1
|
Kougias DG, Atillasoy E, Southall MD, Scialli AR, Ejaz S, Chu C, Jeminiwa BO, Massarsky A, Unice KM, Schaeffer TH, Kovochich M. A quantitative weight-of-evidence review of preclinical studies examining the potential developmental neurotoxicity of acetaminophen. Crit Rev Toxicol 2025; 55:124-178. [PMID: 39982125 DOI: 10.1080/10408444.2024.2442344] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Revised: 11/21/2024] [Accepted: 12/05/2024] [Indexed: 02/22/2025]
Abstract
Acetaminophen [paracetamol; N-acetyl-para-aminophenol (APAP)] is an antipyretic/analgesic commonly used in the treatment of fever and mild to moderate pain, headache, myalgia, and dysmenorrhea. Recent literature has questioned the safety of acetaminophen use during pregnancy, with an emphasis on whether exposure to the developing nervous system results in behavioral changes consistent with autism spectrum disorder (ASD), attention-deficit/hyperactivity disorder (ADHD), and/or other cognitive deficits in the offspring. No previous review has used a fully detailed, quantitative weight-of-evidence (QWoE) approach to critically examine the preclinical acetaminophen data with regards to potential developmental neurotoxicity (DNT). Following regulatory guidance, a QWoE framework using prespecified scoring criteria was developed consistent with previous approaches to characterize potential adverse DNT outcomes with considerations for biological relevance of the response to adverse outcomes (outcome score) and the strength of methods and study design (methods score). Considerations for the methods score included (1) experimental design, (2) details/reliability of measurement(s), (3) data transparency, and (4) translational/methodological relevance. Considerations for the outcome score included response-related (1) statistical significance, (2) dose-response, (3) relevance/reliability/magnitude, (4) plausibility, and (5) translational relevance, including consideration of systemic toxicity/hepatotoxicity and therapeutic and/or non-systemically toxic doses and durations of use. Application of this QWoE framework to the 34 in vivo studies identified that assess the potential DNT of acetaminophen resulted in 188 QWoE entries documented across 11 DNT endpoints: social behavior, stereotypic behavior, behavioral rigidity, attention/impulsivity, hyperactivity, anxiety-like behavior, sensorimotor function, spatial learning/memory, nonspatial learning/memory, neuroanatomy, and neurotransmission. For each endpoint, the mean outcome score and methods score were calculated for total entries and for entries segregated by sex to assist in determining data quality and potential adversity. Informed by all 188 entries, the QWoE analysis demonstrated data of moderate quality showing no consistent evidence of DNT in male and female rodents following exposure to acetaminophen at therapeutic and/or nonsystemically toxic doses. Although some of the DNT endpoints (behavioral rigidity, attention/impulsivity, spatial learning/memory, neuroanatomy, and neurotransmission) generally displayed a more limited dataset and/or relatively lower data quality, similar conclusions were drawn based on results indicating a lack of biological relevance and reliability of reported adverse effects. Overall, this QWoE analysis on the preclinical in vivo data demonstrates no consistent evidence of adverse effects following developmental exposure to acetaminophen at therapeutic and/or non-systemically toxic doses on the structure and function of the nervous system, including neuroanatomical, neurotransmission, and behavioral endpoints.
Collapse
Affiliation(s)
| | - Evren Atillasoy
- Kenvue Medical Clinical and Safety Sciences, Fort Washington, PA, USA
| | | | - Anthony R Scialli
- Reproductive Toxicology Center, A Non-Profit Foundation, Washington, DC, USA
| | - Sadaff Ejaz
- Kenvue Medical Clinical and Safety Sciences, Skillman, NJ, USA
| | - Christopher Chu
- Kenvue Medical Clinical and Safety Sciences, Skillman, NJ, USA
| | | | | | | | | | | |
Collapse
|
2
|
Arnold MA, Newland MC. Variable behavior and repeated learning in two mouse strains: Developmental and genetic contributions. Behav Processes 2018; 157:509-518. [DOI: 10.1016/j.beproc.2018.06.007] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2017] [Revised: 06/05/2018] [Accepted: 06/15/2018] [Indexed: 12/16/2022]
|
3
|
|
4
|
Kennard JA, Brown KL, Woodruff-Pak DS. Aging in the cerebellum and hippocampus and associated behaviors over the adult life span of CB6F1 mice. Neuroscience 2013; 247:335-50. [PMID: 23764510 PMCID: PMC3755498 DOI: 10.1016/j.neuroscience.2013.06.002] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2013] [Revised: 05/22/2013] [Accepted: 06/02/2013] [Indexed: 10/26/2022]
Abstract
In the present study we examined the effects of normal aging in the hippocampus and cerebellum, as well as behaviors associated with these substrates. A total of 67 CB6F1 hybrid mice were tested at one of five ages (4, 8, 12, 18 or 25 months) on the context pre-exposure facilitation effect (CPFE) modification of fear conditioning, rotorod, Barnes maze, acoustic startle, Morris water maze (MWM) and 500-ms trace eyeblink classical conditioning (EBCC). Behavioral tasks were chosen to increase the ability to detect age-related changes in learning, as trace EBCC is considered a more difficult paradigm (compared to delay EBCC) and the CPFE has been found to be more sensitive to hippocampus insults than standard contextual fear conditioning. To assess the effects of age on the brain, hippocampus volume was calculated and unbiased stereology was used to estimate the number of Purkinje neurons in the cerebellar cortex. A significant, age-related loss of Purkinje neurons was found-beginning at 12 months of age-and hippocampus volume remained stable over the adult life span. Age-related impairment was found, beginning at 12-18 months in the rotorod, and mice with fewer Purkinje neurons showed greater impairment in this task. CB6F1 mice retained auditory acuity across the life span and mice aged 25 months showed significant age-related impairment in the EBCC task; however, deficits were not associated with the loss of Purkinje neurons. Although the CPFE task is considered more sensitive to hippocampus insult, no age-related impairment was found. Spatial memory retention was impaired in the Barnes maze at 25 months, but no significant deficits were seen in the MWM. These results support the finding of differential aging in the hippocampus and cerebellum.
