1
|
Lee WC, Cheng BC, Lee CT, Liao SC. Update on the Application of Ultrasonography in Understanding Autosomal Dominant Polycystic Kidney Disease. J Med Ultrasound 2024; 32:110-115. [PMID: 38882609 PMCID: PMC11175384 DOI: 10.4103/jmu.jmu_77_23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Revised: 08/05/2023] [Accepted: 08/08/2023] [Indexed: 06/18/2024] Open
Abstract
With an estimated prevalence of 1 in 1000 individuals globally, autosomal dominant polycystic kidney disease (ADPKD) stands as the most prevalent inherited renal disorder. Ultrasonography (US) is the most widely used imaging modality in the diagnosis and monitoring of ADPKD. This review discusses the role of US in the evaluation of ADPKD, including its diagnostic accuracy, limitations, and recent advances. An overview of the pathophysiology and clinical manifestations of ADPKD has also been provided. Furthermore, the potential of US as a noninvasive tool for the assessment of disease progression and treatment response is examined. Overall, US remains an essential tool for the management of ADPKD, and ongoing research efforts are aimed at improving its diagnostic and prognostic capabilities.
Collapse
Affiliation(s)
- Wen-Chin Lee
- Division of Nephrology, Department of Internal Medicine, Kaohsiung Chang Gung Memorial Hospital, Chang Gung University College of Medicine, Kaohsiung, Taiwan
| | - Ben-Chung Cheng
- Division of Nephrology, Department of Internal Medicine, Kaohsiung Chang Gung Memorial Hospital, Chang Gung University College of Medicine, Kaohsiung, Taiwan
| | - Chien-Te Lee
- Division of Nephrology, Department of Internal Medicine, Kaohsiung Chang Gung Memorial Hospital, Chang Gung University College of Medicine, Kaohsiung, Taiwan
- Division of Nephrology, Department of Internal Medicine, Kaohsiung Municipal Feng-Shan Hospital, Kaohsiung, Taiwan
| | - Shang-Chih Liao
- Division of Nephrology, Department of Internal Medicine, Kaohsiung Chang Gung Memorial Hospital, Chang Gung University College of Medicine, Kaohsiung, Taiwan
- Division of Nephrology, Department of Internal Medicine, Kaohsiung Municipal Feng-Shan Hospital, Kaohsiung, Taiwan
| |
Collapse
|
2
|
Cantero MDR, Cantiello HF. Polycystin-2 (TRPP2): Ion channel properties and regulation. Gene 2022; 827:146313. [PMID: 35314260 DOI: 10.1016/j.gene.2022.146313] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Revised: 01/19/2022] [Accepted: 02/08/2022] [Indexed: 12/01/2022]
Abstract
Polycystin-2 (TRPP2, PKD2, PC2) is the product of the PKD2 gene, whose mutations cause Autosomal Dominant Polycystic Kidney Disease (ADPKD). PC2 belongs to the superfamily of TRP (Transient Receptor Potential) proteins that generally function as Ca2+-permeable nonselective cation channels implicated in Ca2+ signaling. PC2 localizes to various cell domains with distinct functions that likely depend on interactions with specific channel partners. Functions include receptor-operated, nonselective cation channel activity in the plasma membrane, intracellular Ca2+ release channel activity in the endoplasmic reticulum (ER), and mechanosensitive channel activity in the primary cilium of renal epithelial cells. Here we summarize our current understanding of the properties of PC2 and how other transmembrane and cytosolic proteins modulate this activity, providing functional diversity and selective regulatory mechanisms to its role in the control of cellular Ca2+ homeostasis.
Collapse
Affiliation(s)
- María Del Rocío Cantero
- Laboratorio de Canales Iónicos, Instituto Multidisciplinario de Salud, Tecnología y Desarrollo (IMSaTeD, CONICET-UNSE), El Zanjón, Santiago del Estero 4206, Argentina.
| | - Horacio F Cantiello
- Laboratorio de Canales Iónicos, Instituto Multidisciplinario de Salud, Tecnología y Desarrollo (IMSaTeD, CONICET-UNSE), El Zanjón, Santiago del Estero 4206, Argentina
| |
Collapse
|
3
|
Seeman T, Jansky P, Filip F, Bláhová K, Jaroš A. Increasing prevalence of hypertension during long-term follow-up in children with autosomal dominant polycystic kidney disease. Pediatr Nephrol 2021; 36:3717-3723. [PMID: 34008126 DOI: 10.1007/s00467-021-05104-w] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/06/2020] [Revised: 03/25/2021] [Accepted: 04/27/2021] [Indexed: 10/21/2022]
Abstract
INTRODUCTION Autosomal dominant polycystic kidney disease (ADPKD) is the most common hereditary kidney disease. Kidney cysts form over the course of the disease and kidney function slowly declines, usually leading to kidney failure in middle to late adulthood. However, some symptoms, such as hypertension or proteinuria, can be present at an earlier age. In this study, we aimed to quantify early complications in children over time. METHODS All 69 children with ADPKD from our pediatric nephrology center who met inclusion criteria (follow-up ≥ 1 year and ≥ 2 recorded visits) were studied. Analysis of changes in kidney size, cyst count, estimated glomerular filtration rate (eGFR), urinary protein excretion, and blood pressure was performed. RESULTS The median time of follow-up was 6.3 years (range 8.4-14.8). Over the follow-up, kidneys grew from 109 to 115% of expected length (p < 0.0001), number of cysts increased at a rate of 0.8 cyst/kidney/year, and the prevalence of hypertension increased significantly from 20 to 38% (p < 0.015). The eGFR and absolute urinary protein excretion remained stable. CONCLUSIONS This study shows that children with ADPKD suffer from increasing prevalence of hypertension during the course of the disease parallel to the increasing number of kidney cysts and size despite normal and stable kidney function and proteinuria. A higher resolution version of the Graphical abstract is available as Supplementary information.
Collapse
Affiliation(s)
- Tomáš Seeman
- Department of Pediatrics, Charles University Prague, 2nd Faculty of Medicine, Prague, Czech Republic. .,Department of Pediatrics, Motol University Hospital, V Úvalu 84, 150 06, Prague 5, Czech Republic. .,Department of Pediatrics, Dr. von Hauner Children's Hospital, University Hospital, LMU Munich, Munich, Germany.
| | - Petr Jansky
- Department of Neurology, Motol University Hospital, Prague, Czech Republic
| | - Fencl Filip
- Department of Pediatrics, Charles University Prague, 2nd Faculty of Medicine, Prague, Czech Republic
| | - Květa Bláhová
- Department of Pediatrics, Charles University Prague, 2nd Faculty of Medicine, Prague, Czech Republic
| | - Adam Jaroš
- Department of Neurology, Na Homolce Hospital, Prague, Czech Republic
| |
Collapse
|
4
|
Ryu H, Park HC, Oh YK, Sangadi I, Wong A, Mei C, Ecder T, Wang AYM, Kao TW, Huang JW, Rangan GK, Ahn C. RAPID-ADPKD (Retrospective epidemiological study of Asia-Pacific patients with rapId Disease progression of Autosomal Dominant Polycystic Kidney Disease): study protocol for a multinational, retrospective cohort study. BMJ Open 2020; 10:e034103. [PMID: 32034027 PMCID: PMC7045131 DOI: 10.1136/bmjopen-2019-034103] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
INTRODUCTION Patients with autosomal dominant polycystic kidney disease (ADPKD) reach end-stage renal disease in their fifth decade on average. For effective treatment and early intervention, identifying subgroups with rapid disease progression is important in ADPKD. However, there are no epidemiological data on the clinical manifestations and disease progression of patients with ADPKD from the Asia-Pacific region. METHODS AND ANALYSIS The RAPID-ADPKD (Retrospective epidemiological study of Asia-Pacific patients with rapId Disease progression of Autosomal Dominant Polycystic Kidney Disease) study is a multinational, retrospective, observational cohort study of patients with ADPKD in the Asia-Pacific region (Australia, China, Hong Kong, South Korea, Taipei and Turkey). This study was designed to identify the clinical characteristics of patients with ADPKD with rapid disease progression. Adult patients with ADPKD diagnosed according to the unified ultrasound criteria and with an estimated glomerular filtration rate (eGFR) ≥45 mL/min/1.73 m2 at baseline will be included. The cohort will include patients with ≥2 records of eGFR and at least 24 months of follow-up data. Demographic information, clinical characteristics, comorbidities, medications, eGFR, radiological findings that allow calculation of height-adjusted total kidney volume, ADPKD-related complications and the Predicting Renal Outcomes in autosomal dominant Polycystic Kidney Disease (PRO-PKD) score will be collected. Rapid progression will be defined based on the European Renal Association - European Dialysis and Transplant Association (ERA-EDTA) guideline. All other patients without any of these criteria will be classified to be of slow progression. Clinical characteristics will be compared between patients with rapid progression and those with slow progression. The incidence of complications and the effects of race and water intake on renal progression will also be analysed. The planned sample size of the cohort is 1000 patients, and data from 600 patients have been collected as of 30 May 2019. ETHICS AND DISSEMINATION This study was approved or is in the process of approval by the institutional review boards at each participating centre. The results will be presented in conferences and published in a journal, presenting data on the clinical characteristics, risk factors for disease progression and patterns of complications of ADPKD in Asian populations.
Collapse
Affiliation(s)
- Hyunjin Ryu
- Department of Internal Medicine, Seoul National University Hospital, Seoul, Korea (the Republic of)
| | - Hayne C Park
- Department of Internal Medicine, Kangnam Sacred Heart Hospital, Seoul, Korea (the Republic of)
| | - Yun Kyu Oh
- Department of Internal Medicine, Seoul National University-Seoul Metropolitan Government Boramae Medical Center, Seoul, Korea (the Republic of)
| | - Irene Sangadi
- Department of Renal Medicine, Westmead Hospital, Western Sydney Local Health District, Westmead, New South Wales, Australia
| | - Annette Wong
- Department of Renal Medicine, Westmead Hospital, Western Sydney Local Health District, Westmead, New South Wales, Australia
| | - Changlin Mei
- Department of Nephrology, Kidney Institute, Changzheng Hospital, Second Military Medical University, Shanghai, China
| | - Tevfik Ecder
- Department of Internal Medicine, Istanbul Bilim Universitesi, Istanbul, Turkey
| | - Angela Yee-Moon Wang
- Department of Internal Medicine, Queen Mary Hospital, University of Hong Kong, Hong Kong SAR, China
| | - Tze-Wah Kao
- Department of Internal Medicine, Fu Jen Catholic University Hospital, New Taipei City, Taiwan
| | - Jenq-Wen Huang
- Division of Nephrology, National Taiwan University Hospital, Taipei, Taiwan
| | - Gopala K Rangan
- Department of Renal Medicine, Westmead Hospital, Western Sydney Local Health District, Westmead, New South Wales, Australia
- Centre for Transplant and Renal Research, The Westmead Institute for Medical Research, Sydney, New South Wales, Australia
| | - Curie Ahn
- Department of Internal Medicine, Seoul National University Hospital, Seoul, Korea (the Republic of)
- Department of Internal Medicine, Seoul National University, Seoul, Korea (the Republic of)
| |
Collapse
|
5
|
Role of PKR in the Inhibition of Proliferation and Translation by Polycystin-1. BIOMED RESEARCH INTERNATIONAL 2019; 2019:5320747. [PMID: 31341901 PMCID: PMC6612395 DOI: 10.1155/2019/5320747] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/15/2019] [Revised: 05/19/2019] [Accepted: 06/02/2019] [Indexed: 12/13/2022]
Abstract
Autosomal dominant polycystic kidney disease (ADPKD) is mainly caused by mutations in the PKD1 (~85%) or PKD2 (~15%) gene which, respectively, encode polycystin-1 (PC1) and polycystin-2 (PC2). How PC1 regulates cell proliferation and apoptosis has been studied for decades but the underlying mechanisms remain controversial. Protein kinase RNA-activated (PKR) is activated by interferons or double-stranded RNAs, inhibits protein translation, and induces cell apoptosis. In a previous study, we found that PC1 reduces apoptosis through suppressing the PKR/eIF2α signaling. Whether and how PKR is involved in PC1-inhibited proliferation and protein synthesis remains unknown. Here we found that knockdown of PKR abolishes PC1-inhibited proliferation and translation. Because suppressed PKR-eIF2α signaling/activity by PC1 would stimulate, rather than inhibit, the proliferation and translation, we examined the effect of dominant negative PKR mutant K296R that has no kinase activity and found that it enhances the inhibition of proliferation and translation by PC1. Thus, our study showed that inhibition of cell proliferation and protein synthesis by PC1 is mediated by the total expression but not the kinase activity of PKR, possibly through physical association.
