsumoto
- Laboratory for Advanced Nuclear Energy, Institute of Innovative Research, Tokyo Institute of Technology, 2-12-1-N1–30, Ookayama, Meguro-ku, Tokyo, Japan
- Corresponding author. Laboratory for Advanced Nuclear Energy, Institute of Innovative Research, Tokyo Institute of Technology, 2-12-1-N1–30, Ookayama, Meguro-ku, Tokyo 152-8550, Japan. Tel/Fax: +81-0-3-5734-3703;
| |
Collapse
|
24
|
Alt FW, Schwer B. DNA double-strand breaks as drivers of neural genomic change, function, and disease. DNA Repair (Amst) 2018; 71:158-163. [PMID: 30195640 DOI: 10.1016/j.dnarep.2018.08.019] [Citation(s) in RCA: 60] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Early work from about two decades ago implicated DNA double-strand break (DSB) formation and repair in neuronal development. Findings emerging from recent studies of DSBs in proliferating neural progenitors and in mature, non-dividing neurons suggest important roles of DSBs in brain physiology, aging, cancer, psychiatric and neurodegenerative disorders. We provide an overview of some findings and speculate on what may lie ahead.
Collapse
Affiliation(s)
- Frederick W Alt
- Howard Hughes Medical Institute, Program in Cellular and Molecular Medicine, Boston Children's Hospital, Department of Genetics, and Department of Pediatrics, Harvard Medical School, Boston, MA 02115, United States.
| | - Bjoern Schwer
- Department of Neurological Surgery and Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, University of California, San Francisco, CA 94158, United States.
| |
Collapse
|
25
|
Funck T, Barnkob MB, Holm N, Ohm-Laursen L, Mehlum CS, Möller S, Barington T. Nucleotide Composition of Human Ig Nontemplated Regions Depends on Trimming of the Flanking Gene Segments, and Terminal Deoxynucleotidyl Transferase Favors Adding Cytosine, Not Guanosine, in Most VDJ Rearrangements. THE JOURNAL OF IMMUNOLOGY 2018; 201:1765-1774. [PMID: 30097530 DOI: 10.4049/jimmunol.1800100] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2018] [Accepted: 07/05/2018] [Indexed: 01/12/2023]
Abstract
The formation of nontemplated (N) regions during Ig gene rearrangement is a major contributor to Ab diversity. To gain insights into the mechanisms behind this, we studied the nucleotide composition of N regions within 29,962 unique human VHDJH rearrangements and 8728 unique human DJH rearrangements containing exactly one identifiable D gene segment and thus two N regions, N1 and N2. We found a distinct decreasing content of cytosine (C) and increasing content of guanine (G) across each N region, suggesting that N regions are typically generated by concatenation of two 3' overhangs synthesized by addition of nucleoside triphosphates with a preference for dCTP. This challenges the general assumption that the terminal deoxynucleotidyl transferase favors dGTP in vivo. Furthermore, we found that the G and C gradients depended strongly on whether the germline gene segments were trimmed or not. Our data show that C-enriched N addition preferentially happens at trimmed 3' ends of VH, D, and JH gene segments, indicating a dependency of the transferase mechanism upon the nuclease mechanism.
Collapse
Affiliation(s)
- Tina Funck
- Department of Clinical Biochemistry, Zealand University Hospital, Roskilde 4000, Denmark.,Department of Clinical Immunology, Odense University Hospital, Odense 5000, Denmark
| | - Mike Bogetofte Barnkob
- Department of Clinical Immunology, Odense University Hospital, Odense 5000, Denmark.,Medical Research Council Human Immunology Unit, Weatherall Institute of Molecular Medicine, University of Oxford, Oxfordshire OX3 9DS, United Kingdom
| | - Nanna Holm
- Department of Clinical Immunology, Odense University Hospital, Odense 5000, Denmark
| | - Line Ohm-Laursen
- Randall Centre for Cell and Molecular Biophysics, School of Basic and Medical Biosciences, King's College London, London SE1 1UL, United Kingdom
| | - Camilla Slot Mehlum
- Department of Otorhinolaryngology-Head and Neck Surgery, Odense University Hospital, Odense 5000, Denmark
| | - Sören Möller
- OPEN, Odense Patient Data Explorative Network, Odense University Hospital, Odense 5000, Denmark; and.,Clinical Department, University of Southern Denmark, Odense 5000, Denmark
| | - Torben Barington
- Department of Clinical Immunology, Odense University Hospital, Odense 5000, Denmark; .,Clinical Department, University of Southern Denmark, Odense 5000, Denmark
| |
Collapse
|
26
|
Evangelista FM, Maglott-Roth A, Stierle M, Brino L, Soutoglou E, Tora L. Transcription and mRNA export machineries SAGA and TREX-2 maintain monoubiquitinated H2B balance required for DNA repair. J Cell Biol 2018; 217:3382-3397. [PMID: 30054449 PMCID: PMC6168256 DOI: 10.1083/jcb.201803074] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2018] [Revised: 06/19/2018] [Accepted: 06/28/2018] [Indexed: 11/22/2022] Open
Abstract
The SAGA coactivator complex and the nuclear pore–associated TREX-2 complex couple transcription with mRNA export. Evangelista et al. identify a novel interplay between TREX-2 and the deubiquitination module of SAGA that is necessary to maintain monoubiquitinated H2B levels required for efficient DNA repair through homologous recombination. DNA repair is critical to maintaining genome integrity, and its dysfunction can cause accumulation of unresolved damage that leads to genomic instability. The Spt–Ada–Gcn5 acetyltransferase (SAGA) coactivator complex and the nuclear pore–associated transcription and export complex 2 (TREX-2) couple transcription with mRNA export. In this study, we identify a novel interplay between human TREX-2 and the deubiquitination module (DUBm) of SAGA required for genome stability. We find that the scaffold subunit of TREX-2, GANP, positively regulates DNA repair through homologous recombination (HR). In contrast, DUBm adaptor subunits ENY2 and ATXNL3 are required to limit unscheduled HR. These opposite roles are achieved through monoubiquitinated histone H2B (H2Bub1). Interestingly, the activity of the DUBm of SAGA on H2Bub1 is dependent on the integrity of the TREX-2 complex. Thus, we describe the existence of a functional interaction between human TREX-2 and SAGA DUBm that is key to maintaining the H2B/HB2ub1 balance needed for efficient repair and HR.