Collapse
Affiliation(s)
- John A. Kennard
- Neuroscience Program and Department of Psychology, Temple University, 1701 North 13 Street, Philadelphia, PA 19122
| | - Kevin L. Brown
- Neuroscience Program and Department of Psychology, Temple University, 1701 North 13 Street, Philadelphia, PA 19122
| | - Diana S. Woodruff-Pak
- Neuroscience Program and Department of Psychology, Temple University, 1701 North 13 Street, Philadelphia, PA 19122
| |
Collapse
|
5
|
Raida Z, Hundahl CA, Kelsen J, Nyengaard JR, Hay-Schmidt A. Reduced infarct size in neuroglobin-null mice after experimental stroke in vivo. EXPERIMENTAL & TRANSLATIONAL STROKE MEDICINE 2012; 4:15. [PMID: 22901501 PMCID: PMC3487987 DOI: 10.1186/2040-7378-4-15] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/10/2012] [Accepted: 07/11/2012] [Indexed: 01/09/2023]
Abstract
BACKGROUND Neuroglobin is considered to be a novel important pharmacological target in combating stroke and neurodegenerative disorders, although the mechanism by which this protection is accomplished remains an enigma. We hypothesized that if neuroglobin is directly involved in neuroprotection, then permanent cerebral ischemia would lead to larger infarct volumes in neuroglobin-null mice than in wild-type mice. METHODS Using neuroglobin-null mice, we estimated the infarct volume 24 hours after permanent middle cerebral artery occlusion using Cavalieri's Principle, and compared the infarct volume in neuroglobin-null and wild-type mice. Neuroglobin antibody staining was used to examine neuroglobin expression in the infarct area of wild-type mice. RESULTS Infarct volumes 24 hours after permanent middle cerebral artery occlusion were significantly smaller in neuroglobin-null mice than in wild-types (p < 0.01). Neuroglobin immunostaining of the penumbra area revealed no visible up-regulation of neuroglobin protein in ischemic wild-type mice when compared to uninjured wild-type mice. In uninjured wild-type mice, neuroglobin protein was seen throughout cortical layer II and sparsely in layer V. In contrast, no neuroglobin-immunoreactive neurons were observed in the aforementioned layers of the ischemia injured cortical area, or in the surrounding penumbra of ischemic wild-type mice. This suggests no selective sparing of neuroglobin expressing neurons in ischemia. CONCLUSIONS Neuroglobin-deficiency resulted in reduced tissue infarction, suggesting that, at least at endogenous expression levels, neuroglobin in itself is non-protective against ischemic injury.
Collapse
Affiliation(s)
- Zindy Raida
- Department of Neuroscience and Pharmacology, Faculty of Health Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Christian Ansgar Hundahl
- Department of Neuroscience and Pharmacology, Faculty of Health Sciences, University of Copenhagen, Copenhagen, Denmark
- Department of Physiology, University of Tartu, Tartu, Estonia
- Centre of Excellence for Translational Medicine, University of Tartu, Tartu, Estonia
- Department of Clinical Biochemistry, University Hospital Bispebjerg, Copenhagen, Denmark
| | - Jesper Kelsen
- Department of Neurosurgery, University Hospital Copenhagen (Rigshospitalet), Copenhagen, Denmark
| | - Jens Randel Nyengaard
- Stereology and Electron Microscopy Research Laboratory, Centre for Stochastic Geometry and Advanced Bioimaging, Aarhus University, Aarhus, Denmark
| | - Anders Hay-Schmidt
- Department of Neuroscience and Pharmacology, Faculty of Health Sciences, University of Copenhagen, Copenhagen, Denmark
- The Panum Institute; Department of Neuroscience and Pharmacology, University of Copenhagen, Blegdamsvej 3, 2200, Copenhagen N, Denmark
| |
Collapse
|
6
|
Wu K, Li S, Bodhinathan K, Meyers C, Chen W, Campbell-Thompson M, McIntyre L, Foster TC, Muzyczka N, Kumar A. Enhanced expression of Pctk1, Tcf12 and Ccnd1 in hippocampus of rats: Impact on cognitive function, synaptic plasticity and pathology. Neurobiol Learn Mem 2011; 97:69-80. [PMID: 21982980 DOI: 10.1016/j.nlm.2011.09.006] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2011] [Revised: 08/24/2011] [Accepted: 09/14/2011] [Indexed: 10/17/2022]
Abstract
We previously identified a set of 50 genes that were differentially transcribed in the hippocampal CA1 region of aged, learning-impaired rats compared to aged, superior learning animals during a Morris water maze paradigm. In the current study, we expressed three of these genes (Pctk1, Tcf12 and Ccnd1), which had shown increased transcription in aged, learning impaired rats, in the hippocampus of young rats using viral gene transfer and tested for learning and memory deficits at age 7-14months. Pctk1 injected animals displayed a modest deficit in acquiring latency in both the Morris water maze and the reverse Morris maze. In the radial arm water maze paradigm, Pctk1, Tcf12 and Ccnd1 expressing animals all showed significant deficits in spatial working memory compared to controls. Rats injected with Ccnd1 and Tcf12, but not Pctk1, also showed a significant deficit in spatial reference memory in the radial arm water maze. Electrophysiological experiments revealed no difference in LTP in Ccnd1 and Pctk1 animals. However, LTD induced by low frequency stimulation was observed in control and Ccnd1 animals, but not in Pctk1 treated animals. In addition, neither Ccnd1 nor Pctk1 expression produced any detectable neuropathology. In contrast Tcf12 expressing animals displayed significant neurodegeneration in both CA1 and dentate gyrus. Several Tcf12 animals also developed tumors that appeared to be glioblastomas, suggesting that aberrant Tcf12 expression in the hippocampus is tumorigenic. Thus, behavioral experiments suggested that overexpression of Pctk1 and Ccnd1 produce a deficit in learning and memory, but electrophysiological experiments do not point to a simple mechanism. In contrast, the learning and memory deficits in Tcf12 animals are likely due to neuropathology associated with Tcf12 gene expression.
