1
|
Gupta S, Bhatnagar RK, Gupta D, K MK, Chopra A. The evolution of N, N-Dimethyltryptamine: from metabolic pathways to brain connectivity. Psychopharmacology (Berl) 2025:10.1007/s00213-025-06777-z. [PMID: 40210737 DOI: 10.1007/s00213-025-06777-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Accepted: 03/21/2025] [Indexed: 04/12/2025]
Abstract
RATIONALE N, N-Dimethyltryptamine (DMT), a potent serotonergic psychedelic, bridges ancient wisdom and modern science. The mechanisms underlying its powerful psychedelic effects and out-of-body experiences continue to intrigue scientists. The functional role of DMT remains ambiguous. This paper explores the endogenous presence of DMT in the human body and its diverse neuroregulatory functions, which influence hierarchical brain connectivity, and the mechanisms driving its psychedelic effects. OBJECTIVE This paper aims to analyze DMT-receptor binding, its effects on neuronal modulation, brain oscillations, and connectivity, and its influence on hallucinations, out-of-body experiences, and cognitive functions. RESULTS DMT administration induces significant changes in brain wave dynamics, including reduced alpha power, increased delta power, and heightened Lempel-Ziv complexity, reflecting enhanced neural signal diversity. Functional neuroimaging studies reveal that DMT enhances global functional connectivity (GFC), particularly in transmodal association cortices such as the salience network, frontoparietal network, and default mode network, correlating with ego dissolution. The receptor density-dependent effects of DMT were mapped to brain regions rich in serotonin 5-HT2A receptors, supporting its role in modulating consciousness and neuroplasticity. CONCLUSION This integrated analysis provides insights into the profound effects of DMT on human cognition, and consciousness, and its role in enhancing natural well-being. As we uncover the endogenous functions of DMT, it becomes clear that the study of its biology reveals a complex interplay between brain chemistry and consciousness.
Collapse
Affiliation(s)
- Swanti Gupta
- Department of Zoology, Dayalbagh Educational Institute, Dayalbagh, Agra, 282005, India
| | - Raj K Bhatnagar
- Insect Resistance Group, International Centre for Genetic Engineering and Biotechnology, Aruna Asaf Ali Marg, New Delhi, 110067, India
| | - Dinesh Gupta
- Translational Bioinformatics Group, International Centre for Genetic Engineering and Biotechnology, Aruna Asaf Ali Marg, New Delhi, 110067, India
| | - Maharaj Kumari K
- Department of Chemistry, Dayalbagh Educational Institute, Dayalbagh, Agra, 282005, India
| | - Amla Chopra
- Department of Zoology, Dayalbagh Educational Institute, Dayalbagh, Agra, 282005, India.
| |
Collapse
|
2
|
Borrelli S, Leclercq S, Pasi M, Maggi P. Cerebral small vessel disease and glymphatic system dysfunction in multiple sclerosis: A narrative review. Mult Scler Relat Disord 2024; 91:105878. [PMID: 39276600 DOI: 10.1016/j.msard.2024.105878] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Revised: 09/03/2024] [Accepted: 09/04/2024] [Indexed: 09/17/2024]
Abstract
As the multiple sclerosis (MS) population ages, the prevalence of vascular comorbidities increases, potentially accelerating disease progression and brain atrophy. Recent studies highlight the prevalence of cerebral small vessel disease (CSVD) in MS, suggesting a potential link between vascular comorbidities and accelerated disability. CSVD affects the brain's small vessels, often leading to identifiable markers on MRI such as enlarged perivascular spaces (EPVS). EPVS are increasingly recognized also in MS and have been associated with vascular comorbidities, lower percentage of MS-specific perivenular lesions, brain atrophy and aging. The exact sequence of event leading to MRI visible EPVS is yet to be determined, but an impaired perivascular brain fluid drainage appears a possible physiopathological explanation for EPVS in both CSVD and MS. In this context, a dysfunction of the brain fluid clearance system - also known as "glymphatic system" - appears associated in MS to aging, neuroinflammation, and vascular dysfunction. Advanced imaging techniques show an impaired glymphatic function in both MS and CSVD. Additionally, lifestyle factors such as physical exercise, diet, and sleep quality appear to influence glymphatic function, potentially revealing novel therapeutic strategies to mitigate microangiopathy and neuroinflammation in MS. This review underscores the potential role of glymphatic dysfunction in the complex and not-yet elucidated interplay between neuroinflammation and CSVD in MS.
Collapse
Affiliation(s)
- Serena Borrelli
- Neuroinflammation Imaging Lab (NIL), Institute of NeuroScience, Université catholique de Louvain, Brussels, Belgium; Department of Neurology, Hôpital Erasme, Hôpital Universitaire de Bruxelles, Université Libre de Brussels, Brussels, Belgium.
| | - Sophie Leclercq
- Laboratory of Nutritional Psychiatry, Institute of NeuroScience, Université catholique de Louvain, Brussels, Belgium
| | - Marco Pasi
- Stroke Unit, Department of Neurology, CIC-IT 1415, CHRU de Tours, INSERM 1253 iBrain, Tours, France
| | - Pietro Maggi
- Neuroinflammation Imaging Lab (NIL), Institute of NeuroScience, Université catholique de Louvain, Brussels, Belgium; Department of Neurology, Cliniques Universitaires Saint-Luc, Université catholique de Louvain, Av. Hippocrate 10, Brussels 1200, Belgium.
| |
Collapse
|
3
|
Madadi AK, Sohn MJ. Advances in Intrathecal Nanoparticle Delivery: Targeting the Blood-Cerebrospinal Fluid Barrier for Enhanced CNS Drug Delivery. Pharmaceuticals (Basel) 2024; 17:1070. [PMID: 39204177 PMCID: PMC11357388 DOI: 10.3390/ph17081070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Revised: 08/02/2024] [Accepted: 08/13/2024] [Indexed: 09/03/2024] Open
Abstract
The blood-cerebrospinal fluid barrier (BCSFB) tightly regulates molecular exchanges between the bloodstream and cerebrospinal fluid (CSF), creating challenges for effective central nervous system (CNS) drug delivery. This review assesses intrathecal (IT) nanoparticle (NP) delivery systems that aim to enhance drug delivery by circumventing the BCSFB, complementing approaches that target the blood-brain barrier (BBB). Active pharmaceutical ingredients (APIs) face hurdles like restricted CNS distribution and rapid clearance, which diminish the efficacy of IT therapies. NPs can be engineered to extend drug circulation times, improve CNS penetration, and facilitate sustained release. This review discusses key pharmacokinetic (PK) parameters essential for the effectiveness of these systems. NPs can quickly traverse the subarachnoid space and remain within the leptomeninges for extended periods, often exceeding three weeks. Some designs enable deeper brain parenchyma penetration. Approximately 80% of NPs in the CSF are cleared through the perivascular glymphatic pathway, with microglia-mediated transport significantly contributing to their paravascular clearance. This review synthesizes recent progress in IT-NP delivery across the BCSFB, highlighting critical findings, ongoing challenges, and the therapeutic potential of surface modifications and targeted delivery strategies.
Collapse
Affiliation(s)
- Ahmad Khalid Madadi
- Department of Biomedical Science, Graduate School of Medicine, Inje University, 75, Bokji-ro, Busanjingu, Busan 47392, Republic of Korea;
| | - Moon-Jun Sohn
- Department of Biomedical Science, Graduate School of Medicine, Inje University, 75, Bokji-ro, Busanjingu, Busan 47392, Republic of Korea;
- Department of Neurosurgery, Neuroscience & Radiosurgery Hybrid Research Center, Inje University Ilsan Paik Hospital, College of Medicine, Juhwa-ro 170, Ilsanseo-gu, Goyang City 10380, Republic of Korea
| |
Collapse
|
4
|
Huang Y, Qiu F, Dziegielewska KM, Koehn LM, Habgood MD, Saunders NR. Effects of paracetamol/acetaminophen on the expression of solute carriers (SLCs) in late-gestation fetal rat brain, choroid plexus and the placenta. Exp Physiol 2024; 109:427-444. [PMID: 38059686 PMCID: PMC10988763 DOI: 10.1113/ep091442] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Accepted: 11/21/2023] [Indexed: 12/08/2023]
Abstract
Solute carriers (SLCs) regulate transfer of a wide range of molecules across cell membranes using facilitative or secondary active transport. In pregnancy, these transporters, expressed at the placental barrier, are important for delivery of nutrients to the fetus, whilst also limiting entry of potentially harmful substances, such as drugs. In the present study, RNA-sequencing analysis was used to investigate expression of SLCs in the fetal (embryonic day 19) rat brain, choroid plexus and placenta in untreated control animals and following maternal paracetamol treatment. In the treated group, paracetamol (15 mg/kg) was administered to dams twice daily for 5 days (from embryonic day 15 to 19). In untreated animals, overall expression of SLCs was highest in the placenta. In the paracetamol treatment group, expression of several SLCs was significantly different compared with control animals, with ion, amino acid, neurotransmitter and sugar transporters most affected. The number of SLC transcripts that changed significantly following treatment was the highest in the choroid plexus and lowest in the brain. All SLC transcripts that changed in the placenta following paracetamol treatment were downregulated. These results suggest that administration of paracetamol during pregnancy could potentially disrupt fetal nutrient homeostasis and affect brain development, resulting in major consequences for the neonate and extending into childhood.
Collapse
Affiliation(s)
- Yifan Huang
- Department of NeuroscienceMonash UniversityMelbourneVictoriaAustralia
| | - Fiona Qiu
- Department of NeuroscienceMonash UniversityMelbourneVictoriaAustralia
| | | | - Liam M. Koehn
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical SciencesMonash UniversityParkvilleVictoriaAustralia
| | - Mark D. Habgood
- Department of NeuroscienceMonash UniversityMelbourneVictoriaAustralia
| | | |
Collapse
|
5
|
Murck H, Fava M, Cusin C, Fatt CC, Trivedi M. Brain ventricle and choroid plexus morphology as predictor of treatment response in major depression: Findings from the EMBARC study. Brain Behav Immun Health 2024; 35:100717. [PMID: 38186634 PMCID: PMC10767278 DOI: 10.1016/j.bbih.2023.100717] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Accepted: 12/18/2023] [Indexed: 01/09/2024] Open
Abstract
Recent observations suggest a role of the volume of the cerebral ventricle volume, corpus callosum (CC) segment volume, in particular that of the central-anterior part, and choroid plexus (CP) volume for treatment resistance of major depressive disorder (MDD). An increased CP volume has been associated with increased inflammatory activity and changes in the structure of the ventricles and corpus callosum. We attempt to replicate and confirm that these imaging markers are associated with clinical outcome in subjects from the EMBARC study, as implied by a recent pilot study. The EMBARC study is a placebo controlled randomized study comparing sertraline vs. placebo in patients with MDD to identify biological markers of therapy resistance. Association of baseline volumes of the lateral ventricles (LVV), choroid plexus volume (CPV) and volume of segments of the CC with treatment response after 4 weeks treatment was evaluated. 171 subjects (61 male, 110 female) completed the 4 week assessments; gender and age were taken into account for this analyses. As previously reported, no treatment effect of sertraline vs. placebo was observed, therefore the study characterized prognostic markers of response in the pooled population. Change in depression severity was identified by the ratio of the Hamilton-Depression rating scale 17 (HAMD-17) at week 4 divided by the HAMD-17 at baseline (HAMD-17 ratio). Volumes of the lateral ventricles and choroid plexi were positively correlated with the HAMD-17 ratio, indication worse outcome with larger ventricles and choroid plexus volumes, whereas the volume of the central-anterior corpus callosum was negatively correlated with the HAMD-17 ratio. Responders (n = 54) had significantly smaller volumes of the lateral ventricles and CP compared to non-responders (n = 117), whereas the volume of mid-anterior CC was significantly larger compared to non-responders (n = 117), confirming our previous findings. In an exploratory way associations between enlarged LVV and CPV and signs of lipid dysregulation were observed. In conclusion, we confirmed that volumes of lateral ventricles, choroid plexi and the mid-anterior corpus callosum are associated with clinical improvement of depression and may be indicators of metabolic/inflammatory activity.
