1
|
López-Romero D, Izquierdo-Vega JA, Morales-González JA, Madrigal-Bujaidar E, Chamorro-Cevallos G, Sánchez-Gutiérrez M, Betanzos-Cabrera G, Alvarez-Gonzalez I, Morales-González Á, Madrigal-Santillán E. Evidence of Some Natural Products with Antigenotoxic Effects. Part 2: Plants, Vegetables, and Natural Resin. Nutrients 2018; 10:1954. [PMID: 30544726 PMCID: PMC6316078 DOI: 10.3390/nu10121954] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2018] [Revised: 11/27/2018] [Accepted: 12/03/2018] [Indexed: 02/07/2023] Open
Abstract
Cancer is one of the leading causes of death worldwide. The agents capable of causing damage to genetic material are known as genotoxins and, according to their mode of action, are classified into mutagens, carcinogens, or teratogens. Genotoxins are also involved in the pathogenesis of several chronic degenerative diseases, including hepatic, neurodegenerative, and cardiovascular disorders; diabetes; arthritis; cancer; chronic inflammation; and ageing. In recent decades, researchers have found novel bioactive phytocompounds able to counteract the effects of physical and chemical mutagens. Several studies have shown the antigenotoxic potential of different fruits and plants (Part 1). In this review (Part 2), we present a research overview conducted on some plants and vegetables (spirulina, broccoli, chamomile, cocoa, ginger, laurel, marigold, roselle, and rosemary), which are frequently consumed by humans. In addition, an analysis of some phytochemicals extracted from those vegetables and the analysis of a resin (propolis),whose antigenotoxic power has been demonstrated in various tests, including the Ames assay, sister chromatid exchange, chromosomal aberrations, micronucleus, and comet assay, was also performed.
Collapse
Affiliation(s)
- David López-Romero
- Instituto de Ciencias de la Salud, Universidad Autónoma del Estado de Hidalgo, Ex-Hacienda de la Concepción, Tilcuautla, Pachuca de Soto 42080, Hgo, Mexico.
| | - Jeannett A Izquierdo-Vega
- Instituto de Ciencias de la Salud, Universidad Autónoma del Estado de Hidalgo, Ex-Hacienda de la Concepción, Tilcuautla, Pachuca de Soto 42080, Hgo, Mexico.
| | - José Antonio Morales-González
- Escuela Superior de Medicina, Instituto Politécnico Nacional, "Unidad Casco de Santo Tomas". Plan de San Luis y Díaz Mirón s/n, Ciudad de México 11340, Mexico.
| | - Eduardo Madrigal-Bujaidar
- Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, "Unidad Profesional A. López Mateos". Av. Wilfrido Massieu. Col., Lindavista, Ciudad de México 07738, Mexico.
| | - Germán Chamorro-Cevallos
- Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, "Unidad Profesional A. López Mateos". Av. Wilfrido Massieu. Col., Lindavista, Ciudad de México 07738, Mexico.
| | - Manuel Sánchez-Gutiérrez
- Instituto de Ciencias de la Salud, Universidad Autónoma del Estado de Hidalgo, Ex-Hacienda de la Concepción, Tilcuautla, Pachuca de Soto 42080, Hgo, Mexico.
| | - Gabriel Betanzos-Cabrera
- Instituto de Ciencias de la Salud, Universidad Autónoma del Estado de Hidalgo, Ex-Hacienda de la Concepción, Tilcuautla, Pachuca de Soto 42080, Hgo, Mexico.
| | - Isela Alvarez-Gonzalez
- Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, "Unidad Profesional A. López Mateos". Av. Wilfrido Massieu. Col., Lindavista, Ciudad de México 07738, Mexico.
| | - Ángel Morales-González
- Escuela Superior de Cómputo, Instituto Politécnico Nacional, "Unidad Profesional A. López Mateos". Av. Juan de Dios Bátiz. Col., Lindavista, Ciudad de México 07738, Mexico.
