1
|
Ismailov A, Spallone A, Belogurov A, Herbert A, Poptsova M. Molecular biology of the deadliest cancer - glioblastoma: what do we know? Front Immunol 2025; 16:1530305. [PMID: 40191211 PMCID: PMC11968700 DOI: 10.3389/fimmu.2025.1530305] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2024] [Accepted: 03/07/2025] [Indexed: 04/09/2025] Open
Abstract
Glioblastomas are the most prevalent primary brain tumors and are associated with a dramatically poor prognosis. Despite an intensive treatment approach, including maximal surgical tumor removal followed by radio- and chemotherapy, the median survival for glioblastoma patients has remained around 18 months for decades. Glioblastoma is distinguished by its highly complex mechanisms of immune evasion and pronounced heterogeneity. This variability is apparent both within the tumor itself, which can exhibit multiple phenotypes simultaneously, and in its surrounding microenvironment. Another key feature of glioblastoma is its "cold" microenvironment, characterized by robust immunosuppression. Recent advances in single-cell RNA sequencing have uncovered new promising insights, revealing previously unrecognized aspects of this tumor. In this review, we consolidate current knowledge on glioblastoma cells and its microenvironment, with an emphasis on their biological properties and unique patterns of molecular communication through signaling pathways. The evidence underscores the critical need for personalized poly-immunotherapy and other approaches to overcome the plasticity of glioblastoma stem cells. Analyzing the tumor microenvironment of individual patients using single-cell transcriptomics and implementing a customized immunotherapeutic strategy could potentially improve survival outcomes for those facing this formidable disease.
Collapse
Affiliation(s)
- Aly Ismailov
- International Laboratory of Bioinformatics, Institute of Artificial Intelligence and Digital Sciences, Faculty of Computer Science, National Research University Higher School of Economics, Moscow, Russia
| | - Aldo Spallone
- International Laboratory of Bioinformatics, Institute of Artificial Intelligence and Digital Sciences, Faculty of Computer Science, National Research University Higher School of Economics, Moscow, Russia
- Laboratory of Hormonal Regulation Proteins, Shemyakin and Ovchinnikov Institute of Bioorganic Chemistry Russian Academy of Sciences (RAS), Moscow, Russia
| | - Alexey Belogurov
- Laboratory of Hormonal Regulation Proteins, Shemyakin and Ovchinnikov Institute of Bioorganic Chemistry Russian Academy of Sciences (RAS), Moscow, Russia
- Scientific and Educational Institute of Fundamental Medicine named after V.I. Pokrovsky, Department of Biological Chemistry, Russian University of Medicine, Moscow, Russia
| | - Alan Herbert
- International Laboratory of Bioinformatics, Institute of Artificial Intelligence and Digital Sciences, Faculty of Computer Science, National Research University Higher School of Economics, Moscow, Russia
- Discovery Department, InsideOutBio, Boston, MA, United States
| | - Maria Poptsova
- International Laboratory of Bioinformatics, Institute of Artificial Intelligence and Digital Sciences, Faculty of Computer Science, National Research University Higher School of Economics, Moscow, Russia
| |
Collapse
|
2
|
Bibbò F, Asadzadeh F, Boccia A, Sorice C, Bianco O, Saccà CD, Majello B, Donofrio V, Bifano D, De Martino L, Quaglietta L, Cristofano A, Covelli EM, Cinalli G, Ferrucci V, De Antonellis P, Zollo M. Targeting Group 3 Medulloblastoma by the Anti-PRUNE-1 and Anti-LSD1/KDM1A Epigenetic Molecules. Int J Mol Sci 2024; 25:3917. [PMID: 38612726 PMCID: PMC11011515 DOI: 10.3390/ijms25073917] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Revised: 03/26/2024] [Accepted: 03/28/2024] [Indexed: 04/14/2024] Open
Abstract
Medulloblastoma (MB) is a highly malignant childhood brain tumor. Group 3 MB (Gr3 MB) is considered to have the most metastatic potential, and tailored therapies for Gr3 MB are currently lacking. Gr3 MB is driven by PRUNE-1 amplification or overexpression. In this paper, we found that PRUNE-1 was transcriptionally regulated by lysine demethylase LSD1/KDM1A. This study aimed to investigate the therapeutic potential of inhibiting both PRUNE-1 and LSD1/KDM1A with the selective inhibitors AA7.1 and SP-2577, respectively. We found that the pharmacological inhibition had a substantial efficacy on targeting the metastatic axis driven by PRUNE-1 (PRUNE-1-OTX2-TGFβ-PTEN) in Gr3 MB. Using RNA seq transcriptomic feature data in Gr3 MB primary cells, we provide evidence that the combination of AA7.1 and SP-2577 positively affects neuronal commitment, confirmed by glial fibrillary acidic protein (GFAP)-positive differentiation and the inhibition of the cytotoxic components of the tumor microenvironment and the epithelial-mesenchymal transition (EMT) by the down-regulation of N-Cadherin protein expression. We also identified an impairing action on the mitochondrial metabolism and, consequently, oxidative phosphorylation, thus depriving tumors cells of an important source of energy. Furthermore, by overlapping the genomic mutational signatures through WES sequence analyses with RNA seq transcriptomic feature data, we propose in this paper that the combination of these two small molecules can be used in a second-line treatment in advanced therapeutics against Gr3 MB. Our study demonstrates that the usage of PRUNE-1 and LSD1/KDM1A inhibitors in combination represents a novel therapeutic approach for these highly aggressive metastatic MB tumors.
Collapse
Affiliation(s)
- Francesca Bibbò
- Department of Molecular Medicine and Medical Biotechnological DMMBM, University Federico II of Naples, 80131 Naples, Italy; (F.B.); (V.F.); (P.D.A.)
- CEINGE Biotecnologie Avanzate “Franco Salvatore”, 80131 Naples, Italy; (F.A.); (A.B.); (C.S.); (O.B.)
| | - Fatemeh Asadzadeh
- CEINGE Biotecnologie Avanzate “Franco Salvatore”, 80131 Naples, Italy; (F.A.); (A.B.); (C.S.); (O.B.)
- SEMM European School of Molecular Medicine, 20139 Milan, Italy
| | - Angelo Boccia
- CEINGE Biotecnologie Avanzate “Franco Salvatore”, 80131 Naples, Italy; (F.A.); (A.B.); (C.S.); (O.B.)
| | - Carmen Sorice
- CEINGE Biotecnologie Avanzate “Franco Salvatore”, 80131 Naples, Italy; (F.A.); (A.B.); (C.S.); (O.B.)
| | - Orazio Bianco
- CEINGE Biotecnologie Avanzate “Franco Salvatore”, 80131 Naples, Italy; (F.A.); (A.B.); (C.S.); (O.B.)
| | - Carmen Daniela Saccà
- Department of Biology, University Federico II of Naples, 80138 Naples, Italy; (C.D.S.); (B.M.)
| | - Barbara Majello
- Department of Biology, University Federico II of Naples, 80138 Naples, Italy; (C.D.S.); (B.M.)
| | - Vittoria Donofrio
- Department of Pathology, Santobono-Pausilipon Children’s Hospital, AORN, 80129 Naples, Italy; (V.D.); (D.B.)
| | - Delfina Bifano
- Department of Pathology, Santobono-Pausilipon Children’s Hospital, AORN, 80129 Naples, Italy; (V.D.); (D.B.)
| | - Lucia De Martino
- Pediatric Neuro-Oncology, Santobono-Pausilipon Children’s Hospital, AORN, 80129 Naples, Italy; (L.D.M.); (L.Q.)
| | - Lucia Quaglietta
- Pediatric Neuro-Oncology, Santobono-Pausilipon Children’s Hospital, AORN, 80129 Naples, Italy; (L.D.M.); (L.Q.)
| | - Adriana Cristofano
- Pediatric Neuroradiology, Santobono-Pausilipon Children’s Hospital, AORN, 80129 Naples, Italy; (A.C.); (E.M.C.)
| | - Eugenio Maria Covelli
- Pediatric Neuroradiology, Santobono-Pausilipon Children’s Hospital, AORN, 80129 Naples, Italy; (A.C.); (E.M.C.)
| | - Giuseppe Cinalli
- Pediatric Neurosurgery, Santobono-Pausilipon Children’s Hospital, AORN, 80129 Naples, Italy;
| | - Veronica Ferrucci
- Department of Molecular Medicine and Medical Biotechnological DMMBM, University Federico II of Naples, 80131 Naples, Italy; (F.B.); (V.F.); (P.D.A.)
- CEINGE Biotecnologie Avanzate “Franco Salvatore”, 80131 Naples, Italy; (F.A.); (A.B.); (C.S.); (O.B.)
| | - Pasqualino De Antonellis
- Department of Molecular Medicine and Medical Biotechnological DMMBM, University Federico II of Naples, 80131 Naples, Italy; (F.B.); (V.F.); (P.D.A.)
- CEINGE Biotecnologie Avanzate “Franco Salvatore”, 80131 Naples, Italy; (F.A.); (A.B.); (C.S.); (O.B.)
| | - Massimo Zollo
- Department of Molecular Medicine and Medical Biotechnological DMMBM, University Federico II of Naples, 80131 Naples, Italy; (F.B.); (V.F.); (P.D.A.)
- CEINGE Biotecnologie Avanzate “Franco Salvatore”, 80131 Naples, Italy; (F.A.); (A.B.); (C.S.); (O.B.)
- DAI Medicina di Laboratorio e Trasfusionale, ‘AOU Federico II Policlinico’, 80131 Naples, Italy
| |
Collapse
|
3
|
Yuan Y, Su Y, Wu Y, Xue Y, Zhang Y, Zhang Y, Zheng M, Chang T, Qu Y, Zhao T. Knowledge structure and hotspots research of glioma immunotherapy: a bibliometric analysis. Front Oncol 2023; 13:1229905. [PMID: 37671057 PMCID: PMC10476340 DOI: 10.3389/fonc.2023.1229905] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2023] [Accepted: 08/03/2023] [Indexed: 09/07/2023] Open
Abstract
Background Glioma is the most common primary brain tumor. Traditional treatments for glioma include surgical resection, radiotherapy, chemotherapy, and bevacizumab therapy, but their efficacies are limited. Immunotherapy provides a new direction for glioma treatment. This study aimed to summarize the knowledge structure and research hotspots of glioma immunotherapy through a bibliometric analysis. Method Publications pertaining to glioma immunotherapy published during the period from 1st January 1990 to 27th March 2023 were downloaded from the Web of Science Core Collection (WoSCC). Bibliometric analysis and visualization were performed using the CiteSpace, VOSviewer, Online Analysis Platform of Literature Metrology, and R software. The hotspots and prospects of glioma immunotherapy research were illustrated via analyzing the countries, institutions, journals, authors, citations and keywords of eligible publications. Results A total of 1,929 publications pertaining to glioma immunotherapy in 502 journals were identified as of 27th March 2023, involving 9,505 authors from 1,988 institutions in 62 countries. Among them were 1,285 articles and 644 reviews. Most of publications were produced by the United States. JOURNAL OF NEURO-ONCOLOGY published the majority of publications pertaining to glioma immunotherapy. Among the authors, Lim M contributed the largest number of publications. Through analyzing keyword bursts and co-cited references, immune-checkpoint inhibitors (ICIs) were identified as the research focus and hotspot. Conclusion Using a bibliometric analysis, this study provided the knowledge structure and research hotspots in glioma immunotherapy research during the past 33 years, with ICIs staying in the current and future hotspot. Our findings may direct the research of glioma immunotherapy in the future.