Collapse
Affiliation(s)
- Harald Murck
- Dept. of Psychiatry and Psychotherapy, Philipps-University Marburg, Marburg, Germany
| | - Maurizio Fava
- Department of Psychiatry, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Cristina Cusin
- Department of Psychiatry, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Cherise Chin Fatt
- The University of Texas Southwestern Medical Center, Department of Psychiatry, Center for Depression Research and Clinical Care, Dallas, USA
| | - Madhukar Trivedi
- The University of Texas Southwestern Medical Center, Department of Psychiatry, Center for Depression Research and Clinical Care, Dallas, USA
| |
Collapse
|
6
|
Barlattani T, Grandinetti P, Di Cintio A, Montemagno A, Testa R, D’Amelio C, Olivieri L, Tomasetti C, Rossi A, Pacitti F, De Berardis D. Glymphatic System and Psychiatric Disorders: A Rapid Comprehensive Scoping Review. Curr Neuropharmacol 2024; 22:2016-2033. [PMID: 39234773 PMCID: PMC11333792 DOI: 10.2174/1570159x22666240130091235] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Revised: 07/22/2023] [Accepted: 08/25/2023] [Indexed: 09/06/2024] Open
Abstract
BACKGROUND Since discovering the glymphatic system, there has been a looming interest in exploring its relationship with psychiatric disorders. Recently, increasing evidence suggests an involvement of the glymphatic system in the pathophysiology of psychiatric disorders. However, clear data are still lacking. In this context, this rapid comprehensive PRISMA-ScR (Preferred Reporting Items for Systematic Reviews and Meta-Analyses extension for Scoping Reviews) scoping review aims to identify and analyze current evidence about the relation between the glymphatic system and psychiatric disorders. METHODS We conducted a comprehensive review of the literature and then proceeded to discuss the findings narratively. Tables were then constructed and articles were sorted according to authors, year, title, location of study, sample size, psychiatric disorder, the aim of the study, principal findings, implications. RESULTS Twenty papers were identified as eligible, among which 2 articles on Schizophrenia, 1 on Autism Spectrum Disorders, 2 on Depression, 1 on Depression and Trauma-related Disorders, 1 on Depression and Anxiety, 2 on Anxiety and Sleep Disorders, 8 on Sleep Disorders, 2 on Alcohol use disorder and 1 on Cocaine Use Disorder. CONCLUSION This review suggests a correlation between the glymphatic system and several psychiatric disorders: Schizophrenia, Depression, Anxiety Disorders, Sleep Disorders, Alcohol Use Disorder, Cocaine Use Disorder, Trauma-Related Disorders, and Autism Spectrum Disorders. Impairment of the glymphatic system could play a role in Trauma-Related Disorders, Alcohol Use Disorders, Cocaine Use Disorders, Sleep Disorders, Depression, and Autism Spectrum Disorders. It is important to implement research on this topic and adopt standardized markers and radio diagnostic tools.
Collapse
Affiliation(s)
- Tommaso Barlattani
- Department of Biotechnological and Applied Clinical Sciences (DISCAB), University of L’Aquila, Via Vetoio, Coppito, 67100 L’Aquila, Italy
| | - Paolo Grandinetti
- National Health Service, Department of Mental Health, Psychiatric Service of Diagnosis and Treatment, Hospital G. Mazzini, ASL 4 Teramo, Italy
| | - Alexsander Di Cintio
- Department of Biotechnological and Applied Clinical Sciences (DISCAB), University of L’Aquila, Via Vetoio, Coppito, 67100 L’Aquila, Italy
| | - Alessio Montemagno
- Department of Biotechnological and Applied Clinical Sciences (DISCAB), University of L’Aquila, Via Vetoio, Coppito, 67100 L’Aquila, Italy
| | - Roberta Testa
- National Health Service, Department of Mental Health, Psychiatric Service of Diagnosis and Treatment, Hospital G. Mazzini, ASL 4 Teramo, Italy
| | - Chiara D’Amelio
- Department of Biotechnological and Applied Clinical Sciences (DISCAB), University of L’Aquila, Via Vetoio, Coppito, 67100 L’Aquila, Italy
| | - Luigi Olivieri
- National Health Service, Department of Mental Health, Psychiatric Service of Diagnosis and Treatment, Hospital G. Mazzini, ASL 4 Teramo, Italy
| | - Carmine Tomasetti
- National Health Service, Department of Mental Health, Psychiatric Service of Diagnosis and Treatment, Hospital G. Mazzini, ASL 4 Teramo, Italy
| | - Alessandro Rossi
- Department of Biotechnological and Applied Clinical Sciences (DISCAB), University of L’Aquila, Via Vetoio, Coppito, 67100 L’Aquila, Italy
| | - Francesca Pacitti
- Department of Biotechnological and Applied Clinical Sciences (DISCAB), University of L’Aquila, Via Vetoio, Coppito, 67100 L’Aquila, Italy
| | - Domenico De Berardis
- National Health Service, Department of Mental Health, Psychiatric Service of Diagnosis and Treatment, Hospital G. Mazzini, ASL 4 Teramo, Italy
| |
Collapse
|
7
|
Williams MR, Macdonald CM, Turkheimer FE. Histological examination of choroid plexus epithelia changes in schizophrenia. Brain Behav Immun 2023; 111:292-297. [PMID: 37150267 DOI: 10.1016/j.bbi.2023.04.016] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/25/2023] [Revised: 04/14/2023] [Accepted: 04/30/2023] [Indexed: 05/09/2023] Open
Abstract
BACKGROUND The choroid plexus (CP) produces and secretes most of the cerebrospinal fluid (CSF) of the central nervous system. The CP is suggested to be regulated by descending neurons and by circulating factors and is involved in the interaction between central and peripheral inflammation. Quantitative imaging has demonstrated volumetric CP changes in psychosis, schizophrenia and depression. This study histologically examines CP epithelial cell morphology in these illnesses to identify the biological source of such volumetric changes. METHODS Formalin-fixed paraffin-embedded (FFPE) blocks were obtained bilaterally from the lateral ventricles of 13 cases of sex- and age-matched brains from each of schizophrenia (SZ) with psychosis, major depressive disorder (MDD) and matched controls (NPD). FFPE blocks were sectioned at 7 μm and routinely stained for H&E. Morphological analysis of 180 CP epithelia/case was conducted blindly on digital images collected at x600 magnification. Calcification was assessed in all CP regions manually. RESULTS Analysis with a General Linear Model demonstrated a significant effect of diagnosis on somal width (p = 0.006, R2 = 0.33 R2(adj) = 0.25) demonstrating increased somal width in SZ without psychotic medication versus controls (p = 0.032), but not in medicated SZ cases. No effects were observed in calcification. DISCUSSION The epithelial cells that were examined were attached to the CP fibrous surface, so width expansion describes the primary methods for these cells to expand with adherence to this surface in SZ. The interaction of antipsychotic medication and diagnosis demonstrates that this is an illness-specific change mediated through the DA-system with likely neuronal origin. CP alterations were not found in MDD where they are instead generally associated with heightened allostatic load that was unknown in this cohort.
Collapse
Affiliation(s)
- M R Williams
- Segmentum Analysis, St John's Innovation Park, Cambridge Science Park, UK
| | | | - F E Turkheimer
- Department of Neuroimaging, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK.
| |
Collapse
|
8
|
Örzsik B, Palombo M, Asllani I, Dijk DJ, Harrison NA, Cercignani M. Higher order diffusion imaging as a putative index of human sleep-related microstructural changes and glymphatic clearance. Neuroimage 2023; 274:120124. [PMID: 37084927 DOI: 10.1016/j.neuroimage.2023.120124] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Revised: 03/16/2023] [Accepted: 04/18/2023] [Indexed: 04/23/2023] Open
Abstract
The brain has a unique macroscopic waste clearance system, termed the glymphatic system which utilises perivascular tunnels surrounded by astroglia to promote cerebrospinal-interstitial fluid exchange. Rodent studies have demonstrated a marked increase in glymphatic clearance during sleep which has been linked to a sleep-induced expansion of the extracellular space and concomitant reduction in intracellular volume. However, despite being implicated in the pathophysiology of multiple human neurodegenerative disorders, non-invasive techniques for imaging glymphatic clearance in humans are currently limited. Here we acquired multi-shell diffusion weighted MRI (dwMRI) in twenty-one healthy young participants (6 female, 22.3 ± 3.2 years) each scanned twice, once during wakefulness and once during sleep induced by a combination of one night of sleep deprivation and 10 mg of the hypnotic zolpidem 30 min before scanning. To capture hypothesised sleep-associated changes in intra/extracellular space, dwMRI were analysed using higher order diffusion modelling with the prediction that sleep-associated increases in interstitial (extracellular) fluid volume would result in a decrease in diffusion kurtosis, particularly in areas associated with slow wave generation at the onset of sleep. In line with our hypothesis, we observed a global reduction in diffusion kurtosis (t15=2.82, p = 0.006) during sleep as well as regional reductions in brain areas associated with slow wave generation during early sleep and default mode network areas that are highly metabolically active during wakefulness. Analysis with a higher-order representation of diffusion (MAP-MRI) further indicated that changes within the intra/extracellular domain rather than membrane permeability likely underpin the observed sleep-associated decrease in kurtosis. These findings identify higher-order modelling of dwMRI as a potential new non-invasive method for imaging glymphatic clearance and extend rodent findings to suggest that sleep is also associated with an increase in interstitial fluid volume in humans.
Collapse
Affiliation(s)
- Balázs Örzsik
- Radiology, Leiden University Medical Center, Leiden, the Netherlands; CISC, Brighton and Sussex Medical School, Brighton, United Kingdom.
| | - Marco Palombo
- CUBRIC, Cardiff University, United Kingdom; School of Computer Science and Informatics, Cardiff University, Cardiff, UK
| | - Iris Asllani
- CISC, Brighton and Sussex Medical School, Brighton, United Kingdom; Rochester Institute of Technology, New York, United States
| | - Derk-Jan Dijk
- Surrey Sleep Research Centre, Faculty of Health and Medical Sciences, University of Surrey, Guildford UK; UK Dementia Research Institute Care Research and Technology Centre, Imperial College London and the University of Surrey, Guildford UK
| | | | | |
Collapse
|
9
|
Murck H, Fava M, Cusin C, Chin Fatt C, Trivedi M. Brain Ventricle and Choroid Plexus Morphology as Predictor of Treatment Response: Findings from the EMBARC Study. RESEARCH SQUARE 2023:rs.3.rs-2618151. [PMID: 36909585 PMCID: PMC10002825 DOI: 10.21203/rs.3.rs-2618151/v1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/05/2023]
Abstract
Recent observations suggest a role of the choroid plexus (CP) and cerebral ventricle volume (CV), to identify treatment resistance of major depressive disorder (MDD). We tested the hypothesis that these markers are associated with clinical improvement in subjects from the EMBARC study, as implied by a recent pilot study. The EMBARC study characterized biological markers in a randomized placebo-controlled trial of sertraline vs. placebo in patients with MDD. Association of baseline volumes of CV, CP and of the corpus callosum (CC) with treatment response after 4 weeks treatment were evaluated. 171 subjects (61 male, 110 female) completed the 4 week assessments; gender, site and age were taken into account for this analyses. As previously reported, no treatment effect of sertraline was observed, but prognostic markers for clinical improvement were identified. Responders (n = 54) had significantly smaller volumes of the CP and lateral ventricles, whereas the volume of mid-anterior and mid-posterior CC was significantly larger compared to non-responders (n = 117). A positive correlation between CV volume and CP volume was observed, whereas a negative correlation between CV volume and both central-anterior and central-posterior parts of the CC emerged. In an exploratory way correlations between enlarged VV and CP volume on the one hand and signs of metabolic syndrome, in particular triglyceride plasma concentrations, were observed. A primary abnormality of CP function in MDD may be associated with increased ventricles, compression of white matter volume, which may affect treatment response speed or outcome. Metabolic markers may mediate this relationship.
Collapse
Affiliation(s)
- Harald Murck
- Dept. of Psychiatry and Psychotherapy, Philipps-University Marburg, Marburg, Germany
| | - Maurizio Fava
- Department of Psychiatry, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Cristina Cusin
- Department of Psychiatry, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Cherise Chin Fatt
- The University of Texas Southwestern Medical Center, Department of Psychiatry, Center for Depression Research and Clinical Care, Department of Psychiatry, Dallas, USA
| | - Madhukar Trivedi
- The University of Texas Southwestern Medical Center, Department of Psychiatry, Center for Depression Research and Clinical Care, Department of Psychiatry, Dallas, USA
| |
Collapse
|
10
|
Murck H, Lehr L, Jezova D. A viewpoint on aldosterone and BMI related brain morphology in relation to treatment outcome in patients with major depression. J Neuroendocrinol 2023; 35:e13219. [PMID: 36539978 DOI: 10.1111/jne.13219] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Revised: 11/06/2022] [Accepted: 11/15/2022] [Indexed: 11/21/2022]
Abstract
An abundance of knowledge has been collected describing the involvement of neuroendocrine parameters in major depression. The hypothalamic-pituitary-adrenocortical (HPA) axis regulating cortisol release has been extensively studied; however, attempts to target the HPA axis pharmacologically to treat major depression have failed. This review focuses on the importance of the adrenocortical stress hormone aldosterone, which is released by adrenocorticotropic hormone and angiotensin, and the mineralocorticoid receptor (MR) in depression. Depressed patients, in particular those with atypical depression, have signs of central hyperactivation of the aldosterone sensitive MR, potentially as a consequence of a reactive aldosterone release induced by low blood pressure and as a result of low sensitivity of peripheral MR. This is reflected in reduced heart rate variability, increased salt appetite and sleep changes in this group of patients. In addition, enlarged brain ventricles, compressed corpus callosum and changes of the choroid plexus are associated with increased aldosterone (in relation to cortisol). Furthermore, subjects with these features often show obesity. These characteristics are related to a worse antidepressant treatment outcome. Alterations in choroid plexus function as a consequence of increased aldosterone levels, autonomic dysregulation, metabolic changes and/or inflammation may be involved. The characterization of this regulatory system is in its early days but may identify new targets for therapeutic interventions.