| | - Eduardo Madrigal-Santillán
- Escuela Superior de Medicina, Instituto Politécnico Nacional, "Unidad Casco de Santo Tomas". Plan de San Luis y Díaz Mirón s/n, Ciudad de México 11340, Mexico.
| |
Collapse
|
2
|
Heterocyclic Amines. Food Saf (Tokyo) 2016. [DOI: 10.1007/978-3-319-39253-0_5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022] Open
|
3
|
Jarvis N, O'Bryan CA, Ricke SC, Crandall PG. The functionality of plum ingredients in meat products: A review. Meat Sci 2015; 102:41-8. [DOI: 10.1016/j.meatsci.2014.12.002] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2014] [Revised: 11/19/2014] [Accepted: 12/02/2014] [Indexed: 10/24/2022]
|
4
|
Rahman UU, Sahar A, Khan MI, Nadeem M. Production of heterocyclic aromatic amines in meat: Chemistry, health risks and inhibition. A review. Lebensm Wiss Technol 2014. [DOI: 10.1016/j.lwt.2014.06.005] [Citation(s) in RCA: 60] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
5
|
Red orange: experimental models and epidemiological evidence of its benefits on human health. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2013; 2013:157240. [PMID: 23738032 PMCID: PMC3659473 DOI: 10.1155/2013/157240] [Citation(s) in RCA: 77] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 02/27/2013] [Accepted: 04/10/2013] [Indexed: 02/07/2023]
Abstract
In recent years, there has been increasing public interest in plant antioxidants, thanks to the potential anticarcinogenic and cardioprotective actions mediated by their biochemical properties. The red (or blood) orange (Citrus sinensis (L.) Osbeck) is a pigmented sweet orange variety typical of eastern Sicily (southern Italy), California, and Spain. In this paper, we discuss the main health-related properties of the red orange that include anticancer, anti-inflammatory, and cardiovascular protection activities. Moreover, the effects on health of its main constituents (namely, flavonoids, carotenoids, ascorbic acid, hydroxycinnamic acids, and anthocyanins) are described. The red orange juice demonstrates an important antioxidant activity by modulating many antioxidant enzyme systems that efficiently counteract the oxidative damage which may play an important role in the etiology of numerous diseases, such as atherosclerosis, diabetes, and cancer. The beneficial effects of this fruit may be mediated by the synergic effects of its compounds. Thus, the supply of natural antioxidant compounds through a balanced diet rich in red oranges might provide protection against oxidative damage under differing conditions and could be more effective than, the supplementation of an individual antioxidant.
Collapse
|
6
|
Bandyopadhyay N, Gautam S, Sharma A. Variety-based variation in the antimutagenic potential of various vegetables and lack of its correlation with their antioxidant capacity. Int J Food Sci Nutr 2013; 64:587-98. [DOI: 10.3109/09637486.2013.763913] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
7
|
Health benefits and possible risks of broccoli - an overview. Food Chem Toxicol 2011; 49:3287-309. [PMID: 21906651 DOI: 10.1016/j.fct.2011.08.019] [Citation(s) in RCA: 150] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2011] [Revised: 07/19/2011] [Accepted: 08/22/2011] [Indexed: 11/20/2022]
Abstract
Chemopreventive effects of broccoli, a highly valued vegetable, have been known for a long time. Several studies have demonstrated that broccoli might be beneficial by reducing the risk for the development of certain forms of cancer. These effects are generally attributed to glucosinolate-derived degradation products like isothiocyanates and indoles which are formed by the hydrolytic action of plant myrosinase and/or glucosidases deriving from the human microbial flora. However, recent in vitro and experimental animal studies indicate that broccoli, its extracts and the glucosinolate-derived degradation products might also have undesirable effects, especially genotoxic activities. However, the relevance of the genotoxic activities to human health is not known yet. This paper gives an overview on genotoxic, anti-genotoxic/chemopreventive, nutritive and antinutritive properties of broccoli, its ingredients and their degradation products. A qualitative comparison of the benefit and risk of broccoli consumption benefit-risk assessment shows that the benefit from intake in modest quantities and in processed form outweighs potential risks. For other preparations (fortified broccoli-based dietary supplements, diets with extraordinary high daily intake, consumption as a raw vegetable) further studies both for potential risks and beneficial effects are needed in order to assess the benefit and risk in the future.
