1
|
Cruz-Rodriguez N, Tang H, Bateman B, Tang W, Deininger M. BCR::ABL1 Proteolysis-targeting chimeras (PROTACs): The new frontier in the treatment of Ph + leukemias? Leukemia 2024; 38:1885-1893. [PMID: 39098922 PMCID: PMC11569815 DOI: 10.1038/s41375-024-02365-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Revised: 06/19/2024] [Accepted: 07/24/2024] [Indexed: 08/06/2024]
Abstract
BCR::ABL1 tyrosine kinase inhibitors (TKIs) have turned chronic myeloid leukemia (CML) from a lethal condition into a chronic ailment. With optimal management, the survival of CML patients diagnosed in the chronic phase is approaching that of age-matched controls. However, only one-third of patients can discontinue TKIs and enter a state of functional cure termed treatment-free remission (TFR), while the remainder require life-long TKI therapy to avoid the recurrence of active leukemia. Approximately 10% of patients exhibit primary or acquired TKI resistance and eventually progress to the blast phase. It is thought that recurrence after attempted TFR originates from CML stem cells (LSCs) surviving despite continued suppression of BCR::ABL1 kinase. Although kinase activity is indispensable for induction of overt CML, kinase-independent scaffold functions of BCR::ABL1 are known to contribute to leukemogenesis, raising the intriguing but as yet hypothetical possibility, that degradation of BCR::ABL1 protein may accomplish what TKIs fail to achieve - eliminate residual LSCs to turn functional into real cures. The advent of BCR::ABL1 proteolysis targeting chimeras (PROTACs), heterobifunctional molecules linking a TKI-based warhead to an E3 ligase recruiter, has moved clinical protein degradation into the realm of the possible. Here we examine the molecular rationale as well as pros and cons of degrading BCR::ABL1 protein. We review reported BCR::ABL1 PROTACs, point out limitations of available data and compounds and suggest directions for future research. Ultimately, clinical testing of a potent and specific BCR::ABL1 degrader will be required to determine the efficacy and tolerability of this approach.
Collapse
MESH Headings
- Humans
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/drug therapy
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/pathology
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/metabolism
- Fusion Proteins, bcr-abl/antagonists & inhibitors
- Fusion Proteins, bcr-abl/metabolism
- Proteolysis
- Protein Kinase Inhibitors/therapeutic use
- Protein Kinase Inhibitors/pharmacology
- Drug Resistance, Neoplasm
- Proto-Oncogene Proteins c-abl/metabolism
- Animals
- Proteolysis Targeting Chimera
Collapse
Affiliation(s)
| | - Hua Tang
- Lachman Institute of Pharmaceutical Development, School of Pharmacy, University of Wisconsin-Madison, Madison, WI, USA
| | | | - Weiping Tang
- Lachman Institute of Pharmaceutical Development, School of Pharmacy, University of Wisconsin-Madison, Madison, WI, USA
- Department of Chemistry, University of Wisconsin-Madison, Madison, WI, USA
| | - Michael Deininger
- Versiti Blood Research Institute, Milwaukee, WI, USA.
- Medical College of Wisconsin, Milwaukee, WI, USA.
| |
Collapse
|
2
|
Elgehama A, Wang Y, Yu Y, Zhou L, Chen Z, Wang L, Sun L, Gao J, Yu B, Shen Y, Xu Q. Targeting the PTP1B-Bcr-Abl1 interaction for the degradation of T315I mutant Bcr-Abl1 in chronic myeloid leukemia. Cancer Sci 2022; 114:247-258. [PMID: 36086954 PMCID: PMC9807508 DOI: 10.1111/cas.15580] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Revised: 08/28/2022] [Accepted: 09/06/2022] [Indexed: 01/07/2023] Open
Abstract
Small-molecule-induced degradation of mutant Bcr-Abl1 provides a potential approach to overcome Bcr-Abl1 tyrosine kinase inhibitor (TKI)-resistant chronic myeloid leukemia (CML). Our previous study reported that a synthetic steroidal glycoside SBF-1 showed remarkable anti-CML activity by inducing the degradation of native Bcr-Abl1 protein. Here, we observed the comparable growth inhibition for SBF-1 in CML cells harboring T315I mutant Bcr-Abl1 in vitro and in vivo. SBF-1 triggered its degradation through disrupting the interaction between protein-tyrosine phosphatase 1B (PTP1B) and Bcr-Abl1. Using SBF-1 as a tool, we found that Tyr46 in the PTP1B catalytic domain and Tyr852 in the Bcr-Abl1 pleckstrin-homology (PH) domain are critical for their interaction. Moreover, the phosphorylation of Tyr1086 within the Bcr-Abl1 SH2 domain recruited the E3 ubiquitin ligase c-Cbl to catalyze K27-linked ubiquitin chains, which serve as a recognition signal for p62-dependent autophagic degradation. PTP1B dephosphorylated Bcr-Abl1 at Tyr1086 and prevented the recruitment of c-Cbl, leading to the stability of Bcr-Abl1. This study unravels the action mechanism of PTP1B in stabilizing Bcr-Abl1 protein and indicates that the PTP1B-Bcr-Abl1 interaction might be one of druggable targets for TKI-resistant CML with point mutations.
Collapse
Affiliation(s)
- Ahmed Elgehama
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life SciencesNanjing UniversityNanjingChina
| | - Yixuan Wang
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life SciencesNanjing UniversityNanjingChina
| | - Ying Yu
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life SciencesNanjing UniversityNanjingChina
| | - Lin Zhou
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life SciencesNanjing UniversityNanjingChina
| | - Zhixiu Chen
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life SciencesNanjing UniversityNanjingChina
| | - Liwei Wang
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life SciencesNanjing UniversityNanjingChina
| | - Lijun Sun
- Department of ChemistryUniversity of Science and Technology of ChinaHefeiChina
| | - Jian Gao
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life SciencesNanjing UniversityNanjingChina
| | - Biao Yu
- State Key Laborary of Bio‐organic and Natural Products ChemistryShanghai Institute of Organic AcademyShanghaiChina
| | - Yan Shen
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life SciencesNanjing UniversityNanjingChina
| | - Qiang Xu
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life SciencesNanjing UniversityNanjingChina
| |
Collapse
|
3
|
Sumi K, Tago K, Nakazawa Y, Takahashi K, Ohe T, Mashino T, Funakoshi-Tago M. Novel Mechanism by a Bis-Pyridinium Fullerene Derivative to Induce Apoptosis by Enhancing the MEK-ERK Pathway in a Reactive Oxygen Species-Independent Manner in BCR-ABL-Positive Chronic Myeloid Leukemia-Derived K562 Cells. Int J Mol Sci 2022; 23:ijms23020749. [PMID: 35054935 PMCID: PMC8775703 DOI: 10.3390/ijms23020749] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Revised: 01/03/2022] [Accepted: 01/07/2022] [Indexed: 11/16/2022] Open
Abstract
In the treatment of breakpoint cluster region-Abelson (BCR-ABL)-positive chronic myeloid leukemia (CML) using BCR-ABL inhibitors, the appearance of a gatekeeper mutation (T315I) in BCR-ABL is a serious issue. Therefore, the development of novel drugs that overcome acquired resistance to BCR-ABL inhibitors by CML cells is required. We previously demonstrated that a bis-pyridinium fullerene derivative (BPF) induced apoptosis in human chronic myeloid leukemia (CML)-derived K562 cells partially through the generation of reactive oxygen species (ROS). We herein show that BPF enhanced the activation of the mitogen-activated protein kinase/extracellular signal-regulated kinase kinase-extracellular signal-regulated kinase (MEK-ERK) pathway in a ROS-independent manner. BPF-induced apoptosis was attenuated by trametinib, suggesting the functional involvement of the MEK-ERK pathway in apoptosis in K562 cells. In addition, the constitutive activation of the MEK-ERK pathway by the enforced expression of the BRAFV600E mutant significantly increased the sensitivity of K562 cells to BPF. These results confirmed for the first time that BPF induces apoptosis in K562 cells through dual pathways-ROS production and the activation of the MEK-ERK pathway. Furthermore, BPF induced cell death in transformed Ba/F3 cells expressing not only BCR-ABL but also T315I mutant through the activation of the MEK-ERK pathway. These results indicate that BPF is as an effective CML drug that overcomes resistance to BCR-ABL inhibitors.
Collapse
Affiliation(s)
- Kazuya Sumi
- Division of Hygienic Chemistry, Faculty of Pharmacy, Keio University, 1-5-30 Shibakoen, Minato-ku, Tokyo 105-8512, Japan; (K.S.); (Y.N.)
| | - Kenji Tago
- Division of Structural Biochemistry, Department of Biochemistry, Jichi Medical University, Shimotsuke 321-0498, Japan
- Correspondence: (K.T.); (M.F.-T.); Tel.: +81-3-5400-2689 (K.T. & M.F.-T.)
| | - Yosuke Nakazawa
- Division of Hygienic Chemistry, Faculty of Pharmacy, Keio University, 1-5-30 Shibakoen, Minato-ku, Tokyo 105-8512, Japan; (K.S.); (Y.N.)
| | - Kyoko Takahashi
- Division of Pharmaceutical Sciences, Faculty of Pharmacy, Keio University, 1-5-30 Shibakoen, Minato-ku, Tokyo 105-8512, Japan; (K.T.); (T.O.); (T.M.)
| | - Tomoyuki Ohe
- Division of Pharmaceutical Sciences, Faculty of Pharmacy, Keio University, 1-5-30 Shibakoen, Minato-ku, Tokyo 105-8512, Japan; (K.T.); (T.O.); (T.M.)
| | - Tadahiko Mashino
- Division of Pharmaceutical Sciences, Faculty of Pharmacy, Keio University, 1-5-30 Shibakoen, Minato-ku, Tokyo 105-8512, Japan; (K.T.); (T.O.); (T.M.)
| | - Megumi Funakoshi-Tago
- Division of Hygienic Chemistry, Faculty of Pharmacy, Keio University, 1-5-30 Shibakoen, Minato-ku, Tokyo 105-8512, Japan; (K.S.); (Y.N.)
- Correspondence: (K.T.); (M.F.-T.); Tel.: +81-3-5400-2689 (K.T. & M.F.-T.)
| |
Collapse
|
4
|
Gregor T, Bosakova MK, Nita A, Abraham SP, Fafilek B, Cernohorsky NH, Rynes J, Foldynova-Trantirkova S, Zackova D, Mayer J, Trantirek L, Krejci P. Elucidation of protein interactions necessary for the maintenance of the BCR-ABL signaling complex. Cell Mol Life Sci 2020; 77:3885-3903. [PMID: 31820037 PMCID: PMC11104816 DOI: 10.1007/s00018-019-03397-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2019] [Revised: 11/05/2019] [Accepted: 11/26/2019] [Indexed: 10/25/2022]
Abstract
Many patients with chronic myeloid leukemia in deep remission experience return of clinical disease after withdrawal of tyrosine kinase inhibitors (TKIs). This suggests signaling of inactive BCR-ABL, which allows the survival of cancer cells, and relapse. We show that TKI treatment inhibits catalytic activity of BCR-ABL, but does not dissolve BCR-ABL core signaling complex, consisting of CRKL, SHC1, GRB2, SOS1, cCBL, p85a-PI3K, STS1 and SHIP2. Peptide microarray and co-immunoprecipitation results demonstrate that CRKL binds to proline-rich regions located in C-terminal, intrinsically disordered region of BCR-ABL, that SHC1 requires pleckstrin homology, src homology and tyrosine kinase domains of BCR-ABL for binding, and that BCR-ABL sequence motif located in disordered region around phosphorylated tyrosine 177 mediates binding of three core complex members, i.e., GRB2, SOS1, and cCBL. Further, SHIP2 binds to the src homology and tyrosine kinase domains of BCR-ABL and its inositol phosphatase activity contributes to BCR-ABL-mediated phosphorylation of SHC1. Together, this study characterizes protein-protein interactions within the BCR-ABL core complex and determines the contribution of particular BCR-ABL domains to downstream signaling. Understanding the structure and dynamics of BCR-ABL interactome is critical for the development of drugs targeting integrity of the BCR-ABL core complex.