Collapse
Affiliation(s)
- Yexin Yuan
- Department of Neurosurgery, Tangdu Hospital, Air Force Medical University, Xi’an, Shaanxi, China
| | - Yue Su
- Department of Neurology, Tangdu Hospital, Air Force Medical University, Xi’an, Shaanxi, China
| | - Yingxi Wu
- Department of Neurosurgery, Tangdu Hospital, Air Force Medical University, Xi’an, Shaanxi, China
| | - Yafei Xue
- Department of Neurosurgery, Tangdu Hospital, Air Force Medical University, Xi’an, Shaanxi, China
| | - Yunze Zhang
- Department of Neurosurgery, Tangdu Hospital, Air Force Medical University, Xi’an, Shaanxi, China
| | - Yangyang Zhang
- Department of Neurosurgery, Tangdu Hospital, Air Force Medical University, Xi’an, Shaanxi, China
| | - Min Zheng
- Department of Neurosurgery, Tangdu Hospital, Air Force Medical University, Xi’an, Shaanxi, China
| | - Ting Chang
- Department of Neurology, Tangdu Hospital, Air Force Medical University, Xi’an, Shaanxi, China
| | - Yan Qu
- Department of Neurosurgery, Tangdu Hospital, Air Force Medical University, Xi’an, Shaanxi, China
| | - Tianzhi Zhao
- Department of Neurosurgery, Tangdu Hospital, Air Force Medical University, Xi’an, Shaanxi, China
| |
Collapse
|
4
|
Zhang J, Caruso FP, Sa JK, Justesen S, Nam DH, Sims P, Ceccarelli M, Lasorella A, Iavarone A. The combination of neoantigen quality and T lymphocyte infiltrates identifies glioblastomas with the longest survival. Commun Biol 2019; 2:135. [PMID: 31044160 PMCID: PMC6478916 DOI: 10.1038/s42003-019-0369-7] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2018] [Accepted: 03/06/2019] [Indexed: 12/16/2022] Open
Abstract
Glioblastoma (GBM) is resistant to multimodality therapeutic approaches. A high burden of tumor-specific mutant peptides (neoantigens) correlates with better survival and response to immunotherapies in selected solid tumors but how neoantigens impact clinical outcome in GBM remains unclear. Here, we exploit the similarity between tumor neoantigens and infectious disease-derived immune epitopes and apply a neoantigen fitness model for identifying high-quality neoantigens in a human pan-glioma dataset. We find that the neoantigen quality fitness model stratifies GBM patients with more favorable clinical outcome and, together with CD8+ T lymphocytes tumor infiltration, identifies a GBM subgroup with the longest survival, which displays distinct genomic and transcriptomic features. Conversely, neither tumor neoantigen burden from a quantitative model nor the isolated enrichment of CD8+ T lymphocytes were able to predict survival of GBM patients. This approach may guide optimal stratification of GBM patients for maximum response to immunotherapy.
Collapse
Affiliation(s)
- Jing Zhang
- Institute for Cancer Genetics, Columbia University Medical Center, New York, NY 10032 USA
| | - Francesca P. Caruso
- Department of Science and Technology, Universita’ degli Studi del Sannio, 82100 Benevento, Italy
- BIOGEM Istituto di Ricerche Genetiche ‘G. Salvatore’, Campo Reale, 83031 Ariano Irpino, Italy
| | - Jason K. Sa
- Institute for Refractory Cancer Research, Samsung Medical Center, Seoul, Republic of Korea
| | - Sune Justesen
- Immunitrack Aps, Rønnegade 4, 2100 Copenhagen East, Denmark
| | - Do-Hyun Nam
- Institute for Refractory Cancer Research, Samsung Medical Center, Seoul, Republic of Korea
- Department of Health Sciences and Technology, SAIHST, Sungkyunkwan University, Seoul, Republic of Korea
- Department of Neurosurgery, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea
| | - Peter Sims
- Department of Systems Biology, Columbia University Medical Center, New York, NY 10032 USA
| | - Michele Ceccarelli
- Department of Science and Technology, Universita’ degli Studi del Sannio, 82100 Benevento, Italy
- ABBVIE, Redwood City (CA), Redwood City, CA 94063 USA
| | - Anna Lasorella
- Institute for Cancer Genetics, Columbia University Medical Center, New York, NY 10032 USA
- Department of Pediatrics, Columbia University Medical Center, New York, NY 10032 USA
- Department of Pathology and Cell Biology, Columbia University Medical Center, New York, NY 10032 USA
| | - Antonio Iavarone
- Institute for Cancer Genetics, Columbia University Medical Center, New York, NY 10032 USA
- Department of Pathology and Cell Biology, Columbia University Medical Center, New York, NY 10032 USA
- Department of Neurology, Columbia University Medical Center, New York, NY 10032 USA
| |
Collapse
|
5
|
Chen D, Yu X. Long noncoding RNA TSLNC8 suppresses cell proliferation and metastasis and promotes cell apoptosis in human glioma. Mol Med Rep 2018; 18:5536-5544. [PMID: 30387847 DOI: 10.3892/mmr.2018.9609] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2017] [Accepted: 08/01/2018] [Indexed: 11/05/2022] Open
Abstract
Glioma is among the most common primary brain tumors and one of the most aggressive and lethal forms of human cancer. Long noncoding RNAs (lncRNAs) have demonstrated great importance in the development and progression of cancer. The present study aimed to investigate the role of the novel tumor suppressive lncRNA on Chromosome 8p12 (TSLNC8), in cell proliferation, metastasis and apoptosis in human glioma. It was initially reported that the relative transcript levels of TSLNC8 were significantly decreased in human glioma tissues and cultured glioma cells, as evidenced by RT‑qPCR. Among clinical variables, the expression of TSLNC8 was negatively associated with tumor size, distant metastasis, and tumor, node and metastasis stage. MTT assay demonstrated that overexpression of TSLNC8 in glioma cell lines U25‑MG and SWO38 decreased, whereas knockdown of TSLNC8 in glioma cells SHG‑44 and BT325 increased the cell proliferative rate over 5 consecutive days. Additionally, cell metastasis was inhibited in U251 and SWO38 cells when cells were transfected with TSLNC8‑expressing plasmid as observed via Transwell and wound‑healing assays. Furthermore, cell apoptotic rate was upregulated in TSLNC8 plasmid‑treated U251 and SWO38 cells, and inhibited by siRNA against TSLNC8 in SHG‑44 and BT325 cells by cell apoptotic assay. The relative activities of caspase‑3 and caspase‑9 were increased by TSLNC8 overexpression and decreased by TSLNC depletion; however, the activity of caspase‑8 remained unchanged. The results of the present study demonstrated the inhibitory effects of TSLNC8 in human glioma, which may contribute to advancement in the diagnosis and treatment of patients with glioma in clinic.
Collapse
Affiliation(s)
- Dong Chen
- Department of Neurosurgery, Tianjin Huanhu Hospital, Tianjin 300350, P.R. China
| | - Xin Yu
- Department of Surgery, Operating Room, Tianjin First Central Hospital, Tianjin 300192, P.R. China
| |
Collapse
|
6
|
Castaneda CA, Castillo M, Bernabe LA, Sanchez J, Casavilca S, García-Corrochano P, Ponce J, Villa-Robles MR, Lopez CB, Orrego E. Impact of pathological features of brain metastases in prognosis. Biomark Med 2018; 12:475-485. [PMID: 29697273 DOI: 10.2217/bmm-2017-0161] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
AIM To evaluate the prognostic value of tumor-infiltrating lymphocytes (TILs) and Ki67 in brain metastasis lesions, and the effect of adding them to variables of graded prognostic assessment score. PATIENTS & METHODS Clinicopathological information from 111 medical charts of brain metastasis patients was obtained, and TIL distribution (n = 84), Ki67 index (n = 79) and CD3 TIL (n = 64) were prospectively evaluated. RESULTS Most frequent TIL pattern was perivascular (67.8%), and median Ki67 and CD3 TIL percents were 30 and 4.8%, respectively. Ki67 ≥15 was associated with shorter survival (p = 0.018) but CD3 TIL was not (p = 0.870). The highest graded prognostic assessment score was not associated with survival (p = 0.648), however, those with low Ki67 and high score was associated with better outcome (p = 0.007). CONCLUSION High Ki67 index in brain metastasis carries a worse prognosis.
Collapse
Affiliation(s)
- Carlos A Castaneda
- Department of Medical Oncology, Instituto Nacional de Enfermedades Neoplasicas, Lima, Peru.,Faculty of Medicine, Universidad Peruana San Juan Bautista, Lima, Peru
| | - Miluska Castillo
- Department of Research, Instituto Nacional de Enfermedades Neoplasicas, Lima, Peru
| | - Luis A Bernabe
- Department of Research, Instituto Nacional de Enfermedades Neoplasicas, Lima, Peru
| | - Joselyn Sanchez
- Department of Research, Instituto Nacional de Enfermedades Neoplasicas, Lima, Peru
| | - Sandro Casavilca
- Department of Pathology, Instituto Nacional de Enfermedades Neoplasicas, Lima, Peru
| | | | - Jaime Ponce
- Department of Research, Instituto Nacional de Enfermedades Neoplasicas, Lima, Peru
| | - Maria R Villa-Robles
- Department of Pathology, Instituto Nacional de Enfermedades Neoplasicas, Lima, Peru
| | | | - Enrique Orrego
- Department of Neurosurgery, Instituto Nacional de Enfermedades Neoplasicas, Lima, Peru
| |
Collapse
|
7
|
Madsen SJ, Christie C, Huynh K, Peng Q, Uzal FA, Krasieva TB, Hirschberg H. Limiting glioma development by photodynamic therapy-generated macrophage vaccine and allo-stimulation: an in vivo histological study in rats. JOURNAL OF BIOMEDICAL OPTICS 2018; 23:1-7. [PMID: 29417766 PMCID: PMC5802332 DOI: 10.1117/1.jbo.23.2.028001] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/10/2017] [Accepted: 01/19/2018] [Indexed: 06/08/2023]
Abstract
Immunotherapy of brain tumors involves the stimulation of an antitumor immune response. This type of therapy can be targeted specifically to tumor cells thus sparing surrounding normal brain. Due to the presence of the blood-brain barrier, the brain is relatively isolated from the systemic circulation and, as such, the initiation of significant immune responses is more limited than other types of cancers. The purpose of this study was to show that the efficacy of tumor primed antigen presenting macrophage (MaF98) vaccines can be increased by: (1) photodynamic therapy (PDT) of the priming tumor cells and (2) intracranial injection of allogeneic glioma cells directly into the tumor site. Experiments were conducted in an in vivo brain tumor development model using Fischer rats and F98 (syngeneic) and BT4C (allogeneic) glioma cells. The results showed that immunization with Ma (acting as antigen-presenting cells), primed with PDT-treated tumor cells (MaF98), significantly slowed but did not prevent the growth of F98-induced tumors in the brain. Complete suppression of tumor development was obtained via MaF98 inoculation combined with direct intracranial injection of allogeneic glioma cells. No deleterious effects were noted in any of the animals during the 14-day observation period.
Collapse
Affiliation(s)
- Steen J. Madsen
- University of Nevada, Department of Health Physics and Diagnostic Sciences, Las Vegas, Nevada, United States
| | - Catherine Christie
- University of California, Beckman Laser Institute and Medical Clinic, Irvine, California, United States
| | - Khoi Huynh
- University of California, Beckman Laser Institute and Medical Clinic, Irvine, California, United States
| | - Qian Peng
- University of Oslo, Pathology Clinic, Rikshospitalet-Radiumhospitalet HF Medical Center, Montebello, Oslo, Norway
| | - Francisco A. Uzal
- University of California, School of Veterinary Medicine, Davis, San Bernardino, California, United States
| | - Tatiana B. Krasieva
- University of California, Beckman Laser Institute and Medical Clinic, Irvine, California, United States
| | - Henry Hirschberg
- University of California, Beckman Laser Institute and Medical Clinic, Irvine, California, United States
| |
Collapse
|
8
|
Ventura E, Weller M, Burghardt I. Cutting Edge: ERK1 Mediates the Autocrine Positive Feedback Loop of TGF-β and Furin in Glioma-Initiating Cells. THE JOURNAL OF IMMUNOLOGY 2017; 198:4569-4574. [PMID: 28484053 DOI: 10.4049/jimmunol.1601176] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2016] [Accepted: 04/14/2017] [Indexed: 01/09/2023]
Abstract
Glioblastoma is the most common and aggressive intrinsic brain tumor in adults. Self-renewing, highly tumorigenic glioma-initiating cells (GIC) have been linked to glioma invasive properties, immunomodulation, and increased angiogenesis, leading to resistance to therapy. TGF-β signaling has been associated with the tumorigenic activity of GIC. TGF-β is synthesized as a precursor molecule and proteolytically processed to the mature form by members of the family of the proprotein convertases subtilisin/kexin. In this study we report that furin is unique among the proprotein convertases subtilisin/kexin in being highly expressed in human GIC. Furin cleaves and promotes activation of pro-TGF-β1 and pro-TGF-β2, and TGF-β2 in turn increases furin levels. Notably, TGF-β2 controls furin activity in an ALK-5-dependent manner involving the ERK/MAPK pathway. We thus uncover a role of ERK1 in the regulation of furin activity by supporting a self-sustaining loop for high TGF-β activity in GIC.