Collapse
|
8
|
Ferguson LR. Antimutagenesis Studies: Where Have They Been and Where Are They Heading? Genes Environ 2011. [DOI: 10.3123/jemsge.33.71] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
|
9
|
Kang HG, Jeong SH, Cho JH. Antimutagenic and anticarcinogenic effect of methanol extracts of Petasites japonicus Maxim leaves. J Vet Sci 2010; 11:51-8. [PMID: 20195065 PMCID: PMC2833430 DOI: 10.4142/jvs.2010.11.1.51] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The methanol extract from the leaves of Petasites japonicus Maxim (PJ) was studied for its (anti-)mutagenic effect with the SOS chromotest and reverse mutation assay. The (anti-)carcinogenic effects were evaluated by the cytotoxicity on human cancer line cells and by the function and the expression of gap junctions in rat liver epithelial cell. PJ extracts significantly decreased spontaneous β-galactosidase activity and β-galactosidase activity induced by a mutagen, ICR, in Salmonella (S.) typhimurium TA 1535/pSK 1002. All doses of the extract (0.08-100 mg/plate) decreased the reversion frequency induced by benzo (α)pyrene (BaP) in S. typhimurium TA 98. It decreased not only the spontaneous reversion frequency but also that induced by BaP in S. typhimurium TA 100. PJ extract showed greater cytotoxic effects on human stomach, colon and uterus cancer cells than on other cancer cell types and normal rat liver epithelial cells. Dye transfers though gap junctions were significantly increased by PJ extracts at concentrations greater than 200 µg/mL and the inhibition of dye transfer by 12-O-tetradecanoylphorobol-13-acetate (TPA) was obstructed in all concentrations of PJ. PJ significantly increased the numbers of gap junction protein connexin 43, and increased the protein expression decreased by TPA in a dose-dependent manner. Based on these findings, PJ is suggested to contain antimutagenic and anticarcionogenic compounds.
Collapse
Affiliation(s)
- Hwan-Goo Kang
- National Veterinary Research and Quarantine Service, Anyang, Korea
| | | | | |
Collapse
|
10
|
Kang HG, Jeong SH, Cho JH. Antimutagenic and Anticarcinogenic Effect of Methanol Extracts of Sweetpotato (Ipomea batata) Leaves. Toxicol Res 2010; 26:29-35. [PMID: 24278503 PMCID: PMC3834463 DOI: 10.5487/tr.2010.26.1.029] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2010] [Revised: 02/22/2010] [Accepted: 02/25/2010] [Indexed: 11/20/2022] Open
Abstract
The present study was conducted to investigate the antimutagenic potential of the methanolic extract from the leaves of sweet potato (Ipomea batatas, IB) with the SOS chromotest (umu test) and Salmonella typhimurium TA 98 and TA 100. The anticarcinogenic effects were also studied by calculation of the IC50 on human cancer cell lines and investigating the function of gap junction in rat liver epithelial cells. The IB extract inhibited dose-dependently the β-galactosidase activity induced spontaneously at concentration of more than 200 mg/ml in S. typhimurium TA 1535/pSK 1002, and decreased significantly (p < 0.01) the β-galactosidase activities induced by mutagen 6-chloro-9-[3- (2-chloroethylamino) proylamino]-2-methoxyacridine dihydrochloride (ICR) at dose of more than 0.4 mg/0.1 ml. The IB extract showed no effect on the spontaneous reversions of S. typhimurium TA 98 and 100 but benzo (α) pyrene (BaP) -stimulated reversions were decreased dose-dependently (p < 0.01) at the concentration of more than 100 mg/ml. The IC50 value of stomach cancer cells was lower than that of normal rat liver epithelial cells, but the values of colon and uterine cancer cell lines were similar to those of normal rat liver epithelial cells. The transfer of dye through gap junctions was not affected by treatment of the IB extracts at any concentration during treatment periods. The simultaneously treatment of IB extract and 12-O-tetradecanoylphorbol-13-acetate (TPA) effectively prevented the inhibition of dye transfer induced by TPA 1 hour after treatment at all exposed concentrations. The number of gap junctions was significantly (p < 0.01) increased by the treatment with IB extract at concentrations of more than 40 μg/ml. The inhibition of the expression of gap junction proteins by TPA (0.01 μg/ml) was recovered dose dependently by the simultaneous treatment of IB extracts. Our data suggest that Ipomea batatas has antimutagenic and anticarcionogenic activity in vitro.