Collapse
Affiliation(s)
- Ke Wu
- Department of Molecular Genetics and Microbiology, University of Florida, Gainesville, FL 32610, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
7
|
Omission of the habituation procedure in the acquisition of a working memory task – evidence from Balb/c, C57/BL6J, and CD-1 mice. Behav Brain Res 2011; 223:203-10. [DOI: 10.1016/j.bbr.2011.04.035] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2011] [Revised: 04/12/2011] [Accepted: 04/20/2011] [Indexed: 12/11/2022]
|
8
|
Sharma S, Rakoczy S, Brown-Borg H. Assessment of spatial memory in mice. Life Sci 2010; 87:521-36. [PMID: 20837032 PMCID: PMC6457258 DOI: 10.1016/j.lfs.2010.09.004] [Citation(s) in RCA: 228] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2010] [Revised: 08/09/2010] [Accepted: 09/04/2010] [Indexed: 11/17/2022]
Abstract
Improvements in health care have greatly increased life span in the United States. The focus is now shifting from physical well-being to improvement in mental well-being or maintenance of cognitive function in old age. It is known that elderly people suffer from cognitive impairment, even without neurodegeneration, as a part of 'normal aging'. This 'age-associated memory impairment' (AAMI), can have a devastating impact on the social and economic life of an individual as well as the society. Scientists have been experimenting to find methods to prevent the memory loss associated with aging. The major factor involved in these experiments is the use of animal models to assess hippocampal-based spatial memory. This review describes the different types of memory including hippocampal-based memory that is vulnerable to aging. A detailed overview of various behavioral paradigms used to assess spatial memory including the T-maze, radial maze, Morris water maze, Barnes maze and others is presented. The review also describes the molecular basis of memory in hippocampus called as 'long-term potentiation'. The advantages and limitations of the behavioral models in assessing memory and the link to the long-term potentiation are discussed. This review should assist investigators in choosing suitable methods to assess spatial memory in mice.
Collapse
Affiliation(s)
- Sunita Sharma
- University of North Dakota School of Medicine and Health Sciences,
Grand Forks, ND 58203, United States
| | - Sharlene Rakoczy
- University of North Dakota School of Medicine and Health Sciences,
Grand Forks, ND 58203, United States
| | - Holly Brown-Borg
- University of North Dakota School of Medicine and Health Sciences,
Grand Forks, ND 58203, United States
| |
Collapse
|
9
|
Paul CM, Magda G, Abel S. Spatial memory: Theoretical basis and comparative review on experimental methods in rodents. Behav Brain Res 2009; 203:151-64. [PMID: 19467271 DOI: 10.1016/j.bbr.2009.05.022] [Citation(s) in RCA: 150] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2009] [Accepted: 05/17/2009] [Indexed: 02/08/2023]
Abstract
The assessment of learning and memory in animal models has been widely employed in scientific research for a long time. Among these models, those representing diseases with primary processes of affected memory - such as amnesia, dementia, brain aging, etc. - studies dealing with the toxic effects of specific drugs, and other exploring neurodevelopment, trauma, epilepsy and neuropsychiatric disorders, are often called on to employ these tools. There is a diversity of experimental methods assessing animal learning and memory skills. Overall, mazes are the devices mostly used today to test memory in rodents; there are several types of them, but their real usefulness, advantages and applications remain to be fully established and depend on the particular variant selected by the experimenter. The aims of the present article are first, to briefly review the accumulated knowledge in regard to spatial memory tasks; second, to bring the reader information on the different types of rodent mazes available to test spatial memory; and third, to elucidate the usefulness and limitations of each of these devices.
