1
|
Xi Q, Gao N, Yang Y, Ye W, Zhang B, Wu J, Jiang G, Zhang X. Anticancer drugs induce hypomethylation of the acetylcholinesterase promoter via a phosphorylated-p38-DNMT1-AChE pathway in apoptotic hepatocellular carcinoma cells. Int J Biochem Cell Biol 2015; 68:21-32. [DOI: 10.1016/j.biocel.2015.08.013] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2015] [Revised: 08/17/2015] [Accepted: 08/17/2015] [Indexed: 10/23/2022]
|
2
|
Olive (Olea europaea) leaf extract induces apoptosis and monocyte/macrophage differentiation in human chronic myelogenous leukemia K562 cells: insight into the underlying mechanism. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2014; 2014:927619. [PMID: 24803988 PMCID: PMC3997986 DOI: 10.1155/2014/927619] [Citation(s) in RCA: 61] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/06/2013] [Accepted: 02/16/2014] [Indexed: 01/01/2023]
Abstract
Differentiation therapy is an attractive approach aiming at reversing malignancy and reactivating endogenous differentiation programs in cancer cells. Olive leaf extract, known for its antioxidant activity, has been demonstrated to induce apoptosis in several cancer cells. However, its differentiation inducing properties and the mechanisms involved are still poorly understood. In this study, we investigated the effect of Chemlali Olive Leaf Extract (COLE) for its potential differentiation inducing effect on multipotent leukemia K562 cells. Results showed that COLE inhibits K562 cells proliferation and arrests the cell cycle at G0/G1, and then at G2/M phase over treatment time. Further analysis revealed that COLE induces apoptosis and differentiation of K562 cells toward the monocyte lineage. Microarray analysis was conducted to investigate the underlying mechanism of COLE differentiation inducing effect. The differentially expressed genes such as IFI16, EGR1, NFYA, FOXP1, CXCL2, CXCL3, and CXCL8 confirmed the commitment of K562 cells to the monocyte/macrophage lineage. Thus our results provide evidence that, in addition to apoptosis, induction of differentiation is one of the possible therapeutic effects of olive leaf in cancer cells.
Collapse
|
3
|
Hirose K, Monzen S, Yoshino H, Sato H, Aoki M, Hatayama Y, Kawaguchi H, Sato M, Narita Y, TakaI Y, Kashiwakura I. Effects of radiation on the maturation of megakaryocytes. JOURNAL OF RADIATION RESEARCH 2013; 54:447-452. [PMID: 23297317 PMCID: PMC3650752 DOI: 10.1093/jrr/rrs127] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/15/2012] [Revised: 11/26/2012] [Accepted: 11/29/2012] [Indexed: 06/01/2023]
Abstract
Megakaryocytes are generated by the differentiation of megakaryocytic progenitors; however, little information has been reported regarding how ionizing radiation affects the differentiation pathway and cellular responses. Human leukemia K562 cells have been used as a model to study megakaryocytic differentiation. In the present study, to investigate the effects of radiation on phorbol 12-myristate 13-acetate (PMA)-induced megakaryocytic differentiation of K562 cells, the cellular processes responsible for the expression of CD41 antigen (GPIIb/IIIa), which is reported to be expressed early in megakaryocyte maturation, were analyzed. The expression of CD41 antigens was significantly increased 72 h after treatment with both 4 Gy X-irradiation and PMA. In this fraction, two populations, CD41(low) and CD41(high) cells, were detected by flow cytometry. The CD41(high) cells sustained intracellular ROS at the initial level for up to 72 h, but CD41(low) cells had reduced ROS by 48 h. The maximum suppressive effect on CD41 expression was observed when N-acetyl cysteine, which is known to act as a ROS scavenger, was administered 48 h after PMA stimulation. When K562 cells were pretreated with mitogen-activated protein kinase (MAPK) pathway inhibitors, an ERK1/2 inhibitor and a p38 MAPK inhibitor, followed by X-irradiation and PMA stimulation, the reactivity profiles of both inhibitors showed the involvement of MAPK pathway. There is a possibility that the K562 cell population contains at least two types of radiosensitive megakaryocytic progenitors with respect to ROS production mechanisms, and intracellular ROS levels determine the extent of CD41 expression.
