1
|
Huhle D, Hirmer S, Göbel TW. Splenic γδ T cell subsets can be separated by a novel mab specific for two CD45 isoforms. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2017; 77:229-240. [PMID: 28842181 DOI: 10.1016/j.dci.2017.08.013] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/10/2017] [Accepted: 08/21/2017] [Indexed: 06/07/2023]
Abstract
CD45 isoforms have been identified in a variety of different species and mab against various isoforms have been instrumental to define cellular subsets. In the process of generating novel mab against chicken γδ T cells two mab with specificity for CD45 were identified and characterized. The analysis of the chicken CD45 genomic structure suggested three exons being involved in alternative splicing. We cloned and expressed the full length CD45 isoform and three shorter isoforms. While the 7D12 mab reacted with all of these isoforms, the 8B1 mab selectively reacted with two short isoforms lacking either exons 3 and 5 or exons 3, 5 and 6. As expected, the reactivity of 7D12 included all leukocyte subsets, also including thrombocytes. In contrast, the 8B1 mab only reacted with lymphocytes and monocytes. 8B1 expression was found on almost all blood αβ T cells, while a γδ T cell subset and virtually all B cells lacked 8B1 reactivity. The fraction of 8B1- αβ and γδ cells was larger in splenocytes as compared to PBL and there was also a population of 8B1+ splenic B cells. CD3 stimulation of splenic T cells resulted in upregulation of the 8B1 antigen on all T cells. Three-color immunofluorescence revealed differences in CD28 expression between the 8B1⁺ and 8B1¯ γδ T cell subsets with a higher CD28 expression level on 8B1¯ cells. The CD28 antigen was upregulated upon stimulation of the cells with IL-2 and IL-12. This novel mab will be a useful tool to further analyze chicken γδ T cells in more detail.
Collapse
Affiliation(s)
- Daniela Huhle
- Institute for Animal Physiology, Department of Veterinary Sciences, University of Munich, Veterinärstrasse 13, 80539 Munich, Germany
| | - Sieglinde Hirmer
- Institute for Animal Physiology, Department of Veterinary Sciences, University of Munich, Veterinärstrasse 13, 80539 Munich, Germany
| | - Thomas W Göbel
- Institute for Animal Physiology, Department of Veterinary Sciences, University of Munich, Veterinärstrasse 13, 80539 Munich, Germany.
| |
Collapse
|
2
|
Tapia VS, Herrera‐Rojas M, Larrain J. JAK-STAT pathway activation in response to spinal cord injury in regenerative and non-regenerative stages of Xenopus laevis. REGENERATION (OXFORD, ENGLAND) 2017; 4:21-35. [PMID: 28316792 PMCID: PMC5350081 DOI: 10.1002/reg2.74] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/28/2016] [Revised: 01/17/2017] [Accepted: 01/18/2017] [Indexed: 12/13/2022]
Abstract
Xenopus laevis tadpoles can regenerate the spinal cord after injury but this capability is lost during metamorphosis. Comparative studies between pre-metamorphic and metamorphic Xenopus stages can aid towards understanding the molecular mechanisms of spinal cord regeneration. Analysis of a previous transcriptome-wide study suggests that, in response to injury, the JAK-STAT pathway is differentially activated in regenerative and non-regenerative stages. We characterized the activation of the JAK-STAT pathway and found that regenerative tadpoles have an early and transient activation. In contrast, the non-regenerative stages have a delayed and sustained activation of the pathway. We found that STAT3 is activated in response to injury mainly in Sox2/3+ ependymal cells, motoneurons and sensory neurons. Finally, to study the role of temporal activation we generated a transgenic line to express a constitutively active version of STAT3. The sustained activation of the JAK-STAT pathway in regenerative tadpoles reduced the expression of pro-neurogenic genes normally upregulated in response to spinal cord injury, suggesting that activation of the JAK-STAT pathway modulates the fate of neural progenitors.