Collapse
Affiliation(s)
- Carrillo-Mora Paul
- Laboratorio de Aminoácidos Excitadores, Instituto Nacional de Neurología y Neurocirugía Manuel Velasco Suárez, Mexico City 14269, Mexico.
| | | | | |
Collapse
|
10
|
Determining normal variability in a developmental neurotoxicity test: a report from the ILSI Research Foundation/Risk Science Institute expert working group on neurodevelopmental endpoints. Neurotoxicol Teratol 2008; 30:288-325. [PMID: 18280700 DOI: 10.1016/j.ntt.2007.12.009] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2007] [Revised: 11/09/2007] [Accepted: 12/21/2007] [Indexed: 11/21/2022]
Abstract
With the implementation of the Food Quality Protection Act in 1996, more detailed evaluations of possible health effects of pesticides on developing organisms have been required. As a result, considerable developmental neurotoxicity (DNT) data have been generated on a variety of endpoints, including developmental changes in motor activity, auditory startle habituation, and various learning and memory parameters. One issue in interpreting these data is the level of variability for the measures used in these studies: excessive variability can obscure treatment-related effects, or conversely, small but statistically significant changes could be viewed as treatment related, when they might in fact be within the normal range. To aid laboratories in designing useful DNT studies for regulatory consideration, an operational framework for evaluating observed variability in study data has been developed. Elements of the framework suggest how an investigator might approach characterization of variability in the dataset; identification of appropriate datasets for comparison; evaluation of similarities and differences in variability between these datasets, and of possible sources of the variability, including those related to test conduct and test design. A case study using auditory startle habituation data is then presented, employing the elements of this proposed approach.
Collapse
|
11
|
Barnes P, Hale G, Good M. Intramaze and extramaze cue processing in adult APPSWE Tg2576 transgenic mice. Behav Neurosci 2005; 118:1184-95. [PMID: 15598128 DOI: 10.1037/0735-7044.118.6.1184] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
The present study examined spatial and nonspatial learning in adult Tg2576 mice. Transgenic mice were impaired in acquisition of a T-maze forced-choice alternation task. However, mutant mice were as sensitive as control mice to the introduction of retention intervals and proactive interference, and this suggested that short-term memory processes were intact in Tg2576 mice. Probe trials revealed that the Tg2576 mice did not use an allocentric strategy to navigate to the goal arm. However, mutant mice acquired an intramaze brightness discrimination, a simple room discrimination, and a contextual biconditional left-right discrimination in a T maze. Results suggest that Tg2576 mice are able to process both intramaze and extramaze stimuli but are impaired in forming an allocentric representation of their environment.
Collapse
Affiliation(s)
- Philip Barnes
- School of Psychology, Cardiff University, Cardiff, United Kingdom
| | | | | |
Collapse
|
12
|
Horwood JM, Ripley TL, Stephens DN. Evidence for disrupted NMDA receptor function in tissue plasminogen activator knockout mice. Behav Brain Res 2004; 150:127-38. [PMID: 15033286 DOI: 10.1016/s0166-4328(03)00248-1] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2003] [Revised: 07/04/2003] [Accepted: 07/07/2003] [Indexed: 11/28/2022]
Abstract
Tissue plasminogen activator (tPA), a serine protease immediate-early gene product expressed in brain areas important in learning and memory, has been shown to cleave the NR1 subunit of the NMDA receptor leading to a potentiated Ca(2+) influx. Mice lacking tPA (tPA-/- mice) have disrupted late phase-LTP in the hippocampus, possibly as a consequence of reduced Ca(2+) flux through NMDA receptors. In the present experiments, we investigated whether the NMDA antagonist dizocilpine might alter performance in tPA-/- mice in behavioural tasks shown to be sensitive to hippocampal lesions. tPA-/- mice and wild-type controls (WT) showed similar rates of acquisition and performance of a spatial working memory task (eight-arm radial maze). Dizocilpine (0.03-0.3 mg/kg, i.p.), given acutely, disrupted performance by increasing the number of errors equally across both genotypes. At asymptotic performance of a differential reinforcement of low response rate operant task (DRL), acute dizocilpine (0.03-0.3 mg/kg) impaired performance, but no differences between genotypes were observed. However, dizocilpine (0.1 mg/kg), given repeatedly during acquisition of a signalled-DRL15" task, retarded acquisition in tPA-/- but not WT mice. This treatment regime had no effect on locomotor activity in either genotype. tPA-/- mice showed no spatial learning deficits, but were more sensitive to dizocilpine during acquisition (though not expression) of a DRL task. This supports a role for tPA in modification of the NMDA receptor, although absence of tPA does not have consequences for all forms of NMDA-dependent mediated learning.
