1
|
Steinacker VC, Renner T, Holzmeister I, Gubik S, Müller-Richter U, Breitenbücher N, Fuchs A, Straub A, Scheurer M, Kübler AC, Gbureck U. Biological and Mechanical Performance of Dual-Setting Brushite-Silica Gel Cements. J Funct Biomater 2024; 15:108. [PMID: 38667565 PMCID: PMC11051121 DOI: 10.3390/jfb15040108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Revised: 04/09/2024] [Accepted: 04/15/2024] [Indexed: 04/28/2024] Open
Abstract
Bone defects resulting from trauma, diseases, or surgical procedures pose significant challenges in the field of oral and maxillofacial surgery. The development of effective bone substitute materials that promote bone healing and regeneration is crucial for successful clinical outcomes. Calcium phosphate cements (CPCs) have emerged as promising candidates for bone replacement due to their biocompatibility, bioactivity, and ability to integrate with host tissues. However, there is a continuous demand for further improvements in the mechanical properties, biodegradability, and bioactivity of these materials. Dual setting of cements is one way to improve the performance of CPCs. Therefore, silicate matrices can be incorporated in these cements. Silicate-based materials have shown great potential in various biomedical applications, including tissue engineering and drug delivery systems. In the context of bone regeneration, silicate matrices offer unique advantages such as improved mechanical stability, controlled release of bioactive ions, and enhanced cellular responses. Comprehensive assessments of both the material properties and biological responses of our samples were conducted. Cytocompatibility was assessed through in vitro testing using osteoblastic (MG-63) and osteoclastic (RAW 264.7) cell lines. Cell activity on the surfaces was quantified, and scanning electron microscopy (SEM) was employed to capture images of the RAW cells. In our study, incorporation of tetraethyl orthosilicate (TEOS) in dual-curing cements significantly enhanced physical properties, attributed to increased crosslinking density and reduced pore size. Higher alkoxysilyl group concentration improved biocompatibility by facilitating greater crosslinking. Additionally, our findings suggest citrate's potential as an alternative retarder due to its positive interaction with the silicate matrix, offering insights for future dental material research. This paper aims to provide an overview of the importance of silicate matrices as modifiers for calcium phosphate cements, focusing on their impact on the mechanical properties, setting behaviour, and biocompatibility of the resulting composites.
Collapse
Affiliation(s)
- Valentin C. Steinacker
- Department of Oral & Maxillofacial Plastic Surgery, University Hospital Würzburg, Pleicherwall 2, 97070 Würzburg, Germany
| | - Tobias Renner
- Department of Oral & Maxillofacial Plastic Surgery, University Hospital Würzburg, Pleicherwall 2, 97070 Würzburg, Germany
| | - Ib Holzmeister
- Department for Functional Materials in Medicine and Dentistry, University Hospital Würzburg, Pleicherwall 2, 97070 Würzburg, Germany
| | - Sebastian Gubik
- Department of Oral & Maxillofacial Plastic Surgery, University Hospital Würzburg, Pleicherwall 2, 97070 Würzburg, Germany
| | - Urs Müller-Richter
- Department of Oral & Maxillofacial Plastic Surgery, University Hospital Würzburg, Pleicherwall 2, 97070 Würzburg, Germany
| | - Niko Breitenbücher
- Department of Oral & Maxillofacial Plastic Surgery, University Hospital Würzburg, Pleicherwall 2, 97070 Würzburg, Germany
| | - Andreas Fuchs
- Department of Oral & Maxillofacial Plastic Surgery, University Hospital Würzburg, Pleicherwall 2, 97070 Würzburg, Germany
| | - Anton Straub
- Department of Oral & Maxillofacial Plastic Surgery, University Hospital Würzburg, Pleicherwall 2, 97070 Würzburg, Germany
| | - Mario Scheurer
- Department of Cranio-Maxillo-Facial-Surgery, German Armed Forces Hospital Ulm, 89081 Ulm, Germany
| | - Alexander C. Kübler
- Department of Oral & Maxillofacial Plastic Surgery, University Hospital Würzburg, Pleicherwall 2, 97070 Würzburg, Germany
| | - Uwe Gbureck
- Department for Functional Materials in Medicine and Dentistry, University Hospital Würzburg, Pleicherwall 2, 97070 Würzburg, Germany
| |
Collapse
|
2
|
Cichoń E, Mielan B, Pamuła E, Ślósarczyk A, Zima A. Development of highly porous calcium phosphate bone cements applying nonionic surface active agents. RSC Adv 2021; 11:23908-23921. [PMID: 35479031 PMCID: PMC9036830 DOI: 10.1039/d1ra04266a] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Accepted: 06/26/2021] [Indexed: 12/25/2022] Open
Abstract
A novel way of obtaining highly porous cements is foaming them with the use of nonionic surface active agents (surfactants). In this study, foamed calcium phosphate cements (fCPCs) intended for in situ use were fabricated by a surfactant-assisted foaming process. Three different surface active agents, Tween 20, Tween 80 and Tetronic 90R4, were used. The amount of surfactant, based on its critical micelle concentration and cytotoxicity as well as foaming method, was determined. It has been established that in order to avoid cytotoxic effects the concentration of all applied surfactants in the cement liquid phases should not exceed 1.25 g L−1. It was found that Tetronic 90R4 had the lowest cytotoxicity whereas Tween 20 had the highest. The influence of the type of surfactant used in the fabrication process of bioactive macroporous cement on the physicochemical and biological properties of fCPCs was studied. The obtained materials reached higher than 50 vol% open porosity and possessed compressive strength which corresponds to the values for cancellous bone. The highest porosity and compressive strength was found for the material with the addition of Tween 80. In vitro investigations proved the chemical stability and high bioactive potential of the examined materials. A novel way of obtaining highly porous cements is foaming them with the use of nonionic surface active agents (surfactants).![]()
Collapse
Affiliation(s)
- Ewelina Cichoń
- Faculty of Materials Science and Ceramics, AGH University of Science and Technology Mickiewicza Av. 30 30-059 Krakow Poland
| | - Bartosz Mielan
- Faculty of Materials Science and Ceramics, AGH University of Science and Technology Mickiewicza Av. 30 30-059 Krakow Poland
| | - Elżbieta Pamuła
- Faculty of Materials Science and Ceramics, AGH University of Science and Technology Mickiewicza Av. 30 30-059 Krakow Poland
| | - Anna Ślósarczyk
- Faculty of Materials Science and Ceramics, AGH University of Science and Technology Mickiewicza Av. 30 30-059 Krakow Poland
| | - Aneta Zima
- Faculty of Materials Science and Ceramics, AGH University of Science and Technology Mickiewicza Av. 30 30-059 Krakow Poland
| |
Collapse
|
3
|
Wei DX, Dao JW, Chen GQ. A Micro-Ark for Cells: Highly Open Porous Polyhydroxyalkanoate Microspheres as Injectable Scaffolds for Tissue Regeneration. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2018; 30:e1802273. [PMID: 29920804 DOI: 10.1002/adma.201802273] [Citation(s) in RCA: 153] [Impact Index Per Article: 21.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/10/2018] [Revised: 04/29/2018] [Indexed: 05/22/2023]
Abstract
To avoid large open surgery using scaffold transplants, small-sized cell carriers are employed to repair complexly shaped tissue defects. However, most cell carriers show poor cell adherences and viability. Therefore, polyhydroxyalkanoate (PHA), a natural biopolymer, is used to prepare highly open porous microspheres (OPMs) of 300-360 µm in diameter, combining the advantages of microspheres and scaffolds to serve as injectable carriers harboring proliferating stem cells. In addition to the convenient injection to a defected tissue, and in contrast to poor performances of OPMs made of polylactides (PLA OPMs) and traditional less porous hollow microspheres (PHA HMs), PHA OPMs present suitable surface pores of 10-60 µm and interconnected passages with an average size of 8.8 µm, leading to a high in vitro cell adhesion of 93.4%, continuous proliferation for 10 d and improved differentiation of human bone marrow mesenchymal stem cells (hMSCs). PHA OPMs also support stronger osteoblast-regeneration compared with traditional PHA HMs, PLA OPMs, commercial hyaluronic acid hydrogels, and carrier-free hMSCs in an ectopic bone-formation mouse model. PHA OPMs protect cells against stresses during injection, allowing more living cells to proliferate and migrate to damaged tissues. They function like a micro-Noah's Ark to safely transport cells to a defect tissue.