Collapse
Affiliation(s)
- Hwan-Goo Kang
- National Research and Quarantine Service, Anyang 430-757
| | | | | |
Collapse
|
11
|
Fukamachi K, Imada T, Ohshima Y, Xu J, Tsuda H. Purple corn color suppresses Ras protein level and inhibits 7,12-dimethylbenz[a]anthracene-induced mammary carcinogenesis in the rat. Cancer Sci 2008; 99:1841-6. [PMID: 18616524 PMCID: PMC11159976 DOI: 10.1111/j.1349-7006.2008.00895.x] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
Anthocyanins belong to the class of phenolic compounds collectively named flavonoids. Many anthocyanins are reported to have inhibitory effects on carcinogenesis. Purple corn color (PCC), an anthocyanin containing extract of purple corn seeds, is used as a food colorant. The major anthocyanin in PCC is cyanidin 3-O-beta-D-glucoside (C3-G). The present study was conducted to assess the influence of dietary PCC on 7,12-dimethylbenz[a]anthracene (DMBA)-induced mammary carcinogenesis in rats. PCC significantly inhibited DMBA-induced mammary carcinogenesis in human c-Ha-ras proto-oncogene transgenic (Hras128) rats and in their non-transgenic counterparts. PCC and C3-G also inhibited cell viability and induced apoptosis in mammary tumor cells derived from Hras128 rat mammary carcinomas. At the molecular level, PCC and C3-G treatment resulted in a preferential activation of caspase-3 and reduction of Ras protein levels in tumor cells. It is proposed that C3-G could act as a chemopreventive and possibly chemotherapeutic agent for cancers with mutations in ras. Secondly, the in vitro-in vivo system used in this study can be utilized for screening for cancer preventive compounds that act via Ras down-regulation.
Collapse
Affiliation(s)
- Katsumi Fukamachi
- Department of Molecular Toxicology, Nagoya City University Graduate School of Medical Sciences, 1 Kawasumi, Mizuho-cho, Mizuho-ku, Nagoya 467-8601, Japan
| | | | | | | | | |
Collapse
|
12
|
Rocha-Guzmán NE, Herzog A, González-Laredo RF, Ibarra-Pérez FJ, Zambrano-Galván G, Gallegos-Infante JA. Antioxidant and antimutagenic activity of phenolic compounds in three different colour groups of common bean cultivars (Phaseolus vulgaris). Food Chem 2007. [DOI: 10.1016/j.foodchem.2006.08.021] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
|
13
|
Antioxidative and antimutagenic activities of the extracts from the rinds of Garcinia pedunculata. INNOV FOOD SCI EMERG 2006. [DOI: 10.1016/j.ifset.2006.01.001] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
14
|
The effect of phenolic and polyphenolic compounds on the development of drug resistance. Biomed Pap Med Fac Univ Palacky Olomouc Czech Repub 2005; 149:405-7. [PMID: 16601799 DOI: 10.5507/bp.2005.069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
The effect of two phenolic compounds vanillin (4-hydroxy-3-methoxybenzaldehyde) and lignin on the development of drug/antibiotic resistance in Salmonella typhimurium was studied. Using the modified Ames test we have shown that vanillin alone has negligible effect on spontaneous mutability to ciprofloxacin and gentamicin resistance. At the tested concentrations vanillin reduces the toxicity of 4-nitroquinoline-N-oxide (4NQO) and reduces the ability of this compound to induce mutations leading to ciprofloxacin but not to gentamicin resistance. Lignin at higher concentrations increases mutagenicity to ciprofloxacin resistance and possess considerable inhibition effect on the spontaneous and 4NQO induced mutability to gentamicin resistance.