Collapse
Affiliation(s)
- Harald Murck
- Philipps-University Marburg, Marburg, Germany
- Murck-Neuroscience LLC Westfield, Westfield, NJ, USA
| | - Lisa Lehr
- Department of Nephrology, Klinikum Rechts der Isar, Technical University Munich, Munich, Germany
| | - Daniela Jezova
- Slovak Academy of Sciences, Biomedical Research Center, Institute of Experimental Endocrinology, Bratislava, Slovakia
| |
Collapse
|
11
|
Wood CM, Farag VE, Sy JC. Modeling of the effect of cerebrospinal fluid flow modulation on locally delivered drugs in the brain. J Pharmacokinet Pharmacodyn 2022; 49:657-671. [PMID: 36282445 DOI: 10.1007/s10928-022-09827-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Accepted: 10/06/2022] [Indexed: 10/31/2022]
Abstract
Cerebrospinal fluid (CSF) plays a vital role in maintaining brain homeostasis and recent research has focused on elucidating the role that convective flow of CSF plays in brain health. This paper describes a computational compartmental model of how CSF dynamics affect drug pharmacokinetics in the rat brain. Our model implements a local, sustained release approach for drug delivery to the brain. Simulation outputs highlight the potential for modulating CSF flow to improve overall drug pharmacokinetics in the central nervous system and suggest that concomitant CSF modulation and optimized drug release rates from implantable depots can be used to engineer the duration of action of chemotherapeutics. As an example, the tissue exposure of temozolomide, the standard of care treatment for glioblastoma, was modeled in conjunction with two CSF-modulating drugs: acetazolamide and verapamil. Simulations indicate that temozolomide exposure in the interstitial fluid is increased by 25% when using local sustained release delivery systems and concomitant acetazolamide delivery to reduce CSF production. This computational model can be used to produce insight on how to appropriately modulate CSF production and engineer drug release to tailor drug exposure in the brain while limiting off-target effects. As new research continues to elucidate the dynamic roles of CSF, this model can be further improved and leveraged to provide information on how CSF modulation may play a beneficial role in treating a wide variety of neurological disease.
Collapse
Affiliation(s)
- Caroline M Wood
- Department of Biomedical Engineering, Rutgers, The State University of New Jersey, New Brunswick, USA
| | - Veronica E Farag
- Department of Biomedical Engineering, Rutgers, The State University of New Jersey, New Brunswick, USA
| | - Jay C Sy
- Department of Biomedical Engineering, Rutgers, The State University of New Jersey, New Brunswick, USA.
| |
Collapse
|
12
|
Dabbagh F, Schroten H, Schwerk C. In Vitro Models of the Blood–Cerebrospinal Fluid Barrier and Their Applications in the Development and Research of (Neuro)Pharmaceuticals. Pharmaceutics 2022; 14:pharmaceutics14081729. [PMID: 36015358 PMCID: PMC9412499 DOI: 10.3390/pharmaceutics14081729] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Revised: 08/11/2022] [Accepted: 08/16/2022] [Indexed: 11/30/2022] Open
Abstract
The pharmaceutical research sector has been facing the challenge of neurotherapeutics development and its inherited high-risk and high-failure-rate nature for decades. This hurdle is partly attributable to the presence of brain barriers, considered both as obstacles and opportunities for the entry of drug substances. The blood–cerebrospinal fluid (CSF) barrier (BCSFB), an under-studied brain barrier site compared to the blood–brain barrier (BBB), can be considered a potential therapeutic target to improve the delivery of CNS therapeutics and provide brain protection measures. Therefore, leveraging robust and authentic in vitro models of the BCSFB can diminish the time and effort spent on unproductive or redundant development activities by a preliminary assessment of the desired physiochemical behavior of an agent toward this barrier. To this end, the current review summarizes the efforts and progresses made to this research area with a notable focus on the attribution of these models and applied techniques to the pharmaceutical sector and the development of neuropharmacological therapeutics and diagnostics. A survey of available in vitro models, with their advantages and limitations and cell lines in hand will be provided, followed by highlighting the potential applications of such models in the (neuro)therapeutics discovery and development pipelines.
Collapse
|
13
|
Targeting choroid plexus epithelium as a novel therapeutic strategy for hydrocephalus. J Neuroinflammation 2022; 19:156. [PMID: 35715859 PMCID: PMC9205094 DOI: 10.1186/s12974-022-02500-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2021] [Accepted: 06/01/2022] [Indexed: 11/25/2022] Open
Abstract
The choroid plexus is a tissue located in the lateral ventricles of the brain and is composed mainly of choroid plexus epithelium cells. The main function is currently thought to be the secretion of cerebrospinal fluid and the regulation of its pH, and more functions are gradually being demonstrated. Assistance in the removal of metabolic waste and participation in the apoptotic pathway are also the functions of choroid plexus. Besides, it helps to repair the brain by regulating the secretion of neuropeptides and the delivery of drugs. It is involved in the immune response to assist in the clearance of infections in the central nervous system. It is now believed that the choroid plexus is in an inflammatory state after damage to the brain. This state, along with changes in the cilia, is thought to be an abnormal physiological state of the choroid plexus, which in turn leads to abnormal conditions in cerebrospinal fluid and triggers hydrocephalus. This review describes the pathophysiological mechanism of hydrocephalus following choroid plexus epithelium cell abnormalities based on the normal physiological functions of choroid plexus epithelium cells, and analyzes the attempts and future developments of using choroid plexus epithelium cells as a therapeutic target for hydrocephalus.
Collapse
|
14
|
Andreassen SN, Toft-Bertelsen TL, Wardman JH, Villadsen R, MacAulay N. Transcriptional profiling of transport mechanisms and regulatory pathways in rat choroid plexus. Fluids Barriers CNS 2022; 19:44. [PMID: 35659263 PMCID: PMC9166438 DOI: 10.1186/s12987-022-00335-x] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Accepted: 05/02/2022] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND Dysregulation of brain fluid homeostasis associates with brain pathologies in which fluid accumulation leads to elevated intracranial pressure. Surgical intervention remains standard care, since specific and efficient pharmacological treatment options are limited for pathologies with disturbed brain fluid homeostasis. Such lack of therapeutic targets originates, in part, from the incomplete map of the molecular mechanisms underlying cerebrospinal fluid (CSF) secretion by the choroid plexus. METHODS The transcriptomic profile of rat choroid plexus was generated by RNA Sequencing (RNAseq) of whole tissue and epithelial cells captured by fluorescence-activated cell sorting (FACS), and compared to proximal tubules. The bioinformatic analysis comprised mapping to reference genome followed by filtering for type, location, and association with alias and protein function. The transporters and associated regulatory modules were arranged in discovery tables according to their transcriptional abundance and tied together in association network analysis. RESULTS The transcriptomic profile of choroid plexus displays high similarity between sex and species (human, rat, and mouse) and lesser similarity to another high-capacity fluid-transporting epithelium, the proximal tubules. The discovery tables provide lists of transport mechanisms that could participate in CSF secretion and suggest regulatory candidates. CONCLUSIONS With quantification of the transport protein transcript abundance in choroid plexus and their potentially linked regulatory modules, we envision a molecular tool to devise rational hypotheses regarding future delineation of choroidal transport proteins involved in CSF secretion and their regulation. Our vision is to obtain future pharmaceutical targets towards modulation of CSF production in pathologies involving disturbed brain water dynamics.
Collapse
Affiliation(s)
- Søren N Andreassen
- Department of Neuroscience, Faculty of Health and Medical Sciences, University of Copenhagen, Blegdamsvej 3, 2200, Copenhagen, Denmark
| | - Trine L Toft-Bertelsen
- Department of Neuroscience, Faculty of Health and Medical Sciences, University of Copenhagen, Blegdamsvej 3, 2200, Copenhagen, Denmark
| | - Jonathan H Wardman
- Department of Neuroscience, Faculty of Health and Medical Sciences, University of Copenhagen, Blegdamsvej 3, 2200, Copenhagen, Denmark
| | - René Villadsen
- Department of Cellular and Molecular Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Blegdamsvej 3, 2200, Copenhagen, Denmark
| | - Nanna MacAulay
- Department of Neuroscience, Faculty of Health and Medical Sciences, University of Copenhagen, Blegdamsvej 3, 2200, Copenhagen, Denmark.
| |
Collapse
|
15
|
Zhang D, Li X, Li B. Glymphatic System Dysfunction in Central Nervous System Diseases and Mood Disorders. Front Aging Neurosci 2022; 14:873697. [PMID: 35547631 PMCID: PMC9082304 DOI: 10.3389/fnagi.2022.873697] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Accepted: 03/31/2022] [Indexed: 12/13/2022] Open
Abstract
The glymphatic system, a recently discovered macroscopic waste removal system in the brain, has many unknown aspects, especially its driving forces and relationship with sleep, and thus further explorations of the relationship between the glymphatic system and a variety of possible related diseases are urgently needed. Here, we focus on the progress in current research on the role of the glymphatic system in several common central nervous system diseases and mood disorders, discuss the structural and functional abnormalities of the glymphatic system which may occur before or during the pathophysiological progress and the possible underlying mechanisms. We emphasize the relationship between sleep and the glymphatic system under pathological conditions and summarize the common imaging techniques for the glymphatic system currently available. The perfection of the glymphatic system hypothesis and the exploration of the effects of aging and endocrine factors on the central and peripheral regulatory pathways through the glymphatic system still require exploration in the future.
Collapse
Affiliation(s)
- Dianjun Zhang
- Department of Forensic Analytical Toxicology, School of Forensic Medicine, China Medical University, Shenyang, China
- Liaoning Province Key Laboratory of Forensic Bio-evidence Sciences, School of Forensic Medicine, China Medical University, Shenyang, China
- China Medical University Center of Forensic Investigation, School of Forensic Medicine, China Medical University, Shenyang, China
| | - Xinyu Li
- Department of Forensic Analytical Toxicology, School of Forensic Medicine, China Medical University, Shenyang, China
- Liaoning Province Key Laboratory of Forensic Bio-evidence Sciences, School of Forensic Medicine, China Medical University, Shenyang, China
- China Medical University Center of Forensic Investigation, School of Forensic Medicine, China Medical University, Shenyang, China
| | - Baoman Li
- Department of Forensic Analytical Toxicology, School of Forensic Medicine, China Medical University, Shenyang, China
- Liaoning Province Key Laboratory of Forensic Bio-evidence Sciences, School of Forensic Medicine, China Medical University, Shenyang, China
- China Medical University Center of Forensic Investigation, School of Forensic Medicine, China Medical University, Shenyang, China
| |
Collapse
|
16
|
Abstract
The brain harbors a unique ability to, figuratively speaking, shift its gears. During wakefulness, the brain is geared fully toward processing information and behaving, while homeostatic functions predominate during sleep. The blood-brain barrier establishes a stable environment that is optimal for neuronal function, yet the barrier imposes a physiological problem; transcapillary filtration that forms extracellular fluid in other organs is reduced to a minimum in brain. Consequently, the brain depends on a special fluid [the cerebrospinal fluid (CSF)] that is flushed into brain along the unique perivascular spaces created by astrocytic vascular endfeet. We describe this pathway, coined the term glymphatic system, based on its dependency on astrocytic vascular endfeet and their adluminal expression of aquaporin-4 water channels facing toward CSF-filled perivascular spaces. Glymphatic clearance of potentially harmful metabolic or protein waste products, such as amyloid-β, is primarily active during sleep, when its physiological drivers, the cardiac cycle, respiration, and slow vasomotion, together efficiently propel CSF inflow along periarterial spaces. The brain's extracellular space contains an abundance of proteoglycans and hyaluronan, which provide a low-resistance hydraulic conduit that rapidly can expand and shrink during the sleep-wake cycle. We describe this unique fluid system of the brain, which meets the brain's requisites to maintain homeostasis similar to peripheral organs, considering the blood-brain-barrier and the paths for formation and egress of the CSF.