Collapse
|
6
|
Pisani A, Riccio E, Bruzzese D, Sabbatini M. Metformin in autosomal dominant polycystic kidney disease: experimental hypothesis or clinical fact? BMC Nephrol 2018; 19:282. [PMID: 30348113 PMCID: PMC6196463 DOI: 10.1186/s12882-018-1090-3] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2017] [Accepted: 10/09/2018] [Indexed: 12/17/2022] Open
Abstract
Background Autosomal dominant polycystic kidney disease (ADPKD) accounts for 8–10% of end-stage chronic kidney disease (CKD) patients worldwide. In the last decade, the advanced knowledge in genetics and molecular pathobiology of ADPKD focused some aberrant molecular pathways involved in the pathogenesis of the disease leading to controlled clinical trials aimed to delay its progression with the use of mTOR inhibitors, somatostatin or tolvaptan. Preclinical studies suggests an effective role of metformin in ADPKD treatment by activating AMPK sensor. Clinical trials are currently recruiting participants to test the metformin use in ADPKD patients. Methods We retrospectively examined the records of our ADPKD patients, selecting 7 diabetic ADPKD patients under metformin treatment and 7 matched non-diabetic ADPKD controls, to test the effect of metformin on renal progression during a 3 year follow-up. Results During the first year, the GFR decreased by 2.5% in Metformin Group and by 16% in Controls; thereafter, renal function remained stable in Metformin Group and further decreased in Controls, reaching a 50% difference after 3 years of observation. Accordingly, the overall crude loss of GFR, estimated by a linear mixed model, resulted slower in the Metformin than in Control Group (− 0.9; 95% C.I.: -2.7 to 0.9 vs - 5.0; 95% C.I.: -6.8 to − 3.2 mL/min/1.73 m2 per year, p = 0.002). Conclusions Our data are suggestive of a beneficial effect of metformin on progression of ADPKD. Large, randomized, prospective trials are needed to confirm this hypothesis.
Collapse
Affiliation(s)
- Antonio Pisani
- Department of Public Health, Chair of Nephrology, University Federico II of Naples, Via Pansini 5, 80131, Naples, Italy
| | - Eleonora Riccio
- Department of Public Health, Chair of Nephrology, University Federico II of Naples, Via Pansini 5, 80131, Naples, Italy.
| | - Dario Bruzzese
- Department of Public Health, Chair of Statistics, University Federico II of Naples, Naples, Italy
| | - Massimo Sabbatini
- Department of Public Health, Chair of Nephrology, University Federico II of Naples, Via Pansini 5, 80131, Naples, Italy
| |
Collapse
|
7
|
Kulkarni NH, Smith RC, Blazer-Yost BL. Loss of inversin decreases transepithelial sodium transport in murine renal cells. Am J Physiol Cell Physiol 2017; 313:C664-C673. [PMID: 28978526 DOI: 10.1152/ajpcell.00359.2016] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Type II nephronophthisis (NPHP2) is an autosomal recessive renal cystic disorder characterized by mutations in the inversin gene. Humans and mice with mutations in inversin have enlarged cystic kidneys that may be due to fluid accumulation resulting from altered ion transport. To address this, transepithelial ion transport was measured in shRNA-mediated inversin-depleted mouse cortical collecting duct (mCCD) cells. Loss of inversin decreased the basal ion flux in mCCD cells compared with controls. Depletion of inversin decreased vasopressin-induced Na+ absorption but did not alter Cl- secretion by mCCD cells. Addition of amiloride, a specific blocker of the epithelial sodium channel (ENaC), abolished basal ion transport in both inversin knockdown and control cells, indicating ENaC involvement. Transcript levels of ENaC β-subunit were reduced in inversin-knockdown cells consistent with decreased ENaC activity. Furthermore, Nedd4l (neural precursor cell expressed, developmentally downregulated 4 like), an upstream negative regulator of ENaC, was evaluated. The relative amount of the phosphorylated, inactive Nedd4l was decreased in inversin-depleted cells consistent with decreased ENaC activity. The protein levels of Sgk1 (serum and glucocorticoid-inducible kinase), which phosphorylates Nedd4l, remained unchanged although the transcript levels were increased in inversin-depleted cells. Interestingly, mRNA and protein levels of Crtc2 (Creb-regulated transcription coactivator) kinase, a positive regulator of Sgk1, were decreased in inversin-depleted cells. Together these results suggest that loss of inversin decreases Na+ transport via ENaC, mediated in part by transcriptional and posttranslational regulation of Crtc2/Sgk1/Nedd4l axis as a contributory mechanism for enlarged kidneys in NPHP2.
Collapse
Affiliation(s)
- Nalini H Kulkarni
- Department of Biology, Indiana University-Purdue University at Indianapolis , Indianapolis, Indiana
| | - Rosamund C Smith
- Department of Biology, Indiana University-Purdue University at Indianapolis , Indianapolis, Indiana
| | - Bonnie L Blazer-Yost
- Department of Biology, Indiana University-Purdue University at Indianapolis , Indianapolis, Indiana
| |
Collapse
|
8
|
Heyer CM, Sundsbak JL, Abebe KZ, Chapman AB, Torres VE, Grantham JJ, Bae KT, Schrier RW, Perrone RD, Braun WE, Steinman TI, Mrug M, Yu ASL, Brosnahan G, Hopp K, Irazabal MV, Bennett WM, Flessner MF, Moore CG, Landsittel D, Harris PC. Predicted Mutation Strength of Nontruncating PKD1 Mutations Aids Genotype-Phenotype Correlations in Autosomal Dominant Polycystic Kidney Disease. J Am Soc Nephrol 2016; 27:2872-84. [PMID: 26823553 DOI: 10.1681/asn.2015050583] [Citation(s) in RCA: 139] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2015] [Accepted: 12/09/2015] [Indexed: 01/12/2023] Open
Abstract
Autosomal dominant polycystic kidney disease (ADPKD) often results in ESRD but with a highly variable course. Mutations to PKD1 or PKD2 cause ADPKD; both loci have high levels of allelic heterogeneity. We evaluated genotype-phenotype correlations in 1119 patients (945 families) from the HALT Progression of PKD Study and the Consortium of Radiologic Imaging Study of PKD Study. The population was defined as: 77.7% PKD1, 14.7% PKD2, and 7.6% with no mutation detected (NMD). Phenotypic end points were sex, eGFR, height-adjusted total kidney volume (htTKV), and liver cyst volume. Analysis of the eGFR and htTKV measures showed that the PKD1 group had more severe disease than the PKD2 group, whereas the NMD group had a PKD2-like phenotype. In both the PKD1 and PKD2 populations, men had more severe renal disease, but women had larger liver cyst volumes. Compared with nontruncating PKD1 mutations, truncating PKD1 mutations associated with lower eGFR, but the mutation groups were not differentiated by htTKV. PKD1 nontruncating mutations were evaluated for conservation and chemical change and subdivided into strong (mutation strength group 2 [MSG2]) and weak (MSG3) mutation groups. Analysis of eGFR and htTKV measures showed that patients with MSG3 but not MSG2 mutations had significantly milder disease than patients with truncating cases (MSG1), an association especially evident in extreme decile populations. Overall, we have quantified the contribution of genic and PKD1 allelic effects and sex to the ADPKD phenotype. Intrafamilial correlation analysis showed that other factors shared by families influence htTKV, with these additional genetic/environmental factors significantly affecting the ADPKD phenotype.
Collapse
Affiliation(s)
- Christina M Heyer
- Division of Nephrology and Hypertension, Mayo Clinic, Rochester, Minnesota
| | - Jamie L Sundsbak
- Division of Nephrology and Hypertension, Mayo Clinic, Rochester, Minnesota
| | | | | | - Vicente E Torres
- Division of Nephrology and Hypertension, Mayo Clinic, Rochester, Minnesota
| | - Jared J Grantham
- Kidney Institute, Kansas University Medical Center, Kansas City, Kansas
| | - Kyongtae T Bae
- Department of Radiology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | - Robert W Schrier
- Division of Nephrology, University of Colorado Health Sciences Center, Denver, Colorado
| | - Ronald D Perrone
- Division of Nephrology, Tufts Medical Center, Boston, Massachusetts
| | - William E Braun
- Glickman Urological and Kidney Institute, Cleveland Clinic, Cleveland, Ohio
| | - Theodore I Steinman
- Division of Nephrology, Beth Israel Deaconess Medical Center, Boston, Massachusetts
| | - Michal Mrug
- Division of Nephrology, University of Alabama, Birmingham, Alabama
| | - Alan S L Yu
- Kidney Institute, Kansas University Medical Center, Kansas City, Kansas
| | - Godela Brosnahan
- Division of Nephrology, University of Colorado Health Sciences Center, Denver, Colorado
| | - Katharina Hopp
- Division of Nephrology and Hypertension, Mayo Clinic, Rochester, Minnesota
| | - Maria V Irazabal
- Division of Nephrology and Hypertension, Mayo Clinic, Rochester, Minnesota
| | - William M Bennett
- Legacy Transplant Services, Legacy Good Samaritan Hospital, Portland, Oregon
| | - Michael F Flessner
- National Institute of Diabetes, Digestive and Kidney Diseases, Bethesda, Maryland; and
| | - Charity G Moore
- Dickson Advanced Analytics, Carolinas HealthCare System, Charlotte, North Carolina
| | | | - Peter C Harris
- Division of Nephrology and Hypertension, Mayo Clinic, Rochester, Minnesota;
| | | |
Collapse
|
9
|
Gainullin VG, Hopp K, Ward CJ, Hommerding CJ, Harris PC. Polycystin-1 maturation requires polycystin-2 in a dose-dependent manner. J Clin Invest 2015; 125:607-20. [PMID: 25574838 DOI: 10.1172/jci76972] [Citation(s) in RCA: 103] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2014] [Accepted: 12/02/2014] [Indexed: 12/31/2022] Open
Abstract
Autosomal dominant polycystic kidney disease (ADPKD) is a common inherited nephropathy responsible for 4%-10% of end-stage renal disease cases. Mutations in the genes encoding polycystin-1 (PC1, PKD1) or polycystin-2 (PC2, PKD2) cause ADPKD, and PKD1 mutations are associated with more severe renal disease. PC1 has been shown to form a complex with PC2, and the severity of PKD1-mediated disease is associated with the level of the mature PC1 glycoform. Here, we demonstrated that PC1 and PC2 first interact in the ER before PC1 cleavage at the GPS/GAIN site and determined that PC2 acts as an essential chaperone for PC1 maturation and surface localization. The chaperone function of PC2 was dependent on the presence of the distal coiled-coil domain and was disrupted by pathogenic missense mutations. In Pkd2-/- mice, complete loss of PC2 prevented PC1 maturation. In Pkd2 heterozygotes, the 50% PC2 reduction resulted in a nonequimolar reduction (20%-25%) of the mature PC1 glycoform. Interbreeding between various Pkd1 and Pkd2 models revealed that animals with reduced levels of functional PC1 and PC2 in the kidney exhibited severe, rapidly progressive disease, illustrating the importance of complexing of these proteins for function. Our results indicate that PC2 regulates PC1 maturation; therefore, mature PC1 levels are a determinant of disease severity in PKD2 as well as PKD1.
Collapse
|
10
|
Ta MHT, Harris DCH, Rangan GK. Role of interstitial inflammation in the pathogenesis of polycystic kidney disease. Nephrology (Carlton) 2013; 18:317-30. [DOI: 10.1111/nep.12045] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/20/2013] [Indexed: 12/12/2022]
Affiliation(s)
- Michelle HT Ta
- Centre for Transplant and Renal Research; Westmead Millennium Institute; The University of Sydney; Sydney; New South Wales; Australia
| | - David CH Harris
- Centre for Transplant and Renal Research; Westmead Millennium Institute; The University of Sydney; Sydney; New South Wales; Australia
| | - Gopala K Rangan
- Centre for Transplant and Renal Research; Westmead Millennium Institute; The University of Sydney; Sydney; New South Wales; Australia
| |
Collapse
|
11
|
Rossetti S, Hopp K, Sikkink RA, Sundsbak JL, Lee YK, Kubly V, Eckloff BW, Ward CJ, Winearls CG, Torres VE, Harris PC. Identification of gene mutations in autosomal dominant polycystic kidney disease through targeted resequencing. J Am Soc Nephrol 2012; 23:915-33. [PMID: 22383692 DOI: 10.1681/asn.2011101032] [Citation(s) in RCA: 138] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022] Open
Abstract
Mutations in two large multi-exon genes, PKD1 and PKD2, cause autosomal dominant polycystic kidney disease (ADPKD). The duplication of PKD1 exons 1-32 as six pseudogenes on chromosome 16, the high level of allelic heterogeneity, and the cost of Sanger sequencing complicate mutation analysis, which can aid diagnostics of ADPKD. We developed and validated a strategy to analyze both the PKD1 and PKD2 genes using next-generation sequencing by pooling long-range PCR amplicons and multiplexing bar-coded libraries. We used this approach to characterize a cohort of 230 patients with ADPKD. This process detected definitely and likely pathogenic variants in 115 (63%) of 183 patients with typical ADPKD. In addition, we identified atypical mutations, a gene conversion, and one missed mutation resulting from allele dropout, and we characterized the pattern of deep intronic variation for both genes. In summary, this strategy involving next-generation sequencing is a model for future genetic characterization of large ADPKD populations.