Collapse
Affiliation(s)
- Federica M Evangelista
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, Illkirch, France.,Centre National de la Recherche Scientifique, UMR7104, Illkirch, France.,Institut National de la Santé et de la Recherche Médicale, U964, Illkirch, France.,Université de Strasbourg, Illkirch, France
| | - Anne Maglott-Roth
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, Illkirch, France.,Centre National de la Recherche Scientifique, UMR7104, Illkirch, France.,Institut National de la Santé et de la Recherche Médicale, U964, Illkirch, France.,Université de Strasbourg, Illkirch, France
| | - Matthieu Stierle
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, Illkirch, France.,Centre National de la Recherche Scientifique, UMR7104, Illkirch, France.,Institut National de la Santé et de la Recherche Médicale, U964, Illkirch, France.,Université de Strasbourg, Illkirch, France
| | - Laurent Brino
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, Illkirch, France.,Centre National de la Recherche Scientifique, UMR7104, Illkirch, France.,Institut National de la Santé et de la Recherche Médicale, U964, Illkirch, France.,Université de Strasbourg, Illkirch, France
| | - Evi Soutoglou
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, Illkirch, France .,Centre National de la Recherche Scientifique, UMR7104, Illkirch, France.,Institut National de la Santé et de la Recherche Médicale, U964, Illkirch, France.,Université de Strasbourg, Illkirch, France
| | - László Tora
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, Illkirch, France .,Centre National de la Recherche Scientifique, UMR7104, Illkirch, France.,Institut National de la Santé et de la Recherche Médicale, U964, Illkirch, France.,Université de Strasbourg, Illkirch, France
| |
Collapse
|
27
|
Leshets M, Silas YBH, Lehming N, Pines O. Fumarase: From the TCA Cycle to DNA Damage Response and Tumor Suppression. Front Mol Biosci 2018; 5:68. [PMID: 30090811 PMCID: PMC6068284 DOI: 10.3389/fmolb.2018.00068] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2018] [Accepted: 07/02/2018] [Indexed: 12/22/2022] Open
Abstract
Fumarase is an enzyme of the tricarboxylic acid (TCA) cycle in mitochondria, but in recent years, it has emerged as a participant in the response to DNA double strand breaks (DSBs) in the nucleus. In fact, this enzyme is dual-targeted and can be also readily detected in the mitochondrial and cytosolic/nuclear compartments of all the eukaryotic organisms examined. Intriguingly, this evolutionary conserved cytosolic population of fumarase, its enzymatic activity and the associated metabolite fumarate, are required for the cellular DNA damage response (DDR) to double-strand breaks. Here we review findings from yeast and human cells regarding how fumarase and fumarate may precisely participate in the DNA damage response. In yeast, cytosolic fumarase is involved in the homologous recombination (HR) repair pathway, through its function in the DSB resection process. One target of this regulation is the resection enzyme Sae2. In human cells, fumarase is involved in the non-homologous end joining (NHEJ) repair pathway. Fumarase is phosphorylated by the DNA-dependent protein kinase (DNA-PK) complex, which induces the recruitment of fumarase to the DSB and local generation of fumarate. Fumarate inhibits the lysine demethylase 2B (KDM2B), thereby facilitating the dimethylation of histone H3, which leads to the repair of the break by the NHEJ pathway. Finally, we discuss the question how fumarase may function as a tumor suppressor via its metabolite substrate fumarate. We offer a number of models which can explain an apparent contradiction regarding how fumarate absence/accumulation, as a function of subcellular location and stage can determine tumorigenesis. Fumarate, on the one hand, a positive regulator of genome stability (its absence supports genome instability and tumorigenesis) and, on the other hand, its accumulation drives angiogenesis and proliferation (thereby supporting tumor establishment).
Collapse
Affiliation(s)
- Michael Leshets
- Department of Microbiology and Molecular Genetics, Institute for Medical Research Israel-Canada (IMRIC), Faculty of Medicine, Hebrew University of Jerusalem, Jerusalem, Israel
| | - Yardena B H Silas
- Department of Microbiology and Molecular Genetics, Institute for Medical Research Israel-Canada (IMRIC), Faculty of Medicine, Hebrew University of Jerusalem, Jerusalem, Israel
| | - Norbert Lehming
- NUS-HUJ-CREATE Program and the Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Ophry Pines
- Department of Microbiology and Molecular Genetics, Institute for Medical Research Israel-Canada (IMRIC), Faculty of Medicine, Hebrew University of Jerusalem, Jerusalem, Israel.,NUS-HUJ-CREATE Program and the Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| |
Collapse
|
28
|
Paquin KL, Howlett NG. Understanding the Histone DNA Repair Code: H4K20me2 Makes Its Mark. Mol Cancer Res 2018; 16:1335-1345. [PMID: 29858375 DOI: 10.1158/1541-7786.mcr-17-0688] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2018] [Revised: 03/28/2018] [Accepted: 05/22/2018] [Indexed: 12/11/2022]
Abstract
Chromatin is a highly compact structure that must be rapidly rearranged in order for DNA repair proteins to access sites of damage and facilitate timely and efficient repair. Chromatin plasticity is achieved through multiple processes, including the posttranslational modification of histone tails. In recent years, the impact of histone posttranslational modification on the DNA damage response has become increasingly well recognized, and chromatin plasticity has been firmly linked to efficient DNA repair. One particularly important histone posttranslational modification process is methylation. Here, we focus on the regulation and function of H4K20 methylation (H4K20me) in the DNA damage response and describe the writers, erasers, and readers of this important chromatin mark as well as the combinatorial histone posttranslational modifications that modulate H4K20me recognition. Finally, we discuss the central role of H4K20me in determining if DNA double-strand breaks (DSB) are repaired by the error-prone, nonhomologous DNA end joining pathway or the error-free, homologous recombination pathway. This review article discusses the regulation and function of H4K20me2 in DNA DSB repair and outlines the components and modifications that modulate this important chromatin mark and its fundamental impact on DSB repair pathway choice. Mol Cancer Res; 16(9); 1335-45. ©2018 AACR.