Collapse
Affiliation(s)
- Dai-Xu Wei
- MOE Key Lab of Bioinformatics, School of Life Sciences, Tsinghua-Peking Center for Life Sciences, Tsinghua University, Beijing, 100084, China
| | - Jin-Wei Dao
- MOE Key Lab of Bioinformatics, School of Life Sciences, Tsinghua-Peking Center for Life Sciences, Tsinghua University, Beijing, 100084, China
| | - Guo-Qiang Chen
- MOE Key Lab of Bioinformatics, School of Life Sciences, Tsinghua-Peking Center for Life Sciences, Tsinghua University, Beijing, 100084, China
- Center for Nano and Micro Mechanics, Beijing Key Laboratory of Protein Therapeutics, Center for Synthetic and Systems Biology Tsinghua University, Beijing, 100084, China
| |
Collapse
|
4
|
Wei DX, Dao JW, Liu HW, Chen GQ. Suspended polyhydroxyalkanoate microspheres as 3D carriers for mammalian cell growth. ARTIFICIAL CELLS NANOMEDICINE AND BIOTECHNOLOGY 2018; 46:473-483. [PMID: 29653500 DOI: 10.1080/21691401.2018.1459635] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Different forms of biopolyester PHBVHHx microspheres were prepared so as to compare the mammalian cell behaviors in suspension cultivation system. Based on a microbial terpolyester PHBVHHx consisting of 3-hydroxybutyrate (HB), 3-hydroxyvalerate (HV), and 3-hydroxyhexanoate (HHx), solid microspheres (SMSs), hollow microspheres (HMSs), and porous microspheres (PMS) were successfully prepared by a modified solvent evaporation method involving gas-in-oil-in-water (G1/O/W2) double emulsion, water-in-oil-in-water (W1/O/W2) double emulsion and oil-in-water (O/W) single emulsion, respectively. Generally, PMSs have diameters ranging from 330 to 400 μm with pore sizes of 10 to 60 μm. The pores inside the PMSs were found well interconnected compared with PHBVHHx prepared by the traditional solvent evaporation method, resulting in the highest water uptake ratio. When inoculated with human osteoblast-like cells lasting 6 days, PMS showed much better cell attachment and proliferation compared with other less porous microspheres due to its large inner space as a 3 D carrier. Cell migration towards surface and other interconnected inner pores was clearly observable. Dead or apoptotic cells were found more common among less porous SMSs or HMSs compared with highly porous PMSs. It is therefore concluded that porous PHBVHHx microspheres with larger surface open pores and interconnected inner pores can serve as a carrier or scaffold supporting more and better cell growth for either injectable purposes or simply supporting cell growth.
Collapse
Affiliation(s)
- Dai-Xu Wei
- a MOE Key Lab of Bioinformatics , School of Life Sciences, Tsinghua-Peking Center for Life Sciences, Tsinghua University , Beijing , China
| | - Jin-Wei Dao
- b Beijing Key Laboratory of Protein Therapeutics , Tsinghua University , Beijing , China
| | - Hua-Wei Liu
- c Tsinghua Chang Gung Hospital, School of Clinical Medicine , Tsinghua University , Beijing , China
| | - Guo-Qiang Chen
- a MOE Key Lab of Bioinformatics , School of Life Sciences, Tsinghua-Peking Center for Life Sciences, Tsinghua University , Beijing , China.,b Beijing Key Laboratory of Protein Therapeutics , Tsinghua University , Beijing , China.,d Center for Nano and Micro Mechanics , Tsinghua University , Beijing , China.,e Center for Synthetic and Systems Biology , Tsinghua University , Beijing , China
| |
Collapse
|
5
|
Self-Setting Calcium Orthophosphate (CaPO4) Formulations. SPRINGER SERIES IN BIOMATERIALS SCIENCE AND ENGINEERING 2018. [DOI: 10.1007/978-981-10-5975-9_2] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
6
|
Khalili V, Khalil-Allafi J, Frenzel J, Eggeler G. Bioactivity and electrochemical behavior of hydroxyapatite-silicon-multi walled carbon nano-tubes composite coatings synthesized by EPD on NiTi alloys in simulated body fluid. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2016; 71:473-482. [PMID: 27987734 DOI: 10.1016/j.msec.2016.10.036] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/03/2016] [Revised: 09/23/2016] [Accepted: 10/18/2016] [Indexed: 12/15/2022]
Abstract
In order to improve the surface bioactivity of NiTi bone implant and corrosion resistance, hydroxyapatite coating with addition of 20wt% silicon, 1wt% multi walled carbon nano-tubes and both of them were deposited on a NiTi substrate using a cathodic electrophoretic method. The apatite formation ability was estimated using immersion test in the simulated body fluid for 10days. The SEM images of the surface of coatings after immersion in simulated body fluid show that the presence of silicon in the hydroxyapatite coatings accelerates in vitro growth of apatite layer on the coatings. The Open-circuit potential and electrochemical impedance spectroscopy were measured to evaluate the electrochemical behavior of the coatings in the simulated body fluid at 37°C. The results indicate that the compact structure of hydroxyapatite-20wt% silicon and hydroxyapatite-20wt% silicon-1wt% multi walled carbon nano-tubes coatings could efficiently increase the corrosion resistance of NiTi substrate.
Collapse
Affiliation(s)
- V Khalili
- Department of Materials Engineering, Engineering Faculty, University of Bonab, Bonab, Iran.
| | - J Khalil-Allafi
- Research Center for Advanced Materials and Mineral Processing, Faculty of Materials Engineering, Sahand University of Technology, Tabriz, Iran
| | - J Frenzel
- Institute for Materials, Faculty of Mechanical Engineering, Ruhr-University Bochum, 44801 Bochum, Germany
| | - G Eggeler
- Institute for Materials, Faculty of Mechanical Engineering, Ruhr-University Bochum, 44801 Bochum, Germany
| |
Collapse
|
7
|
Sarkar SK, Lee BY, Padalhin AR, Sarker A, Carpena N, Kim B, Paul K, Choi HJ, Bae SH, Lee BT. Brushite-based calcium phosphate cement with multichannel hydroxyapatite granule loading for improved bone regeneration. J Biomater Appl 2015; 30:823-37. [DOI: 10.1177/0885328215601938] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
In this work, we report brushite-based calcium phosphate cement (CPC) system to enhance the in vivo biodegradation and tissue in-growth by incorporation of micro-channeled hydroxyapatite (HAp) granule and silicon and sodium addition in calcium phosphate precursor powder. Sodium- and silicon-rich calcium phosphate powder with predominantly tri calcium phosphate (TCP) phase was synthesized by an inexpensive wet chemical route to react with mono calcium phosphate monohydrate (MCPM) for making the CPC. TCP nanopowder also served as a packing filler and moderator of the reaction kinetics of the setting mechanism. Strong sintered cylindrical HAp granules were prepared by fibrous monolithic (FM) process, which is 800 µm in diameter and have seven micro-channels. Acid sodium pyrophosphate and sodium citrate solution was used as the liquid component which acted as a homogenizer and setting time retarder. The granules accelerated the degradation of the brushite cement matrix as well as improved the bone tissue in-growth by permitting an easy access to the interior of the CPC through the micro-channels. The addition of micro-channeled granule in the CPC introduced porosity without sacrificing much of its compressive strength. In vivo investigation by creating a critical size defect in the femur head of a rabbit model for 1 and 2 months showed excellent bone in-growth through the micro-channels. The granules enhanced the implant degradation behavior and bone regeneration in the implanted area was significantly improved after two months of implantation.
Collapse
Affiliation(s)
- Swapan Kumar Sarkar
- Institute of Tissue Regeneration, College of Medicine, Soonchunhyang University, Cheonan, South Korea
| | - Byung Yeol Lee
- InoBone Corporate R&D Center, Soonchunhyang University, Asan-si, South Korea
| | - Andrew Reyas Padalhin
- Department of Regenerative Medicine, College of Medicine, Soonchunhyang University, Cheonan, South Korea
| | - Avik Sarker
- Department of Regenerative Medicine, College of Medicine, Soonchunhyang University, Cheonan, South Korea
| | - Nathaniel Carpena
- Institute of Tissue Regeneration, College of Medicine, Soonchunhyang University, Cheonan, South Korea
| | - Boram Kim
- Department of Regenerative Medicine, College of Medicine, Soonchunhyang University, Cheonan, South Korea
| | - Kallyanshish Paul
- Department of Regenerative Medicine, College of Medicine, Soonchunhyang University, Cheonan, South Korea
| | - Hwan Jun Choi
- Department of Plastic and Reconstructive Surgery, College of Medicine, Soonchunhyang University Hospital, Cheonan, Republic of Korea
| | - Sang-Ho Bae
- Department of Surgery, College of Medicine, Soonchunhyang University Hospital, Cheonan, Republic of Korea
| | - Byong Taek Lee
- Institute of Tissue Regeneration, College of Medicine, Soonchunhyang University, Cheonan, South Korea
- Department of Regenerative Medicine, College of Medicine, Soonchunhyang University, Cheonan, South Korea
| |
Collapse
|
8
|
Komakula SSB, Raut S, Verma NP, Raj TA, Kumar MJ, Sinha A, Singh S. Assessment of injectable and cohesive nanohydroxyapatite composites for biological functions. Prog Biomater 2015; 4:31-38. [PMID: 29470792 PMCID: PMC5151109 DOI: 10.1007/s40204-014-0034-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2014] [Accepted: 12/04/2014] [Indexed: 11/30/2022] Open
Abstract
Pressing need for utilization of injectables/fillers in various forms of orthopaedic treatments/surgeries commands an equal demand for better graft material. Injectable bone graft material based on biomimetically synthesized nanohydroxyapatite was developed and subjected to ball milling for different times; three materials thus produced were evaluated for their biological properties. The three composites tested were found to have some difference in proliferation and differentiation on mesenchymal stem cells in cultures. In vivo studies were performed by implanting the graft materials with or without cells in the bone drill hole injury created in the femur of Wistar rats. Our studies show that the composites lead to well-healed injury site with normal histology without inflammation or fibrous tissue formation and bone deformity. This material needs to be tested on large animals for further ascertaining its applicability in clinical use.