Collapse
Affiliation(s)
- Sandro Rossetti
- Division of Nephrology and Hypertension, Mayo Clinic, Rochester, MN 55905, USA.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
12
|
Reiterová J, Miroslav M, Stekrová J, Kohoutová M, Tesar V, Kmentová D, Hubácek JA, Viklický O. The Influence of G‐Protein β3‐Subunit Gene and Endothelial Nitric Oxide Synthase Gene in Exon 7 Polymorphisms on Progression of Autosomal Dominant Polycystic Kidney Disease. Ren Fail 2009; 26:119-25. [PMID: 15287194 DOI: 10.1081/jdi-120038485] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022] Open
Abstract
BACKGROUND A significant phenotypical variability is observed in autosomal dominant polycystic kidney disease (ADPKD). The variability cannot be fully explained by the genetic heterogeneity of the disease. We examined the influence of G-protein beta3-subunit C825T polymorphism and endothelial nitric oxide synthase Glu298Asp polymorphism on the progression of ADPKD towards end stage renal failure (ESRF). METHODS 306 ADPKD patients (pts) were analyzed; 261 pts (136 males, 125 females) with ESRF, with subgroup of 73 pts (44 males, 29 females) with ESRF before 45 years (rapid progressors), 46 pts (20 males, 26 females) with ESRF later than in 63 years (slow progressors) and 45 ADPKD pts (17 males, 28 females) in mean age 51 years with serum creatinine under 110 micromol/L (slow progressors) and 100 genetically unrelated healthy Czech subjects. DNA samples from collected blood were genotyped for G-protein beta3-subunit C825T genotype in exon 10 and for endothelial nitric oxide synthase Glu298Asp genotype in exon 7. RESULTS The G-protein beta3-subunit C825T genotype exhibited no significant differences among the groups of slow progressors (6.6% (6/91) TT, 54.9% (50/91) CT, 38.8% (35/91) CC), rapid progressors (9.6% (7/73) TT, 46.6% (34/73) CT, 43.8% (32/73) CC), ADPKD group with ESRF between 40-63 years (9.2% (13/142) TT, 50% (71/142) CT, 40.8% (58/142) CC) and control group (12% TT, 44% CT, 44% CC). When comparing the ages of ESRF of all patients with ESRF, we did not find significant differences in the ages: males TT--51.7+/-8.8 years, CT--51.9+/-10.3 years, CC--49.7+/-10.2 years and females TT--56+/-9.9 years, CT--53.2+/-8.5 years, CC--53.9+/-8.7 years. The endothelial nitric oxide synthase Glu298Asp and Asp29Asp genotypes were significantly more frequent in rapid progressors (9.6% (7/73) Asp/Asp, 39.7% (29/73) Asp/Glu, 50.7% (37/73) Glu/Glu) and in ADPKD group with ESRF between 40-63 years (11.3% (16/142) Asp/Asp, 41.5% (59/142) Asp/Glu, 47.2% (67/142) Glu/Glu) in comparison with slow progressors (8.8% (8/91) Asp/Asp, 24.2% (22/91) Asp/Glu, 67.0% (61/91) Glu/Glu) and with control group (8% Asp/Asp, 32% Asp/Glu, 60% Glu/Glu) (Chi-square test, p<0.05). Comparing the ages of ESRF of all patients with ESRF, we did not find significant differences in the ages in males with Asp/Asp--54.9+/-10.4 years, Asp/Glu--50.2+/-9.4 years, Glu/Glu--51.0+/-10.4 years. We found out in homozygous Asp/Asp females significantly earlier onset of ESRF (49.2+/-5.6 years) in comparison with heterozygous females (53.3+/-7.2 years) and with Glu/Glu homozygous females (54.8+/-9.7 years) (t-test, p<0.05). CONCLUSION We excluded the significance of G-protein beta3-subunit C825T polymorphism on the progression of ADPKD. We established the negative prognostic value of the carriers of Asp variant of eNOS polymorphism. Finding of new modifiers could have in future clinical consequences for ADPKD patients.
Collapse
Affiliation(s)
- J Reiterová
- 1st Internal Department of Medicine, Charles University, Prague, Czech Republic
| | | | | | | | | | | | | | | |
Collapse
|
13
|
Fencl F, Janda J, Bláhová K, Hríbal Z, Stekrová J, Puchmajerová A, Seeman T. Genotype-phenotype correlation in children with autosomal dominant polycystic kidney disease. Pediatr Nephrol 2009; 24:983-9. [PMID: 19194729 DOI: 10.1007/s00467-008-1090-9] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/27/2008] [Revised: 11/19/2008] [Accepted: 11/20/2008] [Indexed: 11/29/2022]
Abstract
Adults with autosomal dominant polycystic kidney disease (ADPKD) and PKD1 mutations have a more severe disease than do patients with PKD2 mutations. The aim of this study was to compare phenotypes between children with mutations in the PKD1/PKD2 genes. Fifty PKD1 children and ten PKD2 children were investigated. Their mean age was similar (8.6 +/- 5.4 years and 8.9 +/- 5.6 years). Renal ultrasound was performed, and office blood pressure (BP), ambulatory BP, creatinine clearance and proteinuria were measured. The PKD1 children had, in comparison with those with PKD2, significantly greater total of renal cysts (13.3 +/- 12.5 vs 3.0 +/- 2.1, P = 0.004), larger kidneys [right/left kidney length 0.89 +/- 1.22 standard deviation score (SDS) vs 0.17 +/- 1.03 SDS, P = 0.045, and 1.19 +/- 1.42 SDS vs 0.12 +/- 1.09 SDS, P = 0.014, successively] and higher ambulatory day-time and night-time systolic BP (day-time/night-time BP index 0.93 +/- 0.10 vs 0.86 +/- 0.05, P = 0.021 and 0.94 +/- 0.07 vs 0.89 +/- 0.04, P = 0.037, successively). There were no significant differences in office BP, creatinine clearance or proteinuria. Prenatal renal cysts (14%), hypertension defined by ambulatory BP (27%) and enlarged kidneys (32%) were observed only in the PKD1 children. This is the first study on genotype-phenotype correlation in children with ADPKD. PKD1 children have more and larger renal cysts, larger kidneys and higher ambulatory BP than do PKD2 children. Renal cysts and enlarged kidneys detected prenatally are highly specific for children with PKD1.
Collapse
Affiliation(s)
- Filip Fencl
- Department of Paediatrics, 2nd Faculty of Medicine, Charles University in Prague, University Hospital Motol, Prague, Czech Republic.
| | | | | | | | | | | | | |
Collapse
|
14
|
Wang K, Zhao X, Chan S, Cil O, He N, Song X, Paterson AD, Pei Y. Evidence for pathogenicity of atypical splice mutations in autosomal dominant polycystic kidney disease. Clin J Am Soc Nephrol 2009; 4:442-9. [PMID: 19158373 DOI: 10.2215/cjn.00980208] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
BACKGROUND AND OBJECTIVES Mutation-based molecular diagnostics of autosomal dominant polycystic kidney disease (ADPKD) is complicated by locus and allelic heterogeneity, large multi-exon gene structure and duplication in PKD1, and a high level of unclassified variants. Comprehensive screening of PKD1 and PKD2 by two recent studies have shown that atypical splice mutations account for 3.5% to 5% of ADPKD. We evaluated the role of bioinformatic prediction of atypical splice mutations and determined the pathogenicity of an atypical PKD2 splice variant from a multiplex ADPKD (TOR101) family. DESIGN, SETTING, PARTICIPANTS, & MEASUREMENTS Using PubMed, we identified 17 atypical PKD1 and PKD2 splice mutations. We found that bioinformatics analysis was often useful for evaluating the pathogenicity of these mutations, although RT-PCR is needed to provide the definitive proof. RESULTS Sequencing of both PKD1 and PKD2 in an affected subject of TOR101 failed to identify a definite mutation, but revealed several UCVs, including an atypical PKD2 splice variant. Linkage analysis with microsatellite markers indicated that TOR101 was PKD2-linked and IVS8 + 5G-->A was shown to cosegregate only with affected subjects. RT-PCR of leukocyte mRNA from an affected subject using primers from exons 7 and 9 revealed six splice variants that resulted from activation of different combinations of donor and acceptor cryptic splice sites, all terminating with premature stop codons. CONCLUSIONS The data provide strong evidence that IVS8 + 5G-->A is a pathogenic mutation for PKD2. This case highlights the importance of functional analysis of UCVs.
Collapse
Affiliation(s)
- Kiarong Wang
- Divisions of Nephrology and Genomic Medicine, University Health Network and University of Toronto, Toronto, Ontario Canada
| | | | | | | | | | | | | | | |
Collapse
|
15
|
Endreffy E, Maróti Z, Bereczki C, Túri S. Usefulness of combined genetic data in Hungarian families affected by autosomal dominant polycystic kidney disease. Mol Cell Probes 2008; 23:39-43. [PMID: 19056484 DOI: 10.1016/j.mcp.2008.11.001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2008] [Revised: 11/04/2008] [Accepted: 11/11/2008] [Indexed: 11/17/2022]
Abstract
Autosomal dominant polycystic kidney disease (ADPKD) is one of the most common hereditary diseases. Mutations of two known genetic loci (PKD1: 16p13.3 and PKD2: 4q21.2) can lead to bilateral renal cysts. The PKD1 locus is the more common ( approximately 85%), with a more severe phenotype. Because of the genetic complexity of ADPKD and the size and complexity of the PKD1 gene, pedigree-based linkage analysis is a useful tool for the genetic diagnosis in families with more than one subject affected. We tested linkage or non-linkage to the closely linked DNA markers flanking the PKD1 (D16S663 and D16S291) and one intragenic D16S3252 and PKD2 (D4S1563 and D4S2462) in 30 ADPKD-affected families, to determine the distributions of alleles and the degree of microsatellite polymorphisms (in 91 patients and 125 healthy subjects). To characterize the markers, used heterozygosity levels, polymorphism information content and LOD scores were calculated. The D16S663 marker included 12 kinds of alleles, while D16S291 had 10 alleles and D16S3252 had 8. D4S1563 had 12 alleles and D4S2462 had 11. In a search for a common ancestral relationship, we considered the patients' alleles with the same repeat number. Only one haplotype was detected in more than one (2) unrelated families. The calculated two-point LOD scores indicated a linkage to PKD1 in 22 families (74%). In four families (13%) with a linkage to PKD2, the patients reached the end-stage renal disease after the age of 65years. One family was linked to neither gene (3%), and in three families (10%) a linkage to both genes was possible. In the latter three families, the numbers of analyzed subjects were small (4-5), and/or some markers were only partially or non-informative. However, the elderly affected family members exhibited the clinical signs of the PKD1 form in these cases. The new Hungarian population genetic information was compared with available data on other populations.
Collapse
Affiliation(s)
- Emoke Endreffy
- Pediatric Department and Pediatric Health Center, Faculty of Medicine, A. Szent-Györgyi Clinical Center, University of Szeged, Korányi fasor 14-15, H-6720 Szeged, Hungary.
| | | | | | | |
Collapse
|
16
|
Pei Y, Obaji J, Dupuis A, Paterson AD, Magistroni R, Dicks E, Parfrey P, Cramer B, Coto E, Torra R, San Millan JL, Gibson R, Breuning M, Peters D, Ravine D. Unified criteria for ultrasonographic diagnosis of ADPKD. J Am Soc Nephrol 2008; 20:205-12. [PMID: 18945943 DOI: 10.1681/asn.2008050507] [Citation(s) in RCA: 483] [Impact Index Per Article: 28.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Individuals who are at risk for autosomal dominant polycystic kidney disease are often screened by ultrasound using diagnostic criteria derived from individuals with mutations in PKD1. Families with mutations in PKD2 typically have less severe disease, suggesting a potential need for different diagnostic criteria. In this study, 577 and 371 at-risk individuals from 58 PKD1 and 39 PKD2 families, respectively, were assessed by renal ultrasound and molecular genotyping. Using sensitivity data derived from genetically affected individuals and specificity data derived from genetically unaffected individuals, various diagnostic criteria were compared. In addition, data sets were created to simulate the PKD1 and PKD2 case mix expected in practice to evaluate the performance of diagnostic criteria for families of unknown genotype. The diagnostic criteria currently in use performed suboptimally for individuals with mutations in PKD2 as a result of reduced test sensitivity. In families of unknown genotype, the presence of three or more (unilateral or bilateral) renal cysts is sufficient for establishing the diagnosis in individuals aged 15 to 39 y, two or more cysts in each kidney is sufficient for individuals aged 40 to 59 y, and four or more cysts in each kidney is required for individuals > or = 60 yr. Conversely, fewer than two renal cysts in at-risk individuals aged > or = 40 yr is sufficient to exclude the disease. These unified diagnostic criteria will be useful for testing individuals who are at risk for autosomal dominant polycystic kidney disease in the usual clinical setting in which molecular genotyping is seldom performed.