Collapse
Affiliation(s)
- Victor S. Tapia
- Center for Aging and RegenerationMillennium Nucleus in Regenerative BiologyFacultad de Ciencias BiologicasPontificia Universidad Catolica de ChileSantiagoChile
| | - Mauricio Herrera‐Rojas
- Center for Aging and RegenerationMillennium Nucleus in Regenerative BiologyFacultad de Ciencias BiologicasPontificia Universidad Catolica de ChileSantiagoChile
| | - Juan Larrain
- Center for Aging and RegenerationMillennium Nucleus in Regenerative BiologyFacultad de Ciencias BiologicasPontificia Universidad Catolica de ChileSantiagoChile
| |
Collapse
|
3
|
Robert J, Edholm ES. A prominent role for invariant T cells in the amphibian Xenopus laevis tadpoles. Immunogenetics 2014; 66:513-23. [PMID: 24898512 DOI: 10.1007/s00251-014-0781-6] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2014] [Accepted: 05/12/2014] [Indexed: 12/20/2022]
Abstract
Invariant T (iT) cells expressing an invariant or semi-invariant T cell receptor (TCR) repertoire have gained attention in recent years because of their potential as specialized regulators of immune function. These iT cells are typically restricted by nonclassical MHC class I molecules (e.g., CD1d and MR1) and undergo differentiation pathways distinct from conventional T cells. While the benefit of a limited TCR repertoire may appear counterintuitive in regard to the advantage of the diversified repertoire of conventional T cells allowing for exquisite specificity to antigens, the full biological importance and evolutionary conservation of iT cells are just starting to emerge. It is generally considered that iT cells are specialized to recognize conserved antigens equivalent to pathogen-associated molecular pattern. Until recently, little was known about the evolution of iT cells. The identification of class Ib and class I-like genes in nonmammalian vertebrates, despite the heterogeneity and variable numbers of these genes among species, suggests that iT cells are also present in ectothermic vertebrates. Indeed, recent studies in the amphibian Xenopus have revealed a drastic overrepresentation of several invariant TCRs in tadpoles and identified a prominent nonclassical MHC class I-restricted iT cell subset critical for tadpole antiviral immunity. This suggests an important and perhaps even dominant role of multiple nonclassical MHC class I-restricted iT cell populations in tadpoles and, by extension, other aquatic vertebrates with rapid external development that are under pressure to produce a functional lymphocyte repertoire with small numbers of cells.
Collapse
Affiliation(s)
- Jacques Robert
- Department of Microbiology and Immunology, University of Rochester Medical Center, Rochester, NY, 14642, USA,
| | | |
Collapse
|
4
|
Abstract
Xenopus laevis is the model of choice for evolutionary, comparative, and developmental studies of immunity, and invaluable research tools including MHC-defined clones, inbred strains, cell lines, and monoclonal antibodies are available for these studies. Recent efforts to use Silurana (Xenopus) tropicalis for genetic analyses have led to the sequencing of the whole genome. Ongoing genome mapping and mutagenesis studies will provide a new dimension to the study of immunity. Here we review what is known about the immune system of X. laevis integrated with available genomic information from S. tropicalis. This review provides compelling evidence for the high degree of similarity and evolutionary conservation between Xenopus and mammalian immune systems. We propose to build a powerful and innovative comparative biomedical model based on modern genetic technologies that takes take advantage of X. laevis and S. tropicalis, as well as the whole Xenopus genus. Developmental Dynamics 238:1249-1270, 2009. (c) 2009 Wiley-Liss, Inc.
Collapse
Affiliation(s)
- Jacques Robert
- Department of Microbiology and Immunology, University of Rochester Medical Center, Rochester, New York, USA.
| | | |
Collapse
|
5
|
Goyos A, Guselnikov S, Chida AS, Sniderhan LF, Maggirwar SB, Nedelkovska H, Robert J. Involvement of nonclassical MHC class Ib molecules in heat shock protein-mediated anti-tumor responses. Eur J Immunol 2007; 37:1494-501. [PMID: 17492621 DOI: 10.1002/eji.200636570] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Nonclassical MHC class Ib (class Ib) genes are found in all jawed vertebrates, and their products are hypothesized to be indicators of intracellular stress and malignancy. They may be involved in immune recognition of classical MHC class Ia (class Ia)-low or -negative tumor cells through their interaction with T cell receptors and/or non-T cell inhibitory or triggering receptors expressed by NK cells and T cells. In the frog Xenopus, the molecular chaperone gp96 mediates a potent immune response involving antigen-specific classical class Ia-unrestricted CD8+ CTL (CCU-CTL) against a transplantable thymic tumor (15/0) that does not express class Ia molecules. We hypothesized that Xenopus nonclassical class Ib gene products (XNC) are involved in gp96-mediated CCU-CTL anti-tumor responses. To investigate the involvement of class Ib gene products in Xenopus anti-tumor responses, we generated, for the first time in ectothermic vertebrates, stable tumor transfectants expressing short hairpin RNA (shRNA) to silence either XNC directly or beta2m to prevent class Ib surface expression. Both types of 15/0 transfectants are more resistant to CCU-CTL killing, more tumorigenic and more susceptible to NK-like cell killing. This study provides in vitro and in vivo evidence of the evolutionary conservation of class Ib involvement in anti-tumor CD8+ T cell responses.