Collapse
Affiliation(s)
- Elisa Ventura
- Laboratory of Molecular Neuro-Oncology, Department of Neurology, University Hospital Zurich and University of Zurich, Zurich 8091, Switzerland
| | - Michael Weller
- Laboratory of Molecular Neuro-Oncology, Department of Neurology, University Hospital Zurich and University of Zurich, Zurich 8091, Switzerland
| | - Isabel Burghardt
- Laboratory of Molecular Neuro-Oncology, Department of Neurology, University Hospital Zurich and University of Zurich, Zurich 8091, Switzerland
| |
Collapse
|
9
|
Seystahl K, Papachristodoulou A, Burghardt I, Schneider H, Hasenbach K, Janicot M, Roth P, Weller M. Biological Role and Therapeutic Targeting of TGF-β 3 in Glioblastoma. Mol Cancer Ther 2017; 16:1177-1186. [PMID: 28377490 DOI: 10.1158/1535-7163.mct-16-0465] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2016] [Revised: 09/06/2016] [Accepted: 03/23/2017] [Indexed: 11/16/2022]
Abstract
Transforming growth factor (TGF)-β contributes to the malignant phenotype of glioblastoma by promoting invasiveness and angiogenesis and creating an immunosuppressive microenvironment. So far, TGF-β1 and TGF-β2 isoforms have been considered to act in a similar fashion without isoform-specific function in glioblastoma. A pathogenic role for TGF-β3 in glioblastoma has not been defined yet. Here, we studied the expression and functional role of endogenous and exogenous TGF-β3 in glioblastoma models. TGF-β3 mRNA is expressed in human and murine long-term glioma cell lines as well as in human glioma-initiating cell cultures with expression levels lower than TGF-β1 or TGF-β2 in most cell lines. Inhibition of TGF-β3 mRNA expression by ISTH2020 or ISTH2023, two different isoform-specific phosphorothioate locked nucleic acid (LNA)-modified antisense oligonucleotide gapmers, blocks downstream SMAD2 and SMAD1/5 phosphorylation in human LN-308 cells, without affecting TGF-β1 or TGF-β2 mRNA expression or protein levels. Moreover, inhibition of TGF-β3 expression reduces invasiveness in vitro Interestingly, depletion of TGF-β3 also attenuates signaling evoked by TGF-β1 or TGF-β2 In orthotopic syngeneic (SMA-560) and xenograft (LN-308) in vivo glioma models, expression of TGF-β3 as well as of the downstream target, plasminogen-activator-inhibitor (PAI)-1, was reduced, while TGF-β1 and TGF-β2 levels were unaffected following systemic treatment with TGF-β3 -specific antisense oligonucleotides. We conclude that TGF-β3 might function as a gatekeeper controlling downstream signaling despite high expression of TGF-β1 and TGF-β2 isoforms. Targeting TGF-β3in vivo may represent a promising strategy interfering with aberrant TGF-β signaling in glioblastoma. Mol Cancer Ther; 16(6); 1177-86. ©2017 AACR.
Collapse
Affiliation(s)
- Katharina Seystahl
- Laboratory of Molecular Neuro-Oncology, Department of Neurology, University Hospital and University of Zurich, Switzerland.
| | - Alexandros Papachristodoulou
- Laboratory of Molecular Neuro-Oncology, Department of Neurology, University Hospital and University of Zurich, Switzerland
| | - Isabel Burghardt
- Laboratory of Molecular Neuro-Oncology, Department of Neurology, University Hospital and University of Zurich, Switzerland
| | - Hannah Schneider
- Laboratory of Molecular Neuro-Oncology, Department of Neurology, University Hospital and University of Zurich, Switzerland
| | - Kathy Hasenbach
- Laboratory of Molecular Neuro-Oncology, Department of Neurology, University Hospital and University of Zurich, Switzerland.,Isarna Therapeutics GmbH, Munich, Germany
| | | | - Patrick Roth
- Laboratory of Molecular Neuro-Oncology, Department of Neurology, University Hospital and University of Zurich, Switzerland
| | - Michael Weller
- Laboratory of Molecular Neuro-Oncology, Department of Neurology, University Hospital and University of Zurich, Switzerland
| |
Collapse
|
10
|
Kohanbash G, Carrera DA, Shrivastav S, Ahn BJ, Jahan N, Mazor T, Chheda ZS, Downey KM, Watchmaker PB, Beppler C, Warta R, Amankulor NA, Herold-Mende C, Costello JF, Okada H. Isocitrate dehydrogenase mutations suppress STAT1 and CD8+ T cell accumulation in gliomas. J Clin Invest 2017; 127:1425-1437. [PMID: 28319047 DOI: 10.1172/jci90644] [Citation(s) in RCA: 323] [Impact Index Per Article: 40.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2016] [Accepted: 01/19/2017] [Indexed: 01/16/2023] Open
Abstract
Mutations in the isocitrate dehydrogenase genes IDH1 and IDH2 are among the first genetic alterations observed during the development of lower-grade glioma (LGG). LGG-associated IDH mutations confer gain-of-function activity by converting α-ketoglutarate to the oncometabolite R-2-hydroxyglutarate (2HG). Clinical samples and gene expression data from The Cancer Genome Atlas (TCGA) demonstrate reduced expression of cytotoxic T lymphocyte-associated genes and IFN-γ-inducible chemokines, including CXCL10, in IDH-mutated (IDH-MUT) tumors compared with IDH-WT tumors. Given these findings, we have investigated the impact of IDH mutations on the immunological milieu in LGG. In immortalized normal human astrocytes (NHAs) and syngeneic mouse glioma models, the introduction of mutant IDH1 or treatment with 2HG reduced levels of CXCL10, which was associated with decreased production of STAT1, a regulator of CXCL10. Expression of mutant IDH1 also suppressed the accumulation of T cells in tumor sites. Reductions in CXCL10 and T cell accumulation were reversed by IDH-C35, a specific inhibitor of mutant IDH1. Furthermore, IDH-C35 enhanced the efficacy of vaccine immunotherapy in mice bearing IDH-MUT gliomas. Our findings demonstrate a mechanism of immune evasion in IDH-MUT gliomas and suggest that specific inhibitors of mutant IDH may improve the efficacy of immunotherapy in patients with IDH-MUT gliomas.
Collapse
|
11
|
Seliger C, Meyer AL, Renner K, Leidgens V, Moeckel S, Jachnik B, Dettmer K, Tischler U, Gerthofer V, Rauer L, Uhl M, Proescholdt M, Bogdahn U, Riemenschneider MJ, Oefner PJ, Kreutz M, Vollmann-Zwerenz A, Hau P. Metformin inhibits proliferation and migration of glioblastoma cells independently of TGF-β2. Cell Cycle 2016; 15:1755-66. [PMID: 27163626 DOI: 10.1080/15384101.2016.1186316] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
To this day, glioblastoma (GBM) remains an incurable brain tumor. Previous research has shown that metformin, an oral anti-diabetic drug, may decrease GBM cell proliferation and migration especially in brain tumor initiating cells (BTICs). As transforming growth factor β 2 (TGF-β2) has been reported to promote high-grade glioma and is inhibited by metformin in other tumors, we explored whether metformin directly interferes with TGF-β2-signaling. Functional investigation of proliferation and migration of primary BTICs after treatment with metformin+/-TGF-β2 revealed that metformin doses as low as 0.01 mM metformin thrice a day were able to inhibit proliferation of susceptible cell lines, whereas migration was impacted only at higher doses. Known cellular mechanisms of metformin, such as increased lactate secretion, reduced oxygen consumption and activated AMPK-signaling, could be confirmed. However, TGF-β2 and metformin did not act as functional antagonists, but both rather inhibited proliferation and/or migration, if significant effects were present. We did not observe a relevant influence of metformin on TGF-β2 mRNA expression (qRT-PCR), TGF-β2 protein expression (ELISA) or SMAD-signaling (Western blot). Therefore, it seems that metformin does not exert its inhibitory effects on GBM BTIC proliferation and migration by altering TGF-β2-signaling. Nonetheless, as low doses of metformin are able to reduce proliferation of certain GBM cells, further exploration of predictors of BTICs' susceptibility to metformin appears justified.
Collapse
Affiliation(s)
- Corinna Seliger
- a Department of Neurology and Wilhelm Sander-NeuroOncology Unit , University Hospital Regensburg , Regensburg , Germany
| | - Anne-Louise Meyer
- a Department of Neurology and Wilhelm Sander-NeuroOncology Unit , University Hospital Regensburg , Regensburg , Germany
| | - Kathrin Renner
- b Department of Internal Medicine III , University Hospital Regensburg , Regensburg , Germany
| | - Verena Leidgens
- a Department of Neurology and Wilhelm Sander-NeuroOncology Unit , University Hospital Regensburg , Regensburg , Germany
| | - Sylvia Moeckel
- a Department of Neurology and Wilhelm Sander-NeuroOncology Unit , University Hospital Regensburg , Regensburg , Germany
| | - Birgit Jachnik
- a Department of Neurology and Wilhelm Sander-NeuroOncology Unit , University Hospital Regensburg , Regensburg , Germany
| | - Katja Dettmer
- c Institute of Functional Genomics, University of Regensburg , Regensburg , Germany
| | - Ulrike Tischler
- a Department of Neurology and Wilhelm Sander-NeuroOncology Unit , University Hospital Regensburg , Regensburg , Germany
| | - Valeria Gerthofer
- a Department of Neurology and Wilhelm Sander-NeuroOncology Unit , University Hospital Regensburg , Regensburg , Germany
| | - Lisa Rauer
- a Department of Neurology and Wilhelm Sander-NeuroOncology Unit , University Hospital Regensburg , Regensburg , Germany
| | - Martin Uhl
- d Department of Neurology , University Hospital Erlangen , Germany
| | - Martin Proescholdt
- e Department of Neurosurgery , University Hospital Regensburg , Regensburg , Germany
| | - Ulrich Bogdahn
- a Department of Neurology and Wilhelm Sander-NeuroOncology Unit , University Hospital Regensburg , Regensburg , Germany
| | | | - Peter J Oefner
- c Institute of Functional Genomics, University of Regensburg , Regensburg , Germany
| | - Marina Kreutz
- b Department of Internal Medicine III , University Hospital Regensburg , Regensburg , Germany
| | - Arabel Vollmann-Zwerenz
- a Department of Neurology and Wilhelm Sander-NeuroOncology Unit , University Hospital Regensburg , Regensburg , Germany
| | - Peter Hau
- a Department of Neurology and Wilhelm Sander-NeuroOncology Unit , University Hospital Regensburg , Regensburg , Germany
| |
Collapse
|
12
|
Rahbar A, Cederarv M, Wolmer-Solberg N, Tammik C, Stragliotto G, Peredo I, Fornara O, Xu X, Dzabic M, Taher C, Skarman P, Söderberg-Nauclér C. Enhanced neutrophil activity is associated with shorter time to tumor progression in glioblastoma patients. Oncoimmunology 2015; 5:e1075693. [PMID: 27057448 DOI: 10.1080/2162402x.2015.1075693] [Citation(s) in RCA: 66] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2015] [Revised: 07/08/2015] [Accepted: 07/17/2015] [Indexed: 02/02/2023] Open
Abstract
Glioblastoma multiforme (GBM) is a highly malignant tumor with a poor outcome that is often positive for human cytomegalovirus (HCMV). GBM patients often have excessive numbers of neutrophils and macrophages near and within the tumor. Here, we characterized the cytokine patterns in the blood of GBM patients with and without Valganciclovir treatment. Furthermore, we determined whether neutrophil activation is related to HCMV status and patient outcome. Blood samples for analyses of cytokines and growth factors were collected from 42 GBM patients at the time of diagnosis (n = 42) and at weeks 12 and 24 after surgery. Blood neutrophils of 28 GBM patients were examined for CD11b expression. The levels of pro- and anti-inflammatory cytokines and chemokines-including interleukin (IL)-1β, IL-2, IL-6, IL-8, IL-10, IL-12p70, IL-17A, transforming growth factor (TGF)-β1, interferon-γ, interferon-α, tumor necrosis factor α, and monocyte chemoattractant protein (MCP)-1were analyzed with a bead-based flow cytometry assay. During the first six months after surgery, neutrophil activity was increased in 12 patients and was unchanged or decreased in 16. Patients with increased neutrophil activity had enhanced IL-12p70, high grade HCMV and a shorter time to tumor progression (TTP) than patients without or decreased neutrophil activity (median TTP; 5.4 vs. 12 months, 95% confidence interval; 1.6-10 vs. 0.1-0.6, hazard ratio = 3 vs. 0.4, p = 0.004). The levels of IL-12p70 were significantly decreased in Valganciclovir treated patients (n = 22, T 12W vs. T 24W, p = 0.03). In conclusion, our findings suggest that neutrophil activation is an early sign of tumor progression in GBM patients.