Collapse
Affiliation(s)
- Jennifer M Horwood
- Laboratory of Experimental Psychology, University of Sussex, Falmer, Brighton BN1 9QG, UK
| | | | | |
Collapse
|
13
|
Lee AW, Emsley JG, Brown RE, Hagg T. Marked differences in olfactory sensitivity and apparent speed of forebrain neuroblast migration in three inbred strains of mice. Neuroscience 2003; 118:263-70. [PMID: 12676156 DOI: 10.1016/s0306-4522(02)00950-8] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
In the adult forebrain, new neuroblasts constantly migrate from the subventricular zone along the rostral migratory stream to the olfactory bulb, where many become neurons. It is unclear whether this process is different in commonly used mouse strains and whether it is related to olfactory function. Adult male BALB/c, C57BL/6, and 129/S1 (formerly 129SV) mice were tested for olfactory sensitivity plus discrimination, using male mouse urine from the two other strains. BALB/c mice had the greatest olfactory sensitivity, followed by 129/S1, and C57BL/6 mice, by an order of magnitude each. Newly formed cells were pulse-labeled for 3 h with i.p. 5-bromo-2'-deoxyuridine (BrdU) injections and the animals analyzed 24 h later. In 129/S1 mice, a greater proportion of neuroblasts were present closer to the olfactory bulb than in BALB/c mice, followed by C57BL/6 mice. The total number of BrdU-labeled cells did not differ, suggesting differences in migration and not proliferation. The impaired olfactory function in C57BL/6 mice might be caused by the reduced number of neuroblasts that reach the olfactory bulbs. However, olfactory function in BALB/c and 129/S1 mice did not correlate with their putative migration speed, suggesting a more complex nature of cellular processes that contribute to olfactory function. These results caution against comparing studies of olfactory function or neural precursors that use different strains of mice, and question the use of C57BL/6 mice as a "normal" strain or as transgenic background. Perhaps more importantly, the results point to an opportunity to identify genes that regulate olfactory function and neuroblast behavior.
Collapse
Affiliation(s)
- A W Lee
- Department of Psychology, Dalhousie University, B3H 4J1, Halifax, NS, Canada
| | | | | | | |
Collapse
|
14
|
Abstract
Learning is likely to be costly and thus subject to trade-off with other components of life history. An obvious prediction, therefore, is that investment in learning, and thus learning performance, will vary with individual life history strategy and the reproductive value of the learning outcome. We tested this idea in the context of social dominance in male laboratory mice, using a simple radial maze paradigm to compare the ability of high- and low-ranking male mice to track changing food location. We tested animals in randomly selected pairs before and after establishing aggressive rank relationships to distinguish intrinsic differences in learning ability from those attributable to acquiring high or low rank. There was no difference in learning between later dominants and subordinates prior to establishing rank relationships. After pairing, however, dominants showed a significantly greater percentage of correct responses, with the difference being greatest earlier in a sequence of trials. The percentage of correct responses also increased with the amount of aggression initiated during pairing. The results thus appeared to reflect a state-dependent change in learning associated with the aggressive social relationships formed during pairing.
Collapse
Affiliation(s)
- C J. Barnard
- Animal Behaviour Research Group, School of Life and Environmental Sciences, University of Nottingham, University Park, NG7 2RD, Nottingham, UK
| | | |
Collapse
|
15
|
Brown RE, Stanford L, Schellinck HM. Developing standardized behavioral tests for knockout and mutant mice. ILAR J 2001; 41:163-74. [PMID: 11406708 DOI: 10.1093/ilar.41.3.163] [Citation(s) in RCA: 55] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Affiliation(s)
- R E Brown
- Department of Psychology and Neuroscience Institute, Dalhousie University, Nova Scotia, Canada
| | | | | |
Collapse
|
16
|
DeVries AC, Nelson RJ, Traystman RJ, Hurn PD. Cognitive and behavioral assessment in experimental stroke research: will it prove useful? Neurosci Biobehav Rev 2001; 25:325-42. [PMID: 11445138 DOI: 10.1016/s0149-7634(01)00017-3] [Citation(s) in RCA: 108] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Stroke in humans is associated with deficits in sensorimotor and cognitive function. Consequently, many stroke researchers recently have expanded their techniques to assess cognitive and behavioral correlates of histologically-determined stroke damage in animal models. Although the incorporation of functional outcome assessment represents an important step forward in stroke research, reports of middle cerebral artery occlusion (MCAO) induced behavioral deficits often conflict, and a significant correlation between post-stroke histology and behavior has been reported in few stroke studies. Discrepancies in behavioral outcomes among studies may be due to several factors, such as method of MCAO, duration of occlusion, strain, the timing and method of the behavioral testing and the laboratory environment. Furthermore, proper experimental and control groups, necessary to rule out potential confounding factors during cognitive testing, often are not incorporated. The goal of this review is: (1) to provide a description of the techniques most commonly employed to assess functional outcome after (MCAO) in rodents and (2) to identify potential confounding factors that may interfere with a clear interpretation of the behavioral data.
Collapse
Affiliation(s)
- A C DeVries
- Department of Psychology, The Ohio State University, Columbus, OH 43210, USA.
| | | | | | | |
Collapse
|
17
|
Hyde LA, Frisone DF, Crnic LS. Ts65Dn mice, a model for Down syndrome, have deficits in context discrimination learning suggesting impaired hippocampal function. Behav Brain Res 2001; 118:53-60. [PMID: 11163633 DOI: 10.1016/s0166-4328(00)00313-2] [Citation(s) in RCA: 87] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
The Ts65Dn mouse is segmentally trisomic for a part of mouse chromosome 16 and is a genetic model for Down syndrome and Alzheimer's disease. Although many studies have examined the learning and memory processes in Ts65Dn mice, it has yet to be determined if Ts65Dn mice are specifically impaired in learning tasks that require an intact hippocampus. Context discrimination learning is dependent on the dorsal hippocampus in mice. In this task, mice learn to discriminate two similar contexts, one of which is associated with foot shock. In the current study, Ts65Dn mice learned almost identically to what has been reported for mice with dorsal hippocampal lesions, while controls behaved similarly to sham lesioned mice. Therefore, Ts65Dn mice have learning deficits in a hippocampal dependent task that may be related to the loss of cholinergic input to the hippocampus, which occurs after 6 months of age.