Collapse
Affiliation(s)
- Katsumi Hirose
- Department of Radiology and Radiation Oncology, Hirosaki University Graduate School of Medicine, 5 Zaifu-cho, Hirosaki, Aomori 036-8562, Japan
| | - Satoru Monzen
- Department of Radiological Life Sciences, Hirosaki University Graduate School of Health Sciences, 66-1 Hon-cho, Hirosaki, Aomori 036-8564, Japan
| | - Hironori Yoshino
- Department of Radiological Life Sciences, Hirosaki University Graduate School of Health Sciences, 66-1 Hon-cho, Hirosaki, Aomori 036-8564, Japan
| | - Haruka Sato
- Department of Radiological Life Sciences, Hirosaki University Graduate School of Health Sciences, 66-1 Hon-cho, Hirosaki, Aomori 036-8564, Japan
| | - Masahiko Aoki
- Department of Radiology and Radiation Oncology, Hirosaki University Graduate School of Medicine, 5 Zaifu-cho, Hirosaki, Aomori 036-8562, Japan
| | - Yoshiomi Hatayama
- Department of Radiology and Radiation Oncology, Hirosaki University Graduate School of Medicine, 5 Zaifu-cho, Hirosaki, Aomori 036-8562, Japan
| | - Hideo Kawaguchi
- Department of Radiology and Radiation Oncology, Hirosaki University Graduate School of Medicine, 5 Zaifu-cho, Hirosaki, Aomori 036-8562, Japan
| | - Mariko Sato
- Department of Radiology and Radiation Oncology, Hirosaki University Graduate School of Medicine, 5 Zaifu-cho, Hirosaki, Aomori 036-8562, Japan
| | - Yuichiro Narita
- Department of Radiology and Radiation Oncology, Hirosaki University Graduate School of Medicine, 5 Zaifu-cho, Hirosaki, Aomori 036-8562, Japan
| | - Yoshihiro TakaI
- Department of Radiology and Radiation Oncology, Hirosaki University Graduate School of Medicine, 5 Zaifu-cho, Hirosaki, Aomori 036-8562, Japan
| | - Ikuo Kashiwakura
- Department of Radiological Life Sciences, Hirosaki University Graduate School of Health Sciences, 66-1 Hon-cho, Hirosaki, Aomori 036-8564, Japan
| |
Collapse
|
4
|
Tsolmon S, Nakazaki E, Han J, Isoda H. Apigetrin induces erythroid differentiation of human leukemia cells K562: Proteomics approach. Mol Nutr Food Res 2011; 55 Suppl 1:S93-S102. [DOI: 10.1002/mnfr.201000650] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2010] [Revised: 01/18/2011] [Accepted: 02/21/2011] [Indexed: 01/11/2023]
|
5
|
Engström K, Bergh P, Cederlund CG, Hultborn R, Willen H, Aman P, Kindblom LG, Meis-Kindblom JM. Irradiation of myxoid/round cell liposarcoma induces volume reduction and lipoma-like morphology. Acta Oncol 2009; 46:838-45. [PMID: 17653909 DOI: 10.1080/02841860601080415] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
The aim of the study was to investigate the clinical and morphological effects of radiotherapy in the treatment of myxoid/round cell liposarcoma (MLS/RCLS). Thirty-three primary and metastatic MLS/RCLS tumours in 15 patients were treated with radiation therapy. Twenty-seven of the 33 tumours were surgically removed after preoperative radiation (34-46 Gy) while six tumours were treated with radiotherapy alone (44-60 Gy). The pretreatment diagnosis was established in all 15 patients based on fine needle aspirates or histological findings. Tumour size was measured by CT or MRI before and after radiotherapy in 30 tumours. Thirteen tumours from 11 patients were genetically characterised before and/or after radiation therapy. Twenty-three of 30 irradiated tumours showed a median reduction in tumour volume of 52% and seven lesions a median progression of 36%. All 27 surgically removed tumours revealed histological features of radiation response. The most striking morphological changes were lipoma-like appearance, paucicellularity and hyalinisation. Twelve of 13 tumours analysed before and/or after radiation therapy showed the FUS-DDIT3 translocation. Radiation therapy of MLS/RCLS induces histopathologic accumulation of mature lipoma-like areas and tumour volume reduction that may facilitate resectability.