Collapse
Affiliation(s)
- Afsar Rahbar
- Department of Medicine Solna, Microbial Pathogenesis Research Unit, Center for Molecular Medicine, Karolinska Institute , Stockholm, Sweden
| | - Madeleine Cederarv
- Department of Medicine Solna, Microbial Pathogenesis Research Unit, Center for Molecular Medicine, Karolinska Institute , Stockholm, Sweden
| | - Nina Wolmer-Solberg
- Department of Medicine Solna, Microbial Pathogenesis Research Unit, Center for Molecular Medicine, Karolinska Institute , Stockholm, Sweden
| | - Charlotte Tammik
- Department of Medicine Solna, Microbial Pathogenesis Research Unit, Center for Molecular Medicine, Karolinska Institute , Stockholm, Sweden
| | - Giuseppe Stragliotto
- Department of Neurology, Karolinska University Hospital, Stockholm, Sweden; Department of Neurosurgery, Karolinska University Hospital, Stockholm, Sweden
| | - Inti Peredo
- Department of Neurology, Karolinska University Hospital, Stockholm, Sweden; Department of Neurosurgery, Karolinska University Hospital, Stockholm, Sweden
| | - Olesja Fornara
- Department of Medicine Solna, Microbial Pathogenesis Research Unit, Center for Molecular Medicine, Karolinska Institute , Stockholm, Sweden
| | - Xinling Xu
- Department of Medicine Solna, Microbial Pathogenesis Research Unit, Center for Molecular Medicine, Karolinska Institute , Stockholm, Sweden
| | - Mensur Dzabic
- Department of Medicine Solna, Microbial Pathogenesis Research Unit, Center for Molecular Medicine, Karolinska Institute , Stockholm, Sweden
| | - Chato Taher
- Department of Medicine Solna, Microbial Pathogenesis Research Unit, Center for Molecular Medicine, Karolinska Institute , Stockholm, Sweden
| | - Petra Skarman
- Department of Medicine Solna, Microbial Pathogenesis Research Unit, Center for Molecular Medicine, Karolinska Institute , Stockholm, Sweden
| | - Cecilia Söderberg-Nauclér
- Department of Medicine Solna, Microbial Pathogenesis Research Unit, Center for Molecular Medicine, Karolinska Institute , Stockholm, Sweden
| |
Collapse
|
13
|
Abstract
Glioblastoma is the most common intracranial malignancy that constitutes about 50 % of all gliomas. Despite aggressive, multimodal therapy consisting of surgery, radiation, and chemotherapy, the outcome of patients with glioblastoma remains poor with 5-year survival rates of <10 %. Resistance to conventional therapies is most likely caused by several factors. Alterations in the functions of local immune mediators may represent a critical contributor to this resistance. The tumor microenvironment contains innate and adaptive immune cells in addition to the cancer cells and their surrounding stroma. These various cells communicate with each other by means of direct cell-cell contact or by soluble factors including cytokines and chemokines, and act in autocrine and paracrine manners to modulate tumor growth. There are dynamic interactions among the local immune elements and the tumor cells, where primarily the protective immune cells attempt to overcome the malignant cells. However, by developing somatic mutations and epigenetic modifications, the glioblastoma tumor cells acquire the capability of counteracting the local immune responses, and even exploit the immune cells and products for their own growth benefits. In this review, we survey those immune mechanisms that likely contribute to glioblastoma pathogenesis and may serve as a basis for novel treatment strategies.
Collapse
Affiliation(s)
- Katalin Eder
- Department of Molecular Pathology, Markusovszky University Teaching Hospital, Markusovszky Street 5, Szombathely, 9700, Hungary.
| | - Bernadette Kalman
- Department of Molecular Pathology, Markusovszky University Teaching Hospital, Markusovszky Street 5, Szombathely, 9700, Hungary
- University of Pecs, Pecs, Hungary
| |
Collapse
|
14
|
Okada H, Butterfield LH, Hamilton RL, Hoji A, Sakaki M, Ahn BJ, Kohanbash G, Drappatz J, Engh J, Amankulor N, Lively MO, Chan MD, Salazar AM, Shaw EG, Potter DM, Lieberman FS. Induction of robust type-I CD8+ T-cell responses in WHO grade 2 low-grade glioma patients receiving peptide-based vaccines in combination with poly-ICLC. Clin Cancer Res 2014; 21:286-94. [PMID: 25424847 DOI: 10.1158/1078-0432.ccr-14-1790] [Citation(s) in RCA: 83] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
PURPOSE WHO grade 2 low-grade gliomas (LGG) with high risk factors for recurrence are mostly lethal despite current treatments. We conducted a phase I study to evaluate the safety and immunogenicity of subcutaneous vaccinations with synthetic peptides for glioma-associated antigen (GAA) epitopes in HLA-A2(+) adults with high-risk LGGs in the following three cohorts: (i) patients without prior progression, chemotherapy, or radiotherapy (RT); (ii) patients without prior progression or chemotherapy but with prior RT; and (iii) recurrent patients. EXPERIMENTAL DESIGN GAAs were IL13Rα2, EphA2, WT1, and Survivin. Synthetic peptides were emulsified in Montanide-ISA-51 and given every 3 weeks for eight courses with intramuscular injections of poly-ICLC, followed by q12 week booster vaccines. RESULTS Cohorts 1, 2, and 3 enrolled 12, 1, and 10 patients, respectively. No regimen-limiting toxicity was encountered except for one case with grade 3 fever, fatigue, and mood disturbance (cohort 1). ELISPOT assays demonstrated robust IFNγ responses against at least three of the four GAA epitopes in 10 and 4 cases of cohorts 1 and 3, respectively. Cohort 1 patients demonstrated significantly higher IFNγ responses than cohort 3 patients. Median progression-free survival (PFS) periods since the first vaccine are 17 months in cohort 1 (range, 10-47+) and 12 months in cohort 3 (range, 3-41+). The only patient with large astrocytoma in cohort 2 has been progression-free for more than 67 months since diagnosis. CONCLUSION The current regimen is well tolerated and induces robust GAA-specific responses in WHO grade 2 glioma patients. These results warrant further evaluations of this approach. Clin Cancer Res; 21(2); 286-94. ©2014 AACR.
Collapse
Affiliation(s)
- Hideho Okada
- Brain Tumor Program, University of Pittsburgh Cancer Institute, Pittsburgh, Pennsylvania. Surgical Oncology, University of Pittsburgh Cancer Institute, Pittsburgh, Pennsylvania. Department of Neurological Surgery, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania. Department of Surgery, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania. Department of Immunology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania.
| | - Lisa H Butterfield
- Department of Surgery, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania. Department of Immunology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania. Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | - Ronald L Hamilton
- Brain Tumor Program, University of Pittsburgh Cancer Institute, Pittsburgh, Pennsylvania. Department of Pathology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | - Aki Hoji
- Brain Tumor Program, University of Pittsburgh Cancer Institute, Pittsburgh, Pennsylvania. Department of Neurological Surgery, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania. Department of Infectious Diseases and Microbiology, Graduate School of Public Health, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Masashi Sakaki
- Brain Tumor Program, University of Pittsburgh Cancer Institute, Pittsburgh, Pennsylvania. Department of Neurological Surgery, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | - Brian J Ahn
- Brain Tumor Program, University of Pittsburgh Cancer Institute, Pittsburgh, Pennsylvania. Department of Immunology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | - Gary Kohanbash
- Brain Tumor Program, University of Pittsburgh Cancer Institute, Pittsburgh, Pennsylvania. Department of Neurological Surgery, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | - Jan Drappatz
- Brain Tumor Program, University of Pittsburgh Cancer Institute, Pittsburgh, Pennsylvania. Department of Neurological Surgery, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania. Department of Neurology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | - Johnathan Engh
- Brain Tumor Program, University of Pittsburgh Cancer Institute, Pittsburgh, Pennsylvania. Department of Neurological Surgery, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | - Nduka Amankulor
- Brain Tumor Program, University of Pittsburgh Cancer Institute, Pittsburgh, Pennsylvania. Department of Neurological Surgery, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | - Mark O Lively
- Wake Forest University School of Medicine, Winston-Salem, North Carolina
| | - Michael D Chan
- Wake Forest University School of Medicine, Winston-Salem, North Carolina
| | | | - Edward G Shaw
- Wake Forest University School of Medicine, Winston-Salem, North Carolina
| | - Douglas M Potter
- Brain Tumor Program, University of Pittsburgh Cancer Institute, Pittsburgh, Pennsylvania. Department of Biostatistics, Graduate School of Public Health, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Frank S Lieberman
- Brain Tumor Program, University of Pittsburgh Cancer Institute, Pittsburgh, Pennsylvania. Department of Neurological Surgery, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania. Department of Neurology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| |
Collapse
|
15
|
Abstract
Despite dramatic advances in surgical techniques, imaging and adjuvant radiotherapy or chemotherapy, the prognosis for patients with malignant glial tumors remains dismal. Based on the current knowledge regarding immune responses in the healthy CNS and glioma-bearing hosts, this review discusses dendritic cell-based immunotherapeutic approaches for malignant gliomas and the relevance of recent clinical trials and their outcomes. It is now recognized that the CNS is not an immunologically tolerated site and clearance of arising glioma cells is a routine physiologic function of the normal, noncompromised immune system. To escape from immune surveillance, however, clinically apparent gliomas develop complex mechanisms that suppress tumoricidal immune responses. Although the use of dendritic cells for the treatment of glioma patients may be the most appropriate approach, an effective treatment paradigm for these tumors may eventually require the use of several types of treatment. Additionally, given the heterogeneity of this disease process and an immune-refractory tumor cell population, the series use of rational multiple modalities that target disparate tumor characteristics may be the most effective therapeutic strategy to treat malignant gliomas.
Collapse
Affiliation(s)
- Yasuharu Akasaki
- Maxine Dunitz Neurosurgical Institute, Cedars-Sinai Medical Center, Suite 800 East, 8631 West 3 Street, Los Angeles, CA 90048, USA
| | | | | |
Collapse
|
16
|
Reardon DA, Wucherpfennig KW, Freeman G, Wu CJ, Chiocca EA, Wen PY, Curry WT, Mitchell DA, Fecci PE, Sampson JH, Dranoff G. An update on vaccine therapy and other immunotherapeutic approaches for glioblastoma. Expert Rev Vaccines 2013; 12:597-615. [PMID: 23750791 DOI: 10.1586/erv.13.41] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Outcome for glioblastoma (GBM), the most common primary CNS malignancy, remains poor. The overall survival benefit recently achieved with immunotherapeutics for melanoma and prostate cancer support evaluation of immunotherapies for other challenging cancers, including GBM. Much historical dogma depicting the CNS as immunoprivileged has been replaced by data demonstrating CNS immunocompetence and active interaction with the peripheral immune system. Several glioma antigens have been identified for potential immunotherapeutic exploitation. Active immunotherapy studies for GBM, supported by preclinical data, have focused on tumor lysate and synthetic antigen vaccination strategies. Results to date confirm consistent safety, including a lack of autoimmune reactivity; however, modest efficacy and variable immunogenicity have been observed. These findings underscore the need to optimize vaccination variables and to address challenges posed by systemic and local immunosuppression inherent to GBM tumors. Additional immunotherapy strategies are also in development for GBM. Future studies may consider combinatorial immunotherapy strategies with complimentary actions.