Collapse
Affiliation(s)
- L A Hyde
- Department of Pediatrics, University of Colorado, School of Medicine, 4200 East Ninth Avenue Box C233, Denver, CO 80262, USA.
| | | | | |
Collapse
|
18
|
Anisman H, Hayley S, Kelly O, Borowski T, Merali Z. Psychogenic, neurogenic, and systemic stressor effects on plasma corticosterone and behavior: Mouse strain-dependent outcomes. Behav Neurosci 2001. [DOI: 10.1037/0735-7044.115.2.443] [Citation(s) in RCA: 149] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
19
|
Abstract
We compared the learning performances of BALB/c mice subjected to the Morris water spatial task under two different lighting conditions. In the first one, the experimental room was lit by neon tubes (direct and bright illumination) and in the second one by a halogen lamp directed to the roof (diffuse illumination). The scores of BALB/c mice in the diffuse illumination condition clearly demonstrated that these mice could learn to escape to a hidden platform while they could not under direct illumination condition. Moreover, they were able to acquire the task by means of spatial cues. These results are interpreted in terms of a decrease of anxiety levels.
Collapse
Affiliation(s)
- P Chapillon
- UPRES EA 1780 Laboratoire de Neurobiologie de l'Apprentissage, Faculté des Sciences, Université de Rouen, F-76821 Cedex, Mont Saint Aignan, France.
| | | |
Collapse
|
20
|
Vicens P, Bernal MC, Carrasco MC, Redolat R. Previous training in the water maze: differential effects in NMRI and C57BL mice. Physiol Behav 1999; 67:197-203. [PMID: 10477050 DOI: 10.1016/s0031-9384(99)00059-1] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
It has been shown that acquisition rates in the water maze vary across strains of mice, although the differential effects of previous experience in this spatial task have been scarcely evaluated. The aim of the present study was to evaluate the effects of training in the water maze at an early age (2 months) in two strains of mice (NMRI and C57BL) using a longitudinal study. Mice with or without previous training were tested when they were 6 months, and retested when 10 months old. The results showed that trained NMRI mice performed better than all the other groups, both at test and retest, indicating that previous training had more beneficial effects in NMRI than in C57BL mice. These results demonstrate that the effects of an early training in the water maze may be influenced by the characteristics of the strain of mice. It could have implications in longitudinal studies evaluating effects of pharmacological or behavioral manipulations.
Collapse
Affiliation(s)
- P Vicens
- Area de Psicobiología, Facultad de Psicología, Universitat de València, Spain
| | | | | | | |
Collapse
|
21
|
Abstract
As traditional behavioral genetics analysis merges with neurogenetics, the field of neurobehavioral genetics, focusing on single-gene effects, comes into being. New biotechnology has greatly accelerated gene discovery and the study of gene function in relation to brain and behavior. More than 7,000 genes in mice and 10,000 in humans have now been documented, and extensive information about the genetics of several species is readily available on the World Wide Web. Based on knowledge of the DNA sequence of a gene, a targeted mutation with the capacity to disable it can be created. These knockouts--also called null mutants--are employed in the study of a wide range of phenotypes, including learning and memory, appetite and obesity, and circadian rhythms. The era of examining single-gene effects from a reductionistic perspective is waning, and research with interacting arrays of genes in various environmental contexts is demonstrating a need for systems-oriented theory.
Collapse
Affiliation(s)
- D Wahlsten
- Department of Psychology, University of Alberta, Edmonton, Canada.
| |
Collapse
|
22
|
Valentinuzzi VS, Kolker DE, Vitaterna MH, Shimomura K, Whiteley A, Low-Zeddies S, Turek FW, Ferrari EA, Paylor R, Takahashi JS. Automated Measurement of Mouse Freezing Behavior and its Use for Quantitative Trait Locus Analysis of Contextual Fear Conditioning in (BALB/cJ × C57BL/6J)F 2 Mice. Learn Mem 1998. [DOI: 10.1101/lm.5.4.391] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
The most commonly measured mouse behavior in fear conditioning tests is freezing. A technical limitation, particularly for genetic studies, is the method of direct observation used for quantifying this response, with the potential for bias or inconsistencies. We report the use of a computerized method based on latency between photobeam interruption measures as a reliable scoring criterion in mice. The different computer measures obtained during contextual fear conditioning tests showed high correlations with hand-scored freezing; r values ranged from 0.87 to 0.94. Previously reported strain differences between C57BL/6J and DBA/2J in context-dependent fear conditioning were also detected by the computer-based system. In addition, the use of computer-scored freezing of 199 (BALB/cJ × C57BL/6J)F2 mice enabled us to detect a suggestive gender-dependent chromosomal locus for contextual fear conditioning on distal chromosome 8 by QTL analysis. Automation of freeze scoring would significantly increase efficiency and reliability of this learning and memory test.