Collapse
Affiliation(s)
- Katarina Engström
- Department of Oncology, Sahlgrenska University Hospital, Göteborg, Sweden
| | | | | | | | | | | | | | | |
Collapse
|
6
|
The role of cell differentiation in controlling cell multiplication and cancer. J Cancer Res Clin Oncol 2008; 134:725-41. [DOI: 10.1007/s00432-008-0381-7] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2007] [Accepted: 03/17/2008] [Indexed: 10/22/2022]
|
7
|
Di Pietro R, Fang H, Fields K, Miller S, Flora M, Petricoin EC, Dveksler G, Rana RA, Grimley PM. Peroxiredoxin genes are not induced in myeloid leukemia cells exposed to ionizing radiation. Int J Immunopathol Pharmacol 2006; 19:517-524. [PMID: 17026836 DOI: 10.1177/039463200601900307] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Peroxiredoxins (Prx) comprise an extended family of small antioxidant proteins which conserve a thioredoxin-dependent catalytic function that can contribute to cell protection from reactive oxygen species (ROS). ROS generation is one of the deleterious intracellular effects of ionizing radiation, but the role of Prx during radiation treatment has not been extensively explored. Present experiments measure effects of ionizing radiation on expression of human Prx types I (PAGA), II (NKEF-B) and IV (AOE372) in human myeloid leukemia cells (K562). Prx gene transcription was analyzed by amplifying with RT-PCR cDNAs complementary to each Prx-specific coding sequence and by identifying the derived products with Southern blotting procedure. Transcripts of GAPDH were used as the endogenous standard for semi-quantitative comparisons. No consistent increase in Prx gene expression was detected at time intervals up to 72 h after gamma radiation doses that caused cell cycle arrest and nuclear damage (maximum 20 Gy). Immunoblots also were consistent with a prolonged expression or stability of the Prx I/II proteins. Similarly, a cytotoxic concentration of the oxidant hemin, which stimulates rapid hemoglobinization of K562 cells, caused no induction of Prx gene expression. Our results indicate a high Prx stability in human radio-resistant leukemia cells.
Collapse
Affiliation(s)
- R Di Pietro
- Department of Biomorphology, G. d'Annunzio University, Chieti-Pescara, Italy.
| | | | | | | | | | | | | | | | | |
Collapse
|
8
|
von Wangenheim KH, Peterson HP. Aberrant endosperm development in interploidy crosses reveals a timer of differentiation. Dev Biol 2004; 270:277-89. [PMID: 15183714 DOI: 10.1016/j.ydbio.2004.03.014] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2003] [Revised: 12/19/2003] [Accepted: 03/03/2004] [Indexed: 01/09/2023]
Abstract
The common assumption that the seed failure in interploidy crosses of flowering plants is due to parental genomic imprinting is based on vague interpretations and needs reevaluation since the general question is involved, how differentiation is timed so that cell progenies, while specializing, pass through proper numbers of amplification divisions before proliferation ceases. As recently confirmed, endosperm differentiation is accelerated or de-accelerated, depending upon whether polyploid females are crossed with diploid males, or vice-versa. Unlike the zygote, the first cell of the endosperm is determined to produce a tissue that successively induces growth of maternal tissues, stimulates and nourishes the embryo, and finally ceases cell cycling. Altered timing of endosperm differentiation, thus, perturbs seed development. During fertilization, only the female genomes contribute cytoplasmic equivalents to endosperm development so that in interploidy crosses, the initial amount of cytoplasm per chromosome set is altered, and due to semi-autonomy of cytoplasmic growth, altered numbers of division cycles are needed to provide the amount of cytoplasmic organelles required for differentiation. Cytoplasmic semi-autonomy and dependence of differentiation on an increase in cytoplasm has been shown in other tissues of plants and animals, thus, revealing a common mechanism for intracellular timing of differentiation. As demonstrated, imprinted genes can alter the extent of cell proliferation by interfering with this mechanism.