Collapse
Affiliation(s)
- David A Reardon
- Center for Neuro-Oncology, Dana-Farber/Brigham and Women's Cancer Center, Boston, MA, USA.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Stellzig J, Chariot A, Shostak K, Ismail Göktuna S, Renner F, Acker T, Pagenstecher A, Schmitz ML. Deregulated expression of TANK in glioblastomas triggers pro-tumorigenic ERK1/2 and AKT signaling pathways. Oncogenesis 2013; 2:e79. [PMID: 24217713 PMCID: PMC3849693 DOI: 10.1038/oncsis.2013.42] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2013] [Revised: 09/29/2013] [Accepted: 10/03/2013] [Indexed: 12/21/2022] Open
Abstract
Signal transmission by the noncanonical IkappaB kinases (IKKs), TANK-binding kinase 1 (TBK1) and IKKɛ, requires interaction with adapter proteins such as TRAF associated NF-κB activator (TANK). Although increased expression or dysregulation of both kinases has been described for a variety of human cancers, this study shows that deregulated expression of the TANK protein is frequently occurring in glioblastomas (GBMs). The functional relevance of TANK was analyzed in a panel of GBM-derived cell lines and revealed that knockdown of TANK arrests cells in the S-phase and prohibits tumor cell migration. Deregulated TANK expression affects several signaling pathways controlling cell proliferation and the inflammatory response. Interference with stoichiometrically assembled signaling complexes by overexpression or silencing of TANK prevented constitutive interferon-regulatory factor 3 (IRF3) phosphorylation. Knockdown of TANK frequently prevents constitutive activation of extracellular signal-regulated kinases 1 and 2 (ERK1/2). TANK-mediated ERK1/2 activation is independent from the canonical MAP kinase or ERK kinase (MEK) 1/2-mediated pathway and utilizes an alternative pathway that uses a TBK1/IKKɛ/Akt signaling axis, thus identifying a novel pathway suitable to block constitutive ERK1/2 activity.
Collapse
Affiliation(s)
- J Stellzig
- Institute of Biochemistry, Justus-Liebig-University, Medical Faculty, Friedrichstraße 24, Gießen, Germany
| | - A Chariot
- Laboratory of Medical Chemistry, GIGA-Signal Transduction, University of Liège, C.H.U. Sart Tilman, Liège, Belgium
- WELBIO, University of Liège, C.H.U. Sart Tilman, Liège, Belgium
| | - K Shostak
- Laboratory of Medical Chemistry, GIGA-Signal Transduction, University of Liège, C.H.U. Sart Tilman, Liège, Belgium
| | - S Ismail Göktuna
- Laboratory of Medical Chemistry, GIGA-Signal Transduction, University of Liège, C.H.U. Sart Tilman, Liège, Belgium
| | - F Renner
- Institute of Biochemistry, Justus-Liebig-University, Medical Faculty, Friedrichstraße 24, Gießen, Germany
| | - T Acker
- Institute of Neuropathology, Justus-Liebig-University, Aulweg 123, Gießen, Germany
| | - A Pagenstecher
- Department of Neuropathology, University of Marburg, Baldingerstraße, Marburg, Germany
| | - M L Schmitz
- Institute of Biochemistry, Justus-Liebig-University, Medical Faculty, Friedrichstraße 24, Gießen, Germany
| |
Collapse
|
18
|
Iwami KI, Natsume A, Wakabayashi T. Gene therapy for high-grade glioma. Neurol Med Chir (Tokyo) 2013; 50:727-36. [PMID: 20885107 DOI: 10.2176/nmc.50.727] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
High-grade glioma is the most frequently occurring primary brain tumor and is associated with a poor prognosis. Current treatment regimens have had only a modest effect on the progressive course despite recent advances in surgery, radiotherapy, and chemotherapy. Gene therapy for brain tumors represents a novel and promising therapeutic approach and has been investigated clinically for the last two decades. The strategies of gene therapy include suicide gene therapy, immune gene therapy, oncolytic viral therapy, tumor suppressor gene therapy, and antisense therapy. Here, we review gene therapy approaches considering the clinical results, limitations, and future directions.
Collapse
Affiliation(s)
- Ken-ichiro Iwami
- Department of Neurosurgery, Nagoya University School of Medicine, 65 Tsurumai-cho, Nagoya, Japan
| | | | | |
Collapse
|
19
|
Thomas AA, Fisher JL, Ernstoff MS, Fadul CE. Vaccine-based immunotherapy for glioblastoma. CNS Oncol 2013; 2:331-49. [PMID: 25054578 PMCID: PMC6166520 DOI: 10.2217/cns.13.29] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Glioblastoma remains the most lethal human brain tumor, despite the advent of multimodal treatment approaches. Because immune tolerance plays an important role in tumor progression, adding immunotherapy has become an attractive and innovative treatment approach for these aggressive tumors. Several early-phase clinical trials have demonstrated that vaccine-based immunotherapies, including dendritic cell therapy, peptide-based vaccines and vaccines containing autologous tumor lysates, are feasible and well tolerated. These trials have revealed promising trends in overall survival and progression-free survival for patients with glioblastoma, and have paved the way for ongoing randomized controlled trials.
Collapse
Affiliation(s)
- Alissa A Thomas
- Dartmouth Hitchcock Medical Center, Geisel School of Medicine at Dartmouth, Norris Cotton Cancer Center, 1 Medical Center Drive, Lebanon, NH 03756, USA
| | - Jan L Fisher
- Dartmouth Hitchcock Medical Center, Geisel School of Medicine at Dartmouth, Norris Cotton Cancer Center, 1 Medical Center Drive, Lebanon, NH 03756, USA
| | - Marc S Ernstoff
- Dartmouth Hitchcock Medical Center, Geisel School of Medicine at Dartmouth, Norris Cotton Cancer Center, 1 Medical Center Drive, Lebanon, NH 03756, USA
| | - Camilo E Fadul
- Dartmouth Hitchcock Medical Center, Geisel School of Medicine at Dartmouth, Norris Cotton Cancer Center, 1 Medical Center Drive, Lebanon, NH 03756, USA
| |
Collapse
|
20
|
Loh JK, Lieu AS, Su YF, Cheng CY, Tsai TH, Lin CL, Lee KS, Hwang SL, Kwan AL, Wang CJ, Hong YR, Chio CC, Howng SL. Plasma levels of transforming growth factor-beta 1 before and after removal of low- and high-grade astrocytomas. Cytokine 2012; 61:413-8. [PMID: 23260996 DOI: 10.1016/j.cyto.2012.11.011] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2012] [Revised: 10/12/2012] [Accepted: 11/20/2012] [Indexed: 11/30/2022]
Abstract
Transforming growth factor-beta 1 (TGF-β1) has been reported to be a possible marker for a number of tumors, including brain tumors. The aim of this study was to measure the plasma levels of TGF-β1 in patients with low- and high-grade astrocytomas before and after surgery. This prospective study included 14 patients with low-grade astrocytomas and 25 with high-grade astrocytomas who underwent tumor removal and 13 controls (patients who underwent cranioplasty for skull bone defects). Plasma levels of TGF-β1 were measured in all subjects using enzyme-linked immunosorbent assay (ELISA). Receiver operating characteristic (ROC) curve analysis showed that when the level of TGF-β1 before tumor removal was ≥ 2.52 ng/ml, astrocytoma was predicted with a sensitivity of 94.9% and specificity of 100%. The mean plasma level of TGF-β1 in both the low-grade and high-grade astrocytoma groups significantly decreased after tumor removal (p<0.05); there was no significant change in TGF-β1 plasma level of the controls following surgery. Patients with high-grade astrocytomas had a significantly higher mortality rate than patients with low-grade astrocytomas (p=0.019) and significantly shorter survival (p=0.008). A positive correlation between TGF-β1 level after tumor removal and tumor volume was only found in the high-grade astrocytoma group (γ=0.597, p=0.002). The findings show that plasma TGF-β1 level was increased in patients with low-grade and high-grade astrocytoma, and that the levels significantly decreased after tumor removal in both groups. The results provide additional evidence that TGF-β1 might be useful as a tumor marker for astrocytomas.
Collapse
Affiliation(s)
- Joon-Khim Loh
- Division of Neurosurgery, Department of Surgery, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Fermented mistletoe extract as a multimodal antitumoral agent in gliomas. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2012; 2012:501796. [PMID: 23133496 PMCID: PMC3485514 DOI: 10.1155/2012/501796] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/26/2012] [Accepted: 09/05/2012] [Indexed: 01/03/2023]
Abstract
In Europe, commercially available extracts from the white-berry mistletoe (Viscum album L.) are widely used as a complementary cancer therapy. Mistletoe lectins have been identified as main active components and exhibit cytotoxic effects as well as immunomodulatory activity. Since it is still not elucidated in detail how mistle toe extracts such as ISCADOR communicate their effects, we analyzed the mechanisms that might be responsible for their antitumoral function on a molecular and functional level. ISCADOR-treated glioblastoma (GBM) cells down-regulate central genes involved in glioblastoma progression and malignancy such as the cytokine TGF-β and matrix-metalloproteinases. Using in vitro glioblastoma/immune cell co-cultivation assays as well as measurement of cell migration and invasion, we could demonstrate that in glioblastoma cells, lectin-rich ISCADOR M and ISCADOR Q significantly enforce NK-cell-mediated GBM cell lysis. Beside its immune stimulatory effect, ISCADOR reduces the migratory and invasive potential of glioblastoma cells. In a syngeneic as well as in a xenograft glioblastoma mouse model, both pretreatment of tumor cells and intratumoral therapy of subcutaneously growing glioblastoma cells with ISCADOR Q showed delayed tumor growth. In conclusion, ISCADOR Q, showing multiple positive effects in the treatment of glioblastoma, may be a candidate for concomitant treatment of this cancer.
Collapse
|
22
|
|
23
|
Beier CP, Kumar P, Meyer K, Leukel P, Bruttel V, Aschenbrenner I, Riemenschneider MJ, Fragoulis A, Rümmele P, Lamszus K, Schulz JB, Weis J, Bogdahn U, Wischhusen J, Hau P, Spang R, Beier D. The cancer stem cell subtype determines immune infiltration of glioblastoma. Stem Cells Dev 2012; 21:2753-61. [PMID: 22676416 DOI: 10.1089/scd.2011.0660] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Immune cell infiltration varies widely between different glioblastomas (GBMs). The underlying mechanism, however, remains unknown. Here we show that TGF-beta regulates proliferation, migration, and tumorigenicity of mesenchymal GBM cancer stem cells (CSCs) in vivo and in vitro. In contrast, proneural GBM CSCs resisted TGF-beta due to TGFR2 deficiency. In vivo, a substantially increased infiltration of immune cells was observed in mesenchymal GBMs, while immune infiltrates were rare in proneural GBMs. On a functional level, proneural CSC lines caused a significantly stronger TGF-beta-dependent suppression of NKG2D expression on CD8(+) T and NK cells in vitro providing a mechanistic explanation for the reduced immune infiltration of proneural GBMs. Thus, the molecular subtype of CSCs TGF-beta-dependently contributes to the degree of immune infiltration.
Collapse
|
24
|
Li W, Graeber MB. The molecular profile of microglia under the influence of glioma. Neuro Oncol 2012; 14:958-78. [PMID: 22573310 DOI: 10.1093/neuonc/nos116] [Citation(s) in RCA: 264] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Microglia, which contribute substantially to the tumor mass of glioblastoma, have been shown to play an important role in glioma growth and invasion. While a large number of experimental studies on functional attributes of microglia in glioma provide evidence for their tumor-supporting roles, there also exist hints in support of their anti-tumor properties. Microglial activities during glioma progression seem multifaceted. They have been attributed to the receptors expressed on the microglia surface, to glioma-derived molecules that have an effect on microglia, and to the molecules released by microglia in response to their environment under glioma control, which can have autocrine effects. In this paper, the microglia and glioma literature is reviewed. We provide a synopsis of the molecular profile of microglia under the influence of glioma in order to help establish a rational basis for their potential therapeutic use. The ability of microglia precursors to cross the blood-brain barrier makes them an attractive target for the development of novel cell-based treatments of malignant glioma.