Collapse
Affiliation(s)
| | - Snehal Raut
- CSIR-Centre for Cellular and Molecular Biology, Uppal Road, Hyderabad, 500 007, India
| | | | - T Avinash Raj
- CSIR-Centre for Cellular and Molecular Biology, Uppal Road, Hyderabad, 500 007, India
| | - Mahesh J Kumar
- CSIR-Centre for Cellular and Molecular Biology, Uppal Road, Hyderabad, 500 007, India
| | - Arvind Sinha
- CSIR-National Metallurgical Laboratory, Jamshedpur, 831 007, India
| | - Shashi Singh
- CSIR-Centre for Cellular and Molecular Biology, Uppal Road, Hyderabad, 500 007, India.
| |
Collapse
|
9
|
Dorozhkin SV. Self-setting calcium orthophosphate formulations. J Funct Biomater 2013; 4:209-311. [PMID: 24956191 PMCID: PMC4030932 DOI: 10.3390/jfb4040209] [Citation(s) in RCA: 125] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2013] [Revised: 10/18/2013] [Accepted: 10/21/2013] [Indexed: 01/08/2023] Open
Abstract
In early 1980s, researchers discovered self-setting calcium orthophosphate cements, which are bioactive and biodegradable grafting bioceramics in the form of a powder and a liquid. After mixing, both phases form pastes, which set and harden forming either a non-stoichiometric calcium deficient hydroxyapatite or brushite. Since both of them are remarkably biocompartible, bioresorbable and osteoconductive, self-setting calcium orthophosphate formulations appear to be promising bioceramics for bone grafting. Furthermore, such formulations possess excellent molding capabilities, easy manipulation and nearly perfect adaptation to the complex shapes of bone defects, followed by gradual bioresorption and new bone formation. In addition, reinforced formulations have been introduced, which might be described as calcium orthophosphate concretes. The discovery of self-setting properties opened up a new era in the medical application of calcium orthophosphates and many commercial trademarks have been introduced as a result. Currently such formulations are widely used as synthetic bone grafts, with several advantages, such as pourability and injectability. Moreover, their low-temperature setting reactions and intrinsic porosity allow loading by drugs, biomolecules and even cells for tissue engineering purposes. In this review, an insight into the self-setting calcium orthophosphate formulations, as excellent bioceramics suitable for both dental and bone grafting applications, has been provided.
Collapse
|
10
|
TAKECHI M, OHTA K, NINOMIYA Y, TADA M, MINAMI M, TAKAMOTO M, OHTA A, NAKAGAWA T, FUKUI A, MIYAMOTO Y, KAMATA N. 3-dimensional composite scaffolds consisting of apatite-PLGA-atelocollagen for bone tissue engineering. Dent Mater J 2012; 31:465-71. [DOI: 10.4012/dmj.2011-182] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
11
|
Morejón-Alonso L, Ferreira OJB, Carrodeguas RG, dos Santos LA. Bioactive composite bone cement based on α-tricalcium phosphate/tricalcium silicate. J Biomed Mater Res B Appl Biomater 2011; 100:94-102. [PMID: 22006674 DOI: 10.1002/jbm.b.31926] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2011] [Revised: 05/13/2011] [Accepted: 05/25/2011] [Indexed: 11/09/2022]
Abstract
Silicon compounds are known as bioactive materials that are able to bond to the living bone tissue by inducing an osteogenic response through the stimulation and activation of osteoblasts. To improve the bioactive and mechanical properties of an α-Ca(3)PO(4)-based cement, the effects of the addition of Ca(3 SiO(5) (C(3)S) on physical, chemical, mechanical, and biological properties after soaking in simulated body fluid (SBF) were studied. The morphological and structural changes of the material during immersion were analyzed by X-ray diffraction and scanning electron microscopy. The results showed that it is possible to increase the compressive strength of the cement by adding 5% of C(3)S. Higher C(3)S contents enhance bioactivity and biocompatibility by the formation of a dense and homogeneous hydroxyapatite layer within 7 days; however, compressive strength decreases drastically as a consequence of delayed hydrolysis of α-Ca(3)(PO(4) (2). An increment in setting times and degradation rate of composites containing C(3)S was also observed.
Collapse
Affiliation(s)
- Loreley Morejón-Alonso
- Escola de Engenharia, Departamento de Materiais, Universidade Federal do Rio Grande do Sul, Porto Alegre (RS), Brasil.
| | | | | | | |
Collapse
|
12
|
Low KL, Tan SH, Zein SHS, Roether JA, Mouriño V, Boccaccini AR. Calcium phosphate-based composites as injectable bone substitute materials. J Biomed Mater Res B Appl Biomater 2010; 94:273-86. [PMID: 20336722 DOI: 10.1002/jbm.b.31619] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
A major weakness of current orthopedic implant materials, for instance sintered hydroxyapatite (HA), is that they exist as a hardened form, requiring the surgeon to fit the surgical site around an implant to the desired shape. This can cause an increase in bone loss, trauma to the surrounding tissue, and longer surgical time. A convenient alternative to harden bone filling materials are injectable bone substitutes (IBS). In this article, recent progress in the development and application of calcium phosphate (CP)-based composites use as IBS is reviewed. CP materials have been used widely for bone replacement because of their similarity to the mineral component of bone. The main limitation of bulk CP materials is their brittle nature and poor mechanical properties. There is significant effort to reinforce or improve the mechanical properties and injectability of calcium phosphate cement (CPC) and this review resumes different alternatives presented in this specialized literature.
Collapse
Affiliation(s)
- Kah Ling Low
- School of Chemical Engineering, Engineering Campus, Universiti Sains Malaysia, Seri Ampangan 14300 Nibong Tebal, Seberang Perai Selatan, Pulau Pinang, Malaysia
| | | | | | | | | | | |
Collapse
|
13
|
Rajzer I, Castaño O, Engel E, Planell JA. Injectable and fast resorbable calcium phosphate cement for body-setting bone grafts. JOURNAL OF MATERIALS SCIENCE. MATERIALS IN MEDICINE 2010; 21:2049-2056. [PMID: 20386961 DOI: 10.1007/s10856-010-4078-5] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/11/2009] [Accepted: 03/29/2010] [Indexed: 05/29/2023]
Abstract
In this work a calcium phosphate (CPC)/polymer blend was developed with the advantage of being moldable and capable of in situ setting to form calcium deficient hydroxyapatite under physiological conditions in an aqueous environment at body temperature. The CPC paste consists in a mix of R cement, glycerol as a liquid phase carrier and a biodegradable hydrogel such as Polyvinyl alcohol, which acts as a binder. Microstructure and mechanical analysis shows that the CPC blend can be used as an injectable implant for low loaded applications and fast adsorption requirements. The storage for commercial distribution was also evaluated and the properties of the materials obtained do not significantly change during storage at -18 degrees C.
Collapse
Affiliation(s)
- I Rajzer
- Institute for Bioengineering of Catalonia (IBEC), C/Baldiri i Reixach, 4-6, Tower I, 10th floor, 08028 Barcelona, Spain
| | | | | | | |
Collapse
|
14
|
Nekoofar MH, Haddad DC, Nolde J, Aseeley Z. Water content of ampoule packaged with ProRoot MTA. Int Endod J 2009; 42:549-51; author reply 552-3. [DOI: 10.1111/j.1365-2591.2009.01541.x] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
15
|
Calcium Orthophosphate Cements and Concretes. MATERIALS 2009; 2:221-291. [PMCID: PMC5445692 DOI: 10.3390/ma2010221] [Citation(s) in RCA: 154] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/03/2009] [Revised: 03/16/2009] [Accepted: 03/18/2009] [Indexed: 12/30/2022]
Abstract
In early 1980s, researchers discovered self-setting calcium orthophosphate cements, which are a bioactive and biodegradable grafting material in the form of a powder and a liquid. Both phases form after mixing a viscous paste that after being implanted, sets and hardens within the body as either a non-stoichiometric calcium deficient hydroxyapatite (CDHA) or brushite, sometimes blended with unreacted particles and other phases. As both CDHA and brushite are remarkably biocompartible and bioresorbable (therefore, in vivo they can be replaced with newly forming bone), calcium orthophosphate cements represent a good correction technique for non-weight-bearing bone fractures or defects and appear to be very promising materials for bone grafting applications. Besides, these cements possess an excellent osteoconductivity, molding capabilities and easy manipulation. Furthermore, reinforced cement formulations are available, which in a certain sense might be described as calcium orthophosphate concretes. The concepts established by calcium orthophosphate cement pioneers in the early 1980s were used as a platform to initiate a new generation of bone substitute materials for commercialization. Since then, advances have been made in the composition, performance and manufacturing; several beneficial formulations have already been introduced as a result. Many other compositions are in experimental stages. In this review, an insight into calcium orthophosphate cements and concretes, as excellent biomaterials suitable for both dental and bone grafting application, has been provided.