Collapse
|
9
|
Zhang XJ, Yang L, Zhao Q, Caen JP, He HY, Jin QH, Guo LH, Alemany M, Zhang LY, Shi YF. Induction of acetylcholinesterase expression during apoptosis in various cell types. Cell Death Differ 2002; 9:790-800. [PMID: 12107822 DOI: 10.1038/sj.cdd.4401034] [Citation(s) in RCA: 248] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2001] [Revised: 01/22/2002] [Accepted: 01/28/2002] [Indexed: 12/11/2022] Open
Abstract
Acetylcholinesterase (AChE) plays a key role in terminating neurotransmission at cholinergic synapses. AChE is also found in tissues devoid of cholinergic responses, indicating potential functions beyond neurotransmission. It has been suggested that AChE may participate in development, differentiation, and pathogenic processes such as Alzheimer's disease and tumorigenesis. We examined AChE expression in a number of cell lines upon induction of apoptosis by various stimuli. AChE is induced in all apoptotic cells examined as determined by cytochemical staining, immunological analysis, affinity chromatography purification, and molecular cloning. The AChE protein was found in the cytoplasm at the initiation of apoptosis and then in the nucleus or apoptotic bodies upon commitment to cell death. Sequence analysis revealed that AChE expressed in apoptotic cells is identical to the synapse type AChE. Pharmacological inhibitors of AChE prevented apoptosis. Furthermore, blocking the expression of AChE with antisense inhibited apoptosis. Therefore, our studies demonstrate that AChE is potentially a marker and a regulator of apoptosis.
Collapse
Affiliation(s)
- X J Zhang
- Laboratory of Molecular Cell Biology, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, 320 YueYang Road, Shanghai 200031, China.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
10
|
Morel E, Dublineau I, Lebrun F, Griffiths NM. Alterations of the VIP-stimulated cAMP pathway in rat distal colon after abdominal irradiation. Am J Physiol Gastrointest Liver Physiol 2002; 282:G835-43. [PMID: 11960780 DOI: 10.1152/ajpgi.00457.2001] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Ionizing radiation induces hyporesponsiveness of rat colonic mucosa to vasoactive intestinal peptide (VIP). Possible mechanisms responsible for this hyporesponsiveness of the cAMP communication pathway in rat colon were investigated. VIP- and forskolin-stimulated short-circuit current (I(sc)) responses were studied after a 10-Gy abdominal irradiation in Ussing chambers as well as in single, isolated crypts. Adenylyl cyclase (AC) activity and VIP receptor characteristics were determined in mucosal membrane preparations. In addition, alterations in crypt morphology were studied. Impaired secretory responses to VIP and forskolin were observed 4 days after irradiation (decrease of 80%). cAMP analog-stimulated I(sc) responses were unchanged. In isolated crypts, VIP- and forskolin-stimulated cAMP accumulation was markedly reduced by 80 and 50%, respectively. VIP-stimulated AC activity and VIP receptor number were decreased in membrane preparations. No major change of cellularity was associated with these functional alterations. In conclusion, the decreased secretory responses to VIP of rat colon are associated with reduced cAMP accumulation, decreased AC activity, and diminution of VIP receptor numbers without a marked decrease of crypt cell number.