Collapse
Affiliation(s)
- Wei Li
- Brain Tumor Research Laboratories, The Brain and Mind Research Institute, University of Sydney, 94 Mallett St, Camperdown, Sydney, NSW 2050, Australia
| | | |
Collapse
|
25
|
Pellegatta S, Cuppini L, Finocchiaro G. Brain cancer immunoediting: novel examples provided by immunotherapy of malignant gliomas. Expert Rev Anticancer Ther 2012; 11:1759-74. [PMID: 22050025 DOI: 10.1586/era.11.102] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
A number of studies in murine models have suggested that the immune system may edit different tumors by forcing their expression profiles so that they escape immune reactions and proliferate. Glioblastoma (GB), the most frequent and aggressive primary brain tumor, provides a good example of this, thanks to the production of numerous immunosuppressive molecules (with TGF-β being of paramount importance), downregulation of the MHC complex and deregulation of the potential for antigen presentation by the surrounding microglia. Given that surgery, radiotherapy and chemotherapy with available protocols have limited effects on the survival of GB patients, different immunotherapy strategies have been developed, based on the use of dendritic cells, antibodies and peptide vaccination. Presently, bevacizumab, a humanized anti-VEGF antibody, provides the most successful example for immune-based treatment of GB, however, its action is limited in time, as the often tumor relapses due to still undefined immunoediting mechanisms. Altered function of EGF receptor-driven pathways is common in GB and is most frequently due to the presence of a deleted form named EGFRvIII, providing a unique cancer epitope that has been targeted by immunotherapy. A recent trial of GB immunotherapy based on vaccination with the EGFRvIII peptide has shown clinical benefit: interestingly most GBs at relapse were negative for EGFRvIII expression, a relevant, direct example of cancer immunoediting. Investigations on the mechanisms of GB immunoediting will lead to an increased understanding of the biology of this malignancy and hopefully provide novel therapeutic targets.
Collapse
Affiliation(s)
- Serena Pellegatta
- Fondazione I.R.C.C.S Istituto Neurologico C. Besta, Via Celoria 11, 20133 Milan, Italy
| | | | | |
Collapse
|
26
|
Kim CY, Park SH, Jeong M, Kwon OS, Doh H, Kang SH, Robbins PD, Kim BM, Seol DW, Kim BG. Preclinical studies for pharmacokinetics and biodistribution of Ad-stTRAIL, an adenovirus delivering secretable trimeric TRAIL for gene therapy. Exp Mol Med 2012; 43:580-6. [PMID: 21822049 DOI: 10.3858/emm.2011.43.10.065] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
Malignant glioma is the most frequent type in brain tumors. The prognosis of this tumor has not been significantly improved for the past decades and the average survival of patients is less than one year. Thus, an effective novel therapy is urgently needed. TNF-related apoptosis inducing ligand (TRAIL), known to have tumor cell-specific killing activity, has been investigated as a novel therapeutic for cancers. We have developed Ad-stTRAIL, an adenovirus delivering secretable trimeric TRAIL for gene therapy and demonstrated the potential to treat malignant gliomas. Currently, this Ad-stTRAIL gene therapy is under phase I clinical trial for malignant gliomas. Here, we report preclinical studies for Ad-stTRAIL carried out using rats. We delivered Ad-stTRAIL intracranially and determined its pharmacokinetics and biodistribution. Most Ad-stTRAIL remained in the delivered site and the relatively low number of viral genomes was detected in the opposite site of brain and cerebrospinal fluid. Similarly, only small portion of the viral particles injected was found in the blood plasma and major organs and tissues, probably due to the brain-blood barrier. Multiple administrations did not lead to accumulation of Ad-stTRAIL at the injection site and organs. Repeated delivery of Ad-stTRAIL did not show any serious side effects. Our data indicate that intracranially delivered Ad-stTRAIL is a safe approach, demonstrating the potential as a novel therapy for treating gliomas.
Collapse
Affiliation(s)
- Chae Young Kim
- Biopharmaceutical Research Laboratories ofDong-A Pharmaceutical Co., Ltd.Kyunggi-Do, Korea
| | | | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Abstract
Despite advances in surgery, radiation, and chemotherapy, malignant gliomas are still highly lethal tumors. Traditional treatments that rely on nonspecific, cytotoxic approaches have a marginal impact on patient survival. However, recent advances in the molecular cancer biology underlying glioma pathogenesis have revealed that abnormalities in common cell surface receptors, including receptor tyrosine kinase and other cytokines, mediate the abnormal cellular signal pathways and aggressive biological behavior among the majority of these tumors. Some cell surface receptors have been targeted by novel agents in preclinical and clinical development. Such cancer-specific targeted agents might offer the promise of improved cancer control without substantial toxicity. Here, we review these common cell surface receptors with clinical significance for malignant glioma and discuss the molecular characteristics, pathological significance, and potential therapeutic application of these cell surface receptors. We also summarize the clinical trials of drugs targeting these cell surface receptors in malignant glioma patients.
Collapse
Affiliation(s)
- Yan Michael Li
- Department of Neurosurgery, State University of New York Upstate Medical University, Syracuse, NY, USA
| | | |
Collapse
|
28
|
Medulloblasoma: challenges for effective immunotherapy. J Neurooncol 2011; 108:1-10. [PMID: 22173741 DOI: 10.1007/s11060-011-0776-1] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2011] [Accepted: 11/29/2011] [Indexed: 01/21/2023]
Abstract
For medulloblastoma patients, the current therapeutic paradigm of surgery followed by radiation and chemotherapy can lead to long-term remission. However, the sequelae of treatment can be very debilitating, particularly in young children. Immunotherapy is an attractive treatment approach to optimize the targeting of tumor cells while sparing the vulnerable surrounding brain that is still developing in children. Understanding the relationship between medulloblastoma and the immune system is critical to develop effective immunologic-based treatment strategies for these patients. This review focuses on current knowledge of tumor immunology and the factors that contribute to the lack of immune system recognition of these tumors. The specificity of tumor antigens present in medulloblastoma is also discussed along with a summary of early clinical immunotherapy results.
Collapse
|
29
|
Lemke D, Pfenning PN, Sahm F, Klein AC, Kempf T, Warnken U, Schnölzer M, Tudoran R, Weller M, Platten M, Wick W. Costimulatory protein 4IgB7H3 drives the malignant phenotype of glioblastoma by mediating immune escape and invasiveness. Clin Cancer Res 2011; 18:105-17. [PMID: 22080438 DOI: 10.1158/1078-0432.ccr-11-0880] [Citation(s) in RCA: 109] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
PURPOSE Recent work points out a role of B7H3, a member of the B7-family of costimulatory proteins, in conveying immunosuppression and enforced invasiveness in a variety of tumor entities. Glioblastoma is armed with effective immunosuppressive properties resulting in an impaired recognition and ineffective attack of tumor cells by the immune system. In addition, extensive and diffuse invasion of tumor cells into the surrounding brain tissue limits the efficacy of local therapies. Here, 4IgB7H3 is assessed as diagnostic and therapeutic target for glioblastoma. EXPERIMENTAL DESIGN To characterize B7H3 in glioblastoma, we conduct analyses not only in glioma cell lines and glioma-initiating cells but also in human glioma tissue specimens. RESULTS B7H3 expression by tumor and endothelial cells correlates with the grade of malignancy in gliomas and with poor survival. Both soluble 4IgB7H3 in the supernatant of glioma cells and cell-bound 4IgB7H3 are functional and suppress natural killer cell-mediated tumor cell lysis. Gene silencing showed that membrane and soluble 4IgB7H3 convey a proinvasive phenotype in glioma cells and glioma-initiating cells in vitro. These proinvasive and immunosuppressive properties were confirmed in vivo by xenografted 4IgB7H3 gene silenced glioma-initiating cells, which invaded significantly less into the surrounding brain tissue in an orthotopic model and by subcutaneously injected LN-229 cells, which were more susceptible to natural killer cell-mediated cytotoxicity than unsilenced control cells. CONCLUSIONS Because of its immunosuppressive and proinvasive function, 4IgB7H3 may serve as a therapeutic target in the treatment of glioblastoma.
Collapse
Affiliation(s)
- Dieter Lemke
- Clinical Cooperation Unit Neurooncology, German Cancer Research Center, University Hospital Heidelberg, Heidelberg, Germany
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Understanding the role of cytokines in Glioblastoma Multiforme pathogenesis. Cancer Lett 2011; 316:139-50. [PMID: 22075379 DOI: 10.1016/j.canlet.2011.11.001] [Citation(s) in RCA: 81] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2011] [Revised: 10/31/2011] [Accepted: 11/01/2011] [Indexed: 12/16/2022]
Abstract
Cytokines play a significant role in cancer diagnosis, prognosis and therapy. The immune system's failure to recognize the malignant tumor cells and mount an effective response may be the result of tumor-associated cytokine deregulation. Glioblastoma Multiforme (GBM) has a characteristic cytokine expression pattern, and abnormalities in cytokine expression have been implicated in gliomagenesis. Within the heterogeneous GBM microenvironment, the tumor cells, normal brain cells, immune cells, and stem cells interact with each other through the complex cytokine network. This review summarizes the current understanding of the functions of key cytokines on GBM, and highlights potential therapeutic applications targeting these cytokines.
Collapse
|
31
|
Wick W, Weller M. Trabedersen to target transforming growth factor-beta: when the journey is not the reward, in reference to Bogdahn et al. (Neuro-Oncology 2011;13:132-142). Neuro Oncol 2011; 13:559-60; author reply 561-2. [PMID: 21558079 DOI: 10.1093/neuonc/nor046] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|
32
|
Farooque A, Mathur R, Verma A, Kaul V, Bhatt AN, Adhikari JS, Afrin F, Singh S, Dwarakanath BS. Low-dose radiation therapy of cancer: role of immune enhancement. Expert Rev Anticancer Ther 2011; 11:791-802. [PMID: 21554054 DOI: 10.1586/era.10.217] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The efficacy of conventional radiation therapy, one of the most widely used treatment modalities of cancer, is limited by resistance of tumors as well as normal tissue toxicity. In the last decade, several studies have shown that protocols using low-dose radiation (LDR) are more effective in providing local tumor control with negligible normal tissue toxicity. LDR stimulates antioxidant capacity, repair of DNA damage, apoptosis and induction of immune responses, which might be collectively responsible for providing effective local tumor control. This article focuses on the immunostimulatory effects of LDR in in vivo models and its clinical efficacy, supporting the use of LDR regimens (alone or as adjuvant) as an anticancer treatment.
Collapse
Affiliation(s)
- Abdullah Farooque
- Division of Radiation Biosciences, Institute of Nuclear Medicine and Allied Sciences, Brig. SK Mazumdar Road, Delhi 110 0054, India
| | | | | | | | | | | | | | | | | |
Collapse
|
33
|
Sakamoto N, Ishikawa E, Yamamoto T, Satomi K, Nakai K, Sato M, Enomoto T, Morishita Y, Takano S, Ohno T, Tsuboi K, Matsumura A. Pathological changes after autologous formalin-fixed tumor vaccine therapy combined with temozolomide for glioblastoma - three case reports - . Neurol Med Chir (Tokyo) 2011; 51:319-25. [PMID: 21515959 DOI: 10.2176/nmc.51.319] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Temozolomide (TMZ), an alkylating agent widely used for patients with glioblastoma multiforme (GBM), has the potential to enhance the acquired immune response to GBM. Here, we describe 3 cases of GBM patients treated with autologous formalin-fixed tumor vaccine (AFTV) combined with TMZ. All cases demonstrated pathological changes associated with the therapy. After a 4-week break from the standard initial treatments, 1 patient with primary GBM and 2 patients with secondary GBM received adjuvant TMZ for 5 days combined with AFTV injection and were subsequently treated with multiple cycles of adjuvant TMZ for 5 days every 28 days (AFTV/TMZ therapy). Adverse effects related to AFTV plus TMZ were very minor in all patients. Magnetic resonance imaging revealed partial response in 2 patients. CD3(+)CD8(+) lymphocytes were frequently detected in surgical specimens and MIB-1 labeling index in 2 cases decreased after AFTV/TMZ therapy. AFTV/TMZ therapy is suitable for larger scale clinical trials.