Collapse
MESH Headings
- Adaptor Proteins, Signal Transducing/metabolism
- Amino Acid Motifs
- Binding Sites
- Cell Line, Tumor
- Fusion Proteins, bcr-abl/chemistry
- Fusion Proteins, bcr-abl/genetics
- Fusion Proteins, bcr-abl/metabolism
- HEK293 Cells
- Humans
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/metabolism
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/pathology
- Phosphatidylinositol-3,4,5-Trisphosphate 5-Phosphatases/metabolism
- Phosphorylation
- Protein Array Analysis
- Protein Binding/drug effects
- Protein Kinase Inhibitors/pharmacology
- Pyrimidines/pharmacology
- Signal Transduction/drug effects
- Src Homology 2 Domain-Containing, Transforming Protein 1/metabolism
- src Homology Domains
Collapse
Affiliation(s)
- Tomas Gregor
- Central European Institute of Technology, Masaryk University, 62500, Brno, Czech Republic
- Department of Biology, Faculty of Medicine, Masaryk University, 62500, Brno, Czech Republic
- International Clinical Research Center, St. Anne's University Hospital, 65691, Brno, Czech Republic
| | - Michaela Kunova Bosakova
- Department of Biology, Faculty of Medicine, Masaryk University, 62500, Brno, Czech Republic
- International Clinical Research Center, St. Anne's University Hospital, 65691, Brno, Czech Republic
- Institute of Animal Physiology and Genetics of the CAS, 60200, Brno, Czech Republic
| | - Alexandru Nita
- Department of Biology, Faculty of Medicine, Masaryk University, 62500, Brno, Czech Republic
- Institute of Organic Chemistry and Biochemistry of the CAS, 16610, Prague, Czech Republic
| | - Sara P Abraham
- Department of Biology, Faculty of Medicine, Masaryk University, 62500, Brno, Czech Republic
| | - Bohumil Fafilek
- Department of Biology, Faculty of Medicine, Masaryk University, 62500, Brno, Czech Republic
- International Clinical Research Center, St. Anne's University Hospital, 65691, Brno, Czech Republic
- Institute of Animal Physiology and Genetics of the CAS, 60200, Brno, Czech Republic
| | - Nicole H Cernohorsky
- Department of Biology, Faculty of Medicine, Masaryk University, 62500, Brno, Czech Republic
| | - Jan Rynes
- Central European Institute of Technology, Masaryk University, 62500, Brno, Czech Republic
| | | | - Daniela Zackova
- Department of Internal Medicine, Hematology and Oncology, Masaryk University Hospital, 62500, Brno, Czech Republic
| | - Jiri Mayer
- Department of Internal Medicine, Hematology and Oncology, Masaryk University Hospital, 62500, Brno, Czech Republic
| | - Lukas Trantirek
- Central European Institute of Technology, Masaryk University, 62500, Brno, Czech Republic.
| | - Pavel Krejci
- Department of Biology, Faculty of Medicine, Masaryk University, 62500, Brno, Czech Republic.
- International Clinical Research Center, St. Anne's University Hospital, 65691, Brno, Czech Republic.
- Institute of Animal Physiology and Genetics of the CAS, 60200, Brno, Czech Republic.
| |
Collapse
|
5
|
Abstract
We describe a patient with Down syndrome whose precursor B-cell acute lymphoblastic leukemia cells expressed INPP5D-ABL1 fusion gene that resulted in a reciprocal chromosome translocation t(2;9)(q27;q34). The fusion gene was present as a small subclone in the primary disease but was first identified at relapse when the subclone had expanded into a major clone. At relapse, the patient responded poorly to conventional induction chemotherapy but a transient morphologic remission was achieved after administration of imatinib monotherapy. This case demonstrates a pathway to relapse in a Down syndrome patients with acute lymphoblastic leukemia through a rare fusion event. It highlights the significance of minor subclonal events in therapy resistance and the opportunity provided for targeted therapy.
Collapse
|
6
|
Li X, Pang J, Xue W, Wang Y, Tian T, Elgehama A, Wu X, Wu X, Sun Y, Qiu H, Shen Y, Xu Q. Inducible SHP-2 activation confers resistance to imatinib in drug-tolerant chronic myeloid leukemia cells. Toxicol Appl Pharmacol 2018; 360:249-256. [PMID: 30290167 DOI: 10.1016/j.taap.2018.09.044] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2018] [Revised: 09/21/2018] [Accepted: 09/30/2018] [Indexed: 01/10/2023]
Abstract
BCR-ABL kinase mutations, accounting for clinical resistance to tyrosine kinase inhibitor (TKI) such as imatinib, frequently occur in acquired resistance or in advanced phases of chronic myeloid leukemia (CML). Emerging evidence implicates a critical role for non-mutational drug resistance mechanisms underlying the survival of residual cancer 'persister' cells. Here, we utilized non-mutational imatinib-resistant K562/G cells to reveal SHP-2 as a resistance modulator of imatinib treatment response during the early phase. SHP-2 phosphorylation was significantly higher in K562/G cells than in sensitive K562 cells. In K562 cells, both short-term and long-term exposure to imatinib induced SHP-2 phosphorylation. Consistently, gain- and loss-of-function mutants in SHP-2 proved its regulation of imatinib resistance. SHP-2 inhibitor and imatinib exhibited a strong antitumor synergy in in vitro and in vivo K562/G models. Mechanistically, dual SHP-2 and BCR-ABL inhibition blocked RAF/MEK/ERK and PI3K/AKT/mTOR pathways, respectively, leading to dramatic apoptotic death of K562/G cells. In conclusion, our results highlight that SHP-2 could be exploited as a biomarker and therapeutic target during the early phase of imatinib resistance development in CML.
Collapse
Affiliation(s)
- Xin Li
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing 210093, China
| | - Juan Pang
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing 210093, China
| | - Wenwen Xue
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing 210093, China
| | - Yixuan Wang
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing 210093, China
| | - Tian Tian
- Department of Hematology, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China
| | - Ahmed Elgehama
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing 210093, China
| | - Xuefeng Wu
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing 210093, China
| | - Xudong Wu
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing 210093, China
| | - Yang Sun
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing 210093, China
| | - Hongxia Qiu
- Department of Hematology, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China
| | - Yan Shen
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing 210093, China.
| | - Qiang Xu
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing 210093, China.
| |
Collapse
|
7
|
Identification and characterization of activating ABL1 1b kinase mutations: impact on sensitivity to ATP-competitive and allosteric ABL1 inhibitors. Leukemia 2016; 31:1096-1107. [PMID: 27890928 DOI: 10.1038/leu.2016.353] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2016] [Revised: 10/31/2016] [Accepted: 11/02/2016] [Indexed: 12/16/2022]
Abstract
Although pathologically activated ABL1 fusion kinases represent well-validated therapeutic targets, tumor genomic sequencing has identified numerous point mutations in the ABL1 proto-oncogene of unclear significance. Here we describe ten novel ABL1 1b point mutations, including two from clinical isolates, that cause constitutive kinase activation and cellular transformation. All mutants retained sensitivity to ATP-competitive tyrosine kinase inhibitors (TKIs). Several substitutions cluster near the myristoyl-binding pocket, the target of ABL001, a novel clinically active allosteric kinase inhibitor that mimics the autoinhibitory myristoyl group, and likely activate the kinase by relieving physiologic autoinhibition. In addition, several mutations activate the kinase and confer resistance to allosteric inhibition despite a lack of proximity to this region. We demonstrate that BCR-ABL1 and ABL1 1b point mutations can co-exist in a proportion of clinical cases as a consequence of the chromosome 9 breakpoint location. Collectively, our findings support clinical investigation of ATP-competitive TKIs in malignancies harboring ABL1 point mutations, and sequencing of BCR-ABL1 and ABL1 1b in patients with acquired resistance to allosteric ABL1 inhibitors.
Collapse
|
8
|
The Philadelphia chromosome in leukemogenesis. CHINESE JOURNAL OF CANCER 2016; 35:48. [PMID: 27233483 PMCID: PMC4896164 DOI: 10.1186/s40880-016-0108-0] [Citation(s) in RCA: 109] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/25/2015] [Accepted: 05/03/2016] [Indexed: 02/07/2023]
Abstract
The truncated chromosome 22 that results from the reciprocal translocation t(9;22)(q34;q11) is known as the Philadelphia chromosome (Ph) and is a hallmark of chronic myeloid leukemia (CML). In leukemia cells, Ph not only impairs the physiological signaling pathways but also disrupts genomic stability. This aberrant fusion gene encodes the breakpoint cluster region-proto-oncogene tyrosine-protein kinase (BCR-ABL1) oncogenic protein with persistently enhanced tyrosine kinase activity. The kinase activity is responsible for maintaining proliferation, inhibiting differentiation, and conferring resistance to cell death. During the progression of CML from the chronic phase to the accelerated phase and then to the blast phase, the expression patterns of different BCR-ABL1 transcripts vary. Each BCR-ABL1 transcript is present in a distinct leukemia phenotype, which predicts both response to therapy and clinical outcome. Besides CML, the Ph is found in acute lymphoblastic leukemia, acute myeloid leukemia, and mixed-phenotype acute leukemia. Here, we provide an overview of the clinical presentation and cellular biology of different phenotypes of Ph-positive leukemia and highlight key findings regarding leukemogenesis.
Collapse
|
9
|
Mariani SA, Minieri V, De Dominici M, Iacobucci I, Peterson LF, Calabretta B. CDKN2A-independent role of BMI1 in promoting growth and survival of Ph+ acute lymphoblastic leukemia. Leukemia 2016; 30:1682-90. [PMID: 27125204 PMCID: PMC4972639 DOI: 10.1038/leu.2016.70] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2015] [Revised: 03/03/2016] [Accepted: 03/15/2016] [Indexed: 12/21/2022]
Abstract
BMI1 is a key component of the PRC1 complex (polycomb repressive complex-1) required for maintenance of normal and cancer stem cells. Its aberrant expression is detected in chronic myeloid leukemia and Ph+ acute lymphoblastic leukemia (ALL), but no data exist on BMI1 requirement in ALL cells. We show here that BMI1 expression is important for proliferation and survival of Ph+ ALL cells and for leukemogenesis of Ph+ cells in vivo. Levels of BIM, interferon-α (IFNα)-regulated genes, and E2F7 were upregulated in BMI1-silenced cells, suggesting that repressing their expression is important for BMI1 biological effects. Consistent with this hypothesis, we found that: i) downregulation of BIM or E2F7 abrogated apoptosis or rescued, in part, the reduced proliferation and colony formation of BMI1 silenced BV173 cells; ii) BIM/E2F7-double silencing further enhanced colony formation and in vivo leukemogenesis of BMI1-silenced cells; iii) overexpression of BIM and E2F7 mimicked the effect of BMI1 silencing in BV173 and SUP-B15 cells and iv) treatment with IFNα suppressed proliferation and colony formation of Ph+ ALL cells. These studies indicate that the growth-promoting effects of BMI1 in Ph+ ALL cells depend on suppression of multiple pathways and support the use of IFNα in the therapy of Ph+ ALL.
Collapse
Affiliation(s)
- S A Mariani
- Department of Cancer Biology and Sydney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, PA, USA
| | - V Minieri
- Department of Cancer Biology and Sydney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, PA, USA
| | - M De Dominici
- Department of Cancer Biology and Sydney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, PA, USA
| | - I Iacobucci
- Department of Hematology, University of Bologna, Bologna, Italy
| | - L F Peterson
- Division of Hematology and Oncology, University of Michigan, Ann Arbor, MI, USA
| | - B Calabretta
- Department of Cancer Biology and Sydney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, PA, USA
| |
Collapse
|
10
|
Ko TK, Chin HS, Chuah CT, Huang JW, Ng KP, Khaw SL, Huang DC, Ong ST. The BIM deletion polymorphism: A paradigm of a permissive interaction between germline and acquired TKI resistance factors in chronic myeloid leukemia. Oncotarget 2016; 7:2721-33. [PMID: 26517680 PMCID: PMC4823067 DOI: 10.18632/oncotarget.5436] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2015] [Accepted: 10/16/2015] [Indexed: 12/23/2022] Open
Abstract
Both germline polymorphisms and tumor-specific genetic alterations can determine the response of a cancer to a given therapy. We previously reported a germline deletion polymorphism in the BIM gene that was sufficient to mediate intrinsic resistance to tyrosine kinase inhibitors (TKI) in chronic myeloid leukemia (CML), as well as other cancers [1]. The deletion polymorphism favored the generation of BIM splice forms lacking the pro-apoptotic BH3 domain, conferring a relative resistance to the TKI imatinib (IM). However, CML patients with the BIM deletion polymorphism developed both partial and complete IM resistance. To understand the mechanisms underlying the latter, we grew CML cells either with or without the BIM deletion polymorphism in increasing IM concentrations. Under these conditions, the BIM deletion polymorphism enhanced the emergence of populations with complete IM resistance, mimicking the situation in patients. Importantly, the combined use of TKIs with the BH3 mimetic ABT-737 overcame the BCR-ABL1-dependent and -independent resistance mechanisms found in these cells. Our results illustrate the interplay between germline and acquired genetic factors in confering TKI resistance, and suggest a therapeutic strategy for patients with complete TKI resistance associated with the BIM deletion polymorphism.