Collapse
Affiliation(s)
- Karissa L Paquin
- Department of Cell and Molecular Biology, University of Rhode Island, Kingston, Rhode Island
| | - Niall G Howlett
- Department of Cell and Molecular Biology, University of Rhode Island, Kingston, Rhode Island.
| |
Collapse
|
29
|
Sani F, Saadat I, Saadat M. Association between genetic polymorphisms of XRCC4 insertion/deletion in intron 3 and G-1394T of XRCC4 and susceptibility to dependency to heroin. GENE REPORTS 2018. [DOI: 10.1016/j.genrep.2018.04.009] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
|
30
|
Pehlivan S, Uysal MA, Aydin N, Nursal AF, Pehlivan M, Yavuzlar H, Sever U, Kurnaz S, Yavuz FK, Uysal S, Aydin PC. XRCC4 rs6869366 polymorphism is associated with susceptibility to both nicotine dependence and/or schizophrenia. ARCH CLIN PSYCHIAT 2018. [DOI: 10.1590/0101-60830000000157] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Affiliation(s)
| | - Mehmet Atilla Uysal
- Yedikule Hospital for Chest Diseases and Thoracic Surgery Training and Research Hospital, Turkey
| | - Nazan Aydin
- Yedikule Hospital for Chest Diseases and Thoracic Surgery Training and Research Hospital, Turkey
| | | | | | - Hazal Yavuzlar
- Bakirkoy Research and Training Hospital for Psychiatry, Neurology and Neurosurgery, Turkey
| | | | | | - Fatih Kasım Yavuz
- Yedikule Hospital for Chest Diseases and Thoracic Surgery Training and Research Hospital, Turkey
| | - Suna Uysal
- Yedikule Hospital for Chest Diseases and Thoracic Surgery Training and Research Hospital, Turkey
| | - Pinar Cetinay Aydin
- Bakirkoy Research and Training Hospital for Psychiatry, Neurology and Neurosurgery, Turkey
| |
Collapse
|
31
|
Che R, Zhang J, Nepal M, Han B, Fei P. Multifaceted Fanconi Anemia Signaling. Trends Genet 2018; 34:171-183. [PMID: 29254745 PMCID: PMC5858900 DOI: 10.1016/j.tig.2017.11.006] [Citation(s) in RCA: 66] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2017] [Accepted: 11/28/2017] [Indexed: 01/26/2023]
Abstract
In 1927 Guido Fanconi described a hereditary condition presenting panmyelopathy accompanied by short stature and hyperpigmentation, now better known as Fanconi anemia (FA). With this discovery the genetic and molecular basis underlying FA has emerged as a field of great interest. FA signaling is crucial in the DNA damage response (DDR) to mediate the repair of damaged DNA. This has attracted a diverse range of investigators, especially those interested in aging and cancer. However, recent evidence suggests FA signaling also regulates functions outside the DDR, with implications for many other frontiers of research. We discuss here the characteristics of FA functions and expand upon current perspectives regarding the genetics of FA, indicating that FA plays a role in a myriad of molecular and cellular processes.
Collapse
Affiliation(s)
- Raymond Che
- University of Hawaii Cancer Center, University of Hawaii, Honolulu, HI, USA; Graduate Program of Molecular Biosciences and Bioengineering, University of Hawaii, Honolulu, HI, USA
| | - Jun Zhang
- Department of Laboratory Medicine and Pathology, Mayo Clinic Foundation, USA
| | - Manoj Nepal
- University of Hawaii Cancer Center, University of Hawaii, Honolulu, HI, USA; Graduate Program of Molecular Biosciences and Bioengineering, University of Hawaii, Honolulu, HI, USA
| | - Bing Han
- University of Hawaii Cancer Center, University of Hawaii, Honolulu, HI, USA
| | - Peiwen Fei
- University of Hawaii Cancer Center, University of Hawaii, Honolulu, HI, USA; Graduate Program of Molecular Biosciences and Bioengineering, University of Hawaii, Honolulu, HI, USA.
| |
Collapse
|
32
|
Singh PK, Mistry KN, Chiramana H, Rank DN, Joshi CG. Exploring the deleterious SNPs in XRCC4 gene using computational approach and studying their association with breast cancer in the population of West India. Gene 2018; 655:13-19. [PMID: 29452234 DOI: 10.1016/j.gene.2018.02.040] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2017] [Revised: 12/21/2017] [Accepted: 02/12/2018] [Indexed: 01/24/2023]
Abstract
Non-homologous end joining (NHEJ) pathway has pivotal role in repair of double-strand DNA breaks that may lead to carcinogenesis. XRCC4 is one of the essential proteins of this pathway and single-nucleotide polymorphisms (SNPs) of this gene are reported to be associated with cancer risks. In our study, we first used computational approaches to predict the damaging variants of XRCC4 gene. Tools predicted rs79561451 (S110P) nsSNP as the most deleterious SNP. Along with this SNP, we analysed other two SNPs (rs3734091 and rs6869366) to study their association with breast cancer in population of West India. Variant rs3734091 was found to be significantly associated with breast cancer while rs6869366 variant did not show any association. These SNPs may influence the susceptibility of individuals to breast cancer in this population.
Collapse
Affiliation(s)
- Preety K Singh
- Ashok and Rita Patel Institute of Integrated Study and Research in Biotechnology and Allied Sciences (ARIBAS), New Vallabh Vidyanagar, Affiliated to Sardar Patel University, Anand, Gujarat 388121, India
| | - Kinnari N Mistry
- Ashok and Rita Patel Institute of Integrated Study and Research in Biotechnology and Allied Sciences (ARIBAS), New Vallabh Vidyanagar, Affiliated to Sardar Patel University, Anand, Gujarat 388121, India.
| | - Haritha Chiramana
- Manibhai Shivabhai Patel Cancer Centre, Shree Krishna Hospital, Karamsad, Anand, Gujarat, India
| | - Dharamshi N Rank
- Department of Animal Breeding and Genetics, Anand Agriculture University, Anand, Gujarat, India
| | - Chaitanya G Joshi
- Department of Animal Biotechnology, Anand Agriculture University, Anand, Gujarat, India
| |
Collapse
|
33
|
Three classes of recurrent DNA break clusters in brain progenitors identified by 3D proximity-based break joining assay. Proc Natl Acad Sci U S A 2018; 115:1919-1924. [PMID: 29432181 DOI: 10.1073/pnas.1719907115] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
We recently discovered 27 recurrent DNA double-strand break (DSB) clusters (RDCs) in mouse neural stem/progenitor cells (NSPCs). Most RDCs occurred across long, late-replicating RDC genes and were found only after mild inhibition of DNA replication. RDC genes share intriguing characteristics, including encoding surface proteins that organize brain architecture and neuronal junctions, and are genetically implicated in neuropsychiatric disorders and/or cancers. RDC identification relies on high-throughput genome-wide translocation sequencing (HTGTS), which maps recurrent DSBs based on their translocation to "bait" DSBs in specific chromosomal locations. Cellular heterogeneity in 3D genome organization allowed unequivocal identification of RDCs on 14 different chromosomes using HTGTS baits on three mouse chromosomes. Additional candidate RDCs were also implicated, however, suggesting that some RDCs were missed. To more completely identify RDCs, we exploited our finding that joining of two DSBs occurs more frequently if they lie on the same cis chromosome. Thus, we used CRISPR/Cas9 to introduce specific DSBs into each mouse chromosome in NSPCs that were used as bait for HTGTS libraries. This analysis confirmed all 27 previously identified RDCs and identified many new ones. NSPC RDCs fall into three groups based on length, organization, transcription level, and replication timing of genes within them. While mostly less robust, the largest group of newly defined RDCs share many intriguing characteristics with the original 27. Our findings also revealed RDCs in NSPCs in the absence of induced replication stress, and support the idea that the latter treatment augments an already active endogenous process.