Collapse
Affiliation(s)
- Noriaki Sakamoto
- Department of Neurosurgery, Graduate School of Comprehensive Human Sciences, University of Tsukuba, Tsukuba, Ibaraki, Japan
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
34
|
Immune response in patients with newly diagnosed glioblastoma multiforme treated with intranodal autologous tumor lysate-dendritic cell vaccination after radiation chemotherapy. J Immunother 2011; 34:382-9. [PMID: 21499132 DOI: 10.1097/cji.0b013e318215e300] [Citation(s) in RCA: 134] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Patients with glioblastoma multiforme (GBM) are profoundly immunosuppressed and may benefit from restoration of an antitumor immune response in combination with conventional radiation therapy and temozolomide (TMZ). The optimal strategies to evaluate clinically relevant immune responses to treatment have yet to be determined. The primary objective of our study was to determine immunologic response to cervical intranodal vaccination with autologous tumor lysate-loaded dendritic cells (DCs) in patients with GBM after radiation therapy and TMZ. We used a novel hierarchical clustering analysis of immune parameters measured before and after vaccination. Secondary objectives were to assess treatment feasibility and to correlate immune response with progression-free survival (PFS) and overall survival. Ten eligible patients received vaccination. Tumor-specific cytotoxic T-cell response measured after vaccination was enhanced for the precursor frequency of CD4+ T and CD4+ interferon γ-producing cells. Hierarchical clustering analysis of multiple functional outcomes discerned 2 groups of patients according to their immune response, and additionally showed that patients in the top quintile for at least one immune function parameter had improved survival. There were no serious adverse events related to DC vaccination. All patients were alive at 6 months after diagnosis and the 6-month PFS was 90%. The median PFS was 9.5 months and overall survival was 28 months. In patients with GBM, immune therapy with DC vaccination after radiation and TMZ resulted in tumor-specific immune responses that were associated with prolonged survival. Our data suggest that DC vaccination in combination with radiation and chemotherapy in patients with GBM is feasible, safe, and may induce tumor-specific immune responses.
Collapse
|
35
|
Zhang X, Wu A, Fan Y, Wang Y. Increased transforming growth factor-β2 in epidermal growth factor receptor variant III-positive glioblastoma. J Clin Neurosci 2011; 18:821-6. [PMID: 21511480 DOI: 10.1016/j.jocn.2010.09.024] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2010] [Revised: 09/10/2010] [Accepted: 09/11/2010] [Indexed: 02/03/2023]
Abstract
To evaluate the influence of epidermal growth factor receptor variant III (EGFRvIII) expression on immune impairment associated with glioblastoma multiforme (GBM), the expression of transforming growth factor beta-2 (TGF-β2) and interleukin-10 (IL-10) were assessed in EGFRvIII-positive and negative GBM samples. In addition, the effects of EGFRvIII expression on U87.MG glioma cell proliferation and invasion as well as TGF-β2 and IL-10 levels were analyzed. GBM samples were obtained from 26 patients who underwent surgical resection. EGFRvIII expression was assessed immunohistochemically and using real-time reverse transcription polymerase chain reaction (RT-PCR), and TGF-β2 and IL-10 levels were determined using real-time RT-PCR. Proliferation and invasion of U87.MG and U87.MG.EGFRvIII glioma cells was assessed using the 3-(4,5-dimethylthiazol-2-Yl)-2,5-diphenyltetrazolium bromide (MTT) assay and Matrigel invasion assays, respectively. Although upregulation of TGF-β2 mRNA expression was observed in EGFRvIII-positive patients, no differences in IL-10 expression levels were detected. A statistically significant increase in cell proliferation and invasion as well as TGF-β2 and IL-10 expression was observed in U87.MG.EGFRvIII cells as compared with U87.MG cells. Associations between EGFRvIII expression and upregulation of immunosuppressive cytokines were observed. EGFRvIII expression was also associated with increased cell proliferation and invasion. Understanding the immunobiology of EGFRvIII-positive GBM patients may assist in the development of novel targeted treatment strategies.
Collapse
Affiliation(s)
- Xu Zhang
- Department of Neurosurgery, The First Affiliated Hospital of China Medical University, Heping District, Shenyang 110001, China
| | | | | | | |
Collapse
|
36
|
Overview of cellular immunotherapy for patients with glioblastoma. Clin Dev Immunol 2010; 2010. [PMID: 20953324 PMCID: PMC2952949 DOI: 10.1155/2010/689171] [Citation(s) in RCA: 63] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2010] [Revised: 08/13/2010] [Accepted: 08/27/2010] [Indexed: 12/22/2022]
Abstract
High grade gliomas (HGG) including glioblastomas (GBM) are the most common and devastating primary brain tumours. Despite important progresses in GBM treatment that currently includes surgery combined to radio- and chemotherapy, GBM patients' prognosis remains very poor. Immunotherapy is one of the new promising therapeutic approaches that can specifically target tumour cells. Such an approach could also maintain long term antitumour responses without inducing neurologic defects. Since the past 25 years, adoptive and active immunotherapies using lymphokine-activated killer cells, cytotoxic T cells, tumour-infiltrating lymphocytes, autologous tumour cells, and dendritic cells have been tested in phase I/II clinical trials with HGG patients. This paper inventories these cellular immunotherapeutic strategies and discusses their efficacy, limits, and future perspectives for optimizing the treatment to achieve clinical benefits for GBM patients.
Collapse
|
37
|
Waldron JS, Yang I, Han S, Tihan T, Sughrue ME, Mills SA, Pieper RO, Parsa AT. Implications for immunotherapy of tumor-mediated T-cell apoptosis associated with loss of the tumor suppressor PTEN in glioblastoma. J Clin Neurosci 2010; 17:1543-7. [PMID: 20822910 DOI: 10.1016/j.jocn.2010.04.021] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2010] [Revised: 04/22/2010] [Accepted: 04/25/2010] [Indexed: 12/31/2022]
Abstract
The ability of glioma cells to escape the immune system remains a significant barrier to successful immunotherapy. Here we demonstrate that loss of the PTEN tumor suppressor gene, with associated activation of the PI3K/Akt/mTOR pathway, leads to a human glioma phenotype that induces autologous T-cell apoptosis upon contact. The PTEN status of pathologically confirmed glioblastoma specimens was defined, and primary cultures established after surgical resection of tumor from 26 patients. Autologous T-cells were isolated from these patients, and after T-cell activation was induced, these cells were co-cultured with matched autologous glioma cells, either alone, or after treatment with one of three inhibitors of the PI3K/Akt/mTOR pathway. When co-cultured with autologous T-cells, PTEN wild-type tumor cells induced apoptosis in a minimal number of activated T-cells (6-12% of T-cells), whereas tumors with PTEN loss induced much more profound levels of T-cell apoptosis (42-56% of T-cells). Prior treatment of PTEN-deficient tumor cells with specific inhibitors of the PI3K/Akt/mTOR pathway diminished T-cell apoptosis to levels seen after co-culture with wild-type PTEN tumor cells, suggesting that PTEN loss confers this immunoresistant phenotype through the PI3K/Akt/mTOR pathway. These results suggest that PTEN-deficient glioblastoma patients are suboptimal candidates for immunotherapy. In addition, our results raise the possibility of combining T-cell based immunotherapy protocols with clinical inhibitors of the PI3K/Akt/mTOR pathway.
Collapse
Affiliation(s)
- James S Waldron
- Department of Neurological Surgery, University of California at San Francisco, San Francisco, California 94123, USA
| | | | | | | | | | | | | | | |
Collapse
|
38
|
Roth P, Junker M, Tritschler I, Mittelbronn M, Dombrowski Y, Breit SN, Tabatabai G, Wick W, Weller M, Wischhusen J. GDF-15 contributes to proliferation and immune escape of malignant gliomas. Clin Cancer Res 2010; 16:3851-9. [PMID: 20534737 DOI: 10.1158/1078-0432.ccr-10-0705] [Citation(s) in RCA: 131] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
PURPOSE Growth and differentiation factor (GDF)-15 is a member of the transforming growth factor (TGF)-beta family. GDF-15 is necessary for the maintenance of pregnancy but has also been linked to other physiologic and pathologic conditions. EXPERIMENTAL DESIGN The expression of GDF-15 in glioma cell lines was assessed by quantitative reverse transcriptase-PCR and immunoblot. GDF-15 levels in situ and in the peripheral blood of glioma patients were examined by immunohistochemistry and enzyme-linked immunosorbent assay, respectively. The effects of short hairpin RNA-mediated GDF-15 inhibition on proliferation and immunogenicity of SMA-560 glioma cells were investigated by [methyl-(3)H]thymidine incorporation and immune-mediated target cell lysis. The impact of GDF-15 on glioma growth in vivo was assessed in syngeneic mice. RESULTS GDF-15 is expressed by gliomas of different WHO grades as assessed by immunohistochemistry. The high expression of GDF-15 in tumor tissue translates into elevated GDF-15 serum levels in glioblastoma patients compared with healthy controls. GDF-15 mRNA and protein are also detectable in human and mouse glioma cells in vitro. Silencing of GDF-15 by RNA interference reduces the proliferation of malignant glioma cells. Immunologically, the depletion of glioma-derived GDF-15 enhances the susceptibility of mouse glioma cells towards syngeneic natural killer cells and splenocytes. This results in a reduced in vivo tumorigenicity and increased T-cell infiltration of GDF-15-deficient glioma cells in syngeneic mice. CONCLUSIONS Although previous studies focusing on ectopic overexpression of GDF-15 have proposed unclear or antitumorigenic effects of GDF-15 in glioma cells, we here show that GDF-15 at endogenous levels contributes to proliferation and immune escape of malignant gliomas in an immunocompetent host.
Collapse
Affiliation(s)
- Patrick Roth
- Laboratory of Molecular Neurooncology, Department of Neurology, University Hospital Zurich, Frauenklinikstrasse 26, Zurich, Switzerland.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
39
|
|
40
|
Tran Thang NN, Derouazi M, Philippin G, Arcidiaco S, Di Berardino-Besson W, Masson F, Hoepner S, Riccadonna C, Burkhardt K, Guha A, Dietrich PY, Walker PR. Immune infiltration of spontaneous mouse astrocytomas is dominated by immunosuppressive cells from early stages of tumor development. Cancer Res 2010; 70:4829-39. [PMID: 20501837 DOI: 10.1158/0008-5472.can-09-3074] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Immune infiltration of advanced human gliomas has been shown, but it is doubtful whether these immune cells affect tumor progression. It could be hypothesized that this infiltrate reflects recently recruited immune cells that are immediately overwhelmed by a high tumor burden. Alternatively, if there is earlier immune detection and infiltration of the tumor, the question arises as to when antitumor competency is lost. To address these issues, we analyzed a transgenic mouse model of spontaneous astrocytoma (GFAP-V(12)HA-ras mice), which allows the study of immune interactions with developing glioma, even at early asymptomatic stages. T cells, including a significant proportion of Tregs, are already present in the brain before symptoms develop, followed later by macrophages, natural killer cells, and dendritic cells. The effector potential of CD8 T-cells is defective, with the absence of granzyme B expression and low expression of IFN-gamma, tumor necrosis factor, and interleukin 2. Overall, our results show an early defective endogenous immune response to gliomas, and local accumulation of immunosuppressive cells at the tumor site. Thus, the antiglioma response is not simply overwhelmed at advanced stages of tumor growth, but is counterbalanced by an inhibitory microenvironment from the outset. Nevertheless, we determined that effector molecule expression (granzyme B, IFN-gamma) by brain-infiltrating CD8 T-cells could be enhanced, despite this unfavorable milieu, by strong immune stimuli. This potential to modulate the strong imbalance in local antiglioma immunity is encouraging for the development and optimization of future glioma immunotherapies.