Collapse
Affiliation(s)
- Tun Kiat Ko
- Cancer and Stem Cell Biology Program, Duke-NUS Graduate Medical School, Singapore
| | - Hui San Chin
- The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, Australia
- Department of Medical Biology, University of Melbourne, Parkville, VIC, Australia
| | - Charles T.H. Chuah
- Cancer and Stem Cell Biology Program, Duke-NUS Graduate Medical School, Singapore
- Department of Haematology, Singapore General Hospital, Singapore
| | - John W.J. Huang
- Cancer and Stem Cell Biology Program, Duke-NUS Graduate Medical School, Singapore
- Present address: Singapore Institute for Clinical Sciences (SICS), Brenner Centre for Molecular Medicine, Singapore
| | - King-Pan Ng
- Cancer and Stem Cell Biology Program, Duke-NUS Graduate Medical School, Singapore
- Present address: Cancer Science Institute of Singapore, National University of Singapore, Singapore
| | - Seong Lin Khaw
- The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, Australia
- Department of Medical Biology, University of Melbourne, Parkville, VIC, Australia
- Royal Children's Hospital, Parkville, VIC, Australia
| | - David C.S. Huang
- The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, Australia
- Department of Medical Biology, University of Melbourne, Parkville, VIC, Australia
- Royal Children's Hospital, Parkville, VIC, Australia
| | - S. Tiong Ong
- Cancer and Stem Cell Biology Program, Duke-NUS Graduate Medical School, Singapore
- Department of Haematology, Singapore General Hospital, Singapore
- Department of Medical Oncology, National Cancer Centre, Singapore
- Department of Medicine, Duke University Medical Center, Durham, NC, USA
| |
Collapse
|
11
|
Tang N, Lyu D, Liu T, Chen F, Jing S, Hao T, Liu S. Different Effects of p52SHC1 and p52SHC3 on the Cell Cycle of Neurons and Neural Stem Cells. J Cell Physiol 2015; 231:172-80. [DOI: 10.1002/jcp.25069] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2014] [Revised: 04/27/2015] [Accepted: 06/05/2015] [Indexed: 12/27/2022]
Affiliation(s)
- Ning Tang
- State Key Laboratory of Proteomics and; Department of Neurobiology; Institute of Basic Medical Sciences; Beijing P. R. China
- Reproductive Medicine Center; Jinan Military General Hospital; Jinan P. R. China
| | - Dan Lyu
- State Key Laboratory of Proteomics and; Department of Neurobiology; Institute of Basic Medical Sciences; Beijing P. R. China
- Dan Lyu is currently working in Department of Pain Management; Tianjin First Center Hospital; Tianjin P. R. China
| | - Tao Liu
- State Key Laboratory of Proteomics and; Department of Neurobiology; Institute of Basic Medical Sciences; Beijing P. R. China
| | - Fangjin Chen
- State Key Laboratory of Proteomics and; Department of Neurobiology; Institute of Basic Medical Sciences; Beijing P. R. China
| | - Shuqian Jing
- State Key Laboratory of Proteomics and; Department of Neurobiology; Institute of Basic Medical Sciences; Beijing P. R. China
| | - Tianyu Hao
- Reproductive Medicine Center; Jinan Military General Hospital; Jinan P. R. China
| | - Shaojun Liu
- State Key Laboratory of Proteomics and; Department of Neurobiology; Institute of Basic Medical Sciences; Beijing P. R. China
| |
Collapse
|
12
|
Bernt KM, Hunger SP. Current concepts in pediatric Philadelphia chromosome-positive acute lymphoblastic leukemia. Front Oncol 2014; 4:54. [PMID: 24724051 PMCID: PMC3971203 DOI: 10.3389/fonc.2014.00054] [Citation(s) in RCA: 95] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2014] [Accepted: 03/06/2014] [Indexed: 12/22/2022] Open
Abstract
The t(9;22)(q34;q11) or Philadelphia chromosome creates a BCR-ABL1 fusion gene encoding for a chimeric BCR-ABL1 protein. It is present in 3-4% of pediatric acute lymphoblastic leukemia (Ph(+) ALL), and about 25% of adult ALL cases. Prior to the advent of tyrosine kinase inhibitors (TKI), Ph(+) ALL was associated with a very poor prognosis despite the use of intensive chemotherapy and frequently hematopoietic stem-cell transplantation (HSCT) in first remission. The development of TKIs revolutionized the therapy of Ph(+) ALL. Addition of the first generation ABL1 class TKI imatinib to intensive chemotherapy dramatically increased the survival for children with Ph(+) ALL and established that many patients can be cured without HSCT. In parallel, the mechanistic understanding of Ph(+) ALL expanded exponentially through careful mapping of pathways downstream of BCR-ABL1, the discovery of mutations in master regulators of B-cell development such as IKZF1 (Ikaros), PAX5, and early B-cell factor (EBF), the recognition of the complex clonal architecture of Ph(+) ALL, and the delineation of genomic, epigenetic, and signaling abnormalities contributing to relapse and resistance. Still, many important basic and clinical questions remain unanswered. Current clinical trials are testing second generation TKIs in patients with newly diagnosed Ph(+) ALL. Neither the optimal duration of therapy nor the optimal chemotherapy backbone are currently defined. The role of HSCT in first remission and post-transplant TKI therapy also require further study. In addition, it will be crucial to continue to dig deeper into understanding Ph(+) ALL at a mechanistic level, and translate findings into complementary targeted approaches. Expanding targeted therapies hold great promise to decrease toxicity and improve survival in this high-risk disease, which provides a paradigm for how targeted therapies can be incorporated into treatment of other high-risk leukemias.
Collapse
Affiliation(s)
- Kathrin M Bernt
- Department of Pediatrics, University of Colorado School of Medicine and Children's Hospital Colorado , Aurora, CO , USA
| | - Stephen P Hunger
- Department of Pediatrics, University of Colorado School of Medicine and Children's Hospital Colorado , Aurora, CO , USA
| |
Collapse
|
13
|
Zou D, Qiu Y, Tu Z, Liao C, Luo J, Meng Q, Yao R, Li Z, Jiang S. Biological evaluation of 2-methylpyrimidine derivatives as active pan Bcr-Abl inhibitors. Sci China Chem 2013. [DOI: 10.1007/s11426-013-5011-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
14
|
Fredericks J, Ren R. The role of RAS effectors in BCR/ABL induced chronic myelogenous leukemia. Front Med 2013; 7:452-61. [PMID: 24264166 DOI: 10.1007/s11684-013-0304-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2013] [Accepted: 10/16/2013] [Indexed: 01/08/2023]
Abstract
BCR/ABL is the causative agent of chronic myelogenous leukemia (CML). Through structure/function analysis, several protein motifs have been determined to be important for the development of leukemogenesis. Tyrosine177 of BCR is a Grb2 binding site required for BCR/ABL-induced CML in mice. In the current study, we use a mouse bone marrow transduction/transplantation system to demonstrate that addition of oncogenic NRAS (NRASG12D) to a vector containing a BCR/ABL(Y177F) mutant "rescues" the CML phenotype rapidly and efficiently. To further narrow down the pathways downstream of RAS that are responsible for this rescue effect, we utilize well-characterized RAS effector loop mutants and determine that the RAL pathway is important for rapid induction of CML. Inhibition of this pathway by a dominant negative RAL is capable of delaying disease progression. Results from the present study support the notion of RAL inhibition as a potential therapy for BCR/ABL-induced CML.
Collapse
Affiliation(s)
- Jessica Fredericks
- State Key Laboratory for Medical Genomics, Shanghai Institute of Hematology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | | |
Collapse
|
15
|
Yoshida S, Kornek M, Ikenaga N, Schmelzle M, Masuzaki R, Csizmadia E, Wu Y, Robson SC, Schuppan D. Sublethal heat treatment promotes epithelial-mesenchymal transition and enhances the malignant potential of hepatocellular carcinoma. Hepatology 2013; 58:1667-80. [PMID: 23729316 DOI: 10.1002/hep.26526] [Citation(s) in RCA: 107] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/21/2012] [Accepted: 05/10/2013] [Indexed: 01/01/2023]
Abstract
UNLABELLED Radiofrequency ablation (RFA) is a potentially curative therapy for hepatocellular carcinoma (HCC). However, incomplete RFA can induce accelerated invasive growth at the periphery. The mechanisms underlying the RFA-induced tumor promotion remain largely unexplored. Three human HCC cell lines were exposed to 45°C-55°C for 10 minutes, simulating the marginal zone of RFA treatment. At 5-12 days post-treatment cell proliferation, parameters of epithelial-mesenchymal transition (EMT), and activation of mitogen-activated protein kinases were analyzed. Livers from patients with viral hepatitis without and with HCC (n = 114) were examined to confirm the relevance of altered kinase patterns. In vivo tumorigenic potential of heat-treated versus untreated HCC cells was studied in nude mice. Heating to 55°C killed all HCC cells, whereas 65%-85% of cells survived 48°C-50°C, developing spindle-like morphology and expressing CD133, cytokeratin (CK)7, CK19, procollagen-α1(I), and Snail at day 5 after heat exposure, which returned to baseline at day 12. Heat-exposed HCC cells showed enhanced proliferation and prominent activation of p46-Shc (Src homology and collagen) and downstream extracellular signal-related kinase (Erk)1/2. In patients, Shc expression correlated with malignant potential and overall survival. Blocking Erk1/2 reduced proliferation and EMT-like changes of heat-treated HCC cells. Implantation of heat-exposed HEPG2 cells into nude mice induced significantly larger, more aggressive tumors than untreated cells. CONCLUSIONS Sublethal heat treatment skews HCC cells toward EMT and transforms them to a progenitor-like, highly proliferative cellular phenotype in vitro and in vivo, which is driven significantly by p46Shc-Erk1/2. Suboptimal RFA accelerates HCC growth and spread by transiently inducing an EMT-like, more aggressive cellular phenotype.
Collapse
Affiliation(s)
- Shuhei Yoshida
- Division of Gastroenterology and Liver Center, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA
| | | | | | | | | | | | | | | | | |
Collapse
|
16
|
Hardtke-Wolenski M, Kraus L, Schmetz C, Trautewig B, Noyan F, Vondran FWR, Bektas H, Klempnauer J, Jaeckel E, Lieke T. Exchange of cytosolic content between T cells and tumor cells activates CD4 T cells and impedes cancer growth. PLoS One 2013; 8:e78558. [PMID: 24205259 PMCID: PMC3813479 DOI: 10.1371/journal.pone.0078558] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2013] [Accepted: 09/19/2013] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND T cells are known to participate in the response to tumor cells and react with cytotoxicity and cytokine release. At the same time tumors established versatile mechanisms for silencing the immune responses. The interplay is far from being completely understood. In this study we show contacts between tumor cells and lymphocytes revealing novel characteristics in the interaction of T cells and cancer cells in a way not previously described. METHODS/ FINDINGS Experiments are based on the usage of a hydrophilic fluorescent dye that occurs free in the cytosol and thus transfer of fluorescent cytosol from one cell to the other can be observed using flow cytometry. Tumor cells from cell lines of different origin or primary hepatocellular carcinoma (HCC) cells were incubated with lymphocytes from human and mice. This exposure provoked a contact dependent uptake of tumor derived cytosol by lymphocytes--even in CD4⁺ T cells and murine B cells--which could not be detected after incubation of lymphocytes with healthy cells. The interaction was a direct one, not requiring the presence of accessory cells, but independent of cytotoxicity and TCR engagement. Electron microscopy disclosed 100-200 nm large gaps in the cell membranes of connected cells which separated viable and revealed astonishing outcome. While the lymphocytes were induced to proliferate in a long term fashion, the tumor cells underwent a temporary break in cell division. The in vitro results were confirmed in vivo using a murine acute lymphoblastic leukemia (ALL) model. The arrest of tumor proliferation resulted in a significant prolonged survival of challenged mice. CONCLUSIONS The reported cell-cell contacts reveal new characteristics i.e. the enabling of cytosol flow between the cells including biological active proteins that influence the cell cycle and biological behaviour of the recipient cells. This adds a completely new aspect in tumor induced immunology.
Collapse
Affiliation(s)
- Matthias Hardtke-Wolenski
- Department of Gastroenterology, Hepatology and Endocrinology, Hannover Medical School, Hannover, Germany
| | - Lilli Kraus
- Department of General-, Visceral- and Transplantation Surgery, Hannover Medical School, Hannover, Germany
| | - Christel Schmetz
- Bernhard Nocht Institute for Tropical Medicine, Parasitology Section, Hamburg, Germany
| | - Britta Trautewig
- Department of General-, Visceral- and Transplantation Surgery, Hannover Medical School, Hannover, Germany
| | - Fatih Noyan
- Department of Gastroenterology, Hepatology and Endocrinology, Hannover Medical School, Hannover, Germany
| | - Florian W. R. Vondran
- ReMediES, Department of General-, Visceral- and Transplantation Surgery, Hannover Medical School, Hannover, Germany
| | - Hueseyin Bektas
- ReMediES, Department of General-, Visceral- and Transplantation Surgery, Hannover Medical School, Hannover, Germany
| | - Juergen Klempnauer
- Department of General-, Visceral- and Transplantation Surgery, Hannover Medical School, Hannover, Germany
| | - Elmar Jaeckel
- Department of Gastroenterology, Hepatology and Endocrinology, Hannover Medical School, Hannover, Germany
| | - Thorsten Lieke
- ReMediES, Department of General-, Visceral- and Transplantation Surgery, Hannover Medical School, Hannover, Germany
| |
Collapse
|
17
|
JAK of all trades: JAK2-STAT5 as novel therapeutic targets in BCR-ABL1+ chronic myeloid leukemia. Blood 2013; 122:2167-75. [PMID: 23926299 DOI: 10.1182/blood-2013-02-485573] [Citation(s) in RCA: 72] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
The transcription factor signal transducers and activators of transcription 5 (STAT5) has an important and unique role in Breakpoint Cluster Region - Abelson 1 (BCR-ABL1)-driven neoplasias. STAT5 is an essential component in the signaling network that maintains the survival and growth of chronic myeloid leukemia (CML) cells. In contrast, the function of the prototypical upstream kinase of STAT5, the Janus kinase JAK2, in CML is still under debate. Although there is widespread agreement that JAK2 is part of the signaling network downstream of BCR-ABL1, it is unclear whether and under what circumstances JAK2 inhibitors may be beneficial for CML patients. Recent studies in murine models have cast doubt on the importance of JAK2 in CML maintenance. Nevertheless, JAK2 has been proposed to have a central role in the cytokine signaling machinery that allows the survival of CML stem cells in the presence of BCR-ABL1 tyrosine kinase inhibitors. In this review, we summarize the current debate and provide an overview of the arguments on both sides of the fence. We present recent evidence showing that CML stem cells do not depend on BCR-ABL1 kinase activity but require the continuous support of the hematopoietic niche and its distinct cytokine environment and suggest that it has the potential to resolve the dispute.