Collapse
|
15
|
Nogueira MEI, Passoni MH, Biso FI, Longo MDC, Cardoso CRP, Santos LCD, Varanda EA. Investigation of genotoxic and antigenotoxic activities of Melampodium divaricatum in Salmonella typhimurium. Toxicol In Vitro 2005; 20:361-6. [PMID: 16182509 DOI: 10.1016/j.tiv.2005.08.012] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2005] [Revised: 08/11/2005] [Accepted: 08/12/2005] [Indexed: 11/18/2022]
Abstract
Melampodium divaricatum is a member of the Asteraceae and in Brazil is known as false-calendula, its flowers being used in anti-inflammatory preparations, substituting the true calendula or marigold (Calendula officinalis L.). The flower extract was investigated for mutagenic and antimutagenic effect in the Salmonella/microsome assay. The tested extract was not mutagenic in the strains TA100, TA98, TA97a and TA102 and decreased the mutagenicity of aflatoxin B1, benzo(a)pyrene and daunomycin. Chlorophyll and triterpenes were detected in the extract, and they might have contributed to the observed effect. Our data suggest that these medicinal plants possess cancer chemopreventive properties.
Collapse
Affiliation(s)
- Maira Eiko Ikuma Nogueira
- Department of Biological Sciences, Faculty of Pharmaceutical Sciences of Araraquara, Estadual Paulist University, UNESP-Rodovia Araraquara-Jaú km 1, 14801-902 Araraquara, SP, Brazil
| | | | | | | | | | | | | |
Collapse
|
16
|
Aydin S, Başaran AA, Başaran N. The effects of thyme volatiles on the induction of DNA damage by the heterocyclic amine IQ and mitomycin C. MUTATION RESEARCH-GENETIC TOXICOLOGY AND ENVIRONMENTAL MUTAGENESIS 2005; 581:43-53. [PMID: 15725604 DOI: 10.1016/j.mrgentox.2004.10.017] [Citation(s) in RCA: 63] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2004] [Revised: 09/27/2004] [Accepted: 10/31/2004] [Indexed: 11/29/2022]
Abstract
The leafy parts of thyme and its essential oil have been used in foods for its flavour, aroma and preservation for many years. In the present study the genotoxic potential of major compounds of thyme oil, i.e. thymol, carvacrol, and gamma-terpinene and of the methanolic extracts of thyme, were investigated in human lymphocytes by single-cell gel electrophoresis. Also, the effects of these substances on the induction of DNA damage by 2-amino-3-methylimidazo[4,5-f]-quinoline (IQ) and mitomycin C (MMC) were evaluated. No increase in DNA strand breakage was observed at thymol and gamma-terpinene concentrations below 0.1 mM, but at the higher concentration of 0.2 mM significant increases in DNA damage were seen. Thymol and gamma-terpinene significantly reduced the DNA strand breakage induced by IQ and MMC at the lower concentrations studied. Carvacrol, which is an isomer of thymol, seemed to protect lymphocytes from the genotoxic effects of IQ and MMC at non-toxic concentrations below 0.05 mM, but at the higher concentration of 0.1 mM carvacrol itself induced DNA damage. Also the constituents of the n-hexane and ethyl acetate fractions prepared from the concentrated aqueous methanolic extracts of Thymus spicata protected lymphocytes against IQ- and MMC-induced DNA damage in a concentration-dependent manner.