Collapse
Affiliation(s)
- Martin Kaag Rasmussen
- Center for Translational Neuromedicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Humberto Mestre
- Center for Translational Neuromedicine, University of Rochester Medical Center, Rochester, New York
| | - Maiken Nedergaard
- Center for Translational Neuromedicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
- Center for Translational Neuromedicine, University of Rochester Medical Center, Rochester, New York
| |
Collapse
|
17
|
Lima MN, Freitas RJRX, Passos BABR, Darze AMG, Castro-Faria-Neto HC, Maron-Gutierrez T. Neurovascular Interactions in Malaria. Neuroimmunomodulation 2021; 28:108-117. [PMID: 33951667 DOI: 10.1159/000515557] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/22/2020] [Accepted: 02/23/2021] [Indexed: 11/19/2022] Open
Abstract
Malaria is caused by Plasmodium infection and remains a serious public health problem worldwide, despite control efforts. Malaria can progress to severe forms, affecting multiple organs, including the brain causing cerebral malaria (CM). CM is the most severe neurological complication of malaria, and cognitive and behavior deficits are commonly reported in surviving patients. The number of deaths from malaria has been reducing in recent years, and as a consequence, neurological sequelae have been more evident. Neurological damage in malaria might be related to the neuroinflammation, characterized by glia cell activation, neuronal apoptosis and changes in the blood-brain barrier (BBB) integrity. The neurovascular unit (NVU) is responsible for maintaining the homeostasis of the BBB. Endothelial and pericytes cells in the cerebral microvasculature and neural cells, as astrocytes, neurons, and microglia, compose the NVU. The NVU can be disturbed by parasite metabolic products, such as heme and hemozoin, or cytokines that can promote activation of endothelial and glial cells and lead to increased BBB permeability and subsequently neurodegeneration. In this review, we will approach the main changes that happen in the cells of the NVU due to neuroinflammation caused by malaria infection, and elucidate how the systemic pathophysiology is involved in the onset and progression of CM.
Collapse
Affiliation(s)
- Maiara N Lima
- Laboratory of Immunopharmacology, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Fiocruz, Rio de Janeiro, Brazil
| | - Rodrigo J R X Freitas
- Laboratory of Immunopharmacology, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Fiocruz, Rio de Janeiro, Brazil
| | - Beatriz A B R Passos
- Laboratory of Immunopharmacology, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Fiocruz, Rio de Janeiro, Brazil
| | - Ana Maria G Darze
- Laboratory of Immunopharmacology, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Fiocruz, Rio de Janeiro, Brazil
| | - Hugo C Castro-Faria-Neto
- Laboratory of Immunopharmacology, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Fiocruz, Rio de Janeiro, Brazil
| | - Tatiana Maron-Gutierrez
- Laboratory of Immunopharmacology, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Fiocruz, Rio de Janeiro, Brazil
- National Institute of Science and Technology on Neuroimmunomodulation, Rio de Janeiro, Brazil
| |
Collapse
|
18
|
Direct Measurement of Cerebrospinal Fluid Production in Mice. Cell Rep 2020; 33:108524. [PMID: 33357428 PMCID: PMC8186543 DOI: 10.1016/j.celrep.2020.108524] [Citation(s) in RCA: 72] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2020] [Revised: 08/12/2020] [Accepted: 11/23/2020] [Indexed: 11/23/2022] Open
Abstract
The emerging interest in brain fluid transport has prompted a need for techniques that provide an understanding of what factors regulate cerebrospinal fluid (CSF) production. Here, we describe a methodology for direct quantification of CSF production in awake mice. We measure CSF production by placing a catheter in a lateral ventricle, while physically blocking outflow from the 4th ventricle. Using this methodology, we show that CSF production increases during isoflurane anesthesia, and to a lesser extent with ketamine/xylazine anesthesia, relative to the awake state. Aged mice have reduced CSF production, which is even lower in aged mice overexpressing amyloid-β. Unexpectedly, CSF production in young female mice is 30% higher than in age-matched males. Altogether, the present observations imply that a reduction in CSF production might contribute to the age-related risk of proteinopathies but that the rate of CSF production and glymphatic fluid transport are not directly linked. Liu et al. develop a method for direct quantification of cerebrospinal fluid (CSF) production in awake mice. Using this method, the authors evaluate the effect of brain states, ages, sex, anesthetic types, and amyloid-β burden on CSF production.
Collapse
|
19
|
Houlihan LM, Marks C. Cerebrospinal fluid hydrodynamics in arachnoid cyst patients with persistent idiopathic intracranial hypertension: A case series and review. Surg Neurol Int 2020; 11:237. [PMID: 32874740 PMCID: PMC7451167 DOI: 10.25259/sni_129_2020] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2020] [Accepted: 07/20/2020] [Indexed: 01/04/2023] Open
Abstract
Background: A clear connection has been established between arachnoid cysts (ACs) and the evolution of idiopathic intracranial hypertension (IIH), a connection, which is presently not well understood. Cerebrospinal fluid (CSF) is an integral element of this condition. Little is known about either the influence of AC on CSF hydrodynamics or the specific nature of CSF, which contributes to the complex pathology of IIH. Case Description: This study aimed to chronicle in detail four patients with previously treated intracranial ACs, who developed persistent IIH. This series and review aims to identify and qualitatively analyze the multiple constituents, which could possibly elucidate the intrinsic relationship between arachnoid cyst-induced IIH and CSF hydrodynamics. A retrospective analysis of the medical records of four patients admitted to the institution’s neurosurgery department during the period of 1994–2013 was completed. This study investigated discernible aspects linking CSF pathophysiology with the development of IIH in AC patients. Four male patients, ranging from 3 to 44 years of age at presentation, had a left-sided arachnoid cyst treated surgically. All four patients subsequently developed IIH. Three patients remain persistently symptomatic. Conclusion: IIH associated with AC is a hydrodynamic disorder. The full discovery of its fluctuant pathophysiology is the only way to identify an effective standard for the management and treatment of this condition.
Collapse
Affiliation(s)
| | - Charlie Marks
- Department of Neurosurgery, Cork University Hospital, Cork, Ireland
| |
Collapse
|
20
|
Moura RP, Pacheco C, Pêgo AP, des Rieux A, Sarmento B. Lipid nanocapsules to enhance drug bioavailability to the central nervous system. J Control Release 2020; 322:390-400. [PMID: 32247807 DOI: 10.1016/j.jconrel.2020.03.042] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2020] [Revised: 03/27/2020] [Accepted: 03/28/2020] [Indexed: 12/15/2022]
Abstract
The central nervous system (CNS), namely the brain, still remains as the hardest area of the human body to achieve adequate concentration levels of most drugs, mainly due to the limiting behavior of its physical and biological defenses. Lipid nanocapsules emerge as a versatile platform to tackle those barriers, and efficiently delivery different drug payloads due to their numerous advantages. They can be produced in a fast, solvent-free and scalable-up process, and their properties can be fine-tuned for to make an optimal brain drug delivery vehicle. Moreover, lipid nanocapsule surface modification can further improve their bioavailability towards the central nervous system. Coupling these features with alternative delivery methods that stem to disrupt or fully circumvent the blood-brain barrier may fully harness the therapeutic advance that lipid nanocapsules can supply to current treatment options. Thus, this review intends to critically address the development of lipid nanocapsules, as well as to highlight the key features that can be modulated to ameliorate their properties towards the central nervous system delivery, mainly through intravenous methods, and how the pathological microenvironment of the CNS can be taken advantage of. The different routes to promote drug delivery towards the brain parenchyma are also discussed, as well as the synergetic effect that can be obtained by combining modified lipid nanocapsules with new/smart administration routes.
Collapse
Affiliation(s)
- Rui Pedro Moura
- I3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Rua Alfredo Allen 208, 4200-135 Porto, Portugal; INEB - Instituto de Engenharia Biomédica, Universidade do Porto, Rua Alfredo Allen 208, 4200-135 Porto, Portugal; ICBAS - Instituto de Ciências Biomédicas Abel Salazar, Universidade do Porto, Rua de Jorge Viterbo Ferreira 228, 4050-313 Porto, Portugal; CESPU - Instituto de Investigação e Formação Avançada em Ciências e Tecnologias da Saúde, Rua Central de Gandra 1317, 4585-116 Gandra, Portugal
| | - Catarina Pacheco
- I3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Rua Alfredo Allen 208, 4200-135 Porto, Portugal; INEB - Instituto de Engenharia Biomédica, Universidade do Porto, Rua Alfredo Allen 208, 4200-135 Porto, Portugal; CESPU - Instituto de Investigação e Formação Avançada em Ciências e Tecnologias da Saúde, Rua Central de Gandra 1317, 4585-116 Gandra, Portugal
| | - Ana Paula Pêgo
- I3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Rua Alfredo Allen 208, 4200-135 Porto, Portugal; INEB - Instituto de Engenharia Biomédica, Universidade do Porto, Rua Alfredo Allen 208, 4200-135 Porto, Portugal; ICBAS - Instituto de Ciências Biomédicas Abel Salazar, Universidade do Porto, Rua de Jorge Viterbo Ferreira 228, 4050-313 Porto, Portugal; FEUP - Faculdade de Engenharia da Universidade do Porto, Rua Dr. Roberto Frias s/n, 4200-465 Porto, Portugal
| | - Anne des Rieux
- Université Catholique de Louvain, Louvain Drug Research Institute, Advanced Drug Delivery and Biomaterials, Avenue E. Mounier 73, 1200 Brussels, Belgium
| | - Bruno Sarmento
- I3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Rua Alfredo Allen 208, 4200-135 Porto, Portugal; INEB - Instituto de Engenharia Biomédica, Universidade do Porto, Rua Alfredo Allen 208, 4200-135 Porto, Portugal; CESPU - Instituto de Investigação e Formação Avançada em Ciências e Tecnologias da Saúde, Rua Central de Gandra 1317, 4585-116 Gandra, Portugal.
| |
Collapse
|
21
|
Mirra S, Marfany G, Garcia-Fernàndez J. Under pressure: Cerebrospinal fluid contribution to the physiological homeostasis of the eye. Semin Cell Dev Biol 2019; 102:40-47. [PMID: 31761444 DOI: 10.1016/j.semcdb.2019.11.003] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2019] [Accepted: 11/05/2019] [Indexed: 01/27/2023]
Abstract
The cerebrospinal fluid (CSF) is a waterly, colorless fluid contained within the brain ventricles and the cranial and spinal subarachnoid spaces. CSF physiological functions range from hydromechanical protection of the central nervous system (CNS) to CNS modulation of developmental processes and regulation of interstitial fluid homeostasis. Optic nerve (ON) is surrounded by CSF circulating in the subarachnoid spaces and is exposed to both CSF (CSFP) and intra ocular (IOP) pressures, which converge at the lamina cribrosa (LC) as two opposite forces. The trans-lamina cribrosa pressure gradient (TLPG) is defined as IOP - CSFP and its alterations (due either to an elevation in IOP or a reduction in ICP) could result in structural damaging of the ON, including glaucomatous changes. The purpose of this review is to update the readers on the CSF contribution in controlling the functions/dysfunctions of ON by regulating homeostasis at LC. We also highlight emerging parallelisms regarding the expression of cilia-related genes in the regulation of common functions of body fluids in both brain and eye structures.
Collapse
Affiliation(s)
- Serena Mirra
- Department of Genetics, Microbiology and Statistics, Faculty of Biology, and Institut de Biomedicina (IBUB), University of Barcelona, Barcelona, Spain; Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Spain.
| | - Gemma Marfany
- Department of Genetics, Microbiology and Statistics, Faculty of Biology, and Institut de Biomedicina (IBUB), University of Barcelona, Barcelona, Spain; Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Spain.
| | - Jordi Garcia-Fernàndez
- Department of Genetics, Microbiology and Statistics, Faculty of Biology, and Institut de Biomedicina (IBUB), University of Barcelona, Barcelona, Spain.
| |
Collapse
|
22
|
Triarico S, Maurizi P, Mastrangelo S, Attinà G, Capozza MA, Ruggiero A. Improving the Brain Delivery of Chemotherapeutic Drugs in Childhood Brain Tumors. Cancers (Basel) 2019; 11:824. [PMID: 31200562 PMCID: PMC6627959 DOI: 10.3390/cancers11060824] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2019] [Revised: 05/27/2019] [Accepted: 06/11/2019] [Indexed: 12/20/2022] Open
Abstract
The central nervous system (CNS) may be considered as a sanctuary site, protected from systemic chemotherapy by the meninges, the cerebrospinal fluid (CSF) and the blood-brain barrier (BBB). Consequently, parenchymal and CSF exposure of most antineoplastic agents following intravenous (IV) administration is lower than systemic exposure. In this review, we describe the different strategies developed to improve delivery of antineoplastic agents into the brain in primary and metastatic CNS tumors. We observed that several methods, such as BBB disruption (BBBD), intra-arterial (IA) and intracavitary chemotherapy, are not routinely used because of their invasiveness and potentially serious adverse effects. Conversely, intrathecal (IT) chemotherapy has been safely and widely practiced in the treatment of pediatric primary and metastatic tumors, replacing the neurotoxic cranial irradiation for the treatment of childhood lymphoma and acute lymphoblastic leukemia (ALL). IT chemotherapy may be achieved through lumbar puncture (LP) or across the Ommaya intraventricular reservoir, which are both described in this review. Additionally, we overviewed pharmacokinetics and toxic aspects of the main IT antineoplastic drugs employed for primary or metastatic childhood CNS tumors (such as methotrexate, cytosine arabinoside, hydrocortisone), with a concise focus on new and less used IT antineoplastic agents.