Collapse
|
18
|
FK228 Analogues Induce Fetal Hemoglobin in Human Erythroid Progenitors. Anemia 2012; 2012:428137. [PMID: 22655179 PMCID: PMC3359661 DOI: 10.1155/2012/428137] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2011] [Accepted: 03/07/2012] [Indexed: 11/18/2022] Open
Abstract
Fetal hemoglobin (HbF) improves the clinical severity of sickle cell disease (SCD), therefore, research to identify HbF-inducing agents for treatment purposes is desirable. The focus of our study is to investigate the ability of FK228 analogues to induce HbF using a novel KU812 dual-luciferase reporter system. Molecular modeling studies showed that the structure of twenty FK228 analogues with isosteric substitutions did not disturb the global structure of the molecule. Using the dual-luciferase system, a subgroup of FK228 analogues was shown to be inducers of HbF at nanomolar concentrations. To determine the physiological relevance of these compounds, studies in primary erythroid progenitors confirmed that JMA26 and JMA33 activated HbF synthesis at levels comparable to FK228 with low cellular toxicity. These data support our lead compounds as potential therapeutic agents for further development in the treatment of SCD.
Collapse
|
19
|
Calabretta B, Salomoni P. Suppression of autophagy by BCR/ABL. Front Biosci (Schol Ed) 2012; 4:453-60. [PMID: 22202070 DOI: 10.2741/278] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Imatinib and second generation BCR/ABL tyrosine kinase inhibitors (TKIs) serve now as standard therapies for patients with chronic myelogenous leukemia (CML); however, CML stem cells are intrinsically insensitive to the cell death-inducing effects of TKIs, allowing the persistence of a "reservoir" of BCR/ABL-expressing CML-initiating cells potentially responsible for disease relapse and progression. Although it is still controversial whether the "insensitivity" of CML stem cells to treatment with TKI is due to BCR/ABL-dependent or independent mechanisms, treatment with IM appears to suppress BCR/ABL-dependent signaling in CML stem cells with no adverse effects on their survival. Recent evidence indicates that BCR/ABL suppresses and treatment of CML cells with IM/TKIs induces autophagy, a genetically-regulated process of adaptation to metabolic stress which could allow tumor cells to become metabolically inert enabling their survival under conditions that may mimic growth factor/nutrients deprivation. Based on this hypothesis, TKI-induced autophagy may "antagonize" TKI-induced cell death and inhibition of autophagy may eliminate this survival mechanism by restoring "sensitivity" of CML stem cells to treatment with IM/TKI. Consistent with this, phenotypically and functionally defined CML-enriched stem cells insensitive to treatment with TKI are efficiently eliminated by the combination of TKI and chloroquine, an inhibitor of late stage autophagy. Thus, inhibition of autophagy may improve the potent and specific effects of TKIs by rendering CML stem cells sensitive to these targeted therapies.
Collapse
Affiliation(s)
- Bruno Calabretta
- Department of Cancer Biology, Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, PA, USA.
| | | |
Collapse
|
20
|
Packer LM, Rana S, Hayward R, O'Hare T, Eide CA, Rebocho A, Heidorn S, Zabriskie MS, Niculescu-Duvaz I, Druker BJ, Springer C, Marais R. Nilotinib and MEK inhibitors induce synthetic lethality through paradoxical activation of RAF in drug-resistant chronic myeloid leukemia. Cancer Cell 2011; 20:715-27. [PMID: 22169110 PMCID: PMC3951999 DOI: 10.1016/j.ccr.2011.11.004] [Citation(s) in RCA: 98] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/11/2011] [Revised: 10/15/2011] [Accepted: 11/02/2011] [Indexed: 01/07/2023]
Abstract
We show that imatinib, nilotinib, and dasatinib possess weak off-target activity against RAF and, therefore, drive paradoxical activation of BRAF and CRAF in a RAS-dependent manner. Critically, because RAS is activated by BCR-ABL, in drug-resistant chronic myeloid leukemia (CML) cells, RAS activity persists in the presence of these drugs, driving paradoxical activation of BRAF, CRAF, MEK, and ERK, and leading to an unexpected dependency on the pathway. Consequently, nilotinib synergizes with MEK inhibitors to kill drug-resistant CML cells and block tumor growth in mice. Thus, we show that imatinib, nilotinib, and dasatinib drive paradoxical RAF/MEK/ERK pathway activation and have uncovered a synthetic lethal interaction that can be used to kill drug-resistant CML cells in vitro and in vivo.
Collapse
MESH Headings
- Amino Acid Substitution
- Animals
- Antineoplastic Agents/pharmacology
- Antineoplastic Agents/therapeutic use
- Apoptosis
- Benzamides/pharmacology
- Benzamides/therapeutic use
- Cell Line, Tumor
- Dasatinib
- Drug Resistance, Neoplasm
- Drug Synergism
- Enzyme Activation/drug effects
- Extracellular Signal-Regulated MAP Kinases/metabolism
- Fusion Proteins, bcr-abl/genetics
- Fusion Proteins, bcr-abl/metabolism
- Genes, ras
- Humans
- Imatinib Mesylate
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/drug therapy
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/metabolism
- MAP Kinase Kinase Kinases/antagonists & inhibitors
- MAP Kinase Kinase Kinases/metabolism
- MAP Kinase Signaling System
- Mice
- Mice, Nude
- Piperazines/pharmacology
- Proto-Oncogene Proteins B-raf/metabolism
- Proto-Oncogene Proteins c-raf/metabolism
- Pyrimidines/pharmacology
- Pyrimidines/therapeutic use
- Thiazoles/pharmacology
- Tumor Cells, Cultured
- Xenograft Model Antitumor Assays
- raf Kinases/metabolism
Collapse
Affiliation(s)
- Leisl M. Packer
- Division of Tumour Biology, The Institute of Cancer Research, 237 Fulham Road, London, SW3 6JB, United Kingdom
| | - Sareena Rana
- Division of Tumour Biology, The Institute of Cancer Research, 237 Fulham Road, London, SW3 6JB, United Kingdom
| | - Robert Hayward
- Division of Tumour Biology, The Institute of Cancer Research, 237 Fulham Road, London, SW3 6JB, United Kingdom
| | - Thomas O'Hare
- Division of Hematology and Hematologic Malignancies, Huntsman Cancer Institute, University of Utah, Salt Lake City, 84112-5550, UT
- Division of Hematology and Medical Oncology, Oregon Health & Science University Knight Cancer Institute, Howard Hughes Medical Institute, Portland, OR 97239, USA
| | - Christopher A. Eide
- Division of Hematology and Medical Oncology, Oregon Health & Science University Knight Cancer Institute, Howard Hughes Medical Institute, Portland, OR 97239, USA
| | - Ana Rebocho
- Division of Tumour Biology, The Institute of Cancer Research, 237 Fulham Road, London, SW3 6JB, United Kingdom
| | - Sonja Heidorn
- Division of Tumour Biology, The Institute of Cancer Research, 237 Fulham Road, London, SW3 6JB, United Kingdom
| | - Matthew S. Zabriskie
- Division of Hematology and Medical Oncology, Oregon Health & Science University Knight Cancer Institute, Howard Hughes Medical Institute, Portland, OR 97239, USA
| | - Ion Niculescu-Duvaz
- Cancer Research UK Centre for Cancer Therapeutics, The Institute of Cancer Research, 15 Cotswold Road, Sutton, Surrey, SM2 5NG, United Kingdom
| | - Brian J. Druker
- Division of Hematology and Medical Oncology, Oregon Health & Science University Knight Cancer Institute, Howard Hughes Medical Institute, Portland, OR 97239, USA
| | - Caroline Springer
- Cancer Research UK Centre for Cancer Therapeutics, The Institute of Cancer Research, 15 Cotswold Road, Sutton, Surrey, SM2 5NG, United Kingdom
| | - Richard Marais
- Division of Tumour Biology, The Institute of Cancer Research, 237 Fulham Road, London, SW3 6JB, United Kingdom
- Address for correspondence: Professor Richard Marais, Centre for Cell and Molecular Biology, Institute of Cancer Research, 237 Fulham Road, London SW3 6JB, United Kingdom, Tel: +44 207 153 5171
| |
Collapse
|
21
|
Kharas MG, Daley GQ. From Hen House to Bedside: Tracing Hanafusa's Legacy from Avian Leukemia Viruses to SRC to ABL and Beyond. Genes Cancer 2011; 1:1164-9. [PMID: 21779439 DOI: 10.1177/1947601911407327] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
The discovery of the Src oncogene was the first step on a long journey toward improved cancer chemotherapy. In this review, we explore Src and BCR-ABL, signal transduction, and recent advances in oncogene addiction and celebrate Hidesaboro Hanafusa and the many researchers who ushered in the age of target-directed therapy against tyrosine kinase oncoproteins.
Collapse
Affiliation(s)
- Michael G Kharas
- Division of Hematology, Brigham and Women's Hospital, Boston, MA, USA
| | | |
Collapse
|
22
|
Waldron T, De Dominici M, Soliera AR, Audia A, Iacobucci I, Lonetti A, Martinelli G, Zhang Y, Martinez R, Hyslop T, Bender TP, Calabretta B. c-Myb and its target Bmi1 are required for p190BCR/ABL leukemogenesis in mouse and human cells. Leukemia 2011; 26:644-53. [PMID: 21960247 PMCID: PMC3252490 DOI: 10.1038/leu.2011.264] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
Expression of c-Myb is required for normal hematopoiesis and for proliferation of myeloid leukemia blasts and a subset of T cell leukemia but its role in B-cell leukemogenesis is unknown. We tested the role of c-Myb in p190BCR/ABL-dependent B-cell leukemia in mice transplanted with p190BCR/ABL-transduced marrow cells with a c-Myb allele (Mybf/d) and in double transgenic p190BCR/ABL/Mybw/d mice. In both models, loss of a c-Myb allele caused a less aggressive B-cell leukemia. In p190BCR/ABL expressing human B-cell leukemia lines, knockdown of c-Myb expression suppressed proliferation and colony formation. Compared to c-Mybw/f cells, expression of Bmi1, a regulator of stem cell proliferation and maintenance, was decreased in pre-B cells from Mybw/d p190BCR/ABL transgenic mice. Ectopic expression of a mutant c-Myb or Bmi1 enhanced the proliferation and colony formation of Mybw/d p190BCR/ABL B-cells; by contrast, Bmi1 downregulation inhibited colony formation of p190BCR/ABL-expressing murine B cells and human B-cell leukemia lines. Moreover, c-Myb interacted with a segment of the human Bmi1 promoter and enhanced its activity. In blasts from nineteen Ph1 adult ALL patients, levels of c-Myb and Bmi1 showed a positive correlation. Together, these findings support the existence of a c-Myb-Bmi1 transcription regulatory pathway required for p190BCR/ABL leukemogenesis.
Collapse
Affiliation(s)
- T Waldron
- Department of Cancer Biology and Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, PA 19107, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Nordgren A. Hidden Aberrations Diagnosed by Interphase FluorescenceIn SituHybridisation and Spectral Karyotyping in Childhood Acute Lymphoblastic Leukaemia. Leuk Lymphoma 2011; 44:2039-53. [PMID: 14959846 DOI: 10.1080/1042819031000083361] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
Acute lymphoblastic leukaemia (ALL) is the most common oncologic disease in childhood, accounting for approximately 25% of all paediatric malignancies. Based on clinical risk criteria and modern laboratory investigations including immunophenotyping, cytogenetics and molecular genetics, patients can be divided into prognostic groups and assigned to risk-adjusted treatment protocols. The karyotype is an independent prognostic indicator and has for some aberrations that are associated with a poor outcome a direct impact on the choice of treatment. Cytogenetic analysis in ALL is often hampered by poor chromosome morphology, few malignant metaphases, undetectable chromosomal rearrangements due to regions of a similar size and banding pattern and sometimes only normal metaphases derived from normal cells are found after cell culture. Structural as well as numerical aberrations may therefore remain undetected using conventional G-banding. The application of modern molecular cytogenetic techniques including a broad set of fluorescence in situ hybridisation (FISH) methods and recent developments in comparative genomic hybridisation to DNA microarrays, together with molecular methods such as Southern blotting and RT-PCR has greatly improved the detection rate of genetic changes in ALL. This review emphasises the value of increasing the resolving power of the cytogenetic investigation by spectral karyotyping (SKY) and interphase FISH in identifying prognostically important and novel chromosomal rearrangements as a complement to conventional banding analysis. The results of investigations performed on cases with ALL have shown that interphase FISH is valuable and in many cases even mandatory for the detection of prognostically important genetic abnormalities and should therefore consistently be employed in the routine cytogenetic investigations in ALL. Likewise, SKY is a valuable tool for the cytogenetic analysis. Thus, the results of several different investigations described in this review revealed that SKY yielded additional information in 97/157 (62%) cases with chromosomal aberrations detected by G-banding, and in 10/66 (15%) cases with normal G-banding.