Collapse
Affiliation(s)
- York Pei
- Division of Nephrology, University of Toronto, 8N838, 585 University Avenue, Toronto, Ontario, Canada.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Qian Q, Du H, King BF, Kumar S, Dean PG, Cosio FG, Torres VE. Sirolimus reduces polycystic liver volume in ADPKD patients. J Am Soc Nephrol 2008; 19:631-8. [PMID: 18199797 DOI: 10.1681/asn.2007050626] [Citation(s) in RCA: 146] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
The immunosuppressive agent sirolimus exerts an antiproliferative effect by inhibiting mammalian target of rapamycin (mTOR). Because excessive proliferation of the biliary epithelium is a prominent feature of the polycystic liver that accompanies autosomal dominant polycystic kidney disease (ADPKD), we hypothesized that sirolimus may benefit patients with this disorder. We retrospectively measured the volumes of polycystic livers and kidneys in ADPKD patients who had received kidney transplants and had participated in a prospective randomized trial that compared a sirolimus-containing immunosuppression regimen to a tacrolimus-containing regimen. Sixteen subjects (seven with sirolimus, nine with tacrolimus) had received abdominal imaging studies within 11 mo before and at least 7 mo after transplantation, making them suitable for our analysis. Treatment with the sirolimus regimen for an average of 19.4 mo was associated with an 11.9 +/- 0.03% reduction in polycystic liver volume, whereas treatment with tacrolimus for a comparable duration was associated with a 14.1 +/- 0.09% increase. A trend toward a greater reduction in native kidney volume was also noted in the sirolimus group compared with the nonsirolimus group. Regarding mechanism, the epithelium that lines hepatic cysts exhibited markedly higher levels of phospho-AKT, phospho-ERK, phospho-mTOR, and the downstream effector phospho-S6rp compared with control biliary epithelium. In summary, treatment with sirolimus was associated with decreased polycystic liver volume, perhaps by preventing aberrant activation of mTOR in epithelial cells lining the cysts.
Collapse
Affiliation(s)
- Qi Qian
- Division of Nephrology and Hypertension, Mayo Clinic College of Medicine, 200 First Street SW, Rochester, MN 55905, USA.
| | | | | | | | | | | | | |
Collapse
|
18
|
Zhao X, Paterson AD, Zahirieh A, He N, Wang K, Pei Y. Molecular diagnostics in autosomal dominant polycystic kidney disease: utility and limitations. Clin J Am Soc Nephrol 2007; 3:146-52. [PMID: 18077784 DOI: 10.2215/cjn.03430807] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
BACKGROUND AND OBJECTIVES Gene-based mutation screening is now available and has the potential to provide diagnostic confirmation or exclusion of autosomal dominant polycystic kidney disease. This study illustrates its utility and limitations in the clinical setting. DESIGN, SETTING, PARTICIPANTS, & MEASUREMENTS Using a molecular diagnostic service, genomic DNA of one affected individual from each study family was screened for pathologic PKD1 and PKD2 mutations. Bidirectional sequencing was performed to identify sequence variants in all exons and splice junctions of both genes and to confirm the specific mutations in other family members. In two multiplex families, microsatellite markers were genotyped at both PDK1 and PKD2 loci, and pair-wise and multipoint linkage analysis was performed. RESULTS Three of five probands studied were referred for assessment of renal cystic disease without a family history of autosomal dominant polycystic kidney disease, and two others were younger at-risk members of families with autosomal dominant polycystic kidney disease being evaluated as living-related kidney donors. Gene-based mutation screening identified pathogenic mutations that provided confirmation or exclusion of disease in three probands, but in the other two, only unclassified variants were identified. In one proband in which mutation screening was indeterminate, DNA linkage studies provided strong evidence for disease exclusion. CONCLUSIONS Gene-based mutation screening or DNA linkage analysis should be considered in individuals in whom the diagnosis of autosomal dominant polycystic kidney disease is uncertain because of a lack of family history or equivocal imaging results and in younger at-risk individuals who are being evaluated as living-related kidney donors.
Collapse
Affiliation(s)
- Xiao Zhao
- Division of Nephrology, University Health Network, Toronto, Ontario, Canada
| | | | | | | | | | | |
Collapse
|
19
|
Boyer O, Gagnadoux MF, Guest G, Biebuyck N, Charbit M, Salomon R, Niaudet P. Prognosis of autosomal dominant polycystic kidney disease diagnosed in utero or at birth. Pediatr Nephrol 2007; 22:380-8. [PMID: 17124604 DOI: 10.1007/s00467-006-0327-8] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/28/2006] [Revised: 09/12/2006] [Accepted: 09/12/2006] [Indexed: 11/24/2022]
Abstract
The use of prenatal ultrasonography has resulted in increased numbers of fetuses being diagnosed with autosomal dominant polycystic kidney disease (ADPKD), but the long-term prognosis is still not well-known. Between 1981 and 2006 we followed 26 consecutive children with enlarged hyperechoic kidneys detected between the 12th week of pregnancy and the first day of life (Day 1) as well as one affected parent. Three other fetuses were excluded following the termination of the pregnancy. The mother was the transmitting parent in 16 of the 26 children (ns, p=0.1). Clinical features that presented during follow-up were oligoamnios (5/26), neonatal pneumothorax (3/26), pyelonephritis (5/26), gross hematuria (2/26), hypertension (5/26), proteinuria (2/26) and chronic renal insufficiency (CRI) (2/26). At the last follow-up (mean duration of follow-up: 76 months; range: 0.5-262 months), 19 children (mean age: 5.5 years) were asymptomatic, five (mean age: 8.5 years) had hypertension, two (mean age: 9.7 years) had proteinuria and two (mean age: 19 years) had CRI. Children presenting enlarged kidneys postnatally tended to have more clinical manifestations than their counterparts who did not. Of 25 siblings of the patients, seven had renal cysts; these were detected during childhood in five siblings and in utero in two siblings. In conclusion, prognosis is favourable in most children with prenatal ADPKD, at least during childhood. The sex of the transmitting parent is not a risk factor of prenatal ADPKD. A high proportion of siblings develop early renal cysts. Abnormalities visualized by ultrasonography appear to be associated to more clinical manifestations.
Collapse
Affiliation(s)
- Olivia Boyer
- Service de Néphrologie Pédiatrique, Hôpital Necker Enfants Malades, 149 rue de Sèvres, 75743, Paris cedex 15, France
| | | | | | | | | | | | | |
Collapse
|
20
|
Yoo KH, Sung YH, Yang MH, Jeon JO, Yook YJ, Woo YM, Lee HW, Park JH. Inactivation of Mxi1 induces Il-8 secretion activation in polycystic kidney. Biochem Biophys Res Commun 2007; 356:85-90. [PMID: 17350592 DOI: 10.1016/j.bbrc.2007.02.103] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2007] [Accepted: 02/16/2007] [Indexed: 10/23/2022]
Abstract
The Mxi1 proteins are biochemical and biological antagonists of c-myc oncoprotein. It has been reported that the overexpression pattern of c-myc might be similar to a molecular feature of early and late stages of human autosomal dominant polycystic kidney disease. We identified the cyst phenotype in Mxi1-deficient mice aged 6-12 months using H&E staining. Some chemokines containing a protein domain similar to human IL-8, which is associated with the inflammatory response, were subsequently selected from the up-regulated genes. We confirmed the expression level of these chemokines and measured protein concentrations of IL-8 using ELISA in the Mxi1-knockdown cells. IL-8 was found to be significantly increased in Mxi1-knockdown cells. We found that p38 MAP kinase activation was involved in the signal transduction of the Mxi1-inactivated secretion of IL-8. Therefore, we could suggest that the inactivation of Mxi1 leads to the inflammatory response and has the potential to induce polycystic renal disease.
Collapse
Affiliation(s)
- Kyung Hyun Yoo
- Department of Biological Science, Sookmyung Women's University, Seoul 140-742, Republic of Korea
| | | | | | | | | | | | | | | |
Collapse
|
21
|
Reiterová J, Merta M, Stekrová J, Cabartová Z, Cibulka R, Maixnerová D, Rysavá R, Ríhová Z, Tesar V, Motán J. Influence of endothelin-1 gene polymorphisms on the progression of autosomal dominant polycystic kidney disease. Kidney Blood Press Res 2006; 29:182-8. [PMID: 16943682 DOI: 10.1159/000095504] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2005] [Accepted: 07/18/2006] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND/AIM A significant phenotypical variability is observed in autosomal dominant polycystic kidney disease (ADPKD). The variability cannot be fully explained by the genetic heterogeneity of the disease. Endothelin-1 (ET-1) has been suggested to be a major promoting factor in renal diseases. The role of the ET-1 gene locus (EDN1) in the renal function in the general nondiabetic population was evaluated. We examined the influence of three single-nucleotide polymorphisms of the ET-1 gene (EDN1)--K198N, 3A/4A, and T-1370G--on the progression of ADPKD towards end-stage renal disease (ESRD). METHODS Two hundred and five ADPKD patients (113 males and 92 females) who had reached ESRD were analyzed. The patients were divided into three groups: (1) 48 patients (23 males and 25 females) with ESRD later than 63 years of age (slow progressors), (2) 74 patients (41 males and 33 females) with ESRD before 45 years of age (rapid progressors), and (3) 83 patients (49 males and 34 females) with ESRD between 45 and 63 years old. DNA samples from collected blood were genotyped for three single-nucleotide polymorphisms of EDN1: K198N, 3A/4A, and T-1370G. Haplotype analysis was also done in 200 healthy individuals. We compared the frequencies of the different genotypes between the groups of slow and rapid progressors and the ages at the time of ESRD regarding the EDN1 genotypes. RESULTS The EDN1 genotype distribution showed no differences among the groups of slow progressors, rapid progressors, the ADPKD group with ESRD between 45 and 63 years old, and the control group. Comparing the ages of ESRD of all patients, we did not find significant differences with regard to the different genotypes. Furthermore, we compared the combinations of the different haplotypes and the ages at the time of ESRD. We found no differences in ages at the time of ESRD in patients with different haplotypes in the endothelin promoter (T-1370G) in combination with 3A/4A or K198N polymorphisms. Comparing the ages at the time of ESRD in patients with different 3A/4A and K198N haplotypes, we found a significantly lower age at the time of ESRD (47.1 +/- 8.7 years) in the carriers of the 4A allele in combination with the 198N allele (4A/4A, 3A/4A + 198KN,NN) than in the carriers of the 4A allele homozygous for the K198 allele (52.9 +/- 10.9 years; 4A/4A, 3A/4A + 198KK; t test: p < 0.01) and in the carriers of the 198N allele homozygous for the 3A allele (53 +/- 11.2 years; 3A/3A + 198KN,NN; t test: p < 0.05). CONCLUSIONS We excluded an effect of K198N, 3A/4A, and T-1370G polymorphisms of EDN1 on the progression of ADPKD. However, a deleterious effect of the combination of 4A and 198N alleles of EDN1 was observed in APKDK individuals.
Collapse
Affiliation(s)
- J Reiterová
- Department of Nephrology, 1st Medical Faculty, Charles University, Prague, Czech Republic.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Reiterová J, Merta M, Stekrová J, Tesar V, Kmentová D, Ríhová Z, Rysavá R, Viklický O. The influence of the endothelin-converting enzyme-1 gene polymorphism on the progression of autosomal dominant polycystic kidney disease. Ren Fail 2006; 28:21-4. [PMID: 16526315 DOI: 10.1080/08860220500461211] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022] Open
Abstract
UNLABELLED BACKGROUND; A significant phenotypical variability is observed in autosomal dominant polycystic kidney disease (ADPKD), the most common renal hereditary disease. Endothelin-1 (ET-1) has been suggested to be an important disease-promoting factor of the kidney. Endothelin-converting enzyme-1 (ECE-1) is the main protease responsible for ET-1 generation by cleavage of its functionally inactive precursor. We examined the influence of the ECE-1b C-338A polymorphism on the progression of ADPKD toward end-stage renal disease (ESRD). The A allele was suggested to be associated with higher plasma level of ET-1. METHODS 200 ADPKD patients (107 males, 93 females) who had reached ESRD were analyzed. Patients were divided into three groups: (1) 47 patients (23 males, 24 females) with ESRD later than in 63 yr (slow progressors); (2) 71 patients (38 males, 33 females) with ESRD before 45 yr (rapid progressors); and (3) 82 patients (46 males, 36 females) with ESRD between 45-63 yr. Moreover, we analyzed 160 genetically unrelated healthy Czech subjects as the control group (82 males, 78 females, mean age 51.4 +/- 8.2 yr). DNA samples from collected blood were genotyped for ECE-1b C-338A polymorphism using described polymerase chain reaction (PCR) followed by restriction enzyme digestion. We compared the frequencies of different genotypes between the groups of slow and rapid progressors and the ages of ESRD with regard to different genotypes. RESULTS The ECE-1b C-338A genotype distribution showed no differences among the groups of slow progressors, rapid progressors, ADPKD group with ESRD between 45-63 yr and control group. Comparing the ages of ESRD of all patients, we did not find significant differences in the ages with regard to different genotypes: CC (51.5 +/- 10.1 yr), AC (51.6 +/- 11.4 yr), AA (48.2 +/- 5.9 yr). There was a tendency to lower age of ESRD in AA homozygotes in comparison with other genotypes (t-test, p = 0.12). We found no influence of gender. CONCLUSION We excluded the effect of ECE-1b C-338A polymorphism on the progression of ADPKD. We could observe a mild tendency toward faster decline of renal function in AA homozygous individuals.