Collapse
|
16
|
Sugawara A, Fujikawa K, Takagi S, Chow LC. Histological analysis of calcium phosphate bone grafts for surgically created periodontal bone defects in dogs. Dent Mater J 2008; 27:787-94. [PMID: 19241686 PMCID: PMC2761757 DOI: 10.4012/dmj.27.787] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
A calcium phosphate cement (CPC-1), prepared by mixing an equimolar mixture of tetracalcium phosphate and dicalcium phosphate anhydrous with water, has been shown to be highly biocompatible and osteoconductive. A new type of calcium phosphate cement (CPC-2), prepared by mixing a mixture of alpha-tricalcium phosphate and calcium carbonate with pH 7.4 sodium phosphate solution, was also reported to be highly biocompatible. The objective of the present study was to compare the osteoconductivities of CPC-1 and CPC-2 when implanted in surgically created defects in the jaw bones of dogs. At 1 month after surgery, implanted CPC-1 was partially replaced by new bone and converted to bone within 6 months. In comparison, at 1 month after surgery, the defect filled with CPC-2 was mostly replaced by new bone. Therefore, bone formation in CPC-2-filled pocket was more rapid than in CPC-1-filled pocket. These findings supported the hypothesis that CPC-2 converted to bone more rapidly than CPC-1.
Collapse
|
17
|
Dorozhkin SV. Calcium orthophosphate cements for biomedical application. JOURNAL OF MATERIALS SCIENCE 2008; 43:3028-3057. [DOI: 10.1007/s10853-008-2527-z] [Citation(s) in RCA: 181] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/02/2024]
|
18
|
Minamiguchi S, Takechi M, Yuasa T, Momota Y, Tatehara S, Takano H, Miyamoto Y, Satomura K, Nagayama M. Basic research on aw-AC/PLGA composite scaffolds for bone tissue engineering. JOURNAL OF MATERIALS SCIENCE. MATERIALS IN MEDICINE 2008; 19:1165-72. [PMID: 17701319 DOI: 10.1007/s10856-007-0162-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/01/2006] [Accepted: 01/22/2007] [Indexed: 05/16/2023]
Abstract
Recently, it has become important to develop effective material to be used as scaffolds for bone tissue engineering. Therefore, we fabricated new three-dimensional (3D) scaffolds consisting of biodegradable poly(D,L-lactide-co-glycolic acid)(PLGA)(75/25) with anti-washout type AC (aw-AC) particles. The aim of this study was to evaluate this new scaffold concerning its basic properties and biocompatibility. The obtained scaffolds were observed with scanning electron microscopy (SEM), and measured for porosity, shrinkage and biaxial compressive strengths. It was shown that PLGA with aw-AC composite scaffolds (aw-AC/PL) showed a greater strength and stability than PLGA scaffolds (PL). Also, the mass reduction of aw-AC/PL during incubation decreased compared to that of PL. The number of MC3T3-E1 cell in PL and aw-AC/PL was counted at 5 h, 1 week, and 2 weeks after cell seeding. As a result, aw-AC/PL exhibited a superior performance in terms of attachment and proliferation compared to PL. Histologically, aw-AC/PL showed an excellent response toward soft tissues. Therefore, it was shown that aw-AC/PL was more biocompatible than PL. In conclusion, it was strongly suggested that aw-AC/PL was more useful for cell transplantation than PL in bone tissue engineering.
Collapse
Affiliation(s)
- Shiho Minamiguchi
- Department of Oral and Maxillofacial Surgery, Institute of Health Biosciences, The University of Tokushima Graduate School, 3-18-15 Kuramoto, Tokushima 770-8504, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Suge T, Kawasaki A, Ishikawa K, Matsuo T, Ebisu S. Ammonium hexafluorosilicate elicits calcium phosphate precipitation and shows continuous dentin tubule occlusion. Dent Mater 2008; 24:192-8. [PMID: 17544103 DOI: 10.1016/j.dental.2007.03.009] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2006] [Revised: 02/23/2007] [Accepted: 03/14/2007] [Indexed: 11/19/2022]
Abstract
UNLABELLED Diamine silver fluoride [AgF: (NH(3))(2)AgF] has been used clinically in Japan, as it reduces dental caries and dentin hypersensitivity. However, AgF stains the teeth black due to silver precipitation. To overcome this drawback, the authors prepared ammonium hexafluorosilicate [SiF: (NH(4))(2)SiF(6)], which does not stain the teeth, and SiF occluded open dentin tubules completely with silica-calcium phosphate precipitate. OBJECTIVES The aim of this study was to evaluate the duration of dentin tubule occlusion after SiF treatment in a simulated oral environment. METHODS To simulate dentin tubules subject to dentin hypersensitivity, dentin disks were treated with EDTA for 2 min. The disks were treated with 0.476 mol/L SiF for 3 min, and then the disks were immersed in synthetic saliva, which was regularly replenished to maintain its ionic concentration, for up to 7 days. The occluding ability of the dentin tubules was evaluated using scanning electron microscopy (SEM), and the hydraulic conductance was measured following Pashley's method at regular intervals. RESULTS SEM photographs demonstrated that dentin tubules were occluded homogeneously and completely with the precipitate at 7 days after treatment with SiF. In addition, newly formed calcium phosphate precipitate was present at the dentin surface. The dentin permeability showed a consistently low value throughout the experimental period. The values immediately after SiF treatment and 7 days after immersion were 11.9+/-3.7% and 7.9+/-2.9%, respectively. SIGNIFICANCE Ammonium hexafluorosilicate is useful for the treatment of dentin hypersensitivity, since ammonium hexafluorosilicate induced calcium phosphate precipitation from the saliva; therefore, it has a continuous effect on dentin tubules occlusion under a simulated oral environment.
Collapse
Affiliation(s)
- Toshiyuki Suge
- Department of Conservative Dentistry, Institute of Health Biosciences, The University of Tokushima Graduate School, 3-18-15 Kuramoto, Tokushima 770-8504, Japan.
| | | | | | | | | |
Collapse
|
20
|
Hannink G, Wolke JGC, Schreurs BW, Buma P. In vivo behavior of a novel injectable calcium phosphate cement compared with two other commercially available calcium phosphate cements. J Biomed Mater Res B Appl Biomater 2008; 85:478-88. [DOI: 10.1002/jbm.b.30969] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
21
|
Verma D, Katti K, Katti D. Bioactivity in in situ hydroxyapatite-polycaprolactone composites. J Biomed Mater Res A 2006; 78:772-80. [PMID: 16739180 DOI: 10.1002/jbm.a.30774] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
In our previous work, hydroxyapatite (HAP) was synthesized under two conditions: one in the presence of polyacrylic acid (in situ HAP) and the other in the absence of polyacrylic acid (ex situ HAP). Composites of both HAPs with polycaprolactone (PCL) were investigated for their applicability as scaffolds for bone tissue engineering. In the current work, bioactivity of these composites has been investigated by soaking them in simulated body fluid for different intervals of time. Nucleation and growth mechanism of apatite on these composites has also been investigated. Fourier transform infrared spectroscopy study suggests that although apatite growth starts with an intermediate phase, it completely transforms to HAP after 4 days of soaking. Nanoindentation results suggest that the apatite growing on in situ HAP/PCL composites has much higher hardness and elastic modulus as compared to the apatite growing on ex situ HAP/PCL composites. The apatite grown on the ex situ composites has a net-like interconnected structure. The observed differences in mechanical properties and morphology of apatite have been described on the basis of nucleation mechanisms. The nucleation of apatite on the in situ HAP/PCL composites proceeds through the formation of a complex between Ca2+ and COO- groups; on the other hand, nucleation occurs because of dissolution reaction of apatite in ex situ HAP/PCL composites.
Collapse
Affiliation(s)
- Devendra Verma
- Department of Civil Engineering, North Dakota State University, Fargo, North Dakota 58105, USA
| | | | | |
Collapse
|
22
|
Liu H, Li H, Cheng W, Yang Y, Zhu M, Zhou C. Novel injectable calcium phosphate/chitosan composites for bone substitute materials. Acta Biomater 2006; 2:557-65. [PMID: 16774852 DOI: 10.1016/j.actbio.2006.03.007] [Citation(s) in RCA: 101] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2005] [Revised: 03/21/2006] [Accepted: 03/30/2006] [Indexed: 11/21/2022]
Abstract
In this study, a novel injectable bone substitute material was developed which consists of chitosan, citric acid and glucose solution as the liquid phase, and tricalcium phosphate powder as the solid phase. This material was moldable because of its paste consistency after mixing. We used four groups of cement to investigate the mechanical properties and biocompatibility of the new biomaterial in vitro, which were named group A (10% citric acid), B (15% citric acid), C (20% citric acid) and D (25% citric acid). The setting times of the cements were 5-30 min. X-ray diffraction analysis showed that the products were hydroxyapatite (HA) and dicalcium phosphate anhydrous. When the concentration of citric acid was increased, the compressive strength of specimen increased. Through the simulated body fluid test, we observed the material was bioactive. Group D could induce Ca and P ions to deposit the surface group D quickly. These results indicated that the concentration of citric acid in the liquid component affected the mechanical properties and bioactivity of cements. The cell cultivation test showed that the cytocompatibility of the new biomaterial was good. The method for preparing the novel bone substitute material is simple. The starting material is more readily available and cheaper than HA, poly(methyl methacrylate), and so on. The cement could have good prospects for medical application.