Collapse
|
34
|
Ranjha L, Howard SM, Cejka P. Main steps in DNA double-strand break repair: an introduction to homologous recombination and related processes. Chromosoma 2018; 127:187-214. [PMID: 29327130 DOI: 10.1007/s00412-017-0658-1] [Citation(s) in RCA: 225] [Impact Index Per Article: 32.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2017] [Revised: 12/15/2017] [Accepted: 12/19/2017] [Indexed: 12/16/2022]
Abstract
DNA double-strand breaks arise accidentally upon exposure of DNA to radiation and chemicals or result from faulty DNA metabolic processes. DNA breaks can also be introduced in a programmed manner, such as during the maturation of the immune system, meiosis, or cancer chemo- or radiotherapy. Cells have developed a variety of repair pathways, which are fine-tuned to the specific needs of a cell. Accordingly, vegetative cells employ mechanisms that restore the integrity of broken DNA with the highest efficiency at the lowest cost of mutagenesis. In contrast, meiotic cells or developing lymphocytes exploit DNA breakage to generate diversity. Here, we review the main pathways of eukaryotic DNA double-strand break repair with the focus on homologous recombination and its various subpathways. We highlight the differences between homologous recombination and end-joining mechanisms including non-homologous end-joining and microhomology-mediated end-joining and offer insights into how these pathways are regulated. Finally, we introduce noncanonical functions of the recombination proteins, in particular during DNA replication stress.
Collapse
Affiliation(s)
- Lepakshi Ranjha
- Institute for Research in Biomedicine, Università della Svizzera italiana, Bellinzona, Switzerland
| | - Sean M Howard
- Institute for Research in Biomedicine, Università della Svizzera italiana, Bellinzona, Switzerland
| | - Petr Cejka
- Institute for Research in Biomedicine, Università della Svizzera italiana, Bellinzona, Switzerland. .,Department of Biology, Institute of Biochemistry, ETH Zurich, Zurich, Switzerland.
| |
Collapse
|
35
|
Baird DM, Hendrickson EA. Telomeres and Chromosomal Translocations : There's a Ligase at the End of the Translocation. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2018; 1044:89-112. [PMID: 29956293 DOI: 10.1007/978-981-13-0593-1_7] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Chromosomal translocations are now well understood to not only constitute signature molecular markers for certain human cancers but often also to be causative in the genesis of that tumor. Despite the obvious importance of such events, the molecular mechanism of chromosomal translocations in human cells remains poorly understood. Part of the explanation for this dearth of knowledge is due to the complexity of the reaction and the need to archaeologically work backwards from the final product (a translocation) to the original unrearranged chromosomes to infer mechanism. Although not definitive, these studies have indicated that the aberrant usage of endogenous DNA repair pathways likely lies at the heart of the problem. An equally obfuscating aspect of this field, however, has also originated from the unfortunate species-specific differences that appear to exist in the relevant model systems that have been utilized to investigate this process. Specifically, yeast and murine systems (which are often used by basic science investigators) rely on different DNA repair pathways to promote chromosomal translocations than human somatic cells. In this chapter, we will review some of the basic concepts of chromosomal translocations and the DNA repair systems thought to be responsible for their genesis with an emphasis on underscoring the differences between other species and human cells. In addition, we will focus on a specific subset of translocations that involve the very end of a chromosome (a telomere). A better understanding of the relationship between DNA repair pathways and chromosomal translocations is guaranteed to lead to improved therapeutic treatments for cancer.
Collapse
Affiliation(s)
- Duncan M Baird
- Division of Cancer and Genetics, School of Medicine, Cardiff University, Cardiff, UK
| | - Eric A Hendrickson
- Department of Biochemistry, Molecular Biology, and Biophysics, University of Minnesota Medical School, Minneapolis, MN, USA.
| |
Collapse
|
36
|
Abe K, Takamatsu T, Sato T. Mechanism of bacterial gene rearrangement: SprA-catalyzed precise DNA recombination and its directionality control by SprB ensure the gene rearrangement and stable expression of spsM during sporulation in Bacillus subtilis. Nucleic Acids Res 2017; 45:6669-6683. [PMID: 28535266 PMCID: PMC5499854 DOI: 10.1093/nar/gkx466] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2017] [Accepted: 05/12/2017] [Indexed: 12/17/2022] Open
Abstract
A sporulation-specific gene, spsM, is disrupted by an active prophage, SPβ, in the genome of Bacillus subtilis. SPβ excision is required for two critical steps: the onset of the phage lytic cycle and the reconstitution of the spsM-coding frame during sporulation. Our in vitro study demonstrated that SprA, a serine-type integrase, catalyzed integration and excision reactions between attP of SPβ and attB within spsM, while SprB, a recombination directionality factor, was necessary only for the excision between attL and attR in the SPβ lysogenic chromosome. DNA recombination occurred at the center of the short inverted repeat motif in the unique conserved 16 bp sequence among the att sites (5΄-ACAGATAA/AGCTGTAT-3΄; slash, breakpoint; underlines, inverted repeat), where SprA produced the 3΄-overhanging AA and TT dinucleotides for rejoining the DNA ends through base-pairing. Electrophoretic mobility shift assay showed that SprB promoted synapsis of SprA subunits bound to the two target sites during excision but impaired it during integration. In vivo data demonstrated that sprB expression that lasts until the late stage of sporulation is crucial for stable expression of reconstituted spsM without reintegration of the SPβ prophage. These results present a deeper understanding of the mechanism of the prophage-mediated bacterial gene regulatory system.