Collapse
Affiliation(s)
- J Reiterová
- Nephrology Department 1st Medical Faculty, Charles University, Prague, Czech Republic.
| | | | | | | | | | | | | | | |
Collapse
|
23
|
Copelovitch L, Kaplan BS. Is genetic testing of healthy pre-symptomatic children with possible Alport syndrome ethical? Pediatr Nephrol 2006; 21:455-6. [PMID: 16491420 DOI: 10.1007/s00467-005-0003-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/06/2005] [Revised: 10/19/2005] [Accepted: 10/20/2005] [Indexed: 11/30/2022]
|
24
|
Taylor M, Johnson AM, Tison M, Fain P, Schrier RW. Earlier Diagnosis of Autosomal Dominant Polycystic Kidney Disease: Importance of Family History and Implications for Cardiovascular and Renal Complications. Am J Kidney Dis 2005; 46:415-23. [PMID: 16129202 DOI: 10.1053/j.ajkd.2005.05.029] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2005] [Accepted: 05/31/2005] [Indexed: 11/11/2022]
Abstract
BACKGROUND Autosomal dominant polycystic kidney disease (ADPKD) is a common and serious cause of hereditary renal disease. The emerging possibilities to intervene early in the disease course elevate the importance of both accurate and early diagnosis of ADPKD. Family history analysis is a simple and inexpensive approach to identifying individuals at risk for ADPKD. We hypothesized that advances in knowledge of and potential interventions for ADPKD have led to increased use of family history screening. METHODS We distributed surveys to 1,527 subjects from our ADPKD research database to determine the extent to which examination of family history was used to diagnose ADPKD, by birth cohort. RESULTS Six hundred thirty-seven subjects with ADPKD (42%) completed and returned surveys. Family history analysis led to the initial ADPKD diagnosis in 49% of all subjects overall. In the birth-cohort analysis, ADPKD was more likely to have been diagnosed in individuals born between 1951 and 1974 because of family history (55% versus 38%; P < 0.0002) and patients were younger at diagnosis (27 versus 39 years; P < 0.0001) than individuals born before 1951. CONCLUSION In a large cohort of subjects with ADPKD, we found increased use of family history analysis as a tool for diagnosing ADPKD and earlier age of diagnosis in the more recent birth cohort. This trend may reflect increased overall awareness of ADPKD by physicians, as well as encouraging hypertension and proteinuria treatment outcome data that may depend on intervening early in the course of disease.
Collapse
Affiliation(s)
- Matthew Taylor
- University of Colorado Health Sciences Center, Denver, CO 80262, USA
| | | | | | | | | |
Collapse
|
25
|
Lantinga-van Leeuwen IS, Leonhard WN, Dauwerse H, Baelde HJ, van Oost BA, Breuning MH, Peters DJM. Common regulatory elements in the polycystic kidney disease 1 and 2 promoter regions. Eur J Hum Genet 2005; 13:649-59. [PMID: 15770226 DOI: 10.1038/sj.ejhg.5201392] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
The PKD1 and PKD2 genes are mutated in patients with autosomal dominant polycystic kidney disease (ADPKD), a systemic disease, with the formation of renal cysts as main clinical feature. The genes are developmentally regulated and aberrant expression of PKD1 or PKD2 leads to cystogenesis. To date, however, the transcription factors regulating expression of these genes have hardly been studied. To identify conserved putative transcription factor-binding sites, we cloned and characterized the 5'-flanking regions of the murine and canine Pkd1 genes and performed a multispecies comparison by including sequences from the human and Fugu rubripes orthologues as well as the Pkd2 promoters from mouse and human. Sequence analysis revealed a variety of conserved putative binding sites for transcription factors and no TATA-box element. Nine elements were conserved in the mammalian Pkd1 promoters: AP2, E2F, E-Box, EGRF, ETS, MINI, MZF1, SP1, and ZBP-89. Interestingly, six of these elements were also found in the mammalian Pkd2 promoters. Deletion studies with the mouse Pkd1 promoter showed that a approximately 280 bp fragment is capable of driving luciferase reporter gene expression, whereas reporter constructs containing larger fragments of the Pkd1 promoter showed a lower activity. Furthermore, mutating a potential E2F-binding site within this 280 bp fragment diminished the reporter construct activity, suggesting a role for E2F in regulating cell cycle-dependent expression of the Pkd1 gene. Our data define a functional promoter region for Pkd1 and imply that E2F, EGRF, Ets, MZF1, Sp1, and ZBP-89 are potential key regulators of PKD1 and PKD2 in mammals.
Collapse
|
26
|
Fain PR, McFann KK, Taylor MRG, Tison M, Johnson AM, Reed B, Schrier RW. Modifier genes play a significant role in the phenotypic expression of PKD111See Editorial by Pei, p. 1630. Kidney Int 2005; 67:1256-67. [PMID: 15780078 DOI: 10.1111/j.1523-1755.2005.00203.x] [Citation(s) in RCA: 86] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
BACKGROUND Polycystic kidney disease type 1 (PKD1) is characterized by extreme variation in the severity and progression of renal and extrarenal phenotypes. There are significant familial phenotype differences; but it is not clear if this is due to differences in PKD1 mutations, differences in genetic background, or both. METHODS A total of 315 affected relatives (83 PKD1 families) without end-stage renal disease (ESRD) were evaluated for disease markers, including renal volume, creatinine clearance, proteinuria, liver cysts, and hypertension. Of these patients, 19% progressed to ESRD within 1 to 10 years after the initial examination. Nested analysis of variance was used to investigate interfamilial and intrafamilial differences in these phenotypes. Heritability analyses were used to estimate the effect of the genetic background on phenotypic variability. The age of onset of ESRD was also analyzed with an additional 389 family members from the same PKD1 families without clinical evaluation but with data on age of onset of ESRD (or age without ESRD). RESULTS There were significant phenotype differences between patients with the same mutation and different genetic backgrounds. The phenotypic variation between patients with different mutations and different genetic backgrounds was not significantly greater than the variation between patients with the same mutation and different genetic backgrounds. However, when the 389 family members were included, both the mutation and modifier genes had significant effects on the age of onset of ESRD. Inherited differences in genetic background were estimated to account for 18% to 59% of the phenotypic variability in PKD1 disease markers in patients prior to ESRD and in the subsequent progression to ESRD (43% heritability) in the 315 patients who were clinically evaluated. CONCLUSION Modifier loci in the genetic background are important factors in inter- and intrafamilial variability in the phenotypic expression of PKD1. The extreme intrafamilial phenotype differences are consistent with the hypothesis that one or a few modifier genes have a major effect on the progression and severity of PKD1.
Collapse
Affiliation(s)
- Pamela R Fain
- Barbara Davis Center for Childhood Diabetes, University of Colorado Health Sciences Center, Denver, Colorado 80262, USA.
| | | | | | | | | | | | | |
Collapse
|
27
|
Ward HH, Wang J, Phillips C. Analysis of multiple Invs transcripts in mouse and MDCK cells. Genomics 2005; 84:991-1001. [PMID: 15533716 DOI: 10.1016/j.ygeno.2004.08.002] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2004] [Revised: 07/19/2004] [Accepted: 08/03/2004] [Indexed: 01/05/2023]
Abstract
Infantile nephronophthisis is associated with cystic kidneys, situs inversus, and INVS mutations. The function of the INVS product, inversin, is unknown but evidence suggests there are multiple inversin isoforms with differing molecular weights, cellular localization patterns, and binding partners. We used Northern blots, RT-PCR, and sequence analysis to identify alternative INVS transcripts. Northern blots probed with Invs cDNA detected four bands in normal mouse kidney. RT-PCR of mouse kidney RNA revealed Invs transcripts with skipping of exon 5, 11, or 13. We sequenced canine (MDCK-II cells) INVS and determined that the corresponding full-length protein shares identity with mouse (74%) and human (84%) inversin. Canine INVS produces a transcript that skips exon 12. Exon skips cause loss of inversin protein motifs, including ankyrin repeats, IQ domains, destruction boxes, and nuclear localization signals. Identification of INVS splice variants will help us determine which inversin protein motifs contribute to left-right asymmetry and kidney development.
Collapse
Affiliation(s)
- Heather H Ward
- Department of Pathology, Indiana University School of Medicine, 950 West Walnut, RII 202, Indianapolis, IN 46202, USA
| | | | | |
Collapse
|
28
|
Abstract
There have been remarkable advances in research on polycystic liver and kidney diseases recently, covering cloning of new genes, refining disease classifications, and advances in understanding more about the molecular pathology of these diseases. Autosomal dominant polycystic kidney disease (ADPKD) is the most common hereditary disease affecting kidneys. It affects 1/400 to 1/1000 live births and accounts for 5% of the end stage renal disease in the United States and Europe, and is caused by gene defects in the PKD1 or PKD2 genes. Compared to ADPKD, polycystic liver disease (PCLD) is a milder disease and does not lower life expectancy. Both diseases are usually adult-onset diseases. Defects in genes, which code the hepatocystin and SEC63 proteins, have just recently been found to cause PCLD. It now seems that ADPKD is caused by malfunction of the primary cilia, a cell organ sensing fluid movement, and that PCLD is a sequel from defects in protein processing. Autosomal recessive polycystic kidney disease (ARPKD) belongs to a group of congenital hepatorenal fibrocystic syndromes. All ARPKD patients have a gene defect in a gene called PKHD1, the protein product of which localizes to primary cilia. We summarize the present clinical and molecular knowledge of these diseases in this review.
Collapse
Affiliation(s)
- Esa Tahvanainen
- University of Helsinki, Department of Medical Genetics, Raisiontie 11A3, 00280 Helsinki, Finland.
| | | | | | | |
Collapse
|
29
|
Kim H, Bae Y, Jeong W, Ahn C, Kang S. Depletion of PKD1 by an antisense oligodeoxynucleotide induces premature G1/S-phase transition. Eur J Hum Genet 2004; 12:433-40. [PMID: 15054393 DOI: 10.1038/sj.ejhg.5201136] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Autosomal dominant polycystic kidney disease (ADPKD) is characterized by the growth of epithelial cells and the influx of cyst fluid. The 14-kb mRNA of the polycystic kidney disease gene, PKD1, encodes the polycystin-1 protein, whose function remains unknown. In this study, we observed that polycystin-1 localized in epithelial cell-cell contacts of 293 cells. We found, by bromodeoxyuridine (BrdU) incorporation experiments and Western blot analysis of S-phase-specific cyclins, that the depletion of polycystin-1 led to an increased cell proliferation rate and caused a premature G1/S-phase transition. In addition, we showed that the depletion of polycystin-1 reduced the amount of p53 in 293 cells irradiated by UV light, suggesting that polycystin-1 acts as a regulator of G1 checkpoint, which controls entry into the S phase and prevents the replication of damaged DNA. Our results might provide an insight into the formation and progression of ADPKD cysts.
Collapse
Affiliation(s)
- Hyunho Kim
- Graduate School of Biotechnology, Korea University, Seoul 136-701, Korea
| | | | | | | | | |
Collapse
|
30
|
Anyatonwu GI, Ehrlich BE. Calcium signaling and polycystin-2. Biochem Biophys Res Commun 2004; 322:1364-73. [PMID: 15336985 DOI: 10.1016/j.bbrc.2004.08.043] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2004] [Indexed: 12/18/2022]
Abstract
Polycystic kidney disease (PKD) is caused by mutations in two genes, PKD1 and PKD2, which encode for the proteins, polycystin-1 (PC1) and polycystin-2 (PC2), respectively. Although disease-associated mutations have been identified in these two proteins, the sequence of molecular events leading up to clinical symptoms is still unknown. PC1 resides in the plasma membrane and it is thought to function in cell-cell and cell-matrix interactions, whereas PC2 is a calcium (Ca2+) permeable cation channel concentrated in the endoplasmic reticulum. Both proteins localize to the primary cilia where they function as a mechanosensitive receptor complex allowing the entry of Ca2+ into the cell. The downstream signaling pathway involves activation of intracellular Ca2+ release channels, especially the ryanodine receptor (RyR), but subsequent steps are still to be identified. Elucidation of the signaling pathway involved in normal PC1/PC2 function, the functional consequences of PC1/PC2 mutation, and the role of Ca2+ signaling will all help to unravel the molecular mechanisms of cystogenesis in PKD.