Collapse
Affiliation(s)
- Sevtap Aydin
- Department of Pharmaceutical Toxicology, Faculty of Pharmacy, Hacettepe University, 06100 Ankara, Turkey
| | | | | |
Collapse
|
17
|
Vitaglione P, Fogliano V. Use of antioxidants to minimize the human health risk associated to mutagenic/carcinogenic heterocyclic amines in food. J Chromatogr B Analyt Technol Biomed Life Sci 2004; 802:189-99. [PMID: 15036011 DOI: 10.1016/j.jchromb.2003.09.029] [Citation(s) in RCA: 117] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Heterocyclic amines (HAs) are mutagenic/carcinogenic compounds formed in meat during cooking. Several efforts have been made to minimize the risk associated to HA human exposure. Supplementation with antioxidants is considered a promising measure to reduce HA exposure because of their ability as inhibitors of HA formation or as blocking/suppressing agents on HA biotransformation/metabolism. The aim of this review is to present the current knowledge on the capability of synthetic and natural antioxidants to modulate HA-induced mutagenicity/carcinogenicity. Data show a general trend towards a reduction of HA formation both in model systems and in real foods as well as an effective modulation of biotransformation and metabolism. Phenolic compounds, particularly those from tea and olive oil, seem to be the most effective, although a great variability is observed because of the concentration-dependent pro- and antioxidant effects.
Collapse
Affiliation(s)
- P Vitaglione
- Dipartimento di Scienza degli alimenti, Università di Napoli Federico II, Parco Gussone, 80055, Portici, Napoli, Italy
| | | |
Collapse
|
18
|
Negraes PD, Jordão BQ, Vicentini VEP, Mantovani MS. Anticlastogenicity of chlorophyllin in the different cell cycle phases in cultured mammalian cells. MUTATION RESEARCH-GENETIC TOXICOLOGY AND ENVIRONMENTAL MUTAGENESIS 2004; 557:177-82. [PMID: 14729372 DOI: 10.1016/j.mrgentox.2003.10.012] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Chlorophyllin (Chln), a sodium-copper salt derivative of chlorophyll, like chlorophyll-a and -b found in green plants, has been studied for its protective action against the carcinogenic effects of various physical and chemical agents and in relation to the mutagenic and clastogenic activities of genotoxic agents. The aim of the present study was to evaluate chlorophyllin in different phases of the cell cycle for clastogenicity and anticlastogenicity, the latter in reversing DNA damage induced by ethyl methane sulfonate (EMS). The test for chromosomal aberrations was performed in cultured mammalian cells (CHO-K1). The three Chln concentrations tested (6.25, 12.5 and 25 microg/ml) were not clastogenic and damage induced by EMS (1240 microg/ml) was reduced in cells treated with Chln as well during S (25-48%) and G2/S (70-80%). The results demonstrate a greater protective effectiveness of Chln against EMS during G2/S.
Collapse
Affiliation(s)
- P D Negraes
- Departamento de Biologia Geral, Centro de Ciências Biológicas, Universidade Estadual de Londrina, Campus Universitário, Cx. Postal 6001, Londrina PR 86051-990, Brazil
| | | | | | | |
Collapse
|
19
|
Davidson Negraes P, Quinzani Jordão B, Vicentini VEP, Mantovani MS. The mutagenic potentiator effect of chlorophyllin by the HGPRT assay. Toxicol In Vitro 2004; 18:147-9. [PMID: 14630073 DOI: 10.1016/j.tiv.2003.07.001] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Chlorophyllin, a sodium-copper salt derivative of chlorophyll-a and -b, was evaluated for antimutagenic activity against ethyl methane sulfonate by the hypoxanthin-guanine-phosphoribosyl transferase (HGPRT) assay. The results obtained suggest that this chlorophyllin can potentiate the mutagenicity of an alkylating agent which induces DNA damage.