Collapse
Affiliation(s)
- Hua Liu
- Department of Materials Science and Engineering, Jinan University, Guangzhou 510632, People's Republic of China
| | | | | | | | | | | |
Collapse
|
23
|
Barralet JE, Duncan CO, Dover MS, Bassett DC, Nishikawa H, Monaghan A, Gbureck U. Cortical bone screw fixation in ionically modified apatite cements. J Biomed Mater Res B Appl Biomater 2005; 73:238-43. [PMID: 15786435 DOI: 10.1002/jbm.b.30197] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Hydroxyapatite cements are used in reconstruction of the face; usually in well-defined cavities where the cement can be stabilized without the need for internal fixation. A hydroxyapatite cement that could enable screw fixation and some loading therefore has considerable potential in maxillofacial reconstruction. It has been demonstrated recently that water demand of calcium phosphate cements can be reduced by ionically modifying the liquid component. This study investigated the capacity of an ionically modified precompacted apatite cement to retain self-tapping cortical bone screws. Screw pullout forces were determined in the direction of the screw long axis and perpendicular to it, using cortical bone and polymethylmethacrylate cement as a control. In bending pullout tests, measured forces to remove screws from ionically modified precompacted cement were insignificantly different from cortical bone. However, pullout forces of bone screws from hydroxyapatite cement decreased with aging time in vitro.
Collapse
Affiliation(s)
- J E Barralet
- Faculty of Dentistry, Strathcona Building, McGill University, 3640 University Street, Montreal, Quebec H3A 2B2, Canada.
| | | | | | | | | | | | | |
Collapse
|
24
|
Takechi M, Miyamoto Y, Momota Y, Yuasa T, Tatehara S, Nagayama M, Ishikawa K. Effects of various sterilization methods on the setting and mechanical properties of apatite cement. ACTA ACUST UNITED AC 2004; 69:58-63. [PMID: 15015210 DOI: 10.1002/jbm.b.10031] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Sterilization capability is a necessary requirement for any material that is to be used in a medical application. Therefore, it is necessary for apatite cement (AC) to be sterilized. Because there is little information on the sterilization methods of AC, the aims of this investigation were to evaluate the effects of various sterilization methods, including steam, dry heat, ethylene oxide (EtO) gas, and gamma irradiation sterilizations, on the setting and mechanical properties of AC. In the case of steam sterilization, because AC powder aggregated before setting-time measurements, the setting time could not be measured. When the powder was sterilized by dry heat or EtO gas, the setting time was prolonged significantly and the wet diametral tensile strength (DTS) value decreased significantly. Therefore, sterilizations with steam, dry heat, or EtO gas were suggested to be inappropriate methods for AC. Accordingly, the following experiments focused on gamma sterilization. The setting time of AC was retarded with an increase in gamma irradiation dose. The wet DTS value decreased with the increase in gamma irradiation dose. There was no compositional change due to the gamma irradiation. The following tests were carried out in order to examine the effect of the gamma irradiation on the setting reaction of AC in detail. Tetracalcium phosphate [TTCP: Ca(4)(PO(4))(2)O] and dicalcium phosphate anhydrous (DCPA: CaHPO(4)) were separately irradiated, and the cements were produced with the use of irradiated powder and nonirradiated powder. Although the wet DTS value of AC produced from irradiated TTCP and nonirradiated DCPA decreased with increasing gamma irradiation dose, there was no significant difference. In contrast, the wet DTS value of AC produced from irradiated DCPA and nonirradiated TTCP significantly decreased with the increase in gamma irradiation dose. In conclusion, although the detailed mechanism of the delayed setting time and decreased DTS value was not clarified by the present study, it was found that gamma irradiation affected DCPA more than TTCP.
Collapse
Affiliation(s)
- Masaaki Takechi
- First Department of Oral and Maxillofacial Surgery, School of Dentistry, Tokushima University, 3-18-15 Kuramoto, Tokushima, 770-8504 Japan.
| | | | | | | | | | | | | |
Collapse
|
25
|
Fulmer MT, Ison IC, Hankermayer CR, Constantz BR, Ross J. Measurements of the solubilities and dissolution rates of several hydroxyapatites. Biomaterials 2002; 23:751-5. [PMID: 11771695 DOI: 10.1016/s0142-9612(01)00180-6] [Citation(s) in RCA: 110] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Calcium phosphate based materials, such as apatites, are increasingly being developed and used in implants for orthopedic and dental applications. Previous investigation of various calcium phosphate ceramics has demonstrated great variability in the solubility characteristics in solution between materials with similar stoichiometric composition. Therefore, in this study, the solubility and rate of dissolution of three apatite sources, BoneSource, Norian cranial repair system (CRS), and a sintered hydroxyapatite (Calcitite) are evaluated in a thermodynamically closed system. The measured solubility under physiological conditions (tris buffer solution, pH 7.4, 37 degrees C) of BoneSource, Norian CRS and Calcitite is 7.5, 7.4 and 1.4 ppm, respectively. Initial dissolution rates at 10 min of BoneSource, CRS, and Calcitite were 0.0465, 0.1589, and essentially 0 mg/min respectively. Solubility product constants at 37 degrees C were calculated to be 1.49 x 10(-35) for CRS, 1.19 x 10(-35) for BoneSource, and 2.92 x 10(-42) for Calcitite. The increased solubility of the BoneSource and Norian CRS materials over that of Calcitite is related to their poor crystallinity compared to sintered hydroxyapatite.
Collapse
|
26
|
Ishikawa K, Miyamoto Y, Yuasa T, Ito A, Nagayama M, Suzuki K. Fabrication of Zn containing apatite cement and its initial evaluation using human osteoblastic cells. Biomaterials 2002; 23:423-8. [PMID: 11761162 DOI: 10.1016/s0142-9612(01)00121-1] [Citation(s) in RCA: 55] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Recently, the effects of Zn2+ on osteogenesis stimulation have become major topics in the research fields of bone formation and organism essential elements. Based on the fundamental finding of Zn2+ with respect to osteogenesis stimulation, Ito et al. have prepared Zn doped beta-tricalcium phosphate (ZnTCP) and have reported that ZnTCP enhances the proliferation of MC3T3-E1 cells. In this investigation, we studied the effects of ZnTCP added to apatite cement (AC) with respect to its setting reaction and proliferation of human osteoblastic cells as an initial evaluation for the feasibility of AC containing ZnTCP. Compositional analysis using powder X-ray diffractometer revealed that ZnTCP shows no reactivity with the setting reaction of AC. As a result, the mechanical strength of set AC decreased increasing amounts of added ZnTCP as if ZnTCP acts as a pore in AC. The setting time of AC was not affected by addition of ZnTCP up to 10%. When AC containing ZnTCP was immersed in alpha-MEM containing 10% bovine serum, Zn2+ was released from AC. Larger amounts of Zn2+ were released from AC containing larger amounts of ZnTCP. When human osteoblastic cells were incubated on the surface of AC discs, proliferation of human osteoblastic cells was significantly increased on the surface of AC that contained 5% ZnTCP when compared with that containing no ZnTCP. In contrast, proliferation of human osteoblastic cells decreased on the surface of AC that contained 10% ZnTCP when compared with that free from ZnTCP; indicating cytotoxicity. We concluded therefore, that addition of ZnTCP to AC is useful to enhance the osteoconductivity of AC when release of Zn2+ can be carefully regulated.
Collapse
Affiliation(s)
- Kunio Ishikawa
- Department of Biomaterials, Science of Functional Recovery and Reconstruction, Graduate School of Medicine and Dentistry, Okayama University Graduate School, Japan.
| | | | | | | | | | | |
Collapse
|
27
|
Abstract
An in vitro dye leakage study was performed to compare the apical leakage of a fill with injectable calcium phosphate cement (CPC) filler/sealer and a master silver cone with leakage from a fill of Sealapex sealer and laterally condensed gutta-percha. Ten instrumented, extracted, single-rooted human teeth were obturated with either laterally condensed gutta-percha and Sealapex as the sealer or with a single master cone and the CPC paste sealer. Additional teeth were included in the study to serve as controls. The teeth were placed in 1% poly-R dye solution (pH 7.0) for 5 days. After the teeth were longitudinally sectioned apical leakage of dye was measured. There were no significant differences between the CPC and Sealapex groups. The single cone CPC procedure provided an adequate apical seal against dye penetration. Should retreatment become necessary the single cone may be removed to provide access for instrumentation.