Collapse
Affiliation(s)
- Georgia I Anyatonwu
- Department of Pharmacology, Yale University School of Medicine, New Haven, CT, USA
| | | |
Collapse
|
31
|
Murakami M, Ohba T, Xu F, Shida S, Satoh E, Ono K, Miyoshi I, Watanabe H, Ito H, Iijima T. Genomic organization and functional analysis of murine PKD2L1. J Biol Chem 2004; 280:5626-35. [PMID: 15548533 DOI: 10.1074/jbc.m411496200] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
Mutations in genes that encode polycystins 1 or 2 cause polycystic kidney disease (PKD). Here, we report the genomic organization and functional expression of murine orthologue of human polycystin-2L1 (PKD2L1). The murine PKD2L1 gene comprises 15 exons in chromosome 19C3. Coexpression of PKD2L1 together with polycystin-1 (PKD1) resulted in the expression of PKD2L1 channels on the cell surface, whereas PKD2L1 expressed alone was retained within the endoplasmic reticulum (ER). This suggested that interaction between PKD1 and PKD2L1 is essential for PKD2L1 trafficking and channel formation. Deletion analysis at the cytoplasmic tail of PKD2L1 revealed that the coiled-coil domain was important for trafficking by PKD1. Mutagenesis within two newly identified ER retention signal-like amino acid sequences caused PKD2L1 to be expressed at the cell surface. This indicated that the coiled-coil domain was responsible for retaining PKD2L1 within the ER. Functional analysis of murine PKD2L1 expressed in HEK 293 cells was undertaken using calcium imaging. Coexpression of PKD1 and PKD2L1 resulted in the formation of functional cation channels that were opened by hypo-osmotic stimulation, whereas neither molecule formed functional channels when expressed alone. We conclude that PKD2L1 forms functional cation channels on the plasma membrane by interacting with PKD1. These findings raise the possibility that PKD2L1 represents the third genetic locus that is responsible for PKD.
Collapse
Affiliation(s)
- Manabu Murakami
- Department of Pharmacology, Akita University School of Medicine, Akita 010-8543, Japan.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
32
|
Bae Y, Kim H, Paik M, Lee J, Hwang D, Hwang Y, Ahn C, Kang S. Characterization of microsatellite markers to diagnose ADPKD. Mol Cell Probes 2004; 18:155-9. [PMID: 15135448 DOI: 10.1016/j.mcp.2003.12.001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2003] [Accepted: 12/01/2003] [Indexed: 11/18/2022]
Abstract
Autosomal dominant polycystic kidney disease (ADPKD) maps to chromosome 16p13.3 (PKD1) and to chromosome 4q21-23 (PKD2), with the likelihood of a third unmapped locus. The size and genomic complexity of the PKD1 gene make it impractical to detect mutations for prenatal diagnosis. Therefore, pedigree-based linkage analysis remains useful for diagnosis of ADPKD. Since, the complete genome sequences of chromosome 16p13.3 and 4q21-23 including PKD1 and PKD2, respectively, were reported very recently, in order to do more precise diagnosis of ADPKD, we tried to find microsatellite markers. We performed database searches of 2000 kb of genome sequence across the 16p13.3 and the 4q21-23. To determine the distribution of alleles and the degree of polymorphism of the microsatellites, genotyping experiments were performed on 48 Korean individuals. We found novel 14 microsatellite markers around ADPKD that are more polymorphic and closer to PKD1 or PKD2 than the known markers. The novel microsatellite markers were applied to diagnose ADPKD families. These novel microsatellite markers are not only useful for presymptomatic and prenatal diagnosis of ADPKD, but also applicable in the study of positional cloning, human evolution and tumor biology.
Collapse
Affiliation(s)
- Yoonhee Bae
- Graduate School of Biotechnology, Korea University, Seoul 136-701, South Korea
| | | | | | | | | | | | | | | |
Collapse
|
33
|
Scheffers MS, van der Bent P, van de Wal A, van Eendenburg J, Breuning MH, de Heer E, Peters DJM. Altered distribution and co-localization of polycystin-2 with polycystin-1 in MDCK cells after wounding stress. Exp Cell Res 2004; 292:219-30. [PMID: 14720521 DOI: 10.1016/j.yexcr.2003.08.019] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Polycystin-1 and -2 are integral membrane glycoproteins defective in autosomal dominant polycystic kidney disease (ADPKD). Recent studies showed a coupled polycystin-1 and -2 action in cell signaling and channel activation suggesting an important biological role for the two proteins at the plasma membrane. To gain a better understanding about the (co)-distribution and dynamics of the polycystin-1 and -2 complex under stress conditions, we used a wound-healing model of Madine Darby canine kidney (MDCK) renal epithelial cells. In this model, cells near the wound edge undergo a process of reorganization to active migration, while cells further from the edge are unaffected and remain confluent. For the first time, endogenous polycystin-1 and -2 were found to partly co-localize in the plasma membrane of confluent monolayers, and both proteins co-localized in the primary cilium. Upon wound healing, the association of polycystin-2 to the membrane was greatly reduced at the wound edge and the submarginal cells. Polycystin-1 remained incorporated to the membrane at the edge of the cell sheet at all time points, although strongly reduced in lamellipodia-forming cells. Adherens junctions and desmosomes, and respective connected actin and keratin cytoskeleton were also disturbed in lamellipodia-forming cells. We propose that altered subcellular localization of polycystin-1 and -2 as a result of stress will affect signaling and other cellular processes mediated by these proteins.
Collapse
Affiliation(s)
- Martijn S Scheffers
- Department of Human Genetics, Leiden University Medical Center, 2333 AL Leiden, The Netherlands
| | | | | | | | | | | | | |
Collapse
|
34
|
Lumiaho A, Pihlajamäki J, Hartikainen J, Ikäheimo R, Miettinen R, Niemitukia L, Lampainen E, Laakso M. Insulin resistance is related to left ventricular hypertrophy in patients with polycystic kidney disease type 1. Am J Kidney Dis 2003; 41:1219-24. [PMID: 12776274 DOI: 10.1016/s0272-6386(03)00354-8] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
BACKGROUND Left ventricular hypertrophy (LVH) is common in patients with autosomal dominant polycystic kidney disease (ADPKD). Although insulin resistance contributes to cardiac hypertrophy, the relationship between insulin resistance and LVH in patients with ADPKD has not been previously studied. METHODS We performed M-mode and color Doppler echocardiography on 176 family members (106 patients and 70 healthy relatives) from 16 families with polycystic kidney disease type 1 (PKD1). Left ventricular mass index (LVMI) was calculated using the Penn equation and corrected for body surface area. Fasting insulin and glucose concentrations were measured and insulin resistance was evaluated by means of the homeostasis model assessment. RESULTS In multivariate regression analysis, insulin resistance was significantly associated with LVMI in healthy relatives (P < 0.01) and patients with PKD1 (P < 0.05) independent of age, weight, systolic blood pressure, and albuminuria. CONCLUSION Insulin resistance is associated with LVMI in patients with PKD1 independently of other factors known to increase LVMI.
Collapse
MESH Headings
- Adult
- Albuminuria/etiology
- Blood Glucose/analysis
- Blood Pressure
- Echocardiography
- Echocardiography, Doppler, Color
- Family Health
- Female
- Humans
- Hypertrophy, Left Ventricular/diagnostic imaging
- Hypertrophy, Left Ventricular/etiology
- Hypertrophy, Left Ventricular/genetics
- Hypertrophy, Left Ventricular/pathology
- Insulin Resistance/genetics
- Male
- Polycystic Kidney, Autosomal Dominant/complications
- Polycystic Kidney, Autosomal Dominant/genetics
- Polycystic Kidney, Autosomal Dominant/metabolism
- Polycystic Kidney, Autosomal Dominant/pathology
Collapse
Affiliation(s)
- Anne Lumiaho
- Department of Medicine, Kuopio University Hospital; Kuopio, Finland.
| | | | | | | | | | | | | | | |
Collapse
|
35
|
Magistroni R, He N, Wang K, Andrew R, Johnson A, Gabow P, Dicks E, Parfrey P, Torra R, San-Millan JL, Coto E, Van Dijk M, Breuning M, Peters D, Bogdanova N, Ligabue G, Albertazzi A, Hateboer N, Demetriou K, Pierides A, Deltas C, St George-Hyslop P, Ravine D, Pei Y. Genotype-renal function correlation in type 2 autosomal dominant polycystic kidney disease. J Am Soc Nephrol 2003; 14:1164-74. [PMID: 12707387 DOI: 10.1097/01.asn.0000061774.90975.25] [Citation(s) in RCA: 107] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Abstract
Autosomal dominant polycystic kidney disease (ADPKD) is a common Mendelian disorder that affects approximately 1 in 1000 live births. Mutations of two genes, PKD1 and PKD2, account for the disease in approximately 80 to 85% and 10 to 15% of the cases, respectively. Significant interfamilial and intrafamilial renal disease variability in ADPKD has been well documented. Locus heterogeneity is a major determinant for interfamilial disease variability (i.e., patients from PKD1-linked families have a significantly earlier onset of ESRD compared with patients from PKD2-linked families). More recently, two studies have suggested that allelic heterogeneity might influence renal disease severity. The current study examined the genotype-renal function correlation in 461 affected individuals from 71 ADPKD families with known PKD2 mutations. Fifty different mutations were identified in these families, spanning between exon 1 and 14 of PKD2. Most (94%) of these mutations were predicted to be inactivating. The renal outcomes of these patients, including the age of onset of end-stage renal disease (ESRD) and chronic renal failure (CRF; defined as creatinine clearance < or = 50 ml/min, calculated using the Cockroft and Gault formula), were analyzed. Of all the affected individuals clinically assessed, 117 (25.4%) had ESRD, 47 (10.2%) died without ESRD, 65 (14.0%) had CRF, and 232 (50.3%) had neither CRF nor ESRD at the last follow-up. Female patients, compared with male patients, had a later mean age of onset of ESRD (76.0 [95% CI, 73.8 to 78.1] versus 68.1 [95% CI, 66.0 to 70.2] yr) and CRF (72.5 [95% CI, 70.1 to 74.9] versus 63.7 [95% CI, 61.4 to 66.0] yr). Linear regression and renal survival analyses revealed that the location of PKD2 mutations did not influence the age of onset of ESRD. However, patients with splice site mutations appeared to have milder renal disease compared with patients with other mutation types (P < 0.04 by log rank test; adjusted for the gender effect). Considerable renal disease variability was also found among affected individuals with the same PKD2 mutations. This variability can confound the determination of allelic effects and supports the notion that additional genetic and/or environmental factors may modulate the renal disease severity in ADPKD.
Collapse
Affiliation(s)
- Riccardo Magistroni
- Division of Nephrology and Genomic Medicine, University Health Network, 200 Elizabeth Street, Toronto, Canada M5G 2C4
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
36
|
Eo HS, Lee JG, Ahn C, Cho JT, Hwang DY, Hwang YH, Lee EJ, Kim YS, Han JS, Kim S, Lee JS, Jeoung DI, Lee SE, Kim UK. Three novel mutations of the PKD1 gene in Korean patients with autosomal dominant polycystic kidney disease. Clin Genet 2002; 62:169-74. [PMID: 12220456 DOI: 10.1034/j.1399-0004.2002.620211.x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Mutations at the PKD1 locus account for 85% of cases of the common genetic disorder called autosomal dominant polycystic kidney disease (ADPKD). Screening for mutations of the PKD1 gene is complicated by the genomic structure of the 5'-duplicated region encoding 75% of the gene. To date, more than 90 mutations of the PKD1 gene have been reported in the European and American populations, and relatively little information is available concerning the pattern of mutations present in the Asian populations. We looked for mutations of the PKD1 gene in 51 unrelated Korean ADPKD patients, using polymerase chain reaction (PCR) with primer pairs located in the 3' single-copy region of the PKD1 gene and by single-strand conformation polymorphism (SSCP) analysis. We found three novel mutations, a G to A substitution at nucleotide 11012 (G3601S), a C to A substitution at nucleotide 11312 (Q3701X), and a C to T substitution at nucleotide 12971 (P4254S), and a single polymorphism involving a G to C substitution at nucleotide 11470 (L3753L). These mutations were not found in control individuals, and no other mutations in the 3' single-copy region of the PKD1 gene of patients with these mutations were observed. In particular, P4254S segregated with the disease phenotype. The clinical data of affected individuals from this study, and of previously reported Korean PKD1 mutations, showed that patients with frameshift or nonsense mutations were more prone to develop end-stage renal failure than those with missense mutations. Our findings indicate that many different PKD1 mutations are likely to be responsible for ADPKD in the Korean population, as in the Western population.