Collapse
Affiliation(s)
- Kimihiro Abe
- Research Center of Micro-Nano Technology, Hosei University, Koganei, Tokyo 184-0003, Japan
| | - Takuo Takamatsu
- Department of Frontier Bioscience, Hosei University, Koganei, Tokyo 184-8584, Japan
| | - Tsutomu Sato
- Research Center of Micro-Nano Technology, Hosei University, Koganei, Tokyo 184-0003, Japan.,Department of Frontier Bioscience, Hosei University, Koganei, Tokyo 184-8584, Japan
| |
Collapse
|
37
|
Seol JH, Shim EY, Lee SE. Microhomology-mediated end joining: Good, bad and ugly. Mutat Res 2017; 809:81-87. [PMID: 28754468 DOI: 10.1016/j.mrfmmm.2017.07.002] [Citation(s) in RCA: 149] [Impact Index Per Article: 18.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2017] [Revised: 06/21/2017] [Accepted: 07/03/2017] [Indexed: 01/06/2023]
Abstract
DNA double-strand breaks (DSBs) are induced by a variety of genotoxic agents, including ionizing radiation and chemotherapy drugs for treating cancers. The elimination of DSBs proceeds via distinctive error-free and error-prone pathways. Repair by homologous recombination (HR) is largely error-free and mediated by RAD51/BRCA2 gene products. Classical non-homologous end joining (C-NHEJ) requires the Ku heterodimer and can efficiently rejoin breaks, with occasional loss or gain of DNA information. Recently, evidence has unveiled another DNA end-joining mechanism that is independent of recombination factors and Ku proteins, termed alternative non-homologous end joining (A-NHEJ). While A-NHEJ-mediated repair does not require homology, in a subtype of A-NHEJ, DSB breaks are sealed by microhomology (MH)-mediated base-pairing of DNA single strands, followed by nucleolytic trimming of DNA flaps, DNA gap filling, and DNA ligation, yielding products that are always associated with DNA deletion. This highly error-prone DSB repair pathway is termed microhomology-mediated end joining (MMEJ). Dissecting the mechanisms of MMEJ is of great interest because of its potential to destabilize the genome through gene deletions and chromosomal rearrangements in cells deficient in canonical repair pathways, including HR and C-NHEJ. In addition, evidence now suggests that MMEJ plays a physiological role in normal cells.
Collapse
Affiliation(s)
- Ja-Hwan Seol
- Department of Molecular Medicine, Institute of Biotechnology, University of Texas Health Science Center at San Antonio, 7703 Floyd Curl Drive, San Antonio, TX 78229-3900, United States
| | - Eun Yong Shim
- Department of Radiation Oncology, University of Texas Health Science Center at San Antonio, 7703 Floyd Curl Drive, San Antonio, TX 78229-3900, United States
| | - Sang Eun Lee
- Department of Molecular Medicine, Institute of Biotechnology, University of Texas Health Science Center at San Antonio, 7703 Floyd Curl Drive, San Antonio, TX 78229-3900, United States; Department of Radiation Oncology, University of Texas Health Science Center at San Antonio, 7703 Floyd Curl Drive, San Antonio, TX 78229-3900, United States.
| |
Collapse
|
38
|
Blackford AN, Jackson SP. ATM, ATR, and DNA-PK: The Trinity at the Heart of the DNA Damage Response. Mol Cell 2017; 66:801-817. [PMID: 28622525 DOI: 10.1016/j.molcel.2017.05.015] [Citation(s) in RCA: 1322] [Impact Index Per Article: 165.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2017] [Revised: 04/28/2017] [Accepted: 05/16/2017] [Indexed: 01/09/2023]
Abstract
In vertebrate cells, the DNA damage response is controlled by three related kinases: ATM, ATR, and DNA-PK. It has been 20 years since the cloning of ATR, the last of the three to be identified. During this time, our understanding of how these kinases regulate DNA repair and associated events has grown profoundly, although major questions remain unanswered. Here, we provide a historical perspective of their discovery and discuss their established functions in sensing and responding to genotoxic stress. We also highlight what is known regarding their structural similarities and common mechanisms of regulation, as well as emerging non-canonical roles and how our knowledge of ATM, ATR, and DNA-PK is being translated to benefit human health.
Collapse
Affiliation(s)
- Andrew N Blackford
- Weatherall Institute of Molecular Medicine, University of Oxford, John Radcliffe Hospital, Oxford OX3 9DS, UK; Cancer Research UK and Medical Research Council Oxford Institute for Radiation Oncology, Department of Oncology, University of Oxford, Oxford OX3 7DQ, UK; Wellcome Trust and Cancer Research UK Gurdon Institute, University of Cambridge, Tennis Court Road, Cambridge CB2 1QN, UK.
| | - Stephen P Jackson
- Wellcome Trust and Cancer Research UK Gurdon Institute, University of Cambridge, Tennis Court Road, Cambridge CB2 1QN, UK; Department of Biochemistry, University of Cambridge, Tennis Court Road, Cambridge CB2 1GA, UK.
| |
Collapse
|
39
|
Graham TGW, Walter JC, Loparo JJ. Ensemble and Single-Molecule Analysis of Non-Homologous End Joining in Frog Egg Extracts. Methods Enzymol 2017. [PMID: 28645371 DOI: 10.1016/bs.mie.2017.03.020] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Non-homologous end joining (NHEJ) repairs the majority of DNA double-strand breaks in human cells, yet the detailed order of events in this process has remained obscure. Here, we describe how to employ Xenopus laevis egg extract for the study of NHEJ. The egg extract is easy to prepare in large quantities, and it performs efficient end joining that requires the core end joining proteins Ku, DNA-PKcs, XLF, XRCC4, and DNA ligase IV. These factors, along with the rest of the soluble proteome, are present at endogenous concentrations, allowing mechanistic analysis in a system that begins to approximate the complexity of cellular end joining. We describe an ensemble assay that monitors covalent joining of DNA ends and fluorescence assays that detect joining of single pairs of DNA ends. The latter assay discerns at least two discrete intermediates in the bridging of DNA ends.
Collapse
Affiliation(s)
| | - Johannes C Walter
- Harvard Medical School, Boston, MA, United States; Howard Hughes Medical Institute, Harvard Medical School, Boston, MA, United States.
| | | |
Collapse
|
40
|
Recurrently Breaking Genes in Neural Progenitors: Potential Roles of DNA Breaks in Neuronal Function, Degeneration and Cancer. RESEARCH AND PERSPECTIVES IN NEUROSCIENCES 2017. [DOI: 10.1007/978-3-319-60192-2_6] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
|
41
|
Regulation of non-homologous end joining via post-translational modifications of components of the ligation step. Curr Genet 2016; 63:591-605. [PMID: 27915381 DOI: 10.1007/s00294-016-0670-7] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2016] [Revised: 11/25/2016] [Accepted: 11/26/2016] [Indexed: 12/29/2022]
Abstract
DNA double-strand breaks are the most serious type of DNA damage and non-homologous end joining (NHEJ) is an important pathway for their repair. In Saccharomyces cerevisiae, three complexes mediate the canonical NHEJ pathway, Ku (Ku70/Ku80), MRX (Mre11/Rad50/Xrs2) and DNA ligase IV (Dnl4/Lif1). Mammalian NHEJ is more complex, primarily as a consequence of the fact that more factors are involved in the process, and also because higher chromatin organization and more complex regulatory networks exist in mammals. In addition, a stronger interconnection between the NHEJ and DNA damage response (DDR) pathways seems to occur in mammals compared to yeast. DDR employs multiple post-translational modifications (PTMs) of the target proteins and mutual crosstalk among them to ensure highly efficient down-stream effects. Checkpoint-mediated phosphorylation is the best understood PTM that regulates DDR, although recently SUMOylation has also been shown to be involved. Both phosphorylation and SUMOylation affect components of NHEJ. In this review, we discuss a role of these two PTMs in regulation of NHEJ via targeting the components of the ligation step.