Collapse
Affiliation(s)
- A M Cherng
- American Dental Association Health Foundation, Paffenbarger Research Center, National Institute of Standards and Technology, Gaithersburg, MD 20899, USA
| | | | | |
Collapse
|
28
|
Takagi S, Chow LC, Markovic M, Friedman CD, Costantino PD. Morphological and phase characterizations of retrieved calcium phosphate cement implants. JOURNAL OF BIOMEDICAL MATERIALS RESEARCH 2001; 58:36-41. [PMID: 11152995 DOI: 10.1002/1097-4636(2001)58:1<36::aid-jbm50>3.0.co;2-#] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
A self-hardening calcium phosphate cement (CPC), consisting of equimolar amounts of tetracalcium phosphate and dicalcium phosphate anhydrous, hardens when mixed with water and forms a resorbable hydroxyapatite (HA) as the end-product. The objective of this study was to investigate the changes of the phase and morphology of the CPC during hardening and aging under in vivo conditions. CPC samples retrieved 12 h after hardening in vivo had already contained carbonated HA (type B), even though the initial cement mixture did not contain carbonate as one of the solid components. The mass fraction of carbonate in the 12-h sample was about 1%. The results suggested that under in vivo conditions carbonate is readily available and this allows formation of carbonated HA in favor of carbonate-free HA. The carbonate content of the CPC samples retrieved 3 months after implantation was similar to that of the 12-h samples, and the exterior surfaces of the 3-month samples appeared less crystalline than that of the 12-h samples.
Collapse
Affiliation(s)
- S Takagi
- American Dental Association Health Foundation, Paffenbarger Research Center, National Institute of Standards and Technology, Gaithersburg, Maryland 20899, USA.
| | | | | | | | | |
Collapse
|
29
|
Di Renzo M, Ellis TH, Sacher E, Stangel I. A photoacoustic FTIRS study of the chemical modifications of human dentin surfaces: I. Demineralization. Biomaterials 2001; 22:787-92. [PMID: 11246946 DOI: 10.1016/s0142-9612(00)00240-4] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Acids are used to modify the structure and composition of dentin surfaces to improve bonds formed with resins. The purpose of this work is to investigate such chemical modifications using the surface-sensitive technique photoacoustic Fourier transform infrared spectroscopy (PA-FTIRS). Spectra of acid-treated samples (citric, maleic, nitric, and phosphoric at pH = 1.0) were recorded at various time intervals. Analysis of these spectra indicates a gradual increase in sample surface area with treatment time. A decrease of the bands associated with calcium hydroxyapatite (HAP) and carbonate apatite inherent to the mineral phase of dentin are also observed. A comparison of spectra of samples treated for 2 min with each acid also reveals that maleic and phosphoric acids remove more HAP than citric acid. We conclude that citric acid may cause the formation of precipitates at the etching front which inhibit etching.
Collapse
Affiliation(s)
- M Di Renzo
- Département de chimie, Université de Montréal, Québec, Canada
| | | | | | | |
Collapse
|
30
|
Miyamoto Y, Toh T, Ishikawa K, Yuasa T, Nagayama M, Suzuki K. Effect of added NaHCO3 on the basic properties of apatite cement. JOURNAL OF BIOMEDICAL MATERIALS RESEARCH 2001; 54:311-9. [PMID: 11189035 DOI: 10.1002/1097-4636(20010305)54:3<311::aid-jbm10>3.0.co;2-h] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Alternation of a composition of set apatite cement (AC) from carbonate-free apatite (CO3-free AP) to carbonate apatite (CO3-AP) may accelerate replacement of the set AC with bone because CO3-AP can be dissolved much faster than CO3-free AP in the weak acidic solution produced by osteoclasts. In this investigation, NaHCO3 was added to the AC component and the effects of added NaHCO3 on cement-setting behavior and on set mass were studied as an initial step for the fabrication of AC, which can be replaced with bone faster than current AC. When NaHCO3 was added to AC, the resultant set mass contained CO3. Although not all CO3 was incorporated in the set AC, the amount of CO3 incorporated into the set AC increased with the amount of added NaHCO3. Powder X-ray diffraction analysis and Fourier transform infrared spectrometer measurements revealed the formation of B-type CO3-AP. The setting time measured in an incubator at 37 degrees C and 100% relative humidity slowed from 30 to 45 min, indicating that NaHCO3 has an inhibitory effect on AP formation. The diametral tensile strength of the set AC decreased significantly with the addition of NaHCO3. Scanning electron microscopic observation revealed that fine crystals were formed in the set AC when NaHCO3 was added to AC. As a result, the crystallinity indices of the set AC measured using X-ray diffraction and Fourier transform infrared spectroscopy decreased with an increase in the amount of added NaHCO3. The dissolution rate of set AC in weak acid, pH 5.5, increased with the amount of added NaHCO3. We concluded that the formation of B-type CO3-AP and the resulting faster dissolution of set AC in weak acidic solution is preferable for the faster replacement of set AC with bone even though the decreased diametral tensile strength value is a shortcoming.
Collapse
Affiliation(s)
- Y Miyamoto
- First Department of Oral and Maxillofacial Surgery, School of Dentistry, Tokushima University, Japan.
| | | | | | | | | | | |
Collapse
|
31
|
Knabe C, Driessens FC, Planell JA, Gildenhaar R, Berger G, Reif D, Fitzner R, Radlanski RJ, Gross U. Evaluation of calcium phosphates and experimental calcium phosphate bone cements using osteogenic cultures. JOURNAL OF BIOMEDICAL MATERIALS RESEARCH 2000; 52:498-508. [PMID: 11007618 DOI: 10.1002/1097-4636(20001205)52:3<498::aid-jbm8>3.0.co;2-p] [Citation(s) in RCA: 60] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
In this study, rat bone marrow cells (RBM) were used to evaluate two biodegradable calcium phosphate bone cements and bioactive calcium phosphate ceramics. The substances investigated were: two novel calcium phosphate cements, Biocement F and Biocement H, tricalcium phosphate (TCP), surface-modified alpha-tricalcium phosphate [TCP (s)] and a rapid resorbable calcium phosphate ceramic consisting of CaKPO(4) (sample code R5). RBM cells were cultured on disc-shaped test substrates for 14 days. The culture medium was changed daily and also examined for calcium, phosphate, and potassium concentrations. Specimens were evaluated using light microscopy, and morphometry of the cell-covered substrate surface, scanning electron microscopy, and energy dispersive X-ray analysis and morphometry of the cell-covered substrate surface. Areas of mineralization were identified by tetracyline labeling. Except for R 5, rat bone-marrow cells attached and grew on all substrate surfaces. Of the different calcium phosphate materials tested, TCP and TCP (s) facilitated osteoblast growth and extracellular matrix elaboration to the highest degree, followed by Biocements H and F. The inhibition of cell growth encountered with R 5 seems to be related to its high phosphate and potassium ion release.
Collapse
Affiliation(s)
- C Knabe
- Department of Experimental Dentistry, University Hospital Benjamin Franklin, Free University of Berlin, Assmannshauser Str. 4-6, 14197 Berlin, FRG
| | | | | | | | | | | | | | | | | |
Collapse
|
32
|
Abstract
Calcium phosphate (CaP) compounds are becoming of increasingly great importance in the field of biomaterials and, in particular, as bone substitutes. Recent discoveries have accelerated this process, but have simultaneously rendered the field more complicated for the everyday user. Subtle differences in composition and structure of CaP compounds may have a profound effect on their in vivo behaviour. Therefore, the main goal of this article is to provide a simple, but comprehensive presentation of CaP compounds. Reference is made to the most important commercial products.
Collapse
Affiliation(s)
- M Bohner
- Dr Robert Mathys Foundation, Bischmattstr. 12, CH-2544 Bettlach
| |
Collapse
|
33
|
Clèries L, Fernández-Pradas JM, Morenza JL. Behavior in simulated body fluid of calcium phosphate coatings obtained by laser ablation. Biomaterials 2000; 21:1861-5. [PMID: 10919689 DOI: 10.1016/s0142-9612(00)00060-0] [Citation(s) in RCA: 78] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Abstract
Three types of calcium phosphate coatings onto titanium alloy substrates, deposited by the laser ablation technique, were immersed in a simulated body fluid in order to determine their behavior in conditions similar to the human blood plasma. Neither the hydroxyapatite coating nor the amorphous calcium phosphate coating do dissolve and the alpha-tricalcium phosphate phase of the coating of beta-tricalcium phosphate with minor alpha phase slightly dissolves. Precipitation of an apatitic phase is favored onto the hydroxyapatite coating and onto the coating of beta-tricalcium phosphate with minor alpha phase. Onto the titanium alloy substrate reference there is also precipitation but at larger induction times. However, onto the amorphous calcium phosphate coating no precipitate is formed.