Collapse
Affiliation(s)
- Silvia Triarico
- Pediatric Oncology Unit, Fondazione Policlinico Universitario A. Gemelli IRCCS, Università Cattolica Sacro Cuore, 00168 Rome, Italy.
| | - Palma Maurizi
- Pediatric Oncology Unit, Fondazione Policlinico Universitario A. Gemelli IRCCS, Università Cattolica Sacro Cuore, 00168 Rome, Italy.
| | - Stefano Mastrangelo
- Pediatric Oncology Unit, Fondazione Policlinico Universitario A. Gemelli IRCCS, Università Cattolica Sacro Cuore, 00168 Rome, Italy.
| | - Giorgio Attinà
- Pediatric Oncology Unit, Fondazione Policlinico Universitario A. Gemelli IRCCS, Università Cattolica Sacro Cuore, 00168 Rome, Italy.
| | - Michele Antonio Capozza
- Pediatric Oncology Unit, Fondazione Policlinico Universitario A. Gemelli IRCCS, Università Cattolica Sacro Cuore, 00168 Rome, Italy.
| | - Antonio Ruggiero
- Pediatric Oncology Unit, Fondazione Policlinico Universitario A. Gemelli IRCCS, Università Cattolica Sacro Cuore, 00168 Rome, Italy.
| |
Collapse
|
23
|
Baraniuk JN, Shivapurkar N. Exercise - induced changes in cerebrospinal fluid miRNAs in Gulf War Illness, Chronic Fatigue Syndrome and sedentary control subjects. Sci Rep 2017; 7:15338. [PMID: 29127316 PMCID: PMC5681566 DOI: 10.1038/s41598-017-15383-9] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2017] [Accepted: 10/11/2017] [Indexed: 01/06/2023] Open
Abstract
Gulf War Illness (GWI) and Chronic Fatigue Syndrome (CFS) have similar profiles of pain, fatigue, cognitive dysfunction and exertional exhaustion. Post-exertional malaise suggests exercise alters central nervous system functions. Lumbar punctures were performed in GWI, CFS and control subjects after (i) overnight rest (nonexercise) or (ii) submaximal bicycle exercise. Exercise induced postural tachycardia in one third of GWI subjects (Stress Test Activated Reversible Tachycardia, START). The remainder were Stress Test Originated Phantom Perception (STOPP) subjects. MicroRNAs (miRNA) in cerebrospinal fluid were amplified by quantitative PCR. Levels were equivalent between nonexercise GWI (n = 22), CFS (n = 43) and control (n = 22) groups. After exercise, START (n = 22) had significantly lower miR-22-3p than control (n = 15) and STOPP (n = 42), but higher miR-9-3p than STOPP. All post-exercise groups had significantly reduced miR-328 and miR-608 compared to nonexercise groups; these may be markers of exercise effects on the brain. Six miRNAs were significantly elevated and 12 diminished in post-exercise START, STOPP and control compared to nonexercise groups. CFS had 12 diminished miRNAs after exercise. Despite symptom overlap of CFS, GWI and other illnesses in their differential diagnosis, exercise-induced miRNA patterns in cerebrospinal fluid indicated distinct mechanisms for post-exertional malaise in CFS and START and STOPP phenotypes of GWI.
Collapse
Affiliation(s)
- James N Baraniuk
- Division of Rheumatology, Immunology and Allergy, Department of Medicine, Georgetown University, Washington, District of Columbia, United States of America.
| | - Narayan Shivapurkar
- Division of Rheumatology, Immunology and Allergy, Department of Medicine, Georgetown University, Washington, District of Columbia, United States of America
| |
Collapse
|
24
|
Differential neuronal vulnerability identifies IGF-2 as a protective factor in ALS. Sci Rep 2016; 6:25960. [PMID: 27180807 PMCID: PMC4867585 DOI: 10.1038/srep25960] [Citation(s) in RCA: 74] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2016] [Accepted: 04/25/2016] [Indexed: 12/13/2022] Open
Abstract
The fatal disease amyotrophic lateral sclerosis (ALS) is characterized by the loss of somatic motor neurons leading to muscle wasting and paralysis. However, motor neurons in the oculomotor nucleus, controlling eye movement, are for unknown reasons spared. We found that insulin-like growth factor 2 (IGF-2) was maintained in oculomotor neurons in ALS and thus could play a role in oculomotor resistance in this disease. We also showed that IGF-1 receptor (IGF-1R), which mediates survival pathways upon IGF binding, was highly expressed in oculomotor neurons and on extraocular muscle endplate. The addition of IGF-2 induced Akt phosphorylation, glycogen synthase kinase-3β phosphorylation and β-catenin levels while protecting ALS patient motor neurons. IGF-2 also rescued motor neurons derived from spinal muscular atrophy (SMA) patients from degeneration. Finally, AAV9::IGF-2 delivery to muscles of SOD1G93A ALS mice extended life-span by 10%, while preserving motor neurons and inducing motor axon regeneration. Thus, our studies demonstrate that oculomotor-specific expression can be utilized to identify candidates that protect vulnerable motor neurons from degeneration.
Collapse
|
25
|
Benarroch EE. Choroid plexus--CSF system: Recent developments and clinical correlations. Neurology 2015; 86:286-96. [PMID: 26683646 DOI: 10.1212/wnl.0000000000002298] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
|
26
|
Demeestere D, Libert C, Vandenbroucke RE. Therapeutic implications of the choroid plexus-cerebrospinal fluid interface in neuropsychiatric disorders. Brain Behav Immun 2015; 50:1-13. [PMID: 26116435 DOI: 10.1016/j.bbi.2015.06.010] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/02/2015] [Revised: 05/29/2015] [Accepted: 06/13/2015] [Indexed: 12/31/2022] Open
Abstract
The choroid plexus (CP) comprises an epithelial monolayer that forms an important physical, enzymatic and immunologic barrier, called the blood-cerebrospinal fluid barrier (BCSFB). It is a highly vascularized organ located in the brain ventricles that is key in maintaining brain homeostasis as it produces cerebrospinal fluid (CSF) and has other important secretory functions. Furthermore, the CP-CSF interface plays a putative role in neurogenesis and has been implicated in neuropsychiatric diseases such as the neurodevelopmental disorders schizophrenia and autism. A role for this CNS border was also implicated in sleep disturbances and chronic and/or severe stress, which are risk factors for the development of neuropsychiatric conditions. Understanding the mechanisms by which disturbance of the homeostasis at the CP-CSF interface is involved in these different chronic low-grade inflammatory diseases can give new insights into therapeutic strategies. Hence, this review discusses the different roles that have been suggested so far for the CP in these neuropsychiatric disorders, with special attention to potential therapeutic applications.
Collapse
Affiliation(s)
- Delphine Demeestere
- Inflammation Research Center, VIB, Technologiepark 927, B-9052 Zwijnaarde, Ghent, Belgium; Department of Biomedical Molecular Biology, Ghent University, Technologiepark 927, B-9052 Zwijnaarde, Ghent, Belgium
| | - Claude Libert
- Inflammation Research Center, VIB, Technologiepark 927, B-9052 Zwijnaarde, Ghent, Belgium; Department of Biomedical Molecular Biology, Ghent University, Technologiepark 927, B-9052 Zwijnaarde, Ghent, Belgium
| | - Roosmarijn E Vandenbroucke
- Inflammation Research Center, VIB, Technologiepark 927, B-9052 Zwijnaarde, Ghent, Belgium; Department of Biomedical Molecular Biology, Ghent University, Technologiepark 927, B-9052 Zwijnaarde, Ghent, Belgium.
| |
Collapse
|
27
|
Disruption in the Blood-Brain Barrier: The Missing Link between Brain and Body Inflammation in Bipolar Disorder? Neural Plast 2015; 2015:708306. [PMID: 26075104 PMCID: PMC4444594 DOI: 10.1155/2015/708306] [Citation(s) in RCA: 133] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2014] [Revised: 02/02/2015] [Accepted: 02/05/2015] [Indexed: 01/01/2023] Open
Abstract
The blood-brain barrier (BBB) regulates the transport of micro- and macromolecules between the peripheral blood and the central nervous system (CNS) in order to maintain optimal levels of essential nutrients and neurotransmitters in the brain. In addition, the BBB plays a critical role protecting the CNS against neurotoxins. There has been growing evidence that BBB disruption is associated with brain inflammatory conditions such as Alzheimer's disease and multiple sclerosis. Considering the increasing role of inflammation and oxidative stress in the pathophysiology of bipolar disorder (BD), here we propose a novel model wherein transient or persistent disruption of BBB integrity is associated with decreased CNS protection and increased permeability of proinflammatory (e.g., cytokines, reactive oxygen species) substances from the peripheral blood into the brain. These events would trigger the activation of microglial cells and promote localized damage to oligodendrocytes and the myelin sheath, ultimately compromising myelination and the integrity of neural circuits. The potential implications for research in this area and directions for future studies are discussed.
Collapse
|
28
|
Jessen NA, Munk ASF, Lundgaard I, Nedergaard M. The Glymphatic System: A Beginner's Guide. Neurochem Res 2015; 40:2583-99. [PMID: 25947369 DOI: 10.1007/s11064-015-1581-6] [Citation(s) in RCA: 1228] [Impact Index Per Article: 122.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2015] [Revised: 04/06/2015] [Accepted: 04/10/2015] [Indexed: 12/16/2022]
Abstract
The glymphatic system is a recently discovered macroscopic waste clearance system that utilizes a unique system of perivascular tunnels, formed by astroglial cells, to promote efficient elimination of soluble proteins and metabolites from the central nervous system. Besides waste elimination, the glymphatic system also facilitates brain-wide distribution of several compounds, including glucose, lipids, amino acids, growth factors, and neuromodulators. Intriguingly, the glymphatic system function mainly during sleep and is largely disengaged during wakefulness. The biological need for sleep across all species may therefore reflect that the brain must enter a state of activity that enables elimination of potentially neurotoxic waste products, including β-amyloid. Since the concept of the glymphatic system is relatively new, we will here review its basic structural elements, organization, regulation, and functions. We will also discuss recent studies indicating that glymphatic function is suppressed in various diseases and that failure of glymphatic function in turn might contribute to pathology in neurodegenerative disorders, traumatic brain injury and stroke.
Collapse
Affiliation(s)
- Nadia Aalling Jessen
- School of Medicine and Dentistry, University of Rochester Medical Center, 601 Elmwood Ave, Box 645, Rochester, NY, 14642, USA.
| | - Anne Sofie Finmann Munk
- School of Medicine and Dentistry, University of Rochester Medical Center, 601 Elmwood Ave, Box 645, Rochester, NY, 14642, USA
| | - Iben Lundgaard
- School of Medicine and Dentistry, University of Rochester Medical Center, 601 Elmwood Ave, Box 645, Rochester, NY, 14642, USA
| | - Maiken Nedergaard
- School of Medicine and Dentistry, University of Rochester Medical Center, 601 Elmwood Ave, Box 645, Rochester, NY, 14642, USA
| |
Collapse
|
29
|
Fujita A, Inanobe A, Hibino H, Nielsen S, Ottersen OP, Kurachi Y. Clustering of Kir4.1 at specialized compartments of the lateral membrane in ependymal cells of rat brain. Cell Tissue Res 2014; 359:627-634. [PMID: 25380566 DOI: 10.1007/s00441-014-2030-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2014] [Accepted: 10/09/2014] [Indexed: 10/24/2022]
Abstract
Brain ependymal cells, which form an epithelial layer covering the cerebral ventricles, have been shown to play a role in the regulation of cerebrospinal and interstitial fluids. The machinery underlying this, however, remains largely unknown. Here, we report the specific localization of an inwardly rectifying K(+) channel, Kir4.1, on the ependymal cell membrane suggesting involvement of the channel in this function. Immunohistochemical study with confocal microscopy identified Kir4.1 labeling on the lateral but not apical membrane of ependymal cells. Ultrastructural analysis revealed that Kir4.1-immunogold particles were specifically localized and clustered on adjacent membranes at puncta adherens type junctions, whereas an aquaporin water channel, AQP4, that was also detected on the lateral membrane only occurred at components other than adherens junctions. Therefore, in ependymal cells, Kir4.1 and AQP4 are partitioned into distinct membrane compartments that might respectively transport either K(+) or water. Kir4.1 was also expressed in a specialized form of ependymal cell, namely the tanycyte, being abundant in tanycyte processes wrapping neuropils and blood vessels. These specific localizations suggest that Kir4.1 mediates intercellular K(+) exchange between ependymal cells and also K(+)-buffering transport via tanycytes that can interconnect neurons and vessels/ventricles. We propose that ependymal cells and tanycytes differentially operate Kir4.1 and AQP4 actively to control the property of fluids at local areas in the brain.