Collapse
|
23
|
Roullet P, Bozec G, Carton N. Detection of object orientation and spatial changes by mice: importance of local views. Physiol Behav 1998; 64:203-7. [PMID: 9662087 DOI: 10.1016/s0031-9384(98)00034-1] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
This study examines the types of information used by mice to detect changes in their environment. After a period of habituation to an open field containing three bicolored cube-shaped objects, we modified the spatial configuration of the objects or rotated the objects 180 degrees, or both. We noted that whatever the modification, mice reexplored the objects. This shows that mice are able to detect both topological changes and, in particular, changes in the orientation of objects. This is possible only if mice can establish a local view of the objects in relation to a stable element of their environment. A second experiment showed that this stable element is in fact a pattern within the open field and not an element of the distal environment. These two experiments demonstrate the importance of local views in spatial representation for rodents.
Collapse
Affiliation(s)
- P Roullet
- Laboratoire Neuromodulation et Processus Cognitifs, Institut des Neurosciences, Université Paris VI, France.
| | | | | |
Collapse
|
24
|
Hyde LA, Hoplight BJ, Denenberg VH. Water version of the radial-arm maze: learning in three inbred strains of mice. Brain Res 1998; 785:236-44. [PMID: 9518631 DOI: 10.1016/s0006-8993(97)01417-0] [Citation(s) in RCA: 89] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The conventional land radial-arm maze has several disadvantages, including requiring a complicated automated apparatus, the elimination of odors as cues, and the use of food deprivation. We have created a water version of the maze, based on the principles of the land version, which maintains the advantages and excludes some of the disadvantages. In our maze, BXSB and C57BL/6 mice significantly reduced the number of working and reference memory errors committed over sessions, while NZB mice did not. For each strain, as the working memory 'load' increased during a session, the number of errors increased. However, with practice the BXSB and C57BL/6 strains were able to handle this memory load more effectively. Mice were able to learn the maze without extensive adaptation, training, or testing and they did not exhibit 'chaining'. This maze can also be considered to be an example of a water win-shift task that mice can easily learn. Therefore, the water version of the radial-arm maze can be a simple and useful tool for studying rodent learning and memory.
Collapse
Affiliation(s)
- L A Hyde
- Biobehavioral Sciences Graduate Degree Program, University of Connecticut, Storrs, CT 06269-4154, USA
| | | | | |
Collapse
|
25
|
Rodgers RJ, Johnson NJ, Carr J, Hodgson TP. Resistance of experientially-induced changes in murine plus-maze behaviour to altered retest conditions. Behav Brain Res 1997; 86:71-7. [PMID: 9105584 DOI: 10.1016/s0166-4328(96)02248-6] [Citation(s) in RCA: 43] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Prior exposure to the elevated plus-maze results in profound behavioural alterations in rats and mice, with 24 h retest profiles indicative of fear sensitization. The present study was designed to examine the influence of retest cues on this phenomenon in male DBA/2 mice. Results confirmed the potent influence of prior maze experience on subsequent behavioural patterns, and showed that this was not affected by manipulations of extra-maze cues (90 degrees re-orientation of the maze or use of a different laboratory) on Trial 2. Data are discussed in relation to experientially-induced shifts in behavioural strategy and the apparent involvement of simple proximal cues (probably thigmotactic) in this enduring and adaptive form of spatial learning.
Collapse
Affiliation(s)
- R J Rodgers
- Department of Psychology, University of Leeds, UK.
| | | | | | | |
Collapse
|
26
|
Abstract
The ontogeny of the ability of C57BL/6 mice to use different cues for spatial learning was examined in several Morris water maze tasks. In the first two studies, three learning procedures were used, in which only distal cues (place learning), only proximal cues (cue learning), or both proximal and distal cues (cue + place learning) were pertinent to localize the platform. The results indicated that whatever the procedure, 22-day-old mice showed the same capabilities as adults. Moreover, in the cue + place-learning procedure, although the distal cues were not necessary to solve the task, both young and adult mice demonstrated the integration of distal information by exhibiting a strong spatial bias during a probe test. However, in the third experiment, it was shown that nonpertinent proximal cues perturbed 22-day-old mice in a place-learning procedure. Taken together, these results suggest that while even the youngest mice show striking spatial navigation abilities, young mice give greater importance to proximal cues for orientation whereas adults preferentially use distal information.
Collapse
Affiliation(s)
- P Chapillon
- Laboratoire d'Ethologie et de Psychophysiologie, Faculté des Sciences et Techniques, Tours, France
| | | |
Collapse
|
27
|
The role of experimenter-odor cues in the performance of object-memory tasks by rats. ACTA ACUST UNITED AC 1995. [DOI: 10.3758/bf03198944] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
28
|
Chapillon P, Roullet P, Lassalle JM. Ontogeny of orientation and spatial learning on the radial maze in mice. Dev Psychobiol 1995; 28:429-42. [PMID: 8582531 DOI: 10.1002/dev.420280805] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
The development of the orientation capacities of C57BL/6 mice has been studied on the radial maze in several procedures allowed to dissociate the different types of cues used by the mouse for solving the task with two intersession delays (2 and 24 hr). The results of the first two studies show that performance is independent of intersession delay regardless of the age of the subject. Mice as early as 23 days old obtain good performances when they can develop an algorithmic strategy or when they dispose of both proximal and distal cues during learning. At 37 days of age, however, mice can efficiently solve the radial maze task with distal cues alone. However, in the third experiment, 23-day-old mice were able to use distal cues for orientation at the end of the learning session if, at the onset, they also had access to proximal cues. These results suggest that, on weaning, mice use several types of information for task performance and that, as they mature, they turn more often to distal cues for orientation.