Collapse
|
42
|
Koike M, Yutoku Y, Koike A. Cloning, localization and focus formation at DNA damage sites of canine XRCC4. J Vet Med Sci 2016; 78:1865-1871. [PMID: 27644316 PMCID: PMC5240766 DOI: 10.1292/jvms.16-0381] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Various chemotherapies and radiation therapies are useful for killing cancer cells mainly by inducing DNA double-strand breaks (DSBs). Uncovering the molecular mechanisms of DSB repair processes is crucial for developing next-generation radiotherapies and chemotherapeutics for human and animal cancers. XRCC4 plays a critical role in Ku-dependent nonhomologous DNA-end joining (NHEJ) in human cells, and is one of the core NHEJ factors. The localization of core NHEJ factors, such as human Ku70 and Ku80, might play a crucial role in regulating NHEJ activity. Recently, companion animals, such as canines, have been proposed to be a good model in many aspects of cancer research. However, the localization and regulation mechanisms of core NHEJ factors in canine cells have not been elucidated. Here, we show that the expression and subcellular localization of canine XRCC4 changes dynamically during the cell cycle. Furthermore, EYFP-canine XRCC4 accumulates quickly at laser-microirradiated DSB sites. The structure of a putative human XRCC4 nuclear localization signal (NLS) is highly conserved in canine, chimpanzee and mouse XRCC4. However, the amino acid residue corresponding to the human XRCC4 K210, thought to be important for nuclear localization, is not conserved in canine XRCC4. Our findings might be useful for the study of the molecular mechanisms of Ku-dependent NHEJ in canine cells and the development of new radiosensitizers that target XRCC4.
Collapse
Affiliation(s)
- Manabu Koike
- National Institute of Radiological Sciences, National Institutes for Quantum and Radiological Science and Technology, 4-9-1 Anagawa, Inage-ku, Chiba 263-8555, Japan
| | | | | |
Collapse
|
43
|
Lescale C, Lenden Hasse H, Blackford AN, Balmus G, Bianchi JJ, Yu W, Bacoccina L, Jarade A, Clouin C, Sivapalan R, Reina-San-Martin B, Jackson SP, Deriano L. Specific Roles of XRCC4 Paralogs PAXX and XLF during V(D)J Recombination. Cell Rep 2016; 16:2967-2979. [PMID: 27601299 PMCID: PMC5033762 DOI: 10.1016/j.celrep.2016.08.069] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2016] [Revised: 08/02/2016] [Accepted: 08/23/2016] [Indexed: 11/04/2022] Open
Abstract
Paralog of XRCC4 and XLF (PAXX) is a member of the XRCC4 superfamily and plays a role in nonhomologous end-joining (NHEJ), a DNA repair pathway critical for lymphocyte antigen receptor gene assembly. Here, we find that the functions of PAXX and XLF in V(D)J recombination are masked by redundant joining activities. Thus, combined PAXX and XLF deficiency leads to an inability to join RAG-cleaved DNA ends. Additionally, we demonstrate that PAXX function in V(D)J recombination depends on its interaction with Ku. Importantly, we show that, unlike XLF, the role of PAXX during the repair of DNA breaks does not overlap with ATM and the RAG complex. Our findings illuminate the role of PAXX in V(D)J recombination and support a model in which PAXX and XLF function during NHEJ repair of DNA breaks, whereas XLF, the RAG complex, and the ATM-dependent DNA damage response promote end joining by stabilizing DNA ends.
Collapse
Affiliation(s)
- Chloé Lescale
- Departments of Immunology and Genomes and Genetics, Institut Pasteur, 75015 Paris, France
| | - Hélène Lenden Hasse
- Departments of Immunology and Genomes and Genetics, Institut Pasteur, 75015 Paris, France
| | - Andrew N Blackford
- Weatherall Institute of Molecular Medicine, University of Oxford, John Radcliffe Hospital, Oxford OX3 9DS, UK; CRUK/MRC Oxford Institute for Radiation Oncology, Department of Oncology, University of Oxford, Oxford OX3 7DQ, UK; The Wellcome Trust and Cancer Research UK Gurdon Institute, University of Cambridge, Cambridge CB2 1QN, UK
| | - Gabriel Balmus
- The Wellcome Trust and Cancer Research UK Gurdon Institute, University of Cambridge, Cambridge CB2 1QN, UK; Maintenance of Genome Stability, Genome Campus, Wellcome Trust Sanger Institute, Cambridge CB10 1SA, UK
| | - Joy J Bianchi
- Departments of Immunology and Genomes and Genetics, Institut Pasteur, 75015 Paris, France; Cellule Pasteur, University of Paris René Descartes, Sorbonne Paris Cité, Paris 75015, France
| | - Wei Yu
- Departments of Immunology and Genomes and Genetics, Institut Pasteur, 75015 Paris, France
| | - Léa Bacoccina
- Departments of Immunology and Genomes and Genetics, Institut Pasteur, 75015 Paris, France
| | - Angélique Jarade
- Departments of Immunology and Genomes and Genetics, Institut Pasteur, 75015 Paris, France
| | - Christophe Clouin
- Departments of Immunology and Genomes and Genetics, Institut Pasteur, 75015 Paris, France
| | - Rohan Sivapalan
- The Wellcome Trust and Cancer Research UK Gurdon Institute, University of Cambridge, Cambridge CB2 1QN, UK
| | - Bernardo Reina-San-Martin
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, INSERM-U964, CNRS-UMR7104, University of Strasbourg, 67400 Illkirch, France
| | - Stephen P Jackson
- The Wellcome Trust and Cancer Research UK Gurdon Institute, University of Cambridge, Cambridge CB2 1QN, UK; Maintenance of Genome Stability, Genome Campus, Wellcome Trust Sanger Institute, Cambridge CB10 1SA, UK
| | - Ludovic Deriano
- Departments of Immunology and Genomes and Genetics, Institut Pasteur, 75015 Paris, France.
| |
Collapse
|
44
|
de Villartay JP. When natural mutants do not fit our expectations: the intriguing case of patients with XRCC4 mutations revealed by whole-exome sequencing. EMBO Mol Med 2016; 7:862-4. [PMID: 25962386 PMCID: PMC4520652 DOI: 10.15252/emmm.201505307] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Mutations in the XRCC4 gene have been recently identified through whole-exome sequencing (WES). While the overall clinical presentation of the patients (severe short stature, microcephaly, gonadal failure) generally conforms with what is expected for the defect of a critical non-homologous end-joining (NHEJ) DNA repair factor, the absence of consequence on the proper development of the immune system is rather surprising, given the role of NHEJ in V(D)J recombination. Several hypotheses can be envisioned to explain this discrepancy. Overall, these findings highlight the power of WES in identifying new molecular causes for human diseases while providing with new exciting scientific question to address.