Collapse
Affiliation(s)
- E Morel
- Institut de Protection et de Sûreté Nucléaire, Département de Protection et de la santé de l'Homme et de Dosimétrie, Section Autonome de Radiobiologie Appliquée à la Médecine, F-92265 Fontenay-aux-Roses Cedex, France
| | | | | | | |
Collapse
|
11
|
Di Pietro R, Secchiero P, Rana R, Gibellini D, Visani G, Bemis K, Zamai L, Miscia S, Zauli G. Ionizing radiation sensitizes erythroleukemic cells but not normal erythroblasts to tumor necrosis factor-related apoptosis-inducing ligand (TRAIL)--mediated cytotoxicity by selective up-regulation of TRAIL-R1. Blood 2001; 97:2596-2603. [PMID: 11313247 DOI: 10.1182/blood.v97.9.2596] [Citation(s) in RCA: 66] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
Cytotoxic activity of tumor necrosis factor-related apoptosis-inducing ligand (TRAIL/Apo-2 ligand), used alone or in different combinations with either a low (1.5 Gy) or a high (15 Gy) single dose of ionizing radiation (IR), was investigated on erythroleukemic cells (K562, HEL, Friend, primary leukemic erythroblasts) and on primary CD34(+)-derived normal erythroblasts. Human recombinant TRAIL alone variably affected the survival/growth of erythroleukemic cells; K562 cells were the most sensitive. Moreover, all erythroleukemic cells were radio-resistant, as demonstrated by the fact that cytotoxicity was evident only after treatment with high-dose (15 Gy) IR. Remarkably, when IR and TRAIL were used in combination, an additive effect was noticed in all erythroleukemic cells. Augmentation of TRAIL-induced cell death by IR was observed with both low and high IR doses and required the sequential treatment of IR 3 to 6 hours before the addition of TRAIL. Conversely, both TRAIL and IR showed a moderate cytotoxicity on primary CD34(+)-derived normal erythroblasts when used alone, but their combination did not show any additive effect. Moreover, the cytotoxicity of IR plus TRAIL observed in erythroleukemic cells was accompanied by the selective up-regulation of the surface expression of TRAIL-R1 (DR4), and it was completely blocked by the z-Val-Ala-Asp (OMe)-CH(2) (z-VAD-fmk) caspase inhibitor. On the other hand, the surface expression of TRAIL-R1 in CD34(+)-derived normal erythroblasts was unaffected by IR, which induced the up-regulation of the decoy TRAIL-R3. These data demonstrate that treatment with IR provides an approach to selectively sensitize erythroleukemic cells, but not normal erythroblasts, to TRAIL-induced apoptosis through the functional up-regulation of TRAIL-R1.
Collapse
Affiliation(s)
- R Di Pietro
- Institute of Human Morphology, "G. D'Annunzio" University of Chieti, Italy
| | | | | | | | | | | | | | | | | |
Collapse
|
12
|
Conejero C, Wright R, Freed W. Glutamate and antimitotic agents induce differentiation, p53 activation, and apoptosis in rodent neostriatal cell lines immortalized with the tsA58 allele of SV40 large T antigen. Exp Neurol 1999; 158:109-20. [PMID: 10448422 DOI: 10.1006/exnr.1999.7083] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
The tsA58 allele of SV40 large T antigen has the ability to immortalize cells, which is thought to be due, in part, to binding of p53 protein by T antigen at 33 degrees C. At the nonpermissive temperature (39.5 degrees C), it is thought that p53 is released, inducing growth arrest, vulnerability to apoptosis, and loss of the immortal phenotype. In cell lines derived from the rat neostriatum immortalized with tsA58, the toxic agents Adriamycin, cytosine arabinoside, and glutamate induced apoptosis and increased p53 activity and differentiation. The apoptosis and p53-inducing effects of the drugs were not greater at 39.5 degrees C compared to 33 degrees C, suggesting that p53 is not effectively blocked even at 33 degrees C. Growth arrest was not induced under most treatment conditions despite p53 induction. On the other hand, process extension was enhanced at 39.5 degrees C compared to 33 degrees C. Therefore, these cell lines are temperature sensitive with respect to differentiation, but not growth regulation or apoptosis.
Collapse
Affiliation(s)
- C Conejero
- National Institute on Drug Abuse, Cellular Neurobiology Branch, Baltimore, Maryland 21224, USA
| | | | | |
Collapse
|