Collapse
Affiliation(s)
- Ann Nordgren
- Department of Molecular Medicine, Karolinska Institutet, L8-02, Karolinska Hospital SE-171 76 Stockholm, Sweden.
| |
Collapse
|
24
|
SHP-1 expression accounts for resistance to imatinib treatment in Philadelphia chromosome-positive cells derived from patients with chronic myeloid leukemia. Blood 2011; 118:3634-44. [PMID: 21821701 DOI: 10.1182/blood-2011-03-341073] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
We prove that the SH2-containing tyrosine phosphatase 1 (SHP-1) plays a prominent role as resistance determinant of imatinib (IMA) treatment response in chronic myelogenous leukemia cell lines (sensitive/KCL22-S and resistant/KCL22-R). Indeed, SHP-1 expression is significantly lower in resistant than in sensitive cell line, in which coimmunoprecipitation analysis shows the interaction between SHP-1 and a second tyrosine phosphatase SHP-2, a positive regulator of RAS/MAPK pathway. In KCL22-R SHP-1 ectopic expression restores both SHP-1/SHP-2 interaction and IMA responsiveness; it also decreases SHP-2 activity after IMA treatment. Consistently, SHP-2 knocking-down in KCL22-R reduces either STAT3 activation or cell viability after IMA exposure. Therefore, our data suggest that SHP-1 plays an important role in BCR-ABL-independent IMA resistance modulating the activation signals that SHP-2 receives from both BCR/ABL and membrane receptor tyrosine kinases. The role of SHP-1 as a determinant of IMA sensitivity has been further confirmed in 60 consecutive untreated patients with chronic myelogenous leukemia, whose SHP-1 mRNA levels were significantly lower in case of IMA treatment failure (P < .0001). In conclusion, we suggest that SHP-1 could be a new biologic indicator at baseline of IMA sensitivity in patients with chronic myelogenous leukemia.
Collapse
|
25
|
Kakadia PM, Tizazu B, Mellert G, Harbott J, Röttgers S, Quentmeier H, Spiekermann K, Bohlander SK. A novel ABL1 fusion to the SH2 containing inositol phosphatase-1 (SHIP1) in acute lymphoblastic leukemia (ALL). Leukemia 2011; 25:1645-9. [DOI: 10.1038/leu.2011.129] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
26
|
Calabretta B, Salomoni P. Inhibition of autophagy: a new strategy to enhance sensitivity of chronic myeloid leukemia stem cells to tyrosine kinase inhibitors. Leuk Lymphoma 2011; 52 Suppl 1:54-9. [PMID: 21250825 DOI: 10.3109/10428194.2010.546913] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Imatinib mesylate (IM) has become standard therapy for patients with chronic myeloid leukemia (CML), but CML stem cells are intrinsically resistant to IM and to second/third-generation tyrosine kinase inhibitors (TKIs), allowing the persistence of a 'reservoir' of BCR-ABL-expressing CML-initiating cells potentially responsible for disease progression. Although it is still controversial whether the 'insensitivity' of CML stem cells to treatment with TKIs is due to BCR-ABL-dependent or independent mechanisms, recent evidence indicates that treatment with IM suppresses BCR-ABL-dependent signaling in CML stem cells with no adverse effects on their survival. Treatment of CML cells with IM/TKIs induces autophagy, a genetically regulated process of adaptation to metabolic stress which may allow tumor cells to become metabolically inert, enabling their survival under conditions that may mimic growth factor/nutrient deprivation. Based on this hypothesis, TKI-induced autophagy may 'antagonize' TKI-induced cell death and inhibition of autophagy may eliminate this survival mechanism by restoring 'sensitivity' of CML stem cells to treatment with IM/TKIs. Consistent with this, recent evidence indicates that phenotypically and functionally defined CML-enriched stem cells that are insensitive to treatment with TKIs are efficiently eliminated by the combination of TKI and chloroquine, an inhibitor of late stage autophagy. Thus, inhibition of autophagy may 'sensitize' CML stem cells to treatment with TKIs, thus preserving the high specificity of TKI-based therapies.
Collapse
Affiliation(s)
- Bruno Calabretta
- Department of Cancer Biology, Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, PA 19107, USA.
| | | |
Collapse
|
27
|
The proximal signaling network of the BCR-ABL1 oncogene shows a modular organization. Oncogene 2010; 29:5895-910. [PMID: 20697350 DOI: 10.1038/onc.2010.331] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
BCR-ABL1 is a fusion tyrosine kinase, which causes multiple types of leukemia. We used an integrated proteomic approach that includes label-free quantitative protein complex and phosphorylation profiling by mass spectrometry to systematically characterize the proximal signaling network of this oncogenic kinase. The proximal BCR-ABL1 signaling network shows a modular and layered organization with an inner core of three leukemia transformation-relevant adaptor protein complexes (Grb2/Gab2/Shc1 complex, CrkI complex and Dok1/Dok2 complex). We introduced an 'interaction directionality' analysis, which annotates static protein networks with information on the directionality of phosphorylation-dependent interactions. In this analysis, the observed network structure was consistent with a step-wise phosphorylation-dependent assembly of the Grb2/Gab2/Shc1 and the Dok1/Dok2 complexes on the BCR-ABL1 core. The CrkI complex demonstrated a different directionality, which supports a candidate assembly on the Nedd9 (Hef1, CasL) scaffold. As adaptor protein family members can compensate for each other in leukemic transformation, we compared members of the Dok and Crk protein families and found both overlapping and differential binding patterns. We identified an additional level of regulation for the CrkII protein via binding to 14-3-3 proteins, which was independent from its inhibitory phosphorylation. We also identified novel components of the inner core complexes, including the kinases Pragmin (Sgk223) and Lrrk1 (Lrrk2 paralog). Pragmin was found as a component of the CrkI complex and is a potential link between BCR-ABL1/CrkI and RhoA signaling. Lrrk1 is an unusual kinase with a GTPase domain. We detected Lrrk1 as a component of the Grb2/Gab2/Shc1 complex and found that it functionally interacts with the regulator of small GTPases Arap1 (Centd2) and possibly participates in the mitogen-activated protein kinase response to cellular stresses. This modular and phosphorylation-driven interaction network provides a framework for the integration of pleiotropic signaling effects of BCR-ABL1 toward leukemic transformation.
Collapse
|
28
|
Pene-Dumitrescu T, Smithgall TE. Expression of a Src family kinase in chronic myelogenous leukemia cells induces resistance to imatinib in a kinase-dependent manner. J Biol Chem 2010; 285:21446-57. [PMID: 20452982 DOI: 10.1074/jbc.m109.090043] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The Bcr-Abl kinase inhibitor imatinib is remarkably effective in chronic myelogenous leukemia (CML), although drug resistance is an emerging problem. Myeloid Src family kinases such as Hck and Lyn are often overexpressed in imatinib-resistant CML cells that lack Bcr-Abl mutations. Here we tested whether Hck overexpression is sufficient to induce imatinib resistance using both wild-type Hck and a mutant (Hck-T338A) that is uniquely sensitive to the pyrazolo-pyrimidine inhibitor, NaPP1. Expression of either kinase in K562 CML cells caused resistance to imatinib-induced apoptosis and inhibition of soft-agar colony formation. Treatment with NaPP1 restored sensitivity to imatinib in cells expressing T338A but not wild-type Hck, demonstrating that resistance requires Hck kinase activity. NaPP1 also reduced Hck-mediated phosphorylation of Bcr-Abl at sites that may affect imatinib sensitivity exclusively in cells expressing Hck-T338A. These data show that elevated Src family kinase activity is sufficient to induce imatinib resistance through a mechanism that may involve phosphorylation of Bcr-Abl.
Collapse
Affiliation(s)
- Teodora Pene-Dumitrescu
- Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvainia 15219, USA
| | | |
Collapse
|
29
|
Spred2 is involved in imatinib-induced cytotoxicity in chronic myeloid leukemia cells. Biochem Biophys Res Commun 2010; 393:637-42. [PMID: 20153728 DOI: 10.1016/j.bbrc.2010.02.044] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2010] [Accepted: 02/09/2010] [Indexed: 11/21/2022]
Abstract
Spreds, a recently established class of negative regulators of the Ras-ERK (extracellular signal-regulated kinase) pathway, are involved in hematogenesises, allergic disorders and tumourigenesis. However, their role in hematologic neoplasms is largely unknown. Possible effects of Spreds on other signal pathways closely related to Ras-ERK have been poorly investigated. In this study, we investigated the in vitro effects of Spred2 on chronic myeloid leukemia (CML) cells. In addition to inhibiting the well-established Ras-ERK cascade, adenovirus-mediated Spred2 over-expression inhibits constitutive and stem cell factor (SCF)-stimulated sphingosine kinase-1 (SPHK1) and Mcl-1 expression, as well as inhibiting proliferation and inducing apoptosis in CML cells. In K562 cells and primary CML cells, imatinib induces endogenous Spred2 expression. Spred2 silencing by stable RNA interference partly protects K562 cells against imatinib-induced apoptosis. Together, these data implicate Spred2 in imatinib-induced cytotoxicity in CML cells, possibly by inhibiting the Ras-ERK cascade and the pro-survival signaling molecules SPHK1 and Mcl-1. These findings reveal potential targets for selective therapy of CML.
Collapse
|
30
|
Chen Y, Peng C, Li D, Li S. Molecular and cellular bases of chronic myeloid leukemia. Protein Cell 2010; 1:124-32. [PMID: 21203982 DOI: 10.1007/s13238-010-0016-z] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2009] [Accepted: 12/07/2009] [Indexed: 12/21/2022] Open
Abstract
Chronic myeloid leukemia (CML) is a myeloproliferative disease characterized by the overproduction of granulocytes, which leads to high white blood cell counts and splenomegaly in patients. Based on clinical symptoms and laboratory findings, CML is classified into three clinical phases, often starting with a chronic phase, progressing to an accelerated phase and ultimately ending in a terminal phase called blast crisis. Blast crisis phase of CML is clinically similar to an acute leukemia; in particular, B-cell acute lymphoblastic leukemia (B-ALL) is a severe form of acute leukemia in blast crisis, and there is no effective therapy for it yet. CML is induced by the BCR-ABL oncogene, whose gene product is a BCR-ABL tyrosine kinase. Currently, inhibition of BCR-ABL kinase activity by its kinase inhibitor such as imatinib mesylate (Gleevec) is a major therapeutic strategy for CML. However, the inability of BCR-ABL kinase inhibitors to completely kill leukemia stem cells (LSCs) indicates that these kinase inhibitors are unlikely to cure CML. In addition, drug resistance due to the development of BCRABL mutations occurs before and during treatment of CML with kinase inhibitors. A critical issue to resolve this problem is to fully understand the biology of LSCs, and to identify key genes that play significant roles in survival and self-renewal of LSCs. In this review, we will focus on LSCs in CML by summarizing and discussing available experimental results, including the original studies from our own laboratory.