Collapse
Affiliation(s)
- Priscilla Davidson Negraes
- Universidade Estadual de Londrina, Departamento de Biologia Geral, Campus Universitario CP 6001, Laboratório de Mutagênese in vitro, Parana 86051 990, Brazil
| | | | | | | |
Collapse
|
20
|
Azevedo L, Gomes JC, Stringheta PC, Gontijo AMMC, Padovani CR, Ribeiro LR, Salvadori DMF. Black bean (Phaseolus vulgaris L.) as a protective agent against DNA damage in mice. Food Chem Toxicol 2003; 41:1671-6. [PMID: 14563392 DOI: 10.1016/s0278-6915(03)00173-x] [Citation(s) in RCA: 64] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
This study was designed to evaluate the toxicogenetic or protective effect of cooked and dehydrated black beans (Phaseolus vulgaris L.) in bone marrow and peripheral blood cells of exposed mice. The frequency of micronuclei detected using the bone marrow erythrocyte micronucleus test and level of DNA lesions detected by the comet assay were chosen as end-points reflecting mutagenic and genotoxic damage, respectively. Initially, Swiss male mice were fed with a 20% black bean diet in order to detect mutagenic and genotoxic activity. However, no increase in the frequency of bone marrow micronucleated polychromatic erythrocytes (MN PCEs) or DNA lesion in leukocytes was observed. In contrast, received diets containing 1, 10 or 20% of black beans, a clear, but not dose-dependent reduction in the frequency of MN PCEs were observed in animals simultaneously treated with cyclophosphamide, an indirect acting mutagen. Similar results were observed in leukocytes by the comet assay. Commercial anthocyanin was also tested in an attempt to identify the bean components responsible for this protective effect. However, instead of being protective, the flavonoid, at the highest dose administered (50 mg/kg bw), induced primary DNA lesion, as detected by the comet assay. These data indicate the importance of food components in preventing genetic damage induced by chemical mutagens, and also reinforce the role of toxicogenetic techniques in protecting human health.
Collapse
Affiliation(s)
- L Azevedo
- Faculdade de Medicina de Itajubá, Curso de Nutrição, Rua Cel. Reno Junior, 328, Caixa Postal 25, 37500-000, Itajubá, MG, Brazil.
| | | | | | | | | | | | | |
Collapse
|
21
|
Lomnitski L, Bergman M, Nyska A, Ben-Shaul V, Grossman S. Composition, Efficacy, and Safety of Spinach Extracts. Nutr Cancer 2003; 46:222-31. [PMID: 14690799 DOI: 10.1207/s15327914nc4602_16] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022]
Abstract
Spinach leaves, containing several active components, including flavonoids, exhibit antioxidative, antiproliferative, and antiinflammatory properties in biological systems. Spinach extracts have been demonstrated to exert numerous beneficial effects, such as chemo- and central nervous system protection and anticancer and antiaging functions. In this review article, we present a compilation of data generated in our laboratories and those of other investigators describing the chemical composition of spinach, its beneficial effects, relative safety information, and its recommended inclusion in the human diet. A powerful, water-soluble, natural antioxidant mixture (NAO), which specifically inhibits the lipoxygenase enzyme, was isolated from spinach leaves. The antioxidative activity of NAO has been compared to that of other known antioxidants and found to be superior in vitro and in vivo to that of green tea, N-acetylcysteine (NAC), butylated hydroxytoluene (BHT), and vitamin E. NAO has been tested for safety and is well tolerated in several species, such as mouse, rat, and rabbit. NAO has been found to be nonmutagenic and has shown promising anticarcinogenic effects in a few experimental models, such as skin and prostate cancer; it has not shown any target-organ toxicity or side effects. The current review provides epidemiological and preclinical data supporting the efficacy of extracts of spinach and the safety of its consumption.