Collapse
Affiliation(s)
- L Clèries
- Departament de Física Aplicada i Optica, Universitat de Barcelona, Spain.
| | | | | |
Collapse
|
34
|
Miyamoto Y, Ishikawa K, Takechi M, Toh T, Yuasa T, Nagayama M, Suzuki K. Histological and compositional evaluations of three types of calcium phosphate cements when implanted in subcutaneous tissue immediately after mixing. JOURNAL OF BIOMEDICAL MATERIALS RESEARCH 2000; 48:36-42. [PMID: 10029148 DOI: 10.1002/(sici)1097-4636(1999)48:1<36::aid-jbm8>3.0.co;2-i] [Citation(s) in RCA: 124] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
To evaluate the soft tissue response of calcium phosphate cement (CPC), consisting of an equimolar mixture of tetracalcium phosphate (TTCP) and dicalcium phosphate anhydrous (DCPA) under conditions close to those encountered in actual surgical procedures, we implanted three types of CPC [conventional CPC (c-CPC), fast-setting CPC (FSCPC), and antiwashout type FSCPC (aw-FSCPC; formerly called nondecay type FSCPC or nd-FSCPC)] subcutaneously in the abdomens of rats immediately (1 min) after mixing. At 1 week after surgery, histological examination and compositional analysis were performed using light microscopy and powder X-ray diffraction (XRD), respectively. The implanted c-CPC was crumbled completely, whereas FSCPC and aw-FSCPC retained their shape. Large vesicles containing copious inflammatory effusion were subcutaneously formed around the c-CPC. Histologically, many foreign-body giant cells were collected around the c-CPC, and moderate inflammatory cell infiltration was observed at 1 week after surgery. In contrast, the FSCPC and aw-FSCPC were covered with a thin layer of granulation tissue that included few giant cells and presented slight inflammatory cell infiltration, and no effusion was observed. The XRD analysis of the c-CPC revealed the presence of some unreacted DCPA even 1 week after implantation, whereas almost no DCPA was found in the FSCPC or aw-FSCPC. In conclusion, it was found that CPC does not always show excellent tissue response. When c-CPC is implanted subcutaneously in rats immediately after mixing, it fails to set and causes a severe inflammatory response. Therefore, the type of CPC should be chosen according to the clinical particulars. CPC should be used in a manner that assures its setting reaction. We recommend the use of FSCPC and aw-FSCPC for surgical applications, such as orthopedics, plastic and reconstructive surgery, and oral and maxillofacial surgery, where the cement might otherwise crumble due to the pressure before setting.
Collapse
Affiliation(s)
- Y Miyamoto
- First Department of Oral and Maxillofacial Surgery, School of Dentistry, Tokushima University, Japan.
| | | | | | | | | | | | | |
Collapse
|
35
|
Ishikawa K, Miyamoto Y, Takechi M, Ueyama Y, Suzuki K, Nagayama M, Matsumura T. Effects of neutral sodium hydrogen phosphate on setting reaction and mechanical strength of hydroxyapatite putty. JOURNAL OF BIOMEDICAL MATERIALS RESEARCH 1999; 44:322-9. [PMID: 10397935 DOI: 10.1002/(sici)1097-4636(19990305)44:3<322::aid-jbm11>3.0.co;2-s] [Citation(s) in RCA: 44] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
The setting reaction and mechanical strength in terms of diametral tensile strength (DTS) of hydroxyapatite (HAP) putty made of tetracalcium phosphate, dicalcium phosphate anhydrous, and neutral sodium hydrogen phosphate (Na1.8H1.2PO4) solution containing 8 wt % sodium alginate were evaluated as a function of the Na1.8H1.2PO4 concentration. In one condition, HAP putty was placed in an incubator kept at 37 degrees C and 100% relative humidity. In the other condition, immediately after mixing HAP putty was immersed in serum kept at 37 degrees C. Longer setting times and lower DTS values were observed when HAP putty was immersed in serum regardless of the Na1.8H1.2PO4 concentration. The setting times of the HAP putty in both conditions became shorter with an increase in the Na1. 8H1.2PO4 concentration, reaching approximately 7-13 min when the Na1. 8H1.2PO4 concentration was 0.6 mol/L or higher. The DTS value of HAP putty was relatively constant (10 MPa) regardless of the Na1.8H1. 2PO4 concentration (0.2-1.0 mol/L) when HAP putty was kept in an incubator. In contrast, when HAP putty was immersed in serum, the DTS value was dependent on the Na1.8H1.2PO4 concentration. It increased with the Na1.8H1.2PO4 concentration and reached approximately 5 MPa when the Na1.8H1.2PO4 concentration was 0.6 mol/L, after which it showed a relatively constant DTS value. We therefore would recommend a HAP putty that uses 0.6 mol/L Na1.8H1. 2PO4 since at that concentration the putty's setting time (approximately 10 min) is proper for clinical use and it shows good DTS value (approximately 5 MPa) even when it is immersed in serum immediately after mixing.
Collapse
Affiliation(s)
- K Ishikawa
- Department of Biomaterials, Okayama University Dental School, 2-5-1 Shikata, Okayama 700-8525 Japan.
| | | | | | | | | | | | | |
Collapse
|
36
|
Rohanizadeh R, Padrines M, Bouler JM, Couchourel D, Fortun Y, Daculsi G. Apatite precipitation after incubation of biphasic calcium-phosphate ceramic in various solutions: influence of seed species and proteins. JOURNAL OF BIOMEDICAL MATERIALS RESEARCH 1998; 42:530-9. [PMID: 9827676 DOI: 10.1002/(sici)1097-4636(19981215)42:4<530::aid-jbm8>3.0.co;2-6] [Citation(s) in RCA: 71] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The dissolution-precipitation process for calcium-phosphate ceramics in contact with biological fluid was studied by incubating blocks of biphasic calcium phosphate composed of hydroxyapatite (HA) and beta-tricalcium phosphate (beta-TCP) in different solutions: ionic simulated body fluid (SBF) without protein or SBF that contained various proteins and macromolecules separately (fibronectin, vitronectin, albumin, and poly-L-glutamic acid). Transmission electron microscopy studies revealed that apatite-precipitated microcrystals appeared around ceramic crystals as a result of secondary nucleation; microcrystals were in continuity with the lattice planes of the HA crystals but in a different direction from that of beta-TCP; the size of the precipitates was smaller when fibronectin, vitronectin, and poly-(L-glutamic acid) were present in SBF as compared to SBF without protein; and fibronectin and vitronectin initiated crystal nucleation in the void spaces between the ceramic crystals.
Collapse
Affiliation(s)
- R Rohanizadeh
- Centre de Recherche Interdisciplinaire sur les Matériaux d'Intérêt Biologique, UPRES 2159, Nantes, France.
| | | | | | | | | | | |
Collapse
|
37
|
Takechi M, Miyamoto Y, Ishikawa K, Nagayama M, Kon M, Asaoka K, Suzuki K. Effects of added antibiotics on the basic properties of anti-washout-type fast-setting calcium phosphate cement. JOURNAL OF BIOMEDICAL MATERIALS RESEARCH 1998; 39:308-16. [PMID: 9457562 DOI: 10.1002/(sici)1097-4636(199802)39:2<308::aid-jbm19>3.0.co;2-8] [Citation(s) in RCA: 83] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The effect of added antibiotics on the basic properties of anti-washout-type fast-setting calcium phosphate cement (aw-FSCPC) was investigated in a preliminary evaluation of aw-FSCPC containing drugs. Flomoxef sodium was employed as the antibiotic and was incorporated into the powder-phase aw-FSCPC at up to 10%. The setting time, consistency, wet diametral tensile strength (DTS) value, and porosity were measured for aw-FSCPC containing various amounts of flomoxef sodium. X-ray diffraction (XRD) analysis was also conducted for the identification of products. To evaluate the drug-release profile, set aw-FSCPC was immersed in saline and the released flomoxef sodium was determined at regular intervals. The spread area of the cement paste as an index of consistency of the cement increased progressively with the addition of flomoxef sodium, and it doubled when the aw-FSCPC contained 8% flomoxef sodium. In contrast, the wet DTS value decreased with increase in flomoxef sodium content. Bulk density measurement and scanning electron microscopic observation revealed that the set mass was more porous with the amount of flomoxef sodium contained in the aw-FSCPC. The XRD analysis revealed that formation of hydroxyapatite (HAP) from aw-FSCPC was reduced even after 24 h, when the aw-FSCPC contained flomoxef sodium at > or = 6%. Therefore, the decrease of wet DTS value was thought to be partly the result of the increased porosity and inhibition of HAP formation in aw-FSCPC containing large amounts of flomoxef sodium. The flomoxef sodium release from aw-FSCPC showed the typical profile observed in a skeleton-type drug delivery system (DDS). The rate of drug release from aw-FSCPC can be controlled by changing the concentration of sodium alginate. Although flomoxef sodium addition has certain disadvantageous effects on the basic properties of aw-FSCPC, we conclude that aw-FSCPC is a good candidate for potential use as a DDS carrier that may be useful in surgical operations.