Collapse
MESH Headings
- 5-Lipoxygenase-Activating Proteins/metabolism
- Animals
- Benzamides
- Disease Models, Animal
- Fusion Proteins, bcr-abl/antagonists & inhibitors
- Fusion Proteins, bcr-abl/chemistry
- Fusion Proteins, bcr-abl/metabolism
- Humans
- Imatinib Mesylate
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/drug therapy
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/enzymology
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/genetics
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/pathology
- Male
- Mice
- Neoplastic Stem Cells/enzymology
- Neoplastic Stem Cells/pathology
- PTEN Phosphohydrolase/metabolism
- Philadelphia Chromosome
- Piperazines/therapeutic use
- Point Mutation
- Protein Structure, Tertiary
- Protein-Tyrosine Kinases/antagonists & inhibitors
- Protein-Tyrosine Kinases/chemistry
- Protein-Tyrosine Kinases/metabolism
- Pyrimidines/therapeutic use
Collapse
Affiliation(s)
- Yaoyu Chen
- Division of Hematology/Oncology, Department of Medicine, University of Massachusetts Medical School, Worcester, MA 01605, USA
| | | | | | | |
Collapse
|
31
|
Hegyi H, Buday L, Tompa P. Intrinsic structural disorder confers cellular viability on oncogenic fusion proteins. PLoS Comput Biol 2009; 5:e1000552. [PMID: 19888473 PMCID: PMC2768585 DOI: 10.1371/journal.pcbi.1000552] [Citation(s) in RCA: 67] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2009] [Accepted: 09/30/2009] [Indexed: 12/22/2022] Open
Abstract
Chromosomal translocations, which often generate chimeric proteins by fusing segments of two distinct genes, represent the single major genetic aberration leading to cancer. We suggest that the unifying theme of these events is a high level of intrinsic structural disorder, enabling fusion proteins to evade cellular surveillance mechanisms that eliminate misfolded proteins. Predictions in 406 translocation-related human proteins show that they are significantly enriched in disorder (43.3% vs. 20.7% in all human proteins), they have fewer Pfam domains, and their translocation breakpoints tend to avoid domain splitting. The vicinity of the breakpoint is significantly more disordered than the rest of these already highly disordered fusion proteins. In the unlikely event of domain splitting in fusion it usually spares much of the domain or splits at locations where the newly exposed hydrophobic surface area approximates that of an intact domain. The mechanisms of action of fusion proteins suggest that in most cases their structural disorder is also essential to the acquired oncogenic function, enabling the long-range structural communication of remote binding and/or catalytic elements. In this respect, there are three major mechanisms that contribute to generating an oncogenic signal: (i) a phosphorylation site and a tyrosine-kinase domain are fused, and structural disorder of the intervening region enables intramolecular phosphorylation (e.g., BCR-ABL); (ii) a dimerisation domain fuses with a tyrosine kinase domain and disorder enables the two subunits within the homodimer to engage in permanent intermolecular phosphorylations (e.g., TFG-ALK); (iii) the fusion of a DNA-binding element to a transactivator domain results in an aberrant transcription factor that causes severe misregulation of transcription (e.g. EWS-ATF). Our findings also suggest novel strategies of intervention against the ensuing neoplastic transformations. Chromosomal translocations generate chimeric proteins by fusing segments of two distinct genes and are frequently associated with cancer. The proteins involved are large and fairly heterogeneous in sequence and typically have only a few dispersed structural domains connected by long uncharacterized regions. It has never been studied from a structural perspective how these chimeras survive losing significant portions of the original proteins and acquire new oncogenic functions. By analyzing a collection of 406 human translocation proteins we show here that the answer to both questions lies to a large extent in the high level of structural disorder in the fusion partner proteins (on average, they are twice as disordered as all human proteins). The translocation breakpoints usually avoid globular domains. In rare cases when a globular domain is truncated by the fusion, it happens at a location in the domain where the hydrophobicity exposed by the split is favorable (i.e., not too high). Disorder on average is significantly higher in the vicinity of the breakpoint than in the rest of the fusion proteins. Disorder also plays a pivotal role in the acquired oncogenic function by bringing distant/disparate fusion segments together that enables novel intra- and/or intermolecular interactions.
Collapse
Affiliation(s)
- Hedi Hegyi
- Institute of Enzymology, Biological Research Center, Hungarian Academy of Sciences, Budapest, Hungary
| | - László Buday
- Institute of Enzymology, Biological Research Center, Hungarian Academy of Sciences, Budapest, Hungary
- Department of Medical Chemistry, Semmelweis University Medical School, Budapest, Hungary
| | - Peter Tompa
- Institute of Enzymology, Biological Research Center, Hungarian Academy of Sciences, Budapest, Hungary
- * E-mail:
| |
Collapse
|
32
|
Johnson KJ, Griswold IJ, O'Hare T, Corbin AS, Loriaux M, Deininger MW, Druker BJ. A BCR-ABL mutant lacking direct binding sites for the GRB2, CBL and CRKL adapter proteins fails to induce leukemia in mice. PLoS One 2009; 4:e7439. [PMID: 19823681 PMCID: PMC2757918 DOI: 10.1371/journal.pone.0007439] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2009] [Accepted: 09/17/2009] [Indexed: 11/19/2022] Open
Abstract
The BCR-ABL tyrosine kinase is the defining feature of chronic myeloid leukemia (CML) and its kinase activity is required for induction of this disease. Current thinking holds that BCR-ABL forms a multi-protein complex that incorporates several substrates and adaptor proteins and is stabilized by multiple direct and indirect interactions. Signaling output from this highly redundant network leads to cellular transformation. Proteins known to be associated with BCR-ABL in this complex include: GRB2, c-CBL, p62(DOK), and CRKL. These proteins in turn, link BCR-ABL to various signaling pathways indicated in cellular transformation. In this study we show that a triple mutant of BCR-ABL with mutations of the direct binding sites for GRB2, CBL, p62(DOK) and CRKL, is defective for transformation of primary hematopoietic cells in vitro and in a murine CML model, while it retains the capacity to induce IL-3 independence in 32D cells. Compared to BCR-ABL, the triple mutant's ability to activate the MAP kinase and PI3-kinase pathways is severely compromised, while STAT5 phosphorylation is maintained, suggesting that the former are crucial for the transformation of primary cells, but dispensable for transformation of factor dependent cell lines. Our data suggest that inhibition of BCR-ABL-induced leukemia by disrupting protein interactions could be possible, but would require blocking of multiple sites.
Collapse
Affiliation(s)
- Kara J Johnson
- Division of Hematology and Medical Oncology, Oregon Health & Science University Knight Cancer Institute, Portland, Oregon, United States of America.
| | | | | | | | | | | | | |
Collapse
|
33
|
Bellodi C, Lidonnici MR, Hamilton A, Helgason GV, Soliera AR, Ronchetti M, Galavotti S, Young KW, Selmi T, Yacobi R, Van Etten RA, Donato N, Hunter A, Dinsdale D, Tirrò E, Vigneri P, Nicotera P, Dyer MJ, Holyoake T, Salomoni P, Calabretta B. Targeting autophagy potentiates tyrosine kinase inhibitor-induced cell death in Philadelphia chromosome-positive cells, including primary CML stem cells. J Clin Invest 2009; 119:1109-23. [PMID: 19363292 DOI: 10.1172/jci35660] [Citation(s) in RCA: 454] [Impact Index Per Article: 28.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2008] [Accepted: 02/11/2009] [Indexed: 12/30/2022] Open
Abstract
Imatinib mesylate (IM), a potent inhibitor of the BCR/ABL tyrosine kinase, has become standard first-line therapy for patients with chronic myeloid leukemia (CML), but the frequency of resistance increases in advancing stages of disease. Elimination of BCR/ABL-dependent intracellular signals triggers apoptosis, but it is unclear whether this activates additional cell survival and/or death pathways. We have shown here that IM induces autophagy in CML blast crisis cell lines, CML primary cells, and p210BCR/ABL-expressing myeloid precursor cells. IM-induced autophagy did not involve c-Abl or Bcl-2 activity but was associated with ER stress and was suppressed by depletion of intracellular Ca2+, suggesting it is mechanistically nonoverlapping with IM-induced apoptosis. We further demonstrated that suppression of autophagy using either pharmacological inhibitors or RNA interference of essential autophagy genes enhanced cell death induced by IM in cell lines and primary CML cells. Critically, the combination of a tyrosine kinase inhibitor (TKI), i.e., IM, nilotinib, or dasatinib, with inhibitors of autophagy resulted in near complete elimination of phenotypically and functionally defined CML stem cells. Together, these findings suggest that autophagy inhibitors may enhance the therapeutic effects of TKIs in the treatment of CML.
Collapse
|
34
|
Rodrigues MS, Reddy MM, Sattler M. Cell cycle regulation by oncogenic tyrosine kinases in myeloid neoplasias: from molecular redox mechanisms to health implications. Antioxid Redox Signal 2008; 10:1813-48. [PMID: 18593226 DOI: 10.1089/ars.2008.2071] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Neoplastic expansion of myeloid cells is associated with specific genetic changes that lead to chronic activation of signaling pathways, as well as altered metabolism. It has become increasingly evident that transformation relies on the interdependency of both events. Among the various genetic changes, the oncogenic BCR-ABL tyrosine kinase in patients with Philadelphia chromosome positive chronic myeloid leukemia (CML) has been a focus of extensive research. Transformation by this oncogene is associated with elevated levels of intracellular reactive oxygen species (ROS). ROS have been implicated in processes that promote viability, cell growth, and regulation of other biological functions such as migration of cells or gene expression. Currently, the BCR-ABL inhibitor imatinib mesylate (Gleevec) is being used as a first-line therapy for the treatment of CML. However, BCR-ABL transformation is associated with genomic instability, and disease progression or resistance to imatinib can occur. Imatinib resistance is not known to cause or significantly alter signaling requirements in transformed cells. Elevated ROS are crucial for transformation, making them an ideal additional target for therapeutic intervention. The underlying mechanisms leading to elevated oxidative stress are reviewed, and signaling mechanisms that may serve as novel targeted approaches to overcome ROS-dependent cell growth are discussed.
Collapse
Affiliation(s)
- Margret S Rodrigues
- Department of Medical Oncology, Dana-Farber Cancer Institute, Brigham and Women's Hospital, and Harvard Medical School, Boston, Massachusetts 02115, USA
| | | | | |
Collapse
|
35
|
Pene-Dumitrescu T, Peterson LF, Donato NJ, Smithgall TE. An inhibitor-resistant mutant of Hck protects CML cells against the antiproliferative and apoptotic effects of the broad-spectrum Src family kinase inhibitor A-419259. Oncogene 2008; 27:7055-69. [PMID: 18794796 DOI: 10.1038/onc.2008.330] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Chronic myelogenous leukemia (CML) is driven by Bcr-Abl, a constitutively active protein-tyrosine kinase that stimulates proliferation and survival of myeloid progenitors. Global inhibition of myeloid Src family kinase (SFK) activity with the broad-spectrum pyrrolo-pyrimidine inhibitor, A-419259, blocks proliferation and induces apoptosis in CML cell lines, suggesting that transformation by Bcr-Abl requires SFK activity. However, the contribution of Hck and other individual SFKs to Bcr-Abl signaling is less clear. Here, we developed an A-419259-resistant mutant of Hck by replacing the gatekeeper residue (Thr-338; c-Src numbering) in the inhibitor-binding site with a bulkier methionine residue (Hck-T338M). This substitution reduced Hck sensitivity to A-419259 by more than 30-fold without significantly affecting kinase activity in vitro. Expression of Hck-T338M protected K-562 CML cells and Bcr-Abl-transformed TF-1 myeloid cells from the apoptotic and antiproliferative effects of A-419259. These effects correlated with persistence of Hck-T338M kinase activity in the presence of the compound, and were accompanied by sustained Erk and Stat5 activation. In contrast, control cells expressing equivalent levels of wild-type Hck retained sensitivity to the inhibitor. We also show for the first time that A-419259 induces cell-cycle arrest and apoptosis in primary CD34(+) CML cells with equal potency to imatinib. These data suggest that Hck has a nonredundant function as a key downstream signaling partner for Bcr-Abl and may represent a potential drug target in CML.
Collapse
Affiliation(s)
- T Pene-Dumitrescu
- Department of Molecular Genetics and Biochemistry, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261, USA
| | | | | | | |
Collapse
|
36
|
De Keersmaecker K, Rocnik JL, Bernad R, Lee BH, Leeman D, Gielen O, Verachtert H, Folens C, Munck S, Marynen P, Fornerod M, Gilliland DG, Cools J. Kinase activation and transformation by NUP214-ABL1 is dependent on the context of the nuclear pore. Mol Cell 2008; 31:134-42. [PMID: 18614052 DOI: 10.1016/j.molcel.2008.05.005] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2007] [Revised: 03/20/2008] [Accepted: 05/02/2008] [Indexed: 11/24/2022]
Abstract
Genetic alterations causing constitutive tyrosine kinase activation are observed in a broad spectrum of cancers. Thus far, these mutant kinases have been localized to the plasma membrane or cytoplasm, where they engage proliferation and survival pathways. We report that the NUP214-ABL1 fusion is unique among these because of its requisite localization to the nuclear pore complex for its transforming potential. We show that NUP214-ABL1 displays attenuated transforming capacity as compared to BCR-ABL1 and that NUP214-ABL1 preferentially transforms T cells, which is in agreement with its unique occurrence in T cell acute lymphoblastic leukemia. Furthermore, NUP214-ABL1 differs from BCR-ABL1 in subcellular localization, initiation of kinase activity, and signaling and lacks phosphorylation on its activation loop. In addition to delineating an unusual mechanism for kinase activation, this study provides new insights into the spectrum of chromosomal translocations involving nucleoporins by indicating that the nuclear pore context itself may play a central role in transformation.
Collapse
Affiliation(s)
- Kim De Keersmaecker
- Department of Molecular and Developmental Genetics, VIB, K.U. Leuven, Leuven 3000, Belgium
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
37
|
Zhang SJ, Ma LY, Huang QH, Li G, Gu BW, Gao XD, Shi JY, Wang YY, Gao L, Cai X, Ren RB, Zhu J, Chen Z, Chen SJ. Gain-of-function mutation of GATA-2 in acute myeloid transformation of chronic myeloid leukemia. Proc Natl Acad Sci U S A 2008; 105:2076-81. [PMID: 18250304 PMCID: PMC2538883 DOI: 10.1073/pnas.0711824105] [Citation(s) in RCA: 145] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2007] [Indexed: 12/12/2022] Open
Abstract
Acquisition of additional genetic and/or epigenetic abnormalities other than the BCR/ABL fusion gene is believed to cause disease progression in chronic myeloid leukemia (CML) from chronic phase to blast crisis (BC). To gain insights into the underlying mechanisms of progression to BC, we screened DNA samples from CML patients during blast transformation for mutations in a number of transcription factor genes that are critical for myeloid-lymphoid development. In 85 cases of CML blast transformation, we identified two new mutations in the coding region of GATA-2, a negative regulator of hematopoietic stem/progenitor cell differentiation. A L359V substitution within zinc finger domain (ZF) 2 of GATA-2 was found in eight cases with myelomonoblastic features, whereas an in-frame deletion of 6 aa (delta341-346) spanning the C-terminal border of ZF1 was detected in one patient at myeloid BC with eosinophilia. Further studies indicated that L359V not only increased transactivation activity of GATA-2 but also enhanced its inhibitory effects on the activity of PU.1, a major regulator of myelopoiesis. Consistent with the myelomonoblastic features of CML transformation with the GATA-2 L359V mutant, transduction of the GATA-2 L359V mutant into HL-60 cells or BCR/ABL-harboring murine cells disturbed myelomonocytic differentiation/proliferation in vitro and in vivo, respectively. These data strongly suggest that GATA-2 mutations may play a role in acute myeloid transformation in a subset of CML patients.