Collapse
Affiliation(s)
- Ana Goyos
- Department of Microbiology and Immunology, University of Rochester Medical Center, Rochester, NY 14642, USA
| | | | | | | | | | | | | |
Collapse
|
6
|
Robert J, Gantress J, Cohen N, Maniero GD. Xenopus as an experimental model for studying evolution of hsp–immune system interactions. Methods 2004; 32:42-53. [PMID: 14624877 DOI: 10.1016/s1046-2023(03)00186-5] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
The frog Xenopus provides a unique model system for studying the evolutionary conservation of the immunological properties of heat shock proteins (hsps). General methods for maintaining and immunizing isogenetic clones of defined MHC genotypes are presented together with more recently developed protocols for exploring hsp-mediated immune responses in vitro (proliferative and cytotoxic assays) and in vivo (adoptive cell transfer and antibody treatment) in adults and in naturally MHC class I-deficient larvae. Finally, techniques to study modalities of expression of the endoplasmic reticulum resident gp96 at the cell surface of tumor and normal lymphocytes are considered.
Collapse
Affiliation(s)
- Jacques Robert
- Department of Microbiology and Immunology, University of Rochester Medical Center, Rochester, NY 14642, USA.
| | | | | | | |
Collapse
|
7
|
Ogilvy S, Louis-Dit-Sully C, Cooper J, Cassady RL, Alexander DR, Holmes N. Either of the CD45RB and CD45RO isoforms are effective in restoring T cell, but not B cell, development and function in CD45-null mice. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2003; 171:1792-800. [PMID: 12902479 DOI: 10.4049/jimmunol.171.4.1792] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
The protein tyrosine phosphatase CD45 is expressed as a series of isoforms whose tissue and differentiation stage specificity is broadly conserved in evolution. CD45 has been shown to be an important regulator of a variety of functions in many different hemopoietic lineages. We have chosen an in vivo genetic complementation strategy to investigate the differential functions between isoforms. In this study, we report the characterization of transgenic mice which express the isoforms CD45RO or CD45RB as their only CD45 molecules, at a variety of expression levels and in the majority of hemopoietic lineages. Both CD45RO and CD45RB isoforms reconstitute thymocyte development in a CD45-null mouse background when expressed above a threshold level. The resulting mature T cells populate the peripheral lymphoid organs where they are found at normal frequency. Both CD45RO and CD45RB isoforms also permit T cell function in the periphery, although the threshold for normal function here appears to be set higher than in the thymus. In contrast, neither isoform is capable of fully restoring peripheral B cell maturation, even at levels approaching those in heterozygous CD45(+/-) mice in which maturation is normal. In vitro activation of B cells by Ag-receptor stimulation is only minimally complemented by these CD45RO and CD45RB transgenes. Our results suggest that CD45 isoforms play unique roles which differ between the T and B lineages.
Collapse
Affiliation(s)
- Sarah Ogilvy
- Laboratory of Lymphocyte Signaling and Development, The Babraham Institute, Babraham, Cambridge, United Kingdom
| | | | | | | | | | | |
Collapse
|
8
|
Robert J, Sung M, Cohen N. In vitro thymocyte differentiation in MHC class I-negative Xenopus larvae. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2001; 25:323-336. [PMID: 11246072 DOI: 10.1016/s0145-305x(00)00066-5] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
CTX is a surface antigen whose expression in larval and adult Xenopus is primarily restricted to MHC class I-negative immature cortical thymocytes. In adult Xenopus, surface expression of CTX marks a population of MHC class I(-) CD8(+) immature thymocytes that appears to be the equivalent of the mammalian CD4CD8 double positive subset. The present study reveals that transient in vitro exposure of immature CTX(+) thymocytes from MHC class I-negative tadpoles to suboptimal mitogenic concentrations of phorbol ester (PMA) plus ionomycin, induces larval cells to differentiate into more mature T-lymphoblasts that express high level of surface CD5 and CD45. These T-lymphoblasts have downregulated CTX, Rag 1 and TdT genes, whereas TCR-beta genes remain actively transcribed. Signaling induced by PMA/ionomycin modulates both class I and class II expression of MHC class I/II-negative larval thymocytes. This study also reveals that larval T-lymphoblasts are composed of two distinct subsets: CD5(high)CD8(-) and CD5 (high)CD8 (high).