Collapse
Affiliation(s)
- P Chapillon
- Laboratoire d'Ethologie et de Psychophysiologie, Tours, France
| | | | | |
Collapse
|
29
|
Schwegler H, Crusio WE. Correlations between radial-maze learning and structural variations of septum and hippocampus in rodents. Behav Brain Res 1995; 67:29-41. [PMID: 7748498 DOI: 10.1016/0166-4328(95)91998-3] [Citation(s) in RCA: 91] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Large, but non-pathological, individual differences in neuroanatomy of the brain exist in rodents, which have been shown to covary with behavioral traits. In the present review, we explore the relationship between variations in the extent of the intra- and infrapyramidal mossy fiber projection of the hippocampus and spatial and non-spatial learning capacities in mice and rats. Preliminary data concerning anatomical variation in the septo-hippocampal cholinergic system and its consequences for individual behavior are also presented. We conclude that the hippocampal intra- and infrapyramidal mossy fiber projection is intimately involved in the regulation of spatial, but not of non-spatial learning capabilities. Although lesion studies have shown that a well-functioning cholinergic system is a prerequisite for performance in spatial learning tasks, our preliminary data suggest that individual differences in the cholinergic system do not explain individual differences in learning.
Collapse
Affiliation(s)
- H Schwegler
- Anatomisches Institut der Universität Freiburg, Germany
| | | |
Collapse
|
30
|
Masuda Y, Odashima J, Murai S, Saito H, Itoh M, Itoh T. Radial arm maze behavior in mice when a return to the home cage serves as the reinforcer. Physiol Behav 1994; 56:785-8. [PMID: 7800749 DOI: 10.1016/0031-9384(94)90243-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Male ddY mice were housed in a cage with an eight arm radial maze apparatus for 6 h a day. A water bottle was placed at the central platform. The end of each arm ran to the home cage through a guillotine door (G). Food was placed at the home cage. During the housing in the apparatus, one G was raised and the remaining seven G were lowered. The raised G was changed every 45 min in random order. Mice housed in this apparatus learned efficient strategy to return the home cage by trial and error. When they chose the arm in which the G was lowered on their way to the home cage from the platform, they returned to the platform, then chose a different arm until they were able to enter the home cage. The mice housed in this apparatus mastered the radial maze task on the 7th day. When scopolamine (SCO) was injected, SCO butylbromide had no effect on performance, but SCO hydrobromide (0.2 and 0.4 mg/kg) impaired working memory, dose dependently. These results show that the apparatus is useful for ease in estimating working memory in mice without the use of severe food or water deprivation.
Collapse
Affiliation(s)
- Y Masuda
- Department of Pharmacology, School of Dentistry, Iwate Medical University, Morioka, Japan
| | | | | | | | | | | |
Collapse
|
31
|
Beuzen A, Belzung C, Roullet P. Drug effects in a radial maze designed for dissociation of cues used by mice. Pharmacol Biochem Behav 1994; 48:23-9. [PMID: 8029295 DOI: 10.1016/0091-3057(94)90492-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Scopolamine and amphetamine effects were investigated in a new radial maze. Three distinct procedures were designed to dissociate the use, by C57BL/6 mice, of the different cues available: a procedure where only spatial information was available, a procedure in which both spatial cues and olfactory trials were present, and a nonconfinement procedure where mice could use spatial cues, olfactory trials, and/or algorithmic strategies. We found that while scopolamine impaired performance on the maze in all three procedures, amphetamine tended to improve solving of the maze problem, but only in the procedure where spatial cues alone were available. The results are discussed in relation to hypotheses concerning these drug effects.
Collapse
Affiliation(s)
- A Beuzen
- Laboratoire d'Ethologie et de Psychophysiologie, UFR Sciences et Techniques, Tours, France
| | | | | |
Collapse
|
32
|
Lassalle JM, Halley H, Roullet P. Analysis of behavioral and hippocampal variation in congenic albino and pigmented BALB mice. Behav Genet 1994; 24:161-9. [PMID: 8024533 DOI: 10.1007/bf01067820] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Mice of the BALB/c strain are widely used in behavioral research in spite of the albino condition, which can obscure brain-behavior relationships. We have developed a pigmented BALB strain, congenic to BALB/c, which could be more appropriate for neurogenetic studies that aim at identifying the effects of neurological mutations on behavior. Comparison of inbred albino and pigmented congenic BALB arising from the same litters provides a valuable tool for detecting the consequences of the albino mutation on behavioral performances. Preliminary results presented here show that the albino condition does not interfere with the development and patterns of connectivity of mossy fibers in the hippocampus. On the other hand, obvious coat color-linked differences appear for locomotor activity and defecation scores in the open field, pigmented mice being unexpectedly less active and more reactive than albino, as if better vision increased their reactions to a novel, anxiogenic environment. Finally, pigmented mice do not show better performances in the radial maze, which confirms that the inability of BALB mice for spatial learning in a highly demanding version of this task cannot be attributed to their inability to process visual information.
Collapse
Affiliation(s)
- J M Lassalle
- Laboratoire d'Ethologie et de Psychophysiologie, Université François Rabelais Sciences et Techniques, Tours, France
| | | | | |
Collapse
|