Collapse
MESH Headings
- Animals
- Base Sequence
- COS Cells
- Cell Line
- Chlorocebus aethiops
- DNA Primers
- Disease Progression
- GATA2 Transcription Factor/genetics
- Humans
- Immunoprecipitation
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/genetics
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/pathology
- Leukemia, Myeloid, Acute/genetics
- Leukemia, Myeloid, Acute/pathology
- Mutation
- Reverse Transcriptase Polymerase Chain Reaction
Collapse
Affiliation(s)
- Su-Jiang Zhang
- *State Key Laboratory of Medical Genomics and Shanghai Institute of Hematology, Rui Jin Hospital, Shanghai Jiao Tong University School of Medicine, 197 Rui Jin Road II, Shanghai 200025, China
| | - Li-Yuan Ma
- *State Key Laboratory of Medical Genomics and Shanghai Institute of Hematology, Rui Jin Hospital, Shanghai Jiao Tong University School of Medicine, 197 Rui Jin Road II, Shanghai 200025, China
| | - Qiu-Hua Huang
- *State Key Laboratory of Medical Genomics and Shanghai Institute of Hematology, Rui Jin Hospital, Shanghai Jiao Tong University School of Medicine, 197 Rui Jin Road II, Shanghai 200025, China
| | - Guo Li
- *State Key Laboratory of Medical Genomics and Shanghai Institute of Hematology, Rui Jin Hospital, Shanghai Jiao Tong University School of Medicine, 197 Rui Jin Road II, Shanghai 200025, China
| | - Bai-Wei Gu
- *State Key Laboratory of Medical Genomics and Shanghai Institute of Hematology, Rui Jin Hospital, Shanghai Jiao Tong University School of Medicine, 197 Rui Jin Road II, Shanghai 200025, China
| | - Xiao-Dong Gao
- *State Key Laboratory of Medical Genomics and Shanghai Institute of Hematology, Rui Jin Hospital, Shanghai Jiao Tong University School of Medicine, 197 Rui Jin Road II, Shanghai 200025, China
| | - Jing-Yi Shi
- *State Key Laboratory of Medical Genomics and Shanghai Institute of Hematology, Rui Jin Hospital, Shanghai Jiao Tong University School of Medicine, 197 Rui Jin Road II, Shanghai 200025, China
| | - Yue-Ying Wang
- *State Key Laboratory of Medical Genomics and Shanghai Institute of Hematology, Rui Jin Hospital, Shanghai Jiao Tong University School of Medicine, 197 Rui Jin Road II, Shanghai 200025, China
| | - Li Gao
- *State Key Laboratory of Medical Genomics and Shanghai Institute of Hematology, Rui Jin Hospital, Shanghai Jiao Tong University School of Medicine, 197 Rui Jin Road II, Shanghai 200025, China
| | - Xun Cai
- *State Key Laboratory of Medical Genomics and Shanghai Institute of Hematology, Rui Jin Hospital, Shanghai Jiao Tong University School of Medicine, 197 Rui Jin Road II, Shanghai 200025, China
| | - Rui-Bao Ren
- Rosenstiel Basic Medical Sciences Research Center, Brandeis University, 415 South Street, Waltham, MA 02454-9110
| | - Jiang Zhu
- *State Key Laboratory of Medical Genomics and Shanghai Institute of Hematology, Rui Jin Hospital, Shanghai Jiao Tong University School of Medicine, 197 Rui Jin Road II, Shanghai 200025, China
| | - Zhu Chen
- *State Key Laboratory of Medical Genomics and Shanghai Institute of Hematology, Rui Jin Hospital, Shanghai Jiao Tong University School of Medicine, 197 Rui Jin Road II, Shanghai 200025, China
- Shanghai Center for Systems Biomedicine, Shanghai Jiao Tong University, 800 Dong Chuan Road, Shanghai 200240, China; and
| | - Sai-Juan Chen
- *State Key Laboratory of Medical Genomics and Shanghai Institute of Hematology, Rui Jin Hospital, Shanghai Jiao Tong University School of Medicine, 197 Rui Jin Road II, Shanghai 200025, China
- Shanghai Center for Systems Biomedicine, Shanghai Jiao Tong University, 800 Dong Chuan Road, Shanghai 200240, China; and
| |
Collapse
|
38
|
Requirement of c-Myb for p210(BCR/ABL)-dependent transformation of hematopoietic progenitors and leukemogenesis. Blood 2008; 111:4771-9. [PMID: 18227349 DOI: 10.1182/blood-2007-08-105072] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
The c-Myb gene encodes a transcription factor required for proliferation and survival of normal myeloid progenitors and leukemic blast cells. Targeting of c-Myb by antisense oligodeoxynucleotides has suggested that myeloid leukemia blasts (including chronic myelogenous leukemia [CML]-blast crisis cells) rely on c-Myb expression more than normal progenitors, but a genetic approach to assess the requirement of c-Myb by p210(BCR/ABL)-transformed hematopoietic progenitors has not been taken. We show here that loss of a c-Myb allele had modest effects (20%-28% decrease) on colony formation of nontransduced progenitors, while the effect on p210(BCR/ABL)-expressing Lin(-) Sca-1(+) and Lin(-) Sca-1(+)Kit(+) cells was more pronounced (50%-80% decrease). Using a model of CML-blast crisis, mice (n = 14) injected with p210(BCR/ABL)-transduced p53(-/-)c-Myb(w/w) marrow cells developed leukemia rapidly and had a median survival of 26 days, while only 67% of mice (n = 12) injected with p210(BCR/ABL)-transduced p53(-/-)c-Myb(w/d) marrow cells died of leukemia with a median survival of 96 days. p210(BCR/ABL)-transduced c-Myb(w/w) and c-Myb(w/d) marrow progenitors expressed similar levels of the c-Myb-regulated genes c-Myc and cyclin B1, while those of Bcl-2 were reduced. However, ectopic Bcl-2 expression did not enhance colony formation of p210(BCR/ABL)-transduced c-Myb(w/d) Lin(-)Sca-1(+)Kit(+) cells. Together, these studies support the requirement of c-Myb for p210(BCR/ABL)-dependent leukemogenesis.
Collapse
|
39
|
Kawano T, Ito M, Raina D, Wu Z, Rosenblatt J, Avigan D, Stone R, Kufe D. MUC1 oncoprotein regulates Bcr-Abl stability and pathogenesis in chronic myelogenous leukemia cells. Cancer Res 2008; 67:11576-84. [PMID: 18089786 DOI: 10.1158/0008-5472.can-07-2756] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Chronic myelogenous leukemia (CML) results from expression of the Bcr-Abl fusion protein in hematopoietic stem cells. The MUC1 heterodimeric protein is aberrantly overexpressed in diverse human carcinomas. The present studies show that MUC1 is expressed in the human K562 and KU812 CML cell lines. The results show that MUC1 associates with Bcr-Abl through a direct interaction between the Bcr N-terminal region and the MUC1 cytoplasmic domain. Stable silencing of MUC1 decreased cytoplasmic Bcr-Abl levels by promoting Bcr-Abl degradation. Silencing MUC1 was also associated with decreases in K562 and KU812 cell self-renewal capacity and with a more differentiated erythroid phenotype. The results further show that silencing MUC1 increases sensitivity of CML cells to imatinib-induced apoptosis. Analysis of primary CML blasts confirmed that, as found with the CML cell lines, MUC1 blocks differentiation and the apoptotic response to imatinib treatment. These findings indicate that MUC1 stabilizes Bcr-Abl and contributes to the pathogenesis of CML cells by promoting self renewal and inhibiting differentiation and apoptosis.
Collapse
Affiliation(s)
- Takeshi Kawano
- Department of Medical Oncology, Dana-Farber Cancer Institute, 44 Binney Street, Boston, MA 02115, USA
| | | | | | | | | | | | | | | |
Collapse
|
40
|
|
41
|
Chang JS, Santhanam R, Trotta R, Neviani P, Eiring AM, Briercheck E, Ronchetti M, Roy DC, Calabretta B, Caligiuri MA, Perrotti D. High levels of the BCR/ABL oncoprotein are required for the MAPK-hnRNP-E2 dependent suppression of C/EBPalpha-driven myeloid differentiation. Blood 2007; 110:994-1003. [PMID: 17475908 PMCID: PMC1924762 DOI: 10.1182/blood-2007-03-078303] [Citation(s) in RCA: 80] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2007] [Accepted: 04/24/2007] [Indexed: 12/21/2022] Open
Abstract
The inability of myeloid chronic myelogenous leukemia blast crisis (CML-BC) progenitors to undergo neutrophil differentiation depends on suppression of C/EBPalpha expression through the translation inhibitory activity of the RNA-binding protein hnRNP-E2. Here we show that "oncogene dosage" is a determinant factor for suppression of differentiation in CML-BC. In fact, high levels of p210-BCR/ABL are required for enhanced hnRNP-E2 expression, which depends on phosphorylation of hnRNP-E2 serines 173, 189, and 272 and threonine 213 by the BCR/ABL-activated MAPK(ERK1/2). Serine/threonine to alanine substitution abolishes hnRNP-E2 phosphorylation and markedly decreases its stability in BCR/ABL-expressing myeloid precursors. Similarly, pharmacologic inhibition of MAPK(ERK1/2) activity decreases hnRNP-E2 binding to the 5'UTR of C/EBPalpha mRNA by impairing hnRNP-E2 phosphorylation and stability. This, in turn, restores in vitro and/or in vivo C/EBPalpha expression and G-CSF-driven neutrophilic maturation of differentiation-arrested BCR/ABL(+) cell lines, primary CML-BC(CD34+) patient cells and lineage-negative mouse bone marrow cells expressing high levels of p210-BCR/ABL. Thus, increased BCR/ABL oncogenic tyrosine kinase activity is essential for suppression of myeloid differentiation of CML-BC progenitors as it is required for sustained activation of the MAPK(ERK1/2)-hnRNP-E2-C/EBPalpha differentiation-inhibitory pathway. Furthermore, these findings suggest the inclusion of clinically relevant MAPK inhibitors in the therapy of CML-BC.
Collapse
MESH Headings
- Animals
- Blast Crisis/drug therapy
- Blast Crisis/metabolism
- Blast Crisis/pathology
- CCAAT-Enhancer-Binding Protein-alpha/biosynthesis
- Cell Differentiation/drug effects
- Enzyme Inhibitors/pharmacology
- Enzyme Inhibitors/therapeutic use
- Fusion Proteins, bcr-abl/biosynthesis
- Gene Expression Regulation, Leukemic/drug effects
- Heterogeneous-Nuclear Ribonucleoproteins/metabolism
- Humans
- K562 Cells
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/drug therapy
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/metabolism
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/pathology
- Mice
- Mitogen-Activated Protein Kinase 1/antagonists & inhibitors
- Mitogen-Activated Protein Kinase 1/metabolism
- Mitogen-Activated Protein Kinase 3/antagonists & inhibitors
- Mitogen-Activated Protein Kinase 3/metabolism
- Myeloid Progenitor Cells/metabolism
- Myeloid Progenitor Cells/pathology
- Neutrophils/metabolism
- Neutrophils/pathology
- Phosphorylation/drug effects
Collapse
Affiliation(s)
- Ji Suk Chang
- Human Cancer Genetics Program, Department of Molecular Virology, Immunology and Medical Genetics, Ohio State University, Columbus, OH 23240, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
42
|
Swords R, Alvarado Y, Giles F. Novel Abl kinase inhibitors in chronic myeloid leukemia in blastic phase and Philadelphia chromosome-positive acute lymphoblastic leukemia. ACTA ACUST UNITED AC 2007; 7 Suppl 3:S113-9. [PMID: 17382020 DOI: 10.3816/clm.2007.s.011] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Chronic myeloid leukemia (CML) is characterized by the presence of the Philadelphia chromosome, which is associated with a balanced translocation involving chromosomes 9 and 22 to produce a fusion gene (bcr-abl) that gives rise to a constitutively activated Abl tyrosine kinase. This kinase led to the discovery of several small-molecule inhibitors, imatinib being the first and most successful of these. Resistance to imatinib results in some patients from Abl kinase point mutations. Overcoming imatinib resistance represents one of the biggest challenges facing clinicians in the modern management of CML. In this review, we discuss the current understanding of CML pathophysiology and mechanisms of imatinib resistance and how advancing this knowledge has led to the design of novel therapies in the area of blastic phase CML and Philadelphia chromosome-positive acute lymphoblastic leukemia with previous imatinib failure.