Collapse
Affiliation(s)
- Akikazu Fujita
- Division of Molecular and Cellular Pharmacology, Department of Pharmacology, Graduate School of Medicine, Osaka University, 2-2 Yamada-oka, Suita, Osaka, 565-0871, Japan. .,Field of Veterinary Pathobiology, Basic Veterinary Science, Department of Veterinary Medicine, Joint Faculty of Veterinary Medicine, Kagoshima University, Korimoto 1-21-24, Kagoshima, 890-0065, Japan.
| | - Atsushi Inanobe
- Division of Molecular and Cellular Pharmacology, Department of Pharmacology, Graduate School of Medicine, Osaka University, 2-2 Yamada-oka, Suita, Osaka, 565-0871, Japan
| | - Hiroshi Hibino
- Division of Molecular and Cellular Pharmacology, Department of Pharmacology, Graduate School of Medicine, Osaka University, 2-2 Yamada-oka, Suita, Osaka, 565-0871, Japan.,Department of Molecular Physiology, Niigata University School of Medicine, 1-757 Asahimachi-dori, Chuo-ku, Niigata, Niigata, 951-8510, Japan
| | - Søren Nielsen
- Water and Salt Research Center, Department of Biomedicine, Aarhus University, Aarhus, Denmark
| | - Ole Petter Ottersen
- Center for Molecular Biology and Neuroscience and Department of Anatomy, Institute of Basic Medical Sciences, University of Oslo, Oslo, Norway
| | - Yoshihisa Kurachi
- Division of Molecular and Cellular Pharmacology, Department of Pharmacology, Graduate School of Medicine, Osaka University, 2-2 Yamada-oka, Suita, Osaka, 565-0871, Japan.
| |
Collapse
|
30
|
Farias AS, Pradella F, Schmitt A, Santos LMB, Martins-de-Souza D. Ten years of proteomics in multiple sclerosis. Proteomics 2014; 14:467-80. [PMID: 24339438 DOI: 10.1002/pmic.201300268] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2013] [Revised: 08/19/2013] [Accepted: 08/21/2013] [Indexed: 12/11/2022]
Abstract
Multiple sclerosis, which is the most common cause of chronic neurological disability in young adults, is an inflammatory, demyelinating, and neurodegenerative disease of the CNS, which leads to the formation of multiple foci of demyelinated lesions in the white matter. The diagnosis is based currently on magnetic resonance image and evidence of dissemination in time and space. However, this could be facilitated if biomarkers were available to rule out other disorders with similar symptoms as well as to avoid cerebrospinal fluid analysis, which requires an invasive collection. Additionally, the molecular mechanisms of the disease are not completely elucidated, especially those related to the neurodegenerative aspects of the disease. The identification of biomarker candidates and molecular mechanisms of multiple sclerosis may be approached by proteomics. In the last 10 years, proteomic techniques have been applied in different biological samples (CNS tissue, cerebrospinal fluid, and blood) from multiple sclerosis patients and in its experimental model. In this review, we summarize these data, presenting their value to the current knowledge of the disease mechanisms, as well as their importance in identifying biomarkers or treatment targets.
Collapse
Affiliation(s)
- Alessandro S Farias
- Neuroimmunomodulation Group, Department of Genetics, Evolution and Bioagents, University of Campinas (UNICAMP) - Campinas, São Paulo, Brazil; Neuroimmunology Unit, Department of Genetics, Evolution and Bioagents, University of Campinas (UNICAMP) - Campinas, São Paulo, Brazil
| | | | | | | | | |
Collapse
|
31
|
Dagley LF, Emili A, Purcell AW. Application of quantitative proteomics technologies to the biomarker discovery pipeline for multiple sclerosis. Proteomics Clin Appl 2014; 7:91-108. [PMID: 23112123 DOI: 10.1002/prca.201200104] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2012] [Revised: 10/04/2012] [Accepted: 10/11/2012] [Indexed: 11/08/2022]
Abstract
Multiple sclerosis is an inflammatory-mediated demyelinating disorder most prevalent in young Caucasian adults. The various clinical manifestations of the disease present several challenges in the clinic in terms of diagnosis, monitoring disease progression and response to treatment. Advances in MS-based proteomic technologies have revolutionized the field of biomarker research and paved the way for the identification and validation of disease-specific markers. This review focuses on the novel candidates discovered by the application of quantitative proteomics to relevant disease-affected tissues in both the human context and within the animal model of the disease known as experimental autoimmune encephalomyelitis. The role of targeted MS approaches for biomarker validation studies, such as multiple reaction monitoring will also be discussed.
Collapse
Affiliation(s)
- Laura F Dagley
- Department of Biochemistry and Molecular Biology, Bio21 Molecular Science and Biotechnology Institute, University of Melbourne, Parkville, Victoria, Australia
| | | | | |
Collapse
|
32
|
Abstract
The genetic study of obsessive-compulsive disorder (OCD) has made significant gains in the past decade. However, etiological gene findings are still elusive. Epidemiological studies, including family and twin studies, strongly support a genetic component for OCD. In addition, complex segregation analyses suggest the presence of at least one major gene. The neurobiology of OCD also lends support to the notion that programmed CNS-based biological processes underlie OCD symptom expression, with mapping of brain circuits to fronto-subcortical circuits in a consistent manner. Genetic linkage studies of OCD, using families with multiple affected relatives, have generated several suggestive linkage peaks, regions that may harbor a gene or genes for OCD. However, the presence of multiple linkage peaks has added to the complexity of OCD genetics, suggesting that the exploration of gene-gene interactions and gene-environment interactions, in addition to the exploration of alternate phenotypes based on symptom expression, age at onset or comorbid conditions, may be key in locating etiologic genes. Finally, candidate gene studies, while promising, are not yet associated with linkage regions, except in the case of the glutamate transporter gene SLC1A1 in 9p24. While OCD appears to have a genetic component, additional innovative research is needed to unravel the genetic influences in the disorder.
Collapse
Affiliation(s)
- Marco Grados
- The Johns Hopkins University, CMSC 346, Baltimore, MD 21287-3325, USA.
| | | |
Collapse
|
33
|
Leptomeningeal cells transduce peripheral macrophages inflammatory signal to microglia in reponse to Porphyromonas gingivalis LPS. Mediators Inflamm 2013; 2013:407562. [PMID: 24363500 PMCID: PMC3865690 DOI: 10.1155/2013/407562] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2013] [Accepted: 10/19/2013] [Indexed: 12/21/2022] Open
Abstract
We report here that the leptomeningeal cells transduce inflammatory signals from peripheral macrophages to brain-resident microglia in response to Porphyromonas gingivalis (P.g.) LPS. The expression of Toll-like receptor 2 (TLR2), TLR4, TNF-α, and inducible NO synthase was mainly detected in the gingival macrophages of chronic periodontitis patients. In in vitro studies, P.g. LPS induced the secretion of TNF-α and IL-1β from THP-1 human monocyte-like cell line and RAW264.7 mouse macrophages. Surprisingly, the mean mRNA levels of TNF-α and IL-1β in leptomeningeal cells after treatment with the conditioned medium from P.g. LPS-stimulated RAW264.7 macrophages were significantly higher than those after treatment with P.g. LPS alone. Furthermore, the mean mRNA levels of TNF-α and IL-1β in microglia after treatment with the conditioned medium from P.g. LPS-stimulated leptomeningeal cells were significantly higher than those after P.g. LPS alone. These observations suggest that leptomeninges serve as an important route for transducing inflammatory signals from macrophages to microglia by secretion of proinflammatory mediators during chronic periodontitis. Moreover, propolis significantly reduced the P.g. LPS-induced TNF-α and IL-1 β production by leptomeningeal cells through inhibiting the nuclear factor-κB signaling pathway. Together with the inhibitory effect on microglial activation, propolis may be beneficial in preventing neuroinflammation during chronic periodontitis.
Collapse
|
34
|
Damkier HH, Brown PD, Praetorius J. Cerebrospinal Fluid Secretion by the Choroid Plexus. Physiol Rev 2013; 93:1847-92. [DOI: 10.1152/physrev.00004.2013] [Citation(s) in RCA: 354] [Impact Index Per Article: 29.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
The choroid plexus epithelium is a cuboidal cell monolayer, which produces the majority of the cerebrospinal fluid. The concerted action of a variety of integral membrane proteins mediates the transepithelial movement of solutes and water across the epithelium. Secretion by the choroid plexus is characterized by an extremely high rate and by the unusual cellular polarization of well-known epithelial transport proteins. This review focuses on the specific ion and water transport by the choroid plexus cells, and then attempts to integrate the action of specific transport proteins to formulate a model of cerebrospinal fluid secretion. Significant emphasis is placed on the concept of isotonic fluid transport across epithelia, as there is still surprisingly little consensus on the basic biophysics of this phenomenon. The role of the choroid plexus in the regulation of fluid and electrolyte balance in the central nervous system is discussed, and choroid plexus dysfunctions are described in a very diverse set of clinical conditions such as aging, Alzheimer's disease, brain edema, neoplasms, and hydrocephalus. Although the choroid plexus may only have an indirect influence on the pathogenesis of these conditions, the ability to modify epithelial function may be an important component of future therapies.
Collapse
Affiliation(s)
- Helle H. Damkier
- Department of Biomedicine, Health, Aarhus University, Aarhus, Denmark; and Faculty of Life Sciences, Michael Smith Building, Manchester University, Manchester, United Kingdom
| | - Peter D. Brown
- Department of Biomedicine, Health, Aarhus University, Aarhus, Denmark; and Faculty of Life Sciences, Michael Smith Building, Manchester University, Manchester, United Kingdom
| | - Jeppe Praetorius
- Department of Biomedicine, Health, Aarhus University, Aarhus, Denmark; and Faculty of Life Sciences, Michael Smith Building, Manchester University, Manchester, United Kingdom
| |
Collapse
|
35
|
Smith AL, Freeman SM, Voll RJ, Young LJ, Goodman MM. Investigation of an F-18 oxytocin receptor selective ligand via PET imaging. Bioorg Med Chem Lett 2013; 23:5415-20. [PMID: 23978650 DOI: 10.1016/j.bmcl.2013.07.045] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2013] [Revised: 07/12/2013] [Accepted: 07/22/2013] [Indexed: 10/26/2022]
Abstract
The compound 1-(1-(2-(2-(2-fluoroethoxy)-4-(piperidin-4-yloxy)phenyl)acetyl)piperidin-4-yl)-3,4-dihydroquinolin-2(1H)-one (1) was synthesized and positively evaluated in vitro for high potency and selectivity with human oxytocin receptors. The positron emitting analogue, [F-18]1, was synthesized and investigated in vivo via PET imaging using rat and cynomolgus monkey models. PET imaging studies in female Sprague-Dawley rats suggested [F-18]1 reached the brain and accumulated in various regions of the brain, but washed out too rapidly for adequate quantification and localization. In vivo PET imaging studies in a male cynomolgus monkey suggested [F-18]1 had limited brain penetration while specific uptake of radioactivity significantly accumulated within the vasculature of the cerebral ventricles in areas representative of the choroid plexus.
Collapse
Affiliation(s)
- Aaron L Smith
- Department of Radiology and Imaging Sciences, Emory University, Atlanta, GA 30329, United States
| | | | | | | | | |
Collapse
|
36
|
Larsen CM, Grattan DR. Prolactin, neurogenesis, and maternal behaviors. Brain Behav Immun 2012; 26:201-9. [PMID: 21820505 DOI: 10.1016/j.bbi.2011.07.233] [Citation(s) in RCA: 95] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/15/2011] [Revised: 07/04/2011] [Accepted: 07/14/2011] [Indexed: 11/17/2022] Open
Abstract
Elevated prolactin during pregnancy increases neurogenesis in the subventricular zone of the lateral ventricle (SVZ) of the maternal brain. Evidence from our laboratory has shown that low prolactin in early pregnancy, and the consequent suppression of neurogenesis in the SVZ in the adult brain, is associated with increased postpartum anxiety and markedly impaired maternal behavior. Daughters of low prolactin mothers also display increased anxiety and a significant delay in the onset of puberty, which is associated with epigenetic changes in neuronal development (see Fig. 1). This suggests that, in rodents, low prolactin in early pregnancy exerts long-term effects that influence maternal mood postpartum, and offspring development. This mini-review aims to summarize the evidence showing that the prolactin-induced increase in SVZ neurogenesis during pregnancy underlies normal postpartum maternal interactions with pups.