Collapse
Affiliation(s)
- H-S Eo
- Department of Internal Medicine, College of Medicine, Seoul National University, Seoul, Korea
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
37
|
Obermüller N, Cai Y, Kränzlin B, Thomson RB, Gretz N, Kriz W, Somlo S, Witzgall R. Altered expression pattern of polycystin-2 in acute and chronic renal tubular diseases. J Am Soc Nephrol 2002; 13:1855-64. [PMID: 12089381 DOI: 10.1097/01.asn.0000018402.33620.c7] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
Polycystin-2 represents one of so far two proteins found to be mutated in patients with autosomal-dominant polycystic kidney disease. Evidence obtained from experiments carried out in cell lines and with native kidney tissue strongly suggests that polycystin-2 is located in the endoplasmic reticulum. In the kidney, polycystin-2 is highly expressed in cells of the distal and connecting tubules, where it is located in the basal compartment. It is not known whether the expression of polycystin-2 in the kidney changes or whether it can be manipulated under certain instances. Therefore, the distribution of polycystin-2 under conditions leading to acute and chronic renal failure was analyzed. During ischemic acute renal failure, which affects primarily the S3 segment of the proximal tubule, a pronounced upregulation of polycystin-2 and a predominantly combined homogeneous and punctate cytoplasmic distribution in damaged cells was observed. After thallium-induced acute injury to thick ascending limb cells, polycystin-2 staining assumed a chicken wire-like pattern in damaged cells. In the (cy/+) rat, a model for autosomal-dominant polycystic kidney disease in which cysts originate predominantly from the proximal tubule, polycystin-2 immunoreactivity was lost in some distal tubules. In kidneys from (pcy/pcy) mice, a model for autosomal-recessive polycystic kidney disease in which cyst formation primarily affects distal tubules and collecting ducts, a minor portion of cyst-lining cells cease to express polycystin-2, whereas in the remaining cells, polycystin-2 is retained in their basal compartment. Data show that the expression and cellular distribution of polycystin-2 in different kinds of renal injuries depends on the type of damage and on the nephron-specific response to the injury. After ischemia, polycystin-2 may be upregulated by the injured cells to protect themselves. It is unlikely that polycystin-2 plays a role in cyst formation in the (cy/+) rat and in the (pcy/pcy) mouse.
Collapse
Affiliation(s)
- Nicholas Obermüller
- Medical Research Center, Klinikum Mannheim, University of Heidelberg, Mannheim, Germany
| | | | | | | | | | | | | | | |
Collapse
|
38
|
Paterson AD, Wang KR, Lupea D, St George-Hyslop P, Pei Y. Recurrent fetal loss associated with bilineal inheritance of type 1 autosomal dominant polycystic kidney disease. Am J Kidney Dis 2002; 40:16-20. [PMID: 12087556 DOI: 10.1053/ajkd.2002.33908] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
BACKGROUND Autosomal dominant polycystic kidney disease (ADPKD) is a common Mendelian disorder that affects approximately 1 in 500 to 1,000 live births. Mutations in one of two genes, PKD1 and PKD2, account for the disease in most ADPKD families. Despite the relative high frequency of PKD1 mutant alleles, compound heterozygotes or diseased homozygotes have not been described. METHODS AND RESULTS We report a family with type 1 ADPKD in which the marriage between affected first-degree cousins resulted in two live-born heterozygous offspring and two fetuses lost in late pregnancy. Genetic analysis with PKD1 and PKD2 flanking markers showed that this family is PKD1 linked (z(max) = 1.66 and -2.54 at thetas = 0.0 for intragenic markers for PKD1 [ie, KG8] and PKD2 [ie, SPP1], respectively). CONCLUSION Given a 25% chance for mutant homozygosity in the offspring of this family, our findings suggest that homozygosity of PKD1 mutations in humans is embryonically lethal, as recently documented in Pkd1 knockout mice.
Collapse
Affiliation(s)
- Andrew D Paterson
- Program in Genetics and Genomic Biology, Hospital for Sick Children, Toronto, Ontario, Canada
| | | | | | | | | |
Collapse
|
39
|
Abstract
Autosomal dominant polycystic kidney disease (ADPKD) is an inherited nephropathy, usually of late onset (onset between third to seventh decade), primarily characterized by the formation of fluid-filled cysts in the kidneys. It is one of the most frequent inherited conditions affecting approximately 1:1,000 Caucasians. Two major genes have been identified and characterized in detail: PKD1 and PKD2, mapping on chromosomes 16p13.3 and 4q21-23, respectively. A third gene, PKD3, has been implicated in selected families. Polycystic kidney disease of types 1 or 2 follows a very similar course of symptoms, both being multisystem pleiotropic disorders of indistinguishable picture on clinical grounds. The only difference is that patients with PKD2 mutations run a milder course compared to PKD1 carriers, with an average 10-20 years later age of onset and lower probability to reach end-stage-renal failure. The proteins polycystin-1 and -2 are trans-membranous glycoproteins hypothesized to participate in a common signaling pathway, interacting with each other and with other proteins, and coordinately expressed in normal and cystic tissue. Renal cysts most probably arise after a second somatic event, which inactivates the inherited healthy allele of the same gene, or perhaps one of the alleles of the other gene counterpart, generating a trans-heterozygous state. This article reviews the reported mutations in PKD2. Mutations of all kinds have been reported over the entire sequence of the PKD2 gene, with no apparent significant clustering and with some evidence of genotype/phenotype correlation. Most families harbor their own private mutations but a few recurrent events have been reported in unrelated families.
Collapse
Affiliation(s)
- C C Deltas
- The Cyprus Institute of Neurology and Genetics, Nicosia, Cyprus.
| |
Collapse
|
40
|
Schiavello T, Burke V, Bogdanova N, Jasik P, Melsom S, Boudville N, Robertson K, Angelicheva D, Dworniczak B, Lemmens M, Horst J, Todorov V, Dimitrakov D, Sulowicz W, Krasniak A, Stompor T, Beilin L, Hallmayer J, Kalaydjieva L, Thomas M. Angiotensin-converting enzyme activity and the ACE Alu polymorphism in autosomal dominant polycystic kidney disease. Nephrol Dial Transplant 2001; 16:2323-7. [PMID: 11733623 DOI: 10.1093/ndt/16.12.2323] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
BACKGROUND Previous studies concerning Alu I/D polymorphism in the ACE gene and ADPKD severity have used the Alu genotypes as a representative of the true biological variable, namely ACE activity. However, wide individual and ethnic differences in the proportion of variance in ACE activity explained by the I/D genotype may have confounded these studies. This investigation examines the association between ADPKD severity and ACE in terms of plasma enzyme activity and I/D genotypes in individuals from three different countries. METHODS Blood samples were collected from 307 ADPKD patients (116 Australian, 124 Bulgarian and 67 Polish) for determination of ACE activity levels and I/D genotypes. Chronic renal failure (CRF) was present in 117 patients and end-stage renal failure (ESRF) in 68 patients. RESULTS ACE activity was related to the I/D genotype, showing a dosage effect of the D allele (P=0.006). The proportion of variance due to the Alu polymorphism was 14%. No difference in ACE activity and I/D genotype distribution was found between patients with CRF versus normal renal function (P=0.494; P=0.576) or between those with ESRF versus those without ESRF (P=0.872; P=0.825). No effect of the I/D genotype on age at development and progression to renal failure (CRF; ESRF) was detected in the overall group, and in subgroups based on ethnic origin, linkage status and sex. CONCLUSION ACE is not likely to play a role as a determinant of ADPKD phenotype severity.
Collapse
Affiliation(s)
- T Schiavello
- Centre for Human Genetics, Edith Cowan University, Joondalup, Perth, WA, Australia
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
41
|
Abstract
Autosomal dominant polycystic kidney disease is a common inherited disorder, which is characterised by the formation of fluid-filled cysts in both kidneys that leads to progressive renal failure. Mutations in two genes, PKD1 and PKD2, are associated with the disorder. We describe the various factors that cause variation in disease progression between patients. These include whether the patient has a germline mutation in the PKD1 or in the PKD2 gene, and the nature of the mutation. Detection of mutations in PKD1 is complicated, but the total number identified is rising and will enable genotype-to-phenotype studies. Another factor affecting disease progression is the occurrence of somatic mutations in PKD genes. Furthermore, modifying genes might directly affect the function of polycystins by affecting the rate of somatic mutations or the rate of protein interactions, or they might affect cystogenesis itself or clinical factors associated with disease progression. Finally, environmental factors that speed up or slow down progress towards chronic renal failure have been identified in rodents.
Collapse
Affiliation(s)
- D J Peters
- Department of Human and Clinical Genetics, Leiden University Medical Centre, 2333AL, Leiden, Netherlands.
| | | |
Collapse
|
42
|
Lee JG, Lee KB, Kim UK, Ahn C, Hwang DY, Hwang YH, Eo HS, Lee EJ, Kim YS, Han JS, Kim S, Lee JS. Genetic heterogeneity in Korean families with autosomal-dominant polycystic kidney disease (ADPKD): the first Asian report. Clin Genet 2001; 60:138-44. [PMID: 11553048 DOI: 10.1034/j.1399-0004.2001.600208.x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
BACKGROUND Autosomal dominant polycystic kidney disease (ADPKD) is the most common hereditary renal disease in adults, and the prevalence of this disease within the chronic haemodialysis patient population is known to be approximately 2% in Korea. So far, three genetic locus have been identified as being responsible for ADPKD, and approximately 85% of the cases in Western countries are related to the PKD1 gene. However, little information is available concerning the pattern of linkage analysis in Asian populations. METHODS 48 families with hereditary renal cysts were recruited by consent and their molecular genetic characteristics were studied. Linkage analysis was done with microsatellite markers (PKD1: SM7, UT581, AC2.5, KG8, D16S418; PKD2: D4S423, D4S1534, D4S1542, D4S1544, D4S2460). Genomic DNA polymerase chain reaction (PCR) and polyacrylamide gel electrophoresis (PAGE) gel run were performed, and the resultant allele patterns were compared with sonographic findings. RESULTS The results of this study showed that the ratio PKD1:PKD2 was 31:8, and that the PKD2 families exhibited a tendency toward a milder renal prognosis than the PKD1 families. CONCLUSION We confirmed the applicability of linkage analysis for ADPKD in the Korean population, and our data confirmed a similar incidence of PKD1 (79%) and PKD2 (21%) in Korean patients as in the Western population.
Collapse
Affiliation(s)
- J G Lee
- Department of Internal Medicine, Eulji Medical College, Seoul, Korea
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
43
|
Abstract
Autosomal dominant polycystic kidney disease (ADPKD) is a common and systemic disease characterized by formation of focal cysts. Of the three potential causes of cysts, downstream obstruction, compositional changes in extracellular matrix, and proliferation of partially dedifferentiated cells, evidence strongly supports the latter as the primary abnormality. In the vast majority of cases, the disease is caused by mutations in PKD1 or PKD2, and appears to be recessive at the cellular level. Somatic second hits in the normal allele of cells containing the germ line mutation initiate or accelerate formation of cysts. The intrinsically high frequency of somatic second hits in epithelia appears to be sufficient to explain the frequent occurrence of somatic second hits in the disease-causing genes. PKD1 and PKD2 encode a putative adhesive/ion channel regulatory protein and an ion channel, respectively. The two proteins interact directly in vitro. Their cellular and subcellular localization suggest that they may also function independently in a common signaling pathway that may involve the membrane skeleton and that links cell-cell and cell-matrix adhesion to the development of cell polarity.