Collapse
Affiliation(s)
- Jean-Pierre de Villartay
- INSERM UMR1163 Laboratory of Genome Dynamics in the Immune System (DGSI), Paris, France Paris Descartes University-Sorbonne Paris Cité Imagine Institute, Paris, France
| |
Collapse
|
45
|
Bee L, Nasca A, Zanolini A, Cendron F, d'Adamo P, Costa R, Lamperti C, Celotti L, Ghezzi D, Zeviani M. A nonsense mutation of human XRCC4 is associated with adult-onset progressive encephalocardiomyopathy. EMBO Mol Med 2016; 7:918-29. [PMID: 25872942 PMCID: PMC4520657 DOI: 10.15252/emmm.201404803] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
We studied two monozygotic twins, born to first cousins, affected by a multisystem disease. At birth, they both presented with bilateral cryptorchidism and malformations. Since early adulthood, they developed a slowly progressive neurological syndrome, with cerebellar and pyramidal signs, cognitive impairment, and depression. Dilating cardiomyopathy is also present in both. By whole-exome sequencing, we found a homozygous nucleotide change in XRCC4 (c.673C>T), predicted to introduce a premature stop codon (p.R225*). XRCC4 transcript levels were profoundly reduced, and the protein was undetectable in patients' skin fibroblasts. XRCC4 plays an important role in non-homologous end joining of DNA double-strand breaks (DSB), a system that is involved in repairing DNA damage from, for example, ionizing radiations. Gamma-irradiated mutant cells demonstrated reduction, but not abolition, of DSB repair. In contrast with embryonic lethality of the Xrcc4 KO mouse, nonsense mutations in human XRCC4 have recently been associated with primordial dwarfism and, in our cases, with adult-onset neurological impairment, suggesting an important role for DNA repair in the brain. Surprisingly, neither immunodeficiency nor predisposition to malignancy was reported in these patients.
Collapse
Affiliation(s)
- Leonardo Bee
- Department of Biology, University of Padua, Padua, Italy
| | - Alessia Nasca
- Molecular Neurogenetics Unit, Foundation IRCCS Institute of Neurology "Carlo Besta", Milan, Italy
| | - Alice Zanolini
- Molecular Neurogenetics Unit, Foundation IRCCS Institute of Neurology "Carlo Besta", Milan, Italy
| | | | - Pio d'Adamo
- Department of Medical Sciences, University of Trieste, Trieste, Italy
| | - Rodolfo Costa
- Department of Biology, University of Padua, Padua, Italy
| | - Costanza Lamperti
- Molecular Neurogenetics Unit, Foundation IRCCS Institute of Neurology "Carlo Besta", Milan, Italy
| | - Lucia Celotti
- Department of Biology, University of Padua, Padua, Italy
| | - Daniele Ghezzi
- Molecular Neurogenetics Unit, Foundation IRCCS Institute of Neurology "Carlo Besta", Milan, Italy
| | - Massimo Zeviani
- Molecular Neurogenetics Unit, Foundation IRCCS Institute of Neurology "Carlo Besta", Milan, Italy MRC Mitochondrial Biology Unit, CB2 0XY, Cambridge, UK
| |
Collapse
|
46
|
Sharma MK, Imamichi S, Fukuchi M, Samarth RM, Tomita M, Matsumoto Y. In cellulo phosphorylation of XRCC4 Ser320 by DNA-PK induced by DNA damage. JOURNAL OF RADIATION RESEARCH 2016; 57:115-20. [PMID: 26666690 PMCID: PMC4795952 DOI: 10.1093/jrr/rrv086] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/05/2015] [Revised: 10/14/2015] [Accepted: 10/25/2015] [Indexed: 05/24/2023]
Abstract
XRCC4 is a protein associated with DNA Ligase IV, which is thought to join two DNA ends at the final step of DNA double-strand break repair through non-homologous end joining. In response to treatment with ionizing radiation or DNA damaging agents, XRCC4 undergoes DNA-PK-dependent phosphorylation. Furthermore, Ser260 and Ser320 (or Ser318 in alternatively spliced form) of XRCC4 were identified as the major phosphorylation sites by purified DNA-PK in vitro through mass spectrometry. However, it has not been clear whether these sites are phosphorylated in vivo in response to DNA damage. In the present study, we generated an antibody that reacts with XRCC4 phosphorylated at Ser320 and examined in cellulo phosphorylation status of XRCC4 Ser320. The phosphorylation of XRCC4 Ser320 was induced by γ-ray irradiation and treatment with Zeocin. The phosphorylation of XRCC4 Ser320 was detected even after 1 Gy irradiation and increased in a manner dependent on radiation dose. The phosphorylation was observed immediately after irradiation and remained mostly unchanged for up to 4 h. The phosphorylation was inhibited by DNA-PK inhibitor NU7441 and was undetectable in DNA-PKcs-deficient cells, indicating that the phosphorylation was mainly mediated by DNA-PK. These results suggested potential usefulness of the phosphorylation status of XRCC4 Ser320 as an indicator of DNA-PK functionality in living cells.