Collapse
Affiliation(s)
- Ronan Swords
- Department of Hematology, University College Hospital Galway, Galway, Ireland
| | | | | |
Collapse
|
43
|
Swords R, Alvarado Y, Cortes J, Giles FJ. Second-generation tyrosine kinase inhibitors as therapy for chronic myeloid leukemia. Curr Hematol Malig Rep 2007; 2:83-8. [DOI: 10.1007/s11899-007-0012-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
44
|
Pearn L, Fisher J, Burnett AK, Darley RL. The role of PKC and PDK1 in monocyte lineage specification by Ras. Blood 2007; 109:4461-9. [PMID: 17255356 DOI: 10.1182/blood-2006-09-047217] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Although hyperactivation of Ras is a common feature of myeloid malignancy, its role in subverting hematopoiesis is unclear. We have examined the influence of Ras on normal human uncommitted myeloid subsets and show that expression of this oncogene strongly favors monocyte lineage selection in bipotential granulocyte/macrophage progenitors while inhibiting colony formation in other uncommitted subsets. Ras also promoted monocytic differentiation but not the proliferation of these cells. The mechanism through which Ras drives monocyte lineage selection was dependent on PKC activity and Ras was found to promote the expression, membrane translocation, and phosphorylation of conventional and novel PKC isoforms. We further show that Ras promoted the expression of the AGC kinase master regulator, PDK1, which maintains the stability and activity of PKC isoforms. Consistent with this, overexpression of PDK1 itself promoted monocyte colony formation and translocation of PKC. Overexpression of PDK1 was found to be a common feature of acute myeloid leukemia (45% of patients) and was closely associated with hyperphosphorylation of PKC. These data demonstrate that Ras is able to promote monocyte lineage selection via PKC and show for the first time the involvement of the kinase master regulator, PDK1, in both lineage specification and in human leukemia.
Collapse
Affiliation(s)
- Lorna Pearn
- Department of Haematology, School of Medicine, Cardiff University, Cardiff, United Kingdom
| | | | | | | |
Collapse
|
45
|
Meyn MA, Wilson MB, Abdi FA, Fahey N, Schiavone AP, Wu J, Hochrein JM, Engen JR, Smithgall TE. Src Family Kinases Phosphorylate the Bcr-Abl SH3-SH2 Region and Modulate Bcr-Abl Transforming Activity. J Biol Chem 2006; 281:30907-16. [PMID: 16912036 DOI: 10.1074/jbc.m605902200] [Citation(s) in RCA: 102] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Bcr-Abl is the oncogenic protein-tyrosine kinase responsible for chronic myelogenous leukemia. Recently, we observed that inhibition of myeloid Src family kinase activity (e.g. Hck, Lyn, and Fyn) induces growth arrest and apoptosis in Bcr-Abl-transformed cells, suggesting that cell transformation by Bcr-Abl involves Src family kinases (Wilson, M. B., Schreiner, S. J., Choi, H. J., Kamens, J., and Smithgall, T. E. (2002) Oncogene 21, 8075-8088). Here, we report the unexpected observation that Hck, Lyn, and Fyn strongly phosphorylate the SH3-SH2 region of Bcr-Abl. Seven phosphorylation sites were identified by matrix-assisted laser desorption ionization time-of-flight mass spectrometry: Tyr89 and Tyr134 in the Abl-derived SH3 domain; Tyr147 in the SH3-SH2 connector; and Tyr158, Tyr191, Tyr204, and Tyr234 in the SH2 domain. SH3 domain Tyr89, the most prominent phosphorylation site in vitro, was strongly phosphorylated in chronic myelogenous leukemia cells in a Src family kinase-dependent manner. Substitution of the SH3-SH2 tyrosine phosphorylation sites with phenylalanine substantially reduced Bcr-Abl-mediated transformation of TF-1 myeloid cells to cytokine independence. The positions of these tyrosines in the crystal structure of the c-Abl core and the transformation defect of the corresponding Bcr-Abl mutants together suggest that phosphorylation of the SH3-SH2 region by Src family kinases impacts Bcr-Abl protein conformation and signaling.
Collapse
Affiliation(s)
- Malcolm A Meyn
- Department of Molecular Genetics and Biochemistry, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania 15261, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
46
|
Abstract
Reciprocal chromosomal translocations may arise as a result of unfaithful repair of spontaneous DNA double-strand breaks, most probably induced by oxidative stress, radiation, genotoxic chemicals and/or replication stress. Genes encoding tyrosine kinases are targeted by these mechanisms resulting in the generation of chimera genes encoding fusion tyrosine kinases (FTKs). FTKs display transforming activity owing to their constitutive kinase activity causing deregulated proliferation, apoptosis, differentiation and adhesion. Moreover, FTKs are able to facilitate DNA repair, prolong activation of G(2)/M and S cell cycle checkpoints, and elevate expression of antiapoptotic protein Bcl-X(L), making malignant cells less responsive to antitumor treatment. FTKs may also stimulate the generation of reactive oxygen species and enhance spontaneous DNA damage in tumor cells. Unfortunately, FTKs compromise the fidelity of DNA repair mechanisms, which contribute to the accumulation of additional genetic abnormalities leading to the resistance to inhibitors such as imatinib mesylate and malignant progression of the disease.
Collapse
Affiliation(s)
- E T P Penserga
- Department of Microbiology and Immunology, School of Medicine, Temple University, Philadelphia, PA 19140, USA.
| | | |
Collapse
|
47
|
Chávez-González A, Ayala-Sánchez M, Sánchez-Valle E, Ruiz-Sánchez E, Arana-Trejo RM, Vela-Ojeda J, Mayani H. Functional integrity in vitro of hematopoietic progenitor cells from patients with chronic myeloid leukemia that have achieved hematological remission after different therapeutic procedures. Leuk Res 2006; 30:286-95. [PMID: 16111748 DOI: 10.1016/j.leukres.2005.06.028] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2005] [Accepted: 06/30/2005] [Indexed: 11/24/2022]
Abstract
In this study, we have assessed the in vitro growth of hematopoietic progenitor cells (HPC) from chronic myeloid leukemia (CML) patients that have recovered after different treatments. Bone marrow cells were obtained from 33 CML patients, including patients at diagnosis, before treatment (n=12), and patients that have achieved hematological remission (and in most cases a major cytogenetic response) after different therapeutic procedures (n=21), including patients treated with Interferon-alpha (IFN; n=5), imatinib mesylate (IMATINIB; n=8) and patients that received an allogeneic hematopoietic cell transplant (HCT; n=8). Marrow cells were enriched for CD34(+) cells and cultured in a serum- and stroma-free liquid culture system, supplemented with a combination of 8 recombinant cytokines. Normal samples were studied as controls. HPC from CML patients before therapy showed deficient proliferation and expansion potentials in culture (140-fold increase in nucleated cell number and 1.3-fold increase in colony-forming cell number) as compared to normal progenitors (1200-fold increase in nucleated cell number and 25-fold increase in colony-forming cell number). In contrast, HPC from patients treated with IMATINIB showed growth potentials similar to those of normal progenitors. Progenitors from patients after HCT also showed significant proliferation and expansion capacities. Interestingly, progenitors from IFN-treated patients showed proliferation and expansion kinetics similar to those of cells from untreated patients. These results indicate that, although treatment of CML patients with IFN, IMATINIB or HCT resulted in complete hematological remission (and a major cytogenetic response), only patients treated with IMATINIB and, to a lesser extent, with HCT showed a full hematopoietic recovery, as determined by the in vitro growth of HPC in our culture system.
Collapse
MESH Headings
- Benzamides
- Cell Proliferation/drug effects
- Cells, Cultured
- Colony-Forming Units Assay
- Female
- Hematopoietic Stem Cell Transplantation
- Hematopoietic Stem Cells/metabolism
- Hematopoietic Stem Cells/pathology
- Humans
- Imatinib Mesylate
- Interferon-alpha/administration & dosage
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/metabolism
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/pathology
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/therapy
- Male
- Piperazines/administration & dosage
- Predictive Value of Tests
- Pyrimidines/administration & dosage
- Recovery of Function
- Remission Induction
- Transplantation, Homologous
Collapse
Affiliation(s)
- Antonieta Chávez-González
- Oncological Research Unit, Oncology Hospital, Siglo XXI National Medical Center, IMSS, Mexico City, Mexico
| | | | | | | | | | | | | |
Collapse
|
48
|
Blum R, Kloog Y. Tailoring Ras-pathway--inhibitor combinations for cancer therapy. Drug Resist Updat 2005; 8:369-80. [PMID: 16356760 DOI: 10.1016/j.drup.2005.11.002] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2005] [Revised: 11/16/2005] [Accepted: 11/17/2005] [Indexed: 11/19/2022]
Abstract
Constitutive activation of Ras pathways plays a critical role in cancer development and maintenance. Inhibitors of such pathways are already in use for cancer therapy, with significant but as yet only partial success in the most deadly types of human cancers, against which even combinations of Ras-pathway inhibitors with classic cytotoxic drugs or irradiation are insufficient. Combinations of farnesyl transferase inhibitors (FTI's), inhibitors of Ras pathways, are now in use in clinical trials. In this review we analyze possible reasons for the limited efficacy--including the diverse and sometimes even contradictory effects of active Ras pathways in tumor cells--and propose possible alternative methods of tailoring Ras-pathway inhibitor combinations for cancer therapy. Such tailoring is now possible thanks to increased knowledge of the complexity of Ras pathways, their cooperation with other oncogenic pathways, and their "addictive" nature. We provide examples demonstrating that this knowledge can be translated into useful drug combinations that disrupt multiple oncogenic pathways and hit a weak point of a given tumor cell. One such example is combination treatment with a Ras inhibitor and a glycolysis blocker for pancreatic tumor cells. The future design of such potential drug combination therapies and the follow-up of their outcome will undoubtedly be facilitated by gene-expression profiling and proteomic methods.
Collapse
Affiliation(s)
- Roy Blum
- Department of Neurobiochemistry, The George S. Wise Faculty of Life Sciences, Tel-Aviv University, 69978 Tel-Aviv, Israel
| | | |
Collapse
|
49
|
Flamant S, Kortulewski T, Dugray A, Bonnet ML, Guillier M, Guilhot F, Bourhis JH, Vainchenker W, Tronik-Le Roux D, Turhan AG. Osteopontin is upregulated by BCR-ABL. Biochem Biophys Res Commun 2005; 333:1378-84. [PMID: 15993098 DOI: 10.1016/j.bbrc.2005.05.203] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2005] [Accepted: 05/06/2005] [Indexed: 12/14/2022]
Abstract
Chronic myelogenous leukemia (CML) is characterized by its hallmark oncogene BCR-ABL and the progression from a chronic phase toward an acute leukemia, with a differentiation arrest of the leukemic clone. In the present study, we conducted a microarray analysis using an inducible model of BCR-ABL expression based on the TET-OFF system, and we found that osteopontin (OPN), a component of stem cell niche, is overexpressed in BCR-ABL-expressing cells. Studies using mutant forms of BCR-ABL demonstrated that the BCR-ABL-induced OPN overexpression was a tyrosine kinase-dependent event. Furthermore, OPN concentration was significantly increased in the serum of leukemic mice generated by transplantation of BCR-ABL-expressing bone marrow cells. Most importantly, a significant increase of OPN concentration was observed in the serum of CML patients as compared to controls. Overall these results show that OPN is deregulated by BCR-ABL oncogene and suggest that OPN could be involved in CML stem cell biology.
Collapse
Affiliation(s)
- S Flamant
- INSERM U362, Institut Gustave-Roussy, Villejuif, France
| | | | | | | | | | | | | | | | | | | |
Collapse
|
50
|
Baughn LB, Rosenberg N. Disruption of the Shc/Grb2 complex during abelson virus transformation affects proliferation, but not apoptosis. J Virol 2005; 79:2325-34. [PMID: 15681433 PMCID: PMC546584 DOI: 10.1128/jvi.79.4.2325-2334.2005] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The v-Abl protein tyrosine kinase encoded by Abelson murine leukemia virus (Ab-MLV) induces pre-B-cell transformation. Signals emanating from the SH2 domain of the protein are required for transformation, and several proteins bind this region of v-Abl. One such protein is the adaptor molecule Shc, a protein that complexes with Grb2/Sos and facilitates Ras activation, an event associated with Ab-MLV transformation. To test the role this interaction plays in growth and survival of infected pre-B cells, dominant-negative (DN) Shc proteins were coexpressed with v-Abl and transformation was examined. Expression of DN Shc reduced Ab-MLV pre-B-cell transformation and decreased the ability of v-Abl to stimulate Ras activation and Erk phosphorylation in a Raf-dependent but Rac-independent fashion. Further analysis revealed that Shc is required for v-Abl-mediated Raf tyrosine 340 and 341 phosphorylation, an event associated with Erk phosphorylation. In contrast to effects on proliferation, survival of the cells and activation of Akt were not affected by expression of DN Shc. Together, these data reveal that v-Abl-Shc interactions are a critical part of the growth stimulatory signals delivered during transformation but that they do not affect antiapoptotic pathways. Furthermore, these data highlight a novel role for Shc in signaling from v-Abl to Raf.
Collapse
Affiliation(s)
- Linda B Baughn
- Immunology Graduate Program, Sacker School of Graduate Biomedicals Sciences, Tufts University School of Medicine, Boston, MA 02111, USA
| | | |
Collapse
|