Collapse
Affiliation(s)
- C M Larsen
- Centre for Neuroendocrinology, Department of Anatomy and Structural Biology, University of Otago, Dunedin, New Zealand.
| | | |
Collapse
|
37
|
Johanson CE, Stopa EG, McMillan PN. The blood-cerebrospinal fluid barrier: structure and functional significance. Methods Mol Biol 2011; 686:101-131. [PMID: 21082368 DOI: 10.1007/978-1-60761-938-3_4] [Citation(s) in RCA: 144] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/30/2023]
Abstract
The choroid plexus (CP) of the blood-CSF barrier (BCSFB) displays fundamentally different properties than blood-brain barrier (BBB). With brisk blood flow (10 × brain) and highly permeable capillaries, the human CP provides the CNS with a high turnover rate of fluid (∼400,000 μL/day) containing micronutrients, peptides, and hormones for neuronal networks. Renal-like basement membranes in microvessel walls and underneath the epithelium filter large proteins such as ferritin and immunoglobulins. Type IV collagen (α3, α4, and α5) in the subepithelial basement membrane confers kidney-like permselectivity. As in the glomerulus, so also in CP, the basolateral membrane utrophin A and colocalized dystrophin impart structural stability, transmembrane signaling, and ion/water homeostasis. Extensive infoldings of the plasma-facing basal labyrinth together with lush microvilli at the CSF-facing membrane afford surface area, as great as that at BBB, for epithelial solute and water exchange. CSF formation occurs by basolateral carrier-mediated uptake of Na+, Cl-, and HCO3-, followed by apical release via ion channel conductance and osmotic flow of water through AQP1 channels. Transcellular epithelial active transport and secretion are energized and channeled via a highly dense organelle network of mitochondria, endoplasmic reticulum, and Golgi; bleb formation occurs at the CSF surface. Claudin-2 in tight junctions helps to modulate the lower electrical resistance and greater permeability in CP than at BBB. Still, ratio analyses of influx coefficients (Kin) for radiolabeled solutes indicate that paracellular diffusion of small nonelectrolytes (e.g., urea and mannitol) through tight junctions is restricted; molecular sieving is proportional to solute size. Protein/peptide movement across BCSFB is greatly limited, occurring by paracellular leaks through incomplete tight junctions and low-capacity transcellular pinocytosis/exocytosis. Steady-state concentration ratios, CSF/plasma, ranging from 0.003 for IgG to 0.80 for urea, provide insight on plasma solute penetrability, barrier permeability, and CSF sink action to clear substances from CNS.
Collapse
Affiliation(s)
- Conrad E Johanson
- Department of Clinical Neuroscience, Alpert Medical School at Brown University, Providence, RI, USA
| | | | | |
Collapse
|
38
|
Johanson C, Stopa E, Baird A, Sharma H. Traumatic brain injury and recovery mechanisms: peptide modulation of periventricular neurogenic regions by the choroid plexus-CSF nexus. J Neural Transm (Vienna) 2011; 118:115-33. [PMID: 20936524 PMCID: PMC3026679 DOI: 10.1007/s00702-010-0498-0] [Citation(s) in RCA: 88] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2010] [Accepted: 09/24/2010] [Indexed: 01/26/2023]
Abstract
In traumatic brain injury (TBI), severe disruptions occur in the choroid plexus (CP)-cerebrospinal fluid (CSF) nexus that destabilize the nearby hippocampal and subventricular neurogenic regions. Following invasive and non-invasive injuries to cortex, several adverse sequelae harm the brain interior: (i) structural damage to CP epithelium that opens the blood-CSF barrier (BCSFB) to protein, (ii) altered CSF dynamics and intracranial pressure (ICP), (iii) augmentation of leukocyte traffic across CP into the CSF-brain, (iv) reduction in CSF sink action and clearance of debris from ventricles, and (v) less efficient provision of micronutritional and hormonal support for the CNS. However, gradual post-TBI restitution of the injured CP epithelium and ependyma, and CSF homeostatic mechanisms, help to restore subventricular/subgranular neurogenesis and the cognitive abilities diminished by CNS damage. Recovery from TBI is facilitated by upregulated choroidal/ependymal growth factors and neurotrophins, and their secretion into ventricular CSF. There, by an endocrine-like mechanism, CSF bulk flow convects the neuropeptides to target cells in injured cortex for aiding repair processes; and to neurogenic niches for enhancing conversion of stem cells to new neurons. In the recovery from TBI and associated ischemia, the modulating neuropeptides include FGF2, EGF, VEGF, NGF, IGF, GDNF, BDNF, and PACAP. Homeostatic correction of TBI-induced neuropathology can be accelerated or amplified by exogenously boosting the CSF concentration of these growth factors and neurotrophins. Such intraventricular supplementation via the CSF route promotes neural restoration through enhanced neurogenesis, angiogenesis, and neuroprotective effects. CSF translational research presents opportunities that involve CP and ependymal manipulations to expedite recovery from TBI.
Collapse
Affiliation(s)
- Conrad Johanson
- Department of Neurosurgery, Warren Alpert Medical School at Brown University, Providence, RI 02903, USA.
| | | | | | | |
Collapse
|
39
|
Johanson C, Stopa E, McMillan P, Roth D, Funk J, Krinke G. The distributional nexus of choroid plexus to cerebrospinal fluid, ependyma and brain: toxicologic/pathologic phenomena, periventricular destabilization, and lesion spread. Toxicol Pathol 2010; 39:186-212. [PMID: 21189316 DOI: 10.1177/0192623310394214] [Citation(s) in RCA: 75] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Bordering the ventricular cerebrospinal fluid (CSF) are epithelial cells of choroid plexus (CP), ependyma and circumventricular organs (CVOs) that contain homeostatic transporters for mediating secretion/reabsorption. The distributional pathway ("nexus") of CP-CSF-ependyma-brain furnishes peptides, hormones, and micronutrients to periventricular regions. In disease/toxicity, this nexus becomes a conduit for infectious and xenobiotic agents. The sleeping sickness trypanosome (a protozoan) disrupts CP and downstream CSF-brain. Piperamide is anti-trypanosomic but distorts CP epithelial ultrastructure by engendering hydropic vacuoles; this reflects phospholipidosis and altered lysosomal metabolism. CP swelling by vacuolation may occlude CSF flow. Toxic drug tools delineate injuries to choroidal compartments: cyclophosphamide (vasculature), methylcellulose (interstitium), and piperazine (epithelium). Structurally perturbed CP allows solutes to penetrate the ventricles. There, CSF-borne pathogens and xenobiotics may permeate the ependyma to harm neurogenic stem cell niches. Amoscanate, an anti-helmintic, potently injures rodent ependyma. Ependymal/brain regions near CP are vulnerable to CSF-borne toxicants; this proximity factor links regional barrier breakdown to nearby periventricular pathology. Diverse diseases (e.g., African sleeping sickness, multiple sclerosis) take early root in choroidal, circumventricular, or perivascular loci. Toxicokinetics informs on pathogen, anti-parasitic agent, and auto-antibody distribution along the CSF nexus. CVOs are susceptible to plasma-borne toxicants/pathogens. Countering the physico-chemical and pathogenic insults to the homeostasis-mediating ventricle-bordering cells sustains brain health and fluid balance.
Collapse
|
40
|
Caudle WM, Bammler TK, Lin Y, Pan S, Zhang J. Using 'omics' to define pathogenesis and biomarkers of Parkinson's disease. Expert Rev Neurother 2010; 10:925-42. [PMID: 20518609 PMCID: PMC2913169 DOI: 10.1586/ern.10.54] [Citation(s) in RCA: 63] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Although great effort has been put forth to uncover the complex molecular mechanisms exploited in the pathogenesis of Parkinson's disease, a satisfactory explanation remains to be discovered. The emergence of several -omics techniques, transcriptomics, proteomics and metabolomics, have been integral in confirming previously identified pathways that are associated with dopaminergic neurodegeneration and subsequently Parkinson's disease, including mitochondrial and proteasomal function and synaptic neurotransmission. Additionally, these unbiased techniques, particularly in the brain regions uniquely associated with the disease, have greatly enhanced our ability to identify novel pathways, such as axon-guidance, that are potentially involved in Parkinson's pathogenesis. A comprehensive appraisal of the results obtained by different -omics has also reconfirmed the increase in oxidative stress as a common pathway likely to be critical in Parkinson's development/progression. It is hoped that further integration of these techniques will yield a more comprehensive understanding of Parkinson's disease etiology and the biological pathways that mediate neurodegeneration.
Collapse
Affiliation(s)
| | | | - Yvonne Lin
- University of Washington, Seattle, WA, USA
| | - Sheng Pan
- University of Washington, Seattle, WA, USA
| | - Jing Zhang
- University of Washington, Seattle, WA, USA
| |
Collapse
|
41
|
Veening JG, Barendregt HP. The regulation of brain states by neuroactive substances distributed via the cerebrospinal fluid; a review. Cerebrospinal Fluid Res 2010; 7:1. [PMID: 20157443 PMCID: PMC2821375 DOI: 10.1186/1743-8454-7-1] [Citation(s) in RCA: 112] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2009] [Accepted: 01/06/2010] [Indexed: 01/04/2023] Open
Abstract
The cerebrospinal fluid (CSF) system provides nutrients to and removes waste products from the brain. Recent findings suggest, however, that in addition, the CSF contains message molecules in the form of actively released neuroactive substances. The concentrations of these vary between locations, suggesting they are important for the changes in brain activity that underlie different brain states, and induce different sensory input and behavioral output relationships.The cranial CSF displays a rapid caudally-directed ventricular flow followed by a slower rostrally-directed subarachnoid flow (mainly towards the cribriform plate and from there into the nasal lymphatics). Thus, many brain areas are exposed to and can be influenced by substances contained in the CSF. In this review we discuss the production and flow of the CSF, including the mechanisms involved in the regulation of its composition. In addition, the available evidence for the release of neuropeptides and other neuroactive substances into the CSF is reviewed, with particular attention to the selective effects of these on distant downstream receptive brain areas. As a conclusion we suggest that (1) the flowing CSF is involved in more than just nutrient and waste control, but is also used as a broadcasting system consisting of coordinated messages to a variety of nearby and distant brain areas; (2) this special form of volume transmission underlies changes in behavioral states.
Collapse
Affiliation(s)
- Jan G Veening
- Department of Anatomy, (109) UMC St Radboud, Nijmegen, the Netherlands.
| | | |
Collapse
|
42
|
Abstract
The choroid plexus is a specialized tissue that lines subdomains within the four ventricles of the brain where most of the cerebrospinal fluid is produced. Maintenance of an equilibrium in volume and composition of the cerebrospinal fluid (CSF) is vital for a normal brain function, ensuring an optimal environment for the neurons. The necessarily high water permeability of the choroid plexus barrier is made possible by the abundant expression of a water channel, Aquaporin-1 (AQP1), on the apical side of the membrane from early stages of development through adulthood. Data from studies of AQP1 suggest that it also can contribute as a gated ion channel, and suggest that the AQP1-mediated ionic conductance has physiological significance for the regulation of cerebrospinal fluid secretion. The regulation of AQP1 ion channels could be one of several transport mechanisms that contribute to the decreased CSF secretion in response to endogenous signaling molecules such as atrial natriuretic peptide. Numerous classes of ion channels and transporters are targeted specifically to each side of the cellular membrane, and they all work in concert to secrete CSF. Several signaling cascades have a direct effect on transporters and ion channels present in the choroid plexus epithelium, altering their transport activity and therefore modulating the net transcellular movement of solutes and water. Several neurotransmitters, neuropeptides, and growth factors can influence CSF secretion by direct effect on transport mechanisms of the epithelium. The mammalian choroid plexus receives innervation from noradrenergic sympathetic fibers, cholinergic and peptidergic fibers that modulate CSF secretion. Water imbalance in the brain can have life-threatening consequences resulting from altered excitability and neurodegeneration, disruption of the supply of nutrients, loss of signaling molecules, and the accumulation of unwanted toxins and metabolites. Understanding the mechanisms involved in the modulation of CSF secretion is of fundamental importance. An appreciation of AQP1 as an ion channel in addition to its role as a water channel should offer new targets for therapeutic strategies in diseases involving water imbalance in the brain.