Collapse
MESH Headings
- Animals
- Animals, Outbred Strains
- Antigens, Differentiation, T-Lymphocyte
- CD5 Antigens/biosynthesis
- CD5 Antigens/genetics
- CD8 Antigens/biosynthesis
- CD8 Antigens/genetics
- Cell Differentiation/drug effects
- DNA Nucleotidylexotransferase/biosynthesis
- DNA Nucleotidylexotransferase/genetics
- Gene Expression Regulation/drug effects
- Genes, MHC Class I
- Genes, MHC Class II
- Histocompatibility Antigens Class I/analysis
- Histocompatibility Antigens Class II/biosynthesis
- Homeodomain Proteins/biosynthesis
- Homeodomain Proteins/genetics
- Immunophenotyping
- Ionomycin/pharmacology
- Larva
- Leukocyte Common Antigens/biosynthesis
- Leukocyte Common Antigens/genetics
- Membrane Proteins/biosynthesis
- Membrane Proteins/genetics
- Receptors, Antigen, T-Cell, alpha-beta/biosynthesis
- Receptors, Antigen, T-Cell, alpha-beta/genetics
- T-Lymphocyte Subsets/cytology
- T-Lymphocyte Subsets/drug effects
- T-Lymphocyte Subsets/immunology
- Tetradecanoylphorbol Acetate/pharmacology
- Thymus Gland/cytology
- Thymus Gland/growth & development
- Xenopus Proteins
- Xenopus laevis/growth & development
- Xenopus laevis/immunology
Collapse
Affiliation(s)
- J Robert
- Department of Microbiology and Immunology, University of Rochester Medical Center, Box 672, 601 Elmwood Avenue, Rochester, NY 14642, USA.
| | | | | |
Collapse
|
9
|
De Guise S, Erickson K, Blanchard M, Dimolfetto L, Lepper H, Wang J, Stott JL, Ferrick DA. Characterization of a monoclonal antibody that recognizes a lymphocyte surface antigen for the cetacean homologue to CD45R. Immunology 1998; 94:207-12. [PMID: 9741342 PMCID: PMC1364206 DOI: 10.1046/j.1365-2567.1998.00483.x] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
As part of our current efforts to develop assays and reagents to study the immune system of marine mammals, and in view of the effort currently made to develop monoclonal antibodies to cell surface proteins of lymphocyte subsets in different species, the present paper reports on the characterization of a monoclonal antibody against the homologue of CD45R on cetacean lymphocytes. The specificity of this antibody has been characterized on the basis of immunoprecipitation of the antigen it recognized, immunoperoxidase staining on cetacean lymph node and thymus sections, as well as one and two-colour flow cytometric analysis of cetacean peripheral blood mononuclear cells and single-cell suspensions of thymus, lymph node and spleen. Anticetacean CD45R (F21.H) immunoprecipitated proteins of 180, 200 and 220 x 10(3) MW, with the 180 x 10(3) MW from being predominantly expressed on T cells and the 220 x 10(3) MW form expressed predominantly on B cells and thymocytes F21.H labelled all B cells and a proportion of T cells on single-cell suspensions of spleen cells. CD45R- killer whale peripheral blood lymphocytes expressed a higher density of CD2 than CD45R+, a characteristic of memory T cells. Killer whale T lymphocytes also lost the expression of CD45R upon activation with concanavalin A (Con A) and phytohaemagglutinin (PHA). This is the first report of a monoclonal antibody to CD45R in cetaceans, and this antibody is foreseen as a possible valuable diagnostic and research tool to assess immune functions of captive and wild cetaceans as part of the evaluation of their health status.
Collapse
Affiliation(s)
- S De Guise
- Department of Pathology, Microbiology and Immunology, School of Veterinary Medicine, University of California Davis 95616, USA
| | | | | | | | | | | | | | | |
Collapse
|