Collapse
Affiliation(s)
- M Takechi
- First Department of Oral and Maxillofacial Surgery, School of Dentistry, Tokushima University, Japan
| | | | | | | | | | | | | |
Collapse
|
38
|
Miyamoto Y, Ishikawa K, Takechi M, Toh T, Yoshida Y, Nagayama M, Kon M, Asaoka K. Tissue response to fast-setting calcium phosphate cement in bone. JOURNAL OF BIOMEDICAL MATERIALS RESEARCH 1997; 37:457-64. [PMID: 9407293 DOI: 10.1002/(sici)1097-4636(19971215)37:4<457::aid-jbm3>3.0.co;2-k] [Citation(s) in RCA: 76] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Fast-setting calcium phosphate cement (FSCPC) is a promising new bioactive cement with a significantly short setting time (approximately 5-6 min) compared to conventional calcium phosphate cement (c-CPC) (30-60 min) at physiologic temperatures. As a result of its ability to set quickly, it is applicable in surgical procedures where fast setting is required. In this study, FSCPC was implanted in rat tibiae to evaluate tissue response and biocompatibility. FSCPC was converted to hydroxyapatite (HAP) in bone faster than c-CPC in the first 6 h. By 24 h, significant amounts of both FSCPC and c-CPC had been converted to HAP. The conversion of FSCPC into HAP further proceeded gradually, reaching 100% within 8 weeks. Infrared spectroscopic analysis disclosed the deposition of B-type carbonate apatite, which is a biological apatite contained in human dentin or bone, on the surface of the FSCPC. Histologically, FSCPC showed a tissue response similar to that of c-CPC. A slight inflammatory reaction was observed in the soft tissue apposed to both cements in the early period, and new bone was formed along the surface of the FSCPC at the adjacent bone. However, no resorption of either cement by osteoclasts or macrophages was observed within 8 weeks. We conclude that FSCPC is superior to c-CPC in clinical applications in oral and maxillofacial, orthopedic, plastic, and reconstructive surgery, since it shows a faster setting time and higher mechanical strength in the early period that are required in these surgical procedures, as well as osteoconductivity and excellent biocompatibility similar to that of c-CPC.
Collapse
Affiliation(s)
- Y Miyamoto
- First Department of Oral and Maxillofacial Surgery, School of Dentistry, Tokushima University, Japan
| | | | | | | | | | | | | | | |
Collapse
|
39
|
Ishikawa K, Miyamoto Y, Takechi M, Toh T, Kon M, Nagayama M, Asaoka K. Non-decay type fast-setting calcium phosphate cement: hydroxyapatite putty containing an increased amount of sodium alginate. JOURNAL OF BIOMEDICAL MATERIALS RESEARCH 1997; 36:393-9. [PMID: 9260110 DOI: 10.1002/(sici)1097-4636(19970905)36:3<393::aid-jbm14>3.0.co;2-f] [Citation(s) in RCA: 101] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
A hydroxyapatite [(HAP) Ca10(PO4)6(OH)2] putty that behaves like a putty or self-curing resin was made by increasing the amount of sodium alginate in non-decay type fast-setting calcium phosphate cement (nd-FSCPC). nd-FSCPC became viscous as the sodium alginate concentration was increased. The best handling properties were obtained when nd-FSCPC contained 8% sodium alginate in its liquid phase. When a 2-kg glass plate was placed on the paste, HAP putty spread to form an area three times that of FSCPC paste. Thus, HAP putty is expected to be easier to use than FSCPC in the filling of bone defects. HAP putty did not decay; in fact, it set within approximately 20 min when immersed in distilled water immediately after mixing. The wet diametral tensile strength value of HAP putty was approximately 12 MPa after 24 h, the same as that for nd-FSCPC containing 0.5% sodium alginate in its liquid phase, or FSCPC that is free from sodium alginate. The elements constituting set HAP putty were examined using powder X-ray diffraction and found to be predominantly apatitic minerals after 24 h. Since the handling properties of a putty or self-curing resin-like cement are very useful in certain surgical procedures, HAP putty made by increasing the sodium alginate concentration in nd-FSCPC is potentially a valuable new biomaterial for use in plastic and reconstructive surgery, as well as oral and maxillofacial surgery.
Collapse
Affiliation(s)
- K Ishikawa
- Department of Dental Engineering, School of Dentistry, Tokushima University, Japan
| | | | | | | | | | | | | |
Collapse
|
40
|
Miyamoto Y, Ishikawa K, Takechi M, Yuasa M, Kon M, Nagayama M, Asaoka K. Non-decay type fast-setting calcium phosphate cement: setting behaviour in calf serum and its tissue response. Biomaterials 1996; 17:1429-35. [PMID: 8830971 DOI: 10.1016/0142-9612(96)87286-3] [Citation(s) in RCA: 65] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Non-decay type fast-setting calcium phosphate cement (nd-FSCPC) was evaluated in terms of its setting behaviour in calf serum and its tissue response to investigate the feasibility of its clinical use in surgical applications. Non-decay type cements were prepared by adding various amounts of sodium alginate to the liquid phase of base cements, fast-setting calcium phosphate cement (FSCPC) and conventional calcium phosphate cement (c-CPC). Cement pastes were immersed in serum at 37 degrees C immediately after mixing, and decay behaviour, setting time and mechanical strength were measured to evaluate the possibility of their use in surgical applications. Also, nd-FSCPC was implanted into rat subcutaneous tissue for the initial evaluation of biocompatibility of this potential bioactive cement. nd-FSCPC set in approximately 6-7 min in serum, even when the cement paste was immersed in the serum immediately after mixing, whereas c-CPC and FSCPC decayed completely upon immersion. nd-FSCPC transforms to hydroxyapatite (HA) within 24 h and shows a diametral tensile strength of approximately 4-5 MPa. As a result of transformation to HA, nd-FSCPC showed excellent tissue response when implanted subcutaneously in rats. We conclude that nd-FSCPC has good potential value for use in orthopaedics, plastic and reconstructive surgery, and oral and maxillofacial surgery, where the cement is exposed to blood.
Collapse
Affiliation(s)
- Y Miyamoto
- First Department of Oral and Maxillofacial Surgery, School of Dentistry, Tokushima University, Japan
| | | | | | | | | | | | | |
Collapse
|
41
|
Ishikawa K, Asaoka K. Estimation of ideal mechanical strength and critical porosity of calcium phosphate cement. JOURNAL OF BIOMEDICAL MATERIALS RESEARCH 1995; 29:1537-43. [PMID: 8600144 DOI: 10.1002/jbm.820291210] [Citation(s) in RCA: 155] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
The ideal mechanical strength and critical porosity of calcium phosphate cement (CPC) were estimated to help determine ways to improve its properties. CPC at various porosities was made by packing CPC paste, at various powder-to-liquid (P/L) ratios (2.0-6.0), into a mold under various pressures (0-173 MPa). The mechanical strength of CPC, in terms of diametral tensile strength (DTS), increased with decreases in porosity. Intercrystalline fracture was observed in specimens made without the application of pressure, while fracture within the crystals increased with the packing pressure. These observations support the application of the relationship between DTS and porosity in fractographic equations. The ideal wet DTS and critical porosity of CPC were estimated to be 102 MPa and 63%, respectively. The minimum porosity of the currently used CPC was approximately 26-28%, even when it was packed under 173 MPa, and the maximum DTS value was thus approximately 13-14 MPa. Because reducing the porosity of currently used CPC would be difficult, we conclude that in CPC-related research, we should focus on ways in which to accelerate bone-replacing behavior, in addition to improving the mechanical strength of CPC.
Collapse
Affiliation(s)
- K Ishikawa
- Department of Dental Engineering, School of Dentistry, Tokushima University, Japan
| | | |
Collapse
|
42
|
Miyamoto Y, Ishikawa K, Fukao H, Sawada M, Nagayama M, Kon M, Asaoka K. In vivo setting behaviour of fast-setting calcium phosphate cement. Biomaterials 1995; 16:855-60. [PMID: 8527601 DOI: 10.1016/0142-9612(95)94147-d] [Citation(s) in RCA: 157] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
The in vivo setting behaviour of fast-setting calcium phosphate cement (FSCPC) between femoral muscles of the rat was investigated to evaluate the possible value of FSCPC for medical and dental application. Conventional CPC (c-CPC) and FSCPC were implanted between femoral muscles, and various aspects of the setting behaviour such as setting time, mechanical strength and conversion ratio of cement into hydroxyapatite (HAP: Ca10(PO4)6(OH)2) were measured by the Vicat needle method, diametral tensile strength (DTS) measurement, and quantitative powder X-ray diffraction (XRD) analysis, respectively. The setting time of FSCPC in vivo was 5-7 min, in contrast to 48 min for c-CPC. As a result of its fast setting, set specimens of FSCPC showed higher mechanical strength from the initial stage than c-CPC. Higher DTS values were observed in FSCPC than c-CPC implanted after 24 h. Powder XRD analysis revealed faster conversion of FSCPC than c-CPC into HAP, which was responsible both for the faster setting and higher mechanical strength from the initial stage. We concluded, therefore, that FSCPC may be used for a wide range of clinical applications, i.e. fields where fast setting is required such as orthopaedic, plastic and reconstructive, and oral and maxillofacial surgery.
Collapse
Affiliation(s)
- Y Miyamoto
- First Department of Oral and Maxillofacial Surgery, School of Dentistry, Tokushima University, Japan
| | | | | | | | | | | | | |
Collapse
|