Collapse
Affiliation(s)
- Mukesh Kumar Sharma
- Research Laboratory for Nuclear Reactors, Tokyo Institute of Technology, N1-30 2-12-1, Ookayama, Meguro-ku, Tokyo 152-8550, Japan Department of Zoology, R.R. Government College, Alwar 301001, India
| | - Shoji Imamichi
- Research Laboratory for Nuclear Reactors, Tokyo Institute of Technology, N1-30 2-12-1, Ookayama, Meguro-ku, Tokyo 152-8550, Japan Division of Chemotherapy and Clinical Research, National Cancer Center Research Institute, Tokyo 104-0045, Japan
| | - Mikoto Fukuchi
- Research Laboratory for Nuclear Reactors, Tokyo Institute of Technology, N1-30 2-12-1, Ookayama, Meguro-ku, Tokyo 152-8550, Japan
| | - Ravindra Mahadeo Samarth
- Research Laboratory for Nuclear Reactors, Tokyo Institute of Technology, N1-30 2-12-1, Ookayama, Meguro-ku, Tokyo 152-8550, Japan Department of Research, Bhopal Memorial Hospital & Research Centre, Department of Health Research, Raisen Bypass Road, Bhopal 462038, India National Institute for Research in Environmental Health, Indian Council of Medical Research, Kamla Nehru Hospital Building, Gandhi Medical College Campus, Bhopal 462001, India
| | - Masanori Tomita
- Radiation Safety Research Center, Central Research Institute of Electric Power Industry, Tokyo 201-8511, Japan
| | - Yoshihisa Matsumoto
- Research Laboratory for Nuclear Reactors, Tokyo Institute of Technology, N1-30 2-12-1, Ookayama, Meguro-ku, Tokyo 152-8550, Japan
| |
Collapse
|
47
|
Saadat M, Saadat S. Susceptibility to Breast Cancer and Intron 3 Ins/Del Genetic Polymorphism of DNA Double-Strand Break Repair Gene XRCC4. J Med Biochem 2015; 34:409-413. [PMID: 28356849 PMCID: PMC4922352 DOI: 10.2478/jomb-2014-0051] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2014] [Accepted: 04/27/2014] [Indexed: 11/21/2022] Open
Abstract
BACKGROUND Since genetic variations in X-ray cross-complementing group 4 (XRCC4; OMIM: 194363) repair gene might be associated with a reduction in cellular DNA repair capacity, it is hypothesized that XRCC4 Ins/Del (I/D) polymorphism (in intron 3 of the gene; rs28360071) may be a risk factor for breast cancer. Therefore, the present case-control study was carried out. METHODS The present case-control study included 407 females with breast cancer and a total of 394 healthy females from the general population matched with patients according to age. Genotypic analysis for the XRCC4 I/D polymorphism was performed by PCR. In order to investigate the effect of XRCC4 I/D polymorphism on age at diagnosis of breast cancer, the Kaplan-Meier survival analysis and the Cox proportional hazards regression model were used. RESULTS Based on the present case-control study, the ID (OR=0.95, 95% CI: 0.69-1.31, P=0.781) and DD (OR=1.24, 95% CI: 0.84-1.83, P=0.274) genotypes were not associated with breast cancer risk compared with the II genotype. Based on the Cox regression model, there was significant association between genotypes of I/D polymorphism and age at diagnosis of breast cancer (ID+DD vs II; HR=0.79, 95% CI: 0.64-0.98, P=0.036). CONCLUSION Although there was no significant association between XRCC4 I/D polymorphism and risk of breast cancer, patients having the II genotype have lower age at diagnosis in comparison with patients having ID+DD genotypes.
Collapse
Affiliation(s)
- Mostafa Saadat
- Department of Biology, College of Sciences, Shiraz University, Shiraz 71454, Iran
- Institute of Biotechnology, Shiraz University, Shiraz, Iran
| | - Shekoofeh Saadat
- Department of Biology, College of Sciences, Shiraz University, Shiraz 71454, Iran
| |
Collapse
|
48
|
Mazaheri H, Saadat M. Susceptibility to schizophrenia and insertion/deletion polymorphism in intron 3 of the XRCC4 gene. Psychiatry Res 2015; 228:972-973. [PMID: 26112447 DOI: 10.1016/j.psychres.2015.05.041] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/31/2014] [Revised: 04/13/2015] [Accepted: 05/02/2015] [Indexed: 11/21/2022]
Affiliation(s)
- Hajar Mazaheri
- Department of Biology, College of Sciences, Shiraz University, Shiraz, Iran
| | - Mostafa Saadat
- Department of Biology, College of Sciences, Shiraz University, Shiraz, Iran.
| |
Collapse
|
49
|
Saadat M, Pashaei S, Amerizade F. Susceptibility to gastric cancer and polymorphisms of insertion/deletion at the intron 3 of the XRCC4 and VNTR at the promoter region of the XRCC5. Pathol Oncol Res 2015; 21:689-693. [PMID: 25527410 DOI: 10.1007/s12253-014-9875-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/20/2014] [Accepted: 12/05/2014] [Indexed: 12/18/2022]
Abstract
The genes encoding X-ray repair cross-complementing group 4 (XRCC4; OMIM: 194363) and 5 (XRCC5; OMIM: 194364) are involved in repair of DNA double-strand breaks. To investigating the associations between polymorphisms of Insertion/Deletion (I/D, rs28360071) in the intron 3 of the XRCC4 and VNTR in the promoter region of the XRCC5 and risk of gastric cancer, the present study was carried out. We included 159 (56 females, 103 males) with gastric cancer and 242 (75 females, 167 males) healthy blood donors frequency matched for age and gender. Using PCR-based methods, the genotypes of the study polymorphisms were determined. The alleles of VNTR XRCC5 polymorphism divided into two groups: L (0 and 1 repeats) and H (2 and 3 repeats) alleles. For the I/D XRCC4 polymorphism, after stratification of the subjects according to their family history (FH) of cancer, either the ID (OR = 3.19, 95%CI: 1.35-7.50, P = 0.008) or the DD genotypes (OR = 4.62, 95%CI: 1.63-13.0, P = 0.004) among positive FH persons, increased the risk of gastric cancer compared with the reference group (persons who have negative FH and II genotype). For the VNTR XRCC5 polymorphism, the LH + HH genotypes among positive FH persons, increased the risk of gastric cancer compared with the reference group (persons who have negative FH and LL genotype) (OR = 2.88, 95%CI: 1.34-6.18, P = 0.006). Sensitivity analysis showed that the above mentioned associations were not occurred due to the maldistribution of the genotypes among missing data. The present study suggests that both polymorphisms of the XRCC4 and XRCC5 might be risk factors for gastric cancer development especially among persons with positive FH.
Collapse
Affiliation(s)
- Mostafa Saadat
- Department of Biology, College of Sciences, Shiraz University, Shiraz, 71454, Iran,
| | | | | |
Collapse
|
50
|
Allelic prevalence of intron 3 insertion/deletion genetic polymorphism of DNA double-strand break repair gene XRCC4 in four healthy Iranian populations. EGYPTIAN JOURNAL OF MEDICAL HUMAN GENETICS 2015. [DOI: 10.1016/j.ejmhg.2015.02.004] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
|