Collapse
|
41
|
Avril T, Saikali S, Vauleon E, Jary A, Hamlat A, De Tayrac M, Mosser J, Quillien V. Distinct effects of human glioblastoma immunoregulatory molecules programmed cell death ligand-1 (PDL-1) and indoleamine 2,3-dioxygenase (IDO) on tumour-specific T cell functions. J Neuroimmunol 2010; 225:22-33. [PMID: 20493562 DOI: 10.1016/j.jneuroim.2010.04.003] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2010] [Revised: 03/25/2010] [Accepted: 04/07/2010] [Indexed: 01/22/2023]
Abstract
Immunotherapy is a promising new treatment for patients suffering from glioma, in particular glioblastoma multiforme (GBM). However, tumour cells use different mechanisms to escape the immune responses induced by the treatment. As many other tumours, gliomas express or secrete several immunosuppressive molecules that regulate immune cell functions. In this study, we first analysed FasL, HLA-G, IDO, PDL-1 and TGF-beta1, -beta2 and -beta3 expression by transcriptomic microarray analysis in a series of 20 GBM samples and found respectively 15%, 60%, 85%, 30%, 70%, 80% and 35% of positive specimens. mRNA expression was then confirmed in 10 GBM primary cell lines and 2 immortalised cell lines U251 and U87MG. Furthermore, the protein expression of PDL-1, IDO activity and TGF-beta2 secretion were found on most of the untreated GBM primary cell lines. Remarkably, treatment with IFN-gamma increased the PDL-1 cell surface expression and the IDO activity, but reduced the TGF-beta2 secretion of GBM cell lines. We finally analysed the immunosuppressive effects of IDO, PDL-1 and TGF-beta1-3 by measuring IFN-gamma production and cell cytotoxicity activity of tumour antigen-specific T cells. PDL-1 partially affected the IFN-gamma production of antigen-specific T cells in response to GBM primary cell lines, and IDO inhibited lymphocyte proliferation induced by lectins. None of these molecules directly affected the T cell cytotoxicity function. Due to the functional role of PDL-1 and IDO molecules expressed by GBM cells, one could expect that blocking these molecules in the immunotherapy strategies would reinforce the efficiency of these treatments of GBM patients.
Collapse
Affiliation(s)
- Tony Avril
- Département de Biologie, Centre Eugène Marquis, Rennes, France.
| | | | | | | | | | | | | | | |
Collapse
|
42
|
Abstract
Almost all individuals diagnosed with glioblastoma multiforme (GBM) will die of their disease as no effective therapies exist. Clearly, novel approaches to this problem are needed. Unlike the adaptive alphabeta T cell-mediated immune response, which requires antigen processing and MHC-restricted peptide display by antigen-presenting cells, gammadelta T cells can broadly recognize and immediately respond to a variety of MHC-like stress-induced self antigens, many of which are expressed on human GBM cells. Until now, there has been little progress toward clinical application, although several investigators have recently published clinically approvable methods for large-scale ex vivo expansion of functional gammadelta T cells for therapeutic purposes. This review discusses the biology of gammadelta T cells with respect to innate immunotherapy of cancer with a focus on GBM, and explores graft engineering techniques in development for the therapeutic use of gammadelta T cells.
Collapse
|
43
|
Regulatory T Cell as a Target for Cancer Therapy. Arch Immunol Ther Exp (Warsz) 2010; 58:179-90. [DOI: 10.1007/s00005-010-0075-0] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2009] [Accepted: 12/06/2009] [Indexed: 12/13/2022]
|
44
|
Hau P, Jachimczak P, Bogdahn U. Treatment of malignant gliomas with TGF-beta2 antisense oligonucleotides. Expert Rev Anticancer Ther 2010; 9:1663-74. [PMID: 19895249 DOI: 10.1586/era.09.138] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Antisense oligodeoxynucleotides (AS-ODNs) have been widely used to determine gene function, validate drug targets and as novel therapeutics for human diseases. In this review, we describe the development of AS-ODNs, including their modifications, pharmacokinetics and toxicity in animal models and humans, and their preclinical and clinical development in the therapy of human high-grade gliomas. The most advanced AS-ODN for the therapy of high-grade gliomas is a phosphorothioate-modified AS-ODN, AP 12009 (trabedersen), which targets mRNA encoding TGF-beta2. AP 12009 is administered intratumorally using convection-enhanced delivery. A series of Phase I and II clinical trials have evaluated the toxicity profile and optimal dose of the substance. A randomized, controlled international Phase III study was initiated in March 2009 and will compare trabedersen 10 microM versus conventional alkylating chemotherapy in patients with recurrent or refractory anaplastic astrocytoma after standard radio- and chemotherapy.
Collapse
Affiliation(s)
- Peter Hau
- Department of Neurology, University of Regensburg, Medical School, Regensburg, Germany.
| | | | | |
Collapse
|
45
|
Sasaki K, Kohanbash G, Hoji A, Ueda R, McDonald HA, Reinhart TA, Martinson J, Lotze MT, Marincola FM, Wang E, Fujita M, Okada H. miR-17-92 expression in differentiated T cells - implications for cancer immunotherapy. J Transl Med 2010; 8:17. [PMID: 20167088 PMCID: PMC2836279 DOI: 10.1186/1479-5876-8-17] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2009] [Accepted: 02/18/2010] [Indexed: 12/19/2022] Open
Abstract
Background Type-1 T cells are critical for effective anti-tumor immune responses. The recently discovered microRNAs (miRs) are a large family of small regulatory RNAs that control diverse aspects of cell function, including immune regulation. We identified miRs differentially regulated between type-1 and type-2 T cells, and determined how the expression of such miRs is regulated. Methods We performed miR microarray analyses on in vitro differentiated murine T helper type-1 (Th1) and T helper type-2 (Th2) cells to identify differentially expressed miRs. We used quantitative RT-PCR to confirm the differential expression levels. We also used WST-1, ELISA, and flow cytometry to evaluate the survival, function and phenotype of cells, respectively. We employed mice transgenic for the identified miRs to determine the biological impact of miR-17-92 expression in T cells. Results Our initial miR microarray analyses revealed that the miR-17-92 cluster is one of the most significantly over-expressed miR in murine Th1 cells when compared with Th2 cells. RT-PCR confirmed that the miR-17-92 cluster expression was consistently higher in Th1 cells than Th2 cells. Disruption of the IL-4 signaling through either IL-4 neutralizing antibody or knockout of signal transducer and activator of transcription (STAT)6 reversed the miR-17-92 cluster suppression in Th2 cells. Furthermore, T cells from tumor bearing mice and glioma patients had decreased levels of miR-17-92 when compared with cells from non-tumor bearing counterparts. CD4+ T cells derived from miR-17-92 transgenic mice demonstrated superior type-1 phenotype with increased IFN-γ production and very late antigen (VLA)-4 expression when compared with counterparts derived from wild type mice. Human Jurkat T cells ectopically expressing increased levels of miR-17-92 cluster members demonstrated increased IL-2 production and resistance to activation-induced cell death (AICD). Conclusion The type-2-skewing tumor microenvironment induces the down-regulation of miR-17-92 expression in T cells, thereby diminishing the persistence of tumor-specific T cells and tumor control. Genetic engineering of T cells to express miR-17-92 may represent a promising approach for cancer immunotherapy.
Collapse
Affiliation(s)
- Kotaro Sasaki
- Department of Immunology, University of Pittsburgh School of Medicine, PA 15213, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
46
|
Gamma interferon-mediated superinduction of B7-H1 in PTEN-deficient glioblastoma: a paradoxical mechanism of immune evasion. Neuroreport 2010; 20:1597-602. [PMID: 19875977 DOI: 10.1097/wnr.0b013e32833188f7] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
B7 homolog 1 (B7-H1) is a recently discovered immunoresistance protein that is regulated posttranscriptionally after PTEN loss in malignant glioma, a deadly form of brain tumor. Here, the impact of gamma-interferon-mediated activation of B7-H1 was investigated in glioblastoma patients with PTEN loss. Lymphocytes and T cells were selected for apoptosis assays after 1 : 1 coculture with autologous glioma cells. Gamma interferon treatment of PTEN-deficient tumors resulted in superinduction of B7-H1 protein that correlated with increased T-cell apoptosis, an effect dependent upon activation of the PI3-kinase pathway. The combination of PTEN loss and gamma-interferon exposure in glioblastoma patients results in an exceptionally immunoresistant phenotype that may negate adaptive immunity through induction of T-cell apoptosis.
Collapse
|
47
|
Teodorczyk M, Martin-Villalba A. Sensing invasion: cell surface receptors driving spreading of glioblastoma. J Cell Physiol 2009; 222:1-10. [PMID: 19688773 DOI: 10.1002/jcp.21901] [Citation(s) in RCA: 65] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Glioblastoma multiforme (GBM) is the most common malignant brain tumour in adults. One main source of its high malignancy is the invasion of isolated tumour cells into the surrounding parenchyma, which makes surgical resection an insufficient therapy in nearly all cases. The invasion is triggered by several cell surface receptors including receptor tyrosine kinases (RTKs), G protein-coupled receptors (GPCRs), TGF-beta receptor, integrins, immunoglobulins, tumour necrosis factor (TNF) family, cytokine receptors, and protein tyrosine phosphatase receptors. The cross-talk between cell-surface receptors and the redundancy of downstream effectors make analysis of invasive signals even more complex. Therapies involving inhibition of single receptors do not give promising outcomes and a thorough knowledge of invasive signals of common and exclusive signalling components is required for design of best combinatory treatment schemes to fight the disease.
Collapse
Affiliation(s)
- Marcin Teodorczyk
- Molecular Neurobiology Group, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | | |
Collapse
|
48
|
Barcellos-Hoff MH, Newcomb EW, Zagzag D, Narayana A. Therapeutic targets in malignant glioblastoma microenvironment. Semin Radiat Oncol 2009; 19:163-70. [PMID: 19464631 DOI: 10.1016/j.semradonc.2009.02.004] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
There is considerable evidence that the tissue microenvironment can suppress cancer and that microenvironment disruption is required for cancer growth and progression. Distortion of the microenvironment by tumor cells can promote growth, recruit nonmalignant cells that provide physiological resources, and facilitate invasion. Compared with the variable routes taken by cells to become cancers, the response of normal tissue to cancer is relatively consistent such that controlling cancer may be more readily achieved indirectly via the microenvironment. Here, we discuss 3 ideas about how the microenvironment, consisting of a vasculature, inflammatory cells, immune cells, growth factors, and extracellular matrix, might provide therapeutic targets in glioblastoma (GBM) in the context of radiotherapy (RT): (1) viable therapeutic targets exist in the GBM microenvironment, (2) RT alters the microenvironment of tissues and tumors; and (3) a potential benefit may be achieved by targeting the microenvironments induced by RT.
Collapse
Affiliation(s)
- Mary Helen Barcellos-Hoff
- Department of Radiation Oncology, New York University, Langone School of Medicine, New York, NY 10016, USA.
| | | | | | | |
Collapse
|
49
|
Tritschler I, Gramatzki D, Capper D, Mittelbronn M, Meyermann R, Saharinen J, Wick W, Keski-Oja J, Weller M. Modulation of TGF-beta activity by latent TGF-beta-binding protein 1 in human malignant glioma cells. Int J Cancer 2009; 125:530-40. [PMID: 19431147 DOI: 10.1002/ijc.24443] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
High biological activity of the transforming growth factor (TGF)-beta-Smad pathway characterizes the malignant phenotype of malignant gliomas and confers poor prognosis to glioma patients. Accordingly, TGF-beta has become a novel target for the experimental treatment of these tumors. TGF-beta is processed by furin-like proteases (FLP) and secreted from cells in a latent complex with its processed propeptide, the latency-associated peptide (LAP). Latent TGF-beta-binding protein 1 (LTBP-1) covalently binds to this small latent TGF-beta complex (SLC) and regulates its function, presumably via interaction with the extracellular matrix (ECM). We report here that the levels of LTBP-1 protein in vivo increase with the grade of malignancy in gliomas. LTBP-1 is associated with the ECM as well as secreted into the medium in cultured malignant glioma cells. The release of LTBP-1 into the medium is decreased by the inhibition of FLP activity. Gene-transfer mediated overexpression of LTBP-1 in glioma cell lines results in an increase inTGF-beta activity. Accordingly, Smad2 phosphorylation as an intracellular marker of TGF-beta activity is enhanced. Conversely, LTBP-1 gene silencing reduces TGF-beta activity and Smad2 phosphorylation without affecting TGF-beta protein levels. Collectively, we identify LTBP-1 as an important modulator of TGF-beta activation in glioma cells, which may contribute to the malignant phenotype of these tumors.
Collapse
Affiliation(s)
- Isabel Tritschler
- Department of General Neurology, Laboratory of Molecular Neuro-Oncology, Hertie Institute for Clinical Brain Research, University of Tuebingen, Tuebingen, Germany
| | | | | | | | | | | | | | | | | |
Collapse
|
50
|
Gramatzki D, Pantazis G, Schittenhelm J, Tabatabai G, Köhle C, Wick W, Schwarz M, Weller M, Tritschler I. Aryl hydrocarbon receptor inhibition downregulates the TGF-β/Smad pathway in human glioblastoma cells. Oncogene 2009; 28:2593-605. [DOI: 10.1038/onc.2009.104] [Citation(s) in RCA: 92] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|