Collapse
Affiliation(s)
- M A Arnaout
- Renal Unit, Massachusetts General Hospital and Department of Medicine, Harvard Medical School, 149 13th Street, Charlestown, Massachusetts 02129, USA.
| |
Collapse
|
44
|
Abstract
Polycystin-1 is a modular membrane protein with a long extracellular N-terminal portion that bears several ligand-binding domains, 11 transmembrane domains, and a > or =200 amino acid intracellular C-terminal portion with several phosphorylation signaling sites. Polycystin-1 is highly expressed in the basal membranes of ureteric bud epithelia during early development of the metanephric kidney, and disruption of the PKD1 gene in mice leads to cystic kidneys and embryonic or perinatal death. It is proposed that polycystin-1 functions as a matrix receptor to link the extracellular matrix to the actin cytoskeleton via focal adhesion proteins. Co-localization, co-sedimentation, and co-immunoprecipitation studies show that polycystin-1 forms multiprotein complexes with alpha2beta1-integrin, talin, vinculin, paxillin, p130cas, focal adhesion kinase, and c-src in normal human fetal collecting tubules and sub-confluent epithelial cultures. In normal adult kidneys and confluent epithelial cultures, polycystin-1 is downregulated and forms complexes with the cell-cell adherens junction proteins E-cadherin and beta-, gamma-, and alpha-catenin. Polycystin-1 activation at the cell membrane leads to intracellular signaling via phosphorylation through the c-Jun terminal kinase and wnt pathways leading to activation of AP-1 and TCF/LEF-dependent genes, respectively. The C-terminal of polcystin-1 has been shown to be phosphorylated by c-src at Y4237, by protein kinase A at S4252, and by focal adhesion kinase and protein kinase X at yet-to-be identified residues. Inhibition of tyrosine phosphorylation or increased cellular calcium increases polycystin-1 focal adhesion complexes versus polycystin-1 adherens junction complexes, whereas disruption of the actin cytoskeleton dissociates all polycystin-1 complexes. Genetic evidence suggests that PKD1, PKD2, NPHP1, and tensin are in the same pathway.
Collapse
|
45
|
Pei Y, Paterson AD, Wang KR, He N, Hefferton D, Watnick T, Germino GG, Parfrey P, Somlo S, St George-Hyslop P. Bilineal disease and trans-heterozygotes in autosomal dominant polycystic kidney disease. Am J Hum Genet 2001; 68:355-63. [PMID: 11156533 PMCID: PMC1235269 DOI: 10.1086/318188] [Citation(s) in RCA: 123] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2000] [Accepted: 12/04/2000] [Indexed: 11/04/2022] Open
Abstract
In searching for a putative third gene for autosomal dominant polycystic kidney disease (ADPKD), we studied the genetic inheritance of a large family (NFL10) previously excluded from linkage to both the PKD1 locus and the PKD2 locus. We screened 48 members of the NFL10 pedigree, by ultrasonography, and genotyped them, with informative markers, at both the PKD1 locus and the PKD2 locus. Twenty-eight of 48 individuals assessed were affected with ADPKD. Inspection of the haplotypes of these individuals suggested the possibility of bilineal disease from independently segregating PKD1 and PKD2 mutations. Using single-stranded conformational analysis, we screened for and found a PKD2 mutation (i.e., 2152delA; L736X) in 12 affected pedigree members. Additionally, when the disease status of these individuals was coded as "unknown" in linkage analysis, we also found, with markers at the PKD1 locus, significant LOD scores (i.e., >3.0). These findings strongly support the presence of a PKD1 mutation in 15 other affected pedigree members, who lack the PKD2 mutation. Two additional affected individuals had trans-heterozygous mutations involving both genes, and they had renal disease that was more severe than that in affected individuals who had either mutation alone. This is the first documentation of bilineal disease in ADPKD. In humans, trans-heterozygous mutations involving both PKD1 and PKD2 are not necessarily embryonically lethal. However, the disease associated with the presence of both mutations appears to be more severe than the disease associated with either mutation alone. The presence of bilineal disease as a confounder needs to be considered seriously in the search for the elusive PKD3 locus.
Collapse
Affiliation(s)
- Y Pei
- Division of Genomic Medicine, Department of Medicine, University Health Network, Toronto, Ontario, Canada.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
46
|
Hateboer N, Veldhuisen B, Peters D, Breuning MH, San-Millán JL, Bogdanova N, Coto E, van Dijk MA, Afzal AR, Jeffery S, Saggar-Malik AK, Torra R, Dimitrakov D, Martinez I, de Castro SS, Krawczak M, Ravine D. Location of mutations within the PKD2 gene influences clinical outcome. Kidney Int 2000; 57:1444-51. [PMID: 10760080 DOI: 10.1046/j.1523-1755.2000.00989.x] [Citation(s) in RCA: 57] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
BACKGROUND Since the cloning of the gene for autosomal dominant polycystic kidney disease type 2 (PKD2), approximately 40 different mutations of that gene have been reported to be associated with the disease. The relationship between the PKD2 genotype and phenotype, however, remains unclear. METHODS Detailed clinical information was collected for PKD2 families in which the underlying mutation had been identified. Logistic regression analysis was employed to assess the influence of age and sex on hypertension, hematuria, renal calculi, and urinary tract infections, and a clinical phenotype score was computed. Patients were then grouped according to the relative location of their mutation within the cDNA sequence, and differences in the mean phenotypic score between groups were tested for statistical significance by means of a multiple pairwise t-test. RESULTS While phenotypic scores for each mutational group revealed a considerable degree of intragroup variability, the variability in phenotypic scores was significantly higher between mutational groups than within groups. A group-wise comparison of the mean phenotypic scores confirmed the observation of significant nonlinear variation in disease severity, with high- and low-scoring mutational groups interspersed along the gene sequence. CONCLUSION The identification of groups of mutations in the PKD2 gene, which differ significantly with respect to clinical outcome, is to our knowledge the first description of a genotype/phenotype correlation in autosomal dominant polycystic kidney disease. It also provides evidence against complete loss of function of the mutant PKD2 gene product.
Collapse
Affiliation(s)
- N Hateboer
- Institute of Medical Genetics, University Hospital of Wales, Cardiff, UK.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
47
|
Demetriou K, Tziakouri C, Anninou K, Eleftheriou A, Koptides M, Nicolaou A, Deltas CC, Pierides A. Autosomal dominant polycystic kidney disease-type 2. Ultrasound, genetic and clinical correlations. Nephrol Dial Transplant 2000; 15:205-11. [PMID: 10648666 DOI: 10.1093/ndt/15.2.205] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
BACKGROUND Ultrasound, genetic and clinical correlations are available for ADPKD-1, but lacking for ADPKD-2. The present study was carried out to address: (i) the age-related diagnostic usefulness of ultrasound compared with genetic linkage studies; (ii) the age-related incidence and prevalence of relevant symptoms and complications; and (iii) the age and causes of death in patients with ADPKD-2. METHODS Two hundred and eleven alive subjects, from three ADPKD-2 families at 50% risk, were evaluated by physical examination, consultation of hospital records, biochemical parameters, ultrasound and with genetic linkage and DNA mutation analyses. Nineteen deceased and affected family members were also included in the study. RESULTS Of the 211 alive members, DNA linkage studies and direct mutation analyses showed that 106 were affected and 105 were not. Ultrasound indicated 94 affected, 108 not affected and nine equivocal results in nine children under the age of 15. For all ages, the false-positive diagnostic rate for ultrasound was 7.5% and the false-negative rate was 12.9%. The difference between ultrasound and DNA findings was most evident in children aged 5-14 years where the ultrasound was correct in only 50% and wrong or inconclusive in the remaining 50%. The mean age of the 106 alive, ADPKD-2 genetically affected patients was 37.9 years (range: 6-66 years). Among them, 23.5% had experienced episodes of renal pain, 22.6% were treated for hypertension, 22.6% had experienced at least one urinary tract infection, 19.8% had nephrolithiasis, 11.3% had at least one episode of haematuria, 9.4% had asymptomatic liver cysts, 7.5% had developed chronic renal failure and 0.9% had reached end-stage renal failure. Of the 19 deceased members, nine died before reaching end-stage renal failure at a mean age of 58.7 years (range: 40-68 years), mainly due to vascular complications, while the remaining 10 died on haemodialysis at a mean age of 71.4 years (range: 66-82 years). CONCLUSIONS DNA analysis is the gold standard for the diagnosis of ADPKD-2, especially in young people. Ultrasound diagnosis is highly dependent on age. Under the age of 14, ultrasound is not recommended as a routine diagnostic procedure, but ultrasound becomes 100% reliable in excluding ADPKD-2 in family members at 50% risk, over the age of 30. ADPKD-2 represents a mild variant of polycystic kidney disease with a low prevalence of symptoms and a late onset of end-stage renal failure.
Collapse
Affiliation(s)
- K Demetriou
- Department of Nephrology, Nicosia General Hospital, Nicosia, Cyprus
| | | | | | | | | | | | | | | |
Collapse
|
48
|
Kim UK, Jin DK, Ahn C, Shin JH, Lee KB, Kim SH, Chae JJ, Hwang DY, Lee JG, Namkoong Y, Lee CC. Novel mutations of the PKD1 gene in Korean patients with autosomal dominant polycystic kidney disease. Mutat Res 2000; 432:39-45. [PMID: 10729710 DOI: 10.1016/s1383-5726(99)00013-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The gene for the most common form of autosomal dominant polycystic kidney disease (ADPKD), PKD1, has recently been characterized and shown to encode an integral membrane protein, polycystin-1, which is involved in cell-cell and cell-matrix interactions. Until now, approximately 30 mutations of the 3' single copy region of the PKD1 gene have been reported in European and American populations. However, there is no report of mutations in Asian populations. Using the polymerase chain reaction and single-strand conformation polymorphism (SSCP) analysis, 91 Korean patients with ADPKD were screened for mutation in the 3' single copy region of the PKD1 gene. As a result, we have identified and characterized six mutations: three frameshift mutations (11548del8bp, 11674insG and 12722delT), a nonsense mutation (Q4010X), and two missense mutations (R3752W and D3814N). Five mutations except for Q4010X are reported here for the first time. Our findings also indicate that many different mutations are likely to be responsible for ADPKD in the Korean population. The detection of additional disease-causing PKD1 mutations will help in identifying the location of the important functional regions of polycystin-1 and help us to better understand the pathophysiology of ADPKD.
Collapse
Affiliation(s)
- U K Kim
- Department of Molecular Biology, Seoul National University, South Korea
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
49
|
Upadhya P, Birkenmeier EH, Birkenmeier CS, Barker JE. Mutations in a NIMA-related kinase gene, Nek1, cause pleiotropic effects including a progressive polycystic kidney disease in mice. Proc Natl Acad Sci U S A 2000; 97:217-21. [PMID: 10618398 PMCID: PMC26643 DOI: 10.1073/pnas.97.1.217] [Citation(s) in RCA: 131] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/1999] [Indexed: 01/25/2023] Open
Abstract
We previously have described a mouse model for polycystic kidney disease (PKD) caused by either of two mutations, kat or kat(2J), that map to the same locus on chromosome 8. The homozygous mutant animals have a latent onset, slowly progressing form of PKD with renal pathology similar to the human autosomal-dominant PKD. In addition, the mutant animals show pleiotropic effects that include facial dysmorphism, dwarfing, male sterility, anemia, and cystic choroid plexus. We previously fine-mapped the kat(2J) mutation to a genetic distance of 0.28 +/- 0.12 centimorgan between D8Mit128 and D8Mit129. To identify the underlying molecular defect in this locus, we constructed an integrated genetic and physical map of the critical region surrounding the kat(2J) mutation. Cloning and expression analysis of the transcribed sequences from this region identified Nek1, a NIMA (never in mitosis A)-related kinase as a candidate gene. Further analysis of the Nek1 gene from both kat/kat and kat(2J)/kat(2J) mutant animals identified a partial internal deletion and a single-base insertion as the molecular basis for these mutations. The complex pleiotropic phenotypes seen in the homozygous mutant animals suggest that the NEK1 protein participates in different signaling pathways to regulate diverse cellular processes. Our findings identify a previously unsuspected role for Nek1 in the kidney and open a new avenue for studying cystogenesis and identifying possible modes of therapy.
Collapse
Affiliation(s)
- P Upadhya
- The Jackson Laboratory, Bar Harbor, ME 04609, USA.
| | | | | | | |
Collapse
|
50
|
Abstract
Considerable progress toward understanding pathogenesis of autosomal dominant polycystic disease (ADPKD) has been made during the past 15 years. ADPKD is a heterogeneous human disease resulting from mutations in either of two genes, PKD1 and PKD2. The similarity in the clinical presentation and evidence of direct interaction between the COOH termini of polycystin-1 and polycystin-2, the respective gene products, suggest that both proteins act in the same molecular pathway. The fact that most mutations from ADPKD patients result in truncated polycystins as well as evidence of a loss of heterozygosity mechanism in individual PKD cysts indicate that the loss of the function of either PKD1 or PKD2 is the most likely pathogenic mechanism for ADPKD. A novel mouse model, WS25, has been generated with a targeted mutation at Pkd2 locus in which a mutant exon 1 created by inserting a neo(r) cassette exists in tandem with the wild-type exon 1. This causes an unstable allele that undergoes secondary recombination to produce a true null allele at Pkd2 locus. Therefore, the model Pkd2(WS25/-), which carries the WS25 unstable allele and a true null allele, produces somatic second hits during mouse development or adult life and establishes an extremely faithful model of human ADPKD.
Collapse
Affiliation(s)
- G Wu
- Section of Nephrology, Yale School of Medicine, New Haven, Connecticut, 06520, USA.
| | | |
Collapse
|