Collapse
Affiliation(s)
- Daniela Boassa
- Department of Physiology, University of Arizona College of Medicine, Tucson, Arizona 85724, USA
| | | |
Collapse
|
43
|
Harrington MG, Fonteh AN, Oborina E, Liao P, Cowan RP, McComb G, Chavez JN, Rush J, Biringer RG, Hühmer AF. The morphology and biochemistry of nanostructures provide evidence for synthesis and signaling functions in human cerebrospinal fluid. Cerebrospinal Fluid Res 2009; 6:10. [PMID: 19735572 PMCID: PMC2746175 DOI: 10.1186/1743-8454-6-10] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2009] [Accepted: 09/07/2009] [Indexed: 12/02/2022] Open
Abstract
Background Cerebrospinal fluid (CSF) contacts many brain regions and may mediate humoral signaling distinct from synaptic neurotransmission. However, synthesis and transport mechanisms for such signaling are not defined. The purpose of this study was to investigate whether human CSF contains discrete structures that may enable the regulation of humoral transmission. Methods Lumbar CSF was collected prospectively from 17 participants: with no neurological or psychiatric disease, with Alzheimer's disease, multiple sclerosis, or migraine; and ventricular CSF from two cognitively healthy participants with long-standing shunts for congenital hydrocephalus. Cell-free CSF was subjected to ultracentrifugation to yield supernatants and pellets that were examined by transmission electron microscopy, shotgun protein sequencing, electrophoresis, western blotting, lipid analysis, enzymatic activity assay, and immuno-electron microscopy. Results Over 3,600 CSF proteins were identified from repeated shotgun sequencing of cell-free CSF from two individuals with Alzheimer's disease: 25% of these proteins are normally present in membranes. Abundant nanometer-scaled structures were observed in ultracentrifuged pellets of CSF from all 16 participants examined. The most common structures included synaptic vesicle and exosome components in 30-200 nm spheres and irregular blobs. Much less abundant nanostructures were present that derived from cellular debris. Nanostructure fractions had a unique composition compared to CSF supernatant, richer in omega-3 and phosphoinositide lipids, active prostanoid enzymes, and fibronectin. Conclusion Unique morphology and biochemistry features of abundant and discrete membrane-bound CSF nanostructures are described. Prostaglandin H synthase activity, essential for prostanoid production and previously unknown in CSF, is localized to nanospheres. Considering CSF bulk flow and its circulatory dynamics, we propose that these nanostructures provide signaling mechanisms via volume transmission within the nervous system that are for slower, more diffuse, and of longer duration than synaptic transmission.
Collapse
Affiliation(s)
- Michael G Harrington
- Molecular Neurology, Huntington Medical Research Institutes, Pasadena, CA, 91101 USA.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
44
|
Standardized peptidome profiling of human cerebrospinal fluid by magnetic bead separation and matrix-assisted laser desorption/ionization time-of-flight mass spectrometry. J Proteomics 2009; 72:608-15. [DOI: 10.1016/j.jprot.2008.11.018] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2008] [Revised: 11/21/2008] [Accepted: 11/24/2008] [Indexed: 01/06/2023]
|
45
|
Nixon PF. Glutamate Export at the Choroid Plexus in Health, Thiamin Deficiency, and Ethanol Intoxication: Review and Hypothesis. Alcohol Clin Exp Res 2008; 32:1339-49. [DOI: 10.1111/j.1530-0277.2008.00727.x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
|
46
|
Abstract
The neuroendocrine control of prolactin secretion is unlike that of any other pituitary hormone. It is predominantly inhibited by the hypothalamus and, in the absence of a regulatory feedback hormone, it acts directly in the brain to suppress its own secretion. In addition to this short-loop feedback action in the brain, prolactin has been reported to influence a wide range of other brain functions. There have been few attempts to rationalise why a single hormone might exert such a range of distinct and seemingly unrelated neuroendocrine functions. In this review, we highlight some of the original studies that first characterised the unusual features of prolactin neuroendocrinology, and then attempt to identify areas of new progress and/or controversy. Finally, we discuss a hypothesis that provides a unifying explanation for the pleiotrophic actions of prolactin in the brain.
Collapse
Affiliation(s)
- D R Grattan
- Centre for Neuroendocrinology and Department of Anatomy and Structural Biology, University of Otago, Dunedin, New Zealand.
| | | |
Collapse
|
47
|
Johanson CE, Duncan JA, Klinge PM, Brinker T, Stopa EG, Silverberg GD. Multiplicity of cerebrospinal fluid functions: New challenges in health and disease. Cerebrospinal Fluid Res 2008; 5:10. [PMID: 18479516 PMCID: PMC2412840 DOI: 10.1186/1743-8454-5-10] [Citation(s) in RCA: 545] [Impact Index Per Article: 32.1] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2007] [Accepted: 05/14/2008] [Indexed: 11/10/2022] Open
Abstract
UNLABELLED This review integrates eight aspects of cerebrospinal fluid (CSF) circulatory dynamics: formation rate, pressure, flow, volume, turnover rate, composition, recycling and reabsorption. Novel ways to modulate CSF formation emanate from recent analyses of choroid plexus transcription factors (E2F5), ion transporters (NaHCO3 cotransport), transport enzymes (isoforms of carbonic anhydrase), aquaporin 1 regulation, and plasticity of receptors for fluid-regulating neuropeptides. A greater appreciation of CSF pressure (CSFP) is being generated by fresh insights on peptidergic regulatory servomechanisms, the role of dysfunctional ependyma and circumventricular organs in causing congenital hydrocephalus, and the clinical use of algorithms to delineate CSFP waveforms for diagnostic and prognostic utility. Increasing attention focuses on CSF flow: how it impacts cerebral metabolism and hemodynamics, neural stem cell progression in the subventricular zone, and catabolite/peptide clearance from the CNS. The pathophysiological significance of changes in CSF volume is assessed from the respective viewpoints of hemodynamics (choroid plexus blood flow and pulsatility), hydrodynamics (choroidal hypo- and hypersecretion) and neuroendocrine factors (i.e., coordinated regulation by atrial natriuretic peptide, arginine vasopressin and basic fibroblast growth factor). In aging, normal pressure hydrocephalus and Alzheimer's disease, the expanding CSF space reduces the CSF turnover rate, thus compromising the CSF sink action to clear harmful metabolites (e.g., amyloid) from the CNS. Dwindling CSF dynamics greatly harms the interstitial environment of neurons. Accordingly the altered CSF composition in neurodegenerative diseases and senescence, because of adverse effects on neural processes and cognition, needs more effective clinical management. CSF recycling between subarachnoid space, brain and ventricles promotes interstitial fluid (ISF) convection with both trophic and excretory benefits. Finally, CSF reabsorption via multiple pathways (olfactory and spinal arachnoidal bulk flow) is likely complemented by fluid clearance across capillary walls (aquaporin 4) and arachnoid villi when CSFP and fluid retention are markedly elevated. A model is presented that links CSF and ISF homeostasis to coordinated fluxes of water and solutes at both the blood-CSF and blood-brain transport interfaces. OUTLINE 1 Overview2 CSF formation2.1 Transcription factors2.2 Ion transporters2.3 Enzymes that modulate transport2.4 Aquaporins or water channels2.5 Receptors for neuropeptides3 CSF pressure3.1 Servomechanism regulatory hypothesis3.2 Ontogeny of CSF pressure generation3.3 Congenital hydrocephalus and periventricular regions3.4 Brain response to elevated CSF pressure3.5 Advances in measuring CSF waveforms4 CSF flow4.1 CSF flow and brain metabolism4.2 Flow effects on fetal germinal matrix4.3 Decreasing CSF flow in aging CNS4.4 Refinement of non-invasive flow measurements5 CSF volume5.1 Hemodynamic factors5.2 Hydrodynamic factors5.3 Neuroendocrine factors6 CSF turnover rate6.1 Adverse effect of ventriculomegaly6.2 Attenuated CSF sink action7 CSF composition7.1 Kidney-like action of CP-CSF system7.2 Altered CSF biochemistry in aging and disease7.3 Importance of clearance transport7.4 Therapeutic manipulation of composition8 CSF recycling in relation to ISF dynamics8.1 CSF exchange with brain interstitium8.2 Components of ISF movement in brain8.3 Compromised ISF/CSF dynamics and amyloid retention9 CSF reabsorption9.1 Arachnoidal outflow resistance9.2 Arachnoid villi vs. olfactory drainage routes9.3 Fluid reabsorption along spinal nerves9.4 Reabsorption across capillary aquaporin channels10 Developing translationally effective models for restoring CSF balance11 Conclusion.
Collapse
Affiliation(s)
- Conrad E Johanson
- Department of Clinical Neurosciences, Warren Alpert Medical School at Brown University, Providence, RI 02903, USA
| | - John A Duncan
- Department of Clinical Neurosciences, Warren Alpert Medical School at Brown University, Providence, RI 02903, USA
| | - Petra M Klinge
- International Neuroscience Institute Hannover, Rudolph-Pichlmayr-Str. 4, 30625 Hannover, Germany
| | - Thomas Brinker
- International Neuroscience Institute Hannover, Rudolph-Pichlmayr-Str. 4, 30625 Hannover, Germany
| | - Edward G Stopa
- Department of Clinical Neurosciences, Warren Alpert Medical School at Brown University, Providence, RI 02903, USA
| | - Gerald D Silverberg
- Department of Clinical Neurosciences, Warren Alpert Medical School at Brown University, Providence, RI 02903, USA
| |
Collapse
|
48
|
Hale JE, Gelfanova V, You JS, Knierman MD, Dean RA. Proteomics of cerebrospinal fluid: methods for sample processing. Methods Mol Biol 2008; 425:53-66. [PMID: 18369886 DOI: 10.1007/978-1-60327-210-0_5] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
Cerebrospinal fluid (CSF) provides an important source of potential biomarkers for brain disorders and therapeutic drug development. Applications of proteomic technology to the identification and quantification of proteins in CSF are increasing rapidly. Key to obtaining reproducible and reliable data about protein levels in CSF are standardization of methods for sample collection, storage, and subsequent sample processing. Methods are described here for all steps of sample processing for a number of different proteomic approaches.
Collapse
Affiliation(s)
- John E Hale
- Lilly Research Laboratories, Greenfield, Indiana, USA
| | | | | | | | | |
Collapse
|
49
|
Abstract
This chapter discusses the anatomy, functions, and biochemistry of cerebrospinal fluid (CSF). CSF has four major functions: physical support of neural structures, excretion and “sink” action, intracerebral transport, and control of the chemical environment of the central nervous system. CSF provides a “water jacket” of physical support and buoyancy. The CSF is protective because its volume changes reciprocally with changes in the volume of intracranial contents, particularly blood. Thus, the CSF protects the brain from changes in arterial and central venous pressure associated with posture, respiration, and exertion. Acute or chronic pathological changes in intracranial contents can be accommodated, to a point, by changes in the CSF volume. The direct transfer of brain metabolites into the CSF provides excretory function. This capacity is important because the brain lacks a lymphatic system. The lymphatic function of the CSF is also manifested in the removal of large proteins and cells, such as bacteria or blood cells, by bulk CSF absorption. The “sink” action of the CSF arises from the restricted access of water-soluble substances to the CSF and the low concentration of these solutes in the CSF.
Collapse
|
50
|
Sharma HS, Johanson CE. Blood-cerebrospinal fluid barrier in hyperthermia. PROGRESS IN BRAIN RESEARCH 2007; 162:459-78. [PMID: 17645933 DOI: 10.1016/s0079-6123(06)62023-2] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The blood-CSF barrier (BCSFB) in choroid plexus works with the blood-brain barrier (BBB) in cerebral capillaries to stabilize the fluid environment of neurons. Dysfunction of either transport interface, i.e., BCSFB or BBB, causes augmented fluxes of ions, water and proteins into the CNS. These barrier disruptions lead to problems with edema and other compromised homeostatic mechanisms. Hyperthermic effects on BCSFB permeability and transport are not as well known as for BBB. However, it is becoming increasingly appreciated that elevated prostaglandin synthesis from fever/heat activation of cyclooxygenases (COXs) in the BCSFB promotes water and ion transfer from plasma to the ventricles; this harmful fluid movement into the CSF-brain interior can be attenuated by agents that inhibit the COXs. Moreover, new functional data from our laboratory animal model indicate that the BCSFB (choroidal epithelium) and the CSF-bordering ependymal cells are vulnerable to whole body hyperthermia (WBH). This is evidenced from the fact that rats subjected to 4h of heat stress (38 degrees C) showed a significant increase in the translocation of Evans blue and (131)Iodine from plasma to cisternal CSF, and manifested blue staining of the dorsal surface of the hippocampus and caudate nucleus. Degeneration of choroidal epithelial cells and underlying ependyma, a dilated ventricular space and damage to the underlying neuropil were frequent. A disrupted BCSFB is associated with a marked increase in edema formation in the hippocampus, caudate nucleus, thalamus and hypothalamus. Taken together, these findings suggest that the breaching of the BCSFB in hyperthermia significantly contributes to cell and tissue injuries in the CNS.
Collapse
Affiliation(s)
- Hari Shanker Sharma
- Laboratory of Cerebrovascular Research, Institute of Surgical Sciences, Department of Anaesthesiology and Intensive Care, University Hospital, Uppsala University, SE-75185 Uppsala, Sweden
| | | |
Collapse
|