Collapse
|
22
|
Edenharder R, Krieg H, Köttgen V, Platt KL. Inhibition of clastogenicity of benzo[a]pyrene and of its trans-7,8-dihydrodiol in mice in vivo by fruits, vegetables, and flavonoids. Mutat Res 2003; 537:169-81. [PMID: 12787821 DOI: 10.1016/s1383-5718(03)00078-0] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
In the in vivo mouse bone marrow micronucleus assay, homogenates of spinach, artichoke, peaches, and blue grapes as well as commercial concentrates of these vegetables and fruits reduced induction of micronuclei by benzo[a]pyrene (BaP) by 43-50%. Concentrates of strawberries (31% reduction) and of cauliflower (20% reduction) were less potent. Inhibition of genotoxicity by spinach and peaches was not caused by any delay in maturation of micronucleated erythrocytes as shown by experiments with sampling times of 24, 48, and 72 h after dosing of BaP. Pre-treatment of the mice with spinach 48, 24, and 12h before application of BaP resulted in a 44% reduction of micronuclei while peaches generated only a marginal effect. A post-treatment procedure administering spinach or peaches 6h after dosing of BaP did not indicate any protective effects. When trans-7,8-dihydroxy-7,8-dihydrobenzo[a]pyrene (BaP-7,8-OH) was applied for induction of micronuclei spinach and peaches reduced the number of micronuclei by 55 and 48%, respectively. Pre-treatment of mice with spinach 96, 72, and 60 h before sacrifice caused a decline of hepatic 7-ethoxyresorufin-O-dealkylase (EROD) and of 7-pentoxyresorufin-O-dealkylase (PROD) activities by factors of 2.2 and 1.4, respectively. However, statistical significance was not reached. On the other hand, peaches had no influence on hepatic EROD or PROD activities. The flavonoids quercetin and its glucoside isoquercitrin, administered orally in doses of 0.03 mmol/kg body weight simultaneously with intraperitoneally given BaP, reduced the number of micronuclei in polychromatic erythrocytes of the bone marrow of mice by 73 and 33%. Ten-fold higher concentrations, however, reversed the effects with a particular strong increase observed with isoquercitrin (+109%; quercetin: +16%).
Collapse
Affiliation(s)
- R Edenharder
- Department of Hygiene and Environmental Medicine, University of Mainz, Obere Zahlbacher Strasse 67, D-55131 Mainz, Germany.
| | | | | | | |
Collapse
|
23
|
Modulation of mutagenicity of various mutagens by lignin derivatives. MUTATION RESEARCH-GENETIC TOXICOLOGY AND ENVIRONMENTAL MUTAGENESIS 2003. [DOI: 10.1016/s1383-5718(02)00319-4] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
24
|
Edenharder R, Sager JW, Glatt H, Muckel E, Platt KL. Protection by beverages, fruits, vegetables, herbs, and flavonoids against genotoxicity of 2-acetylaminofluorene and 2-amino-1-methyl-6-phenylimidazo[4,5-b]pyridine (PhIP) in metabolically competent V79 cells. Mutat Res 2002; 521:57-72. [PMID: 12438004 DOI: 10.1016/s1383-5718(02)00212-7] [Citation(s) in RCA: 71] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Chinese hamster lung fibroblasts, genetically engineered for the expression of rat cytochrome P450 dependent monooxygenase 1A2 and rat sulfotransferase 1C1 (V79-rCYP1A2-rSULT1C1 cells), were utilized to check for possible protective effects of beverages of plant origin, fruits, vegetables, and spices against genotoxicity induced by 2-acetylaminofluorene (AAF) or 2-amino-1-methyl-6-phenylimidazo[4,5-b]pyridine (PhIP). Antigenotoxic activities of juices from spinach and red beets against AAF could be monitored with similar effectivity by the HPRT-mutagenicity test (IC(50)=0.64%; 2.57%) and alkaline single cell gel electrophoresis (comet assay; IC(50)=0.12%; 0.89%) which detects DNA strand breaks and abasic sites. Applying the comet assay, genotoxicity of PhIP could, however, be demonstrated only in the presence of hydroxyurea and 1-[beta-D-arabinofuranosyl]cytosine, known inhibitors of DNA repair synthesis. As expected, AAF and PhIP were unable to induce any genotoxic effects in the parent V79 cells. Genotoxic activity of PhIP was strongly reduced in a dose-related manner by green tea and red wine, by blueberries, blackberries, red grapes, kiwi, watermelon, parsley, and spinach, while two brands of beer, coffee, black tea, rooibos tea, morellos, black-currants, plums, red beets, broccoli (raw and cooked), and chives were somewhat less active. One brand of beer was only moderately active while white wine, bananas, white grapes, and strawberries were inactive. Similarly, genotoxicity of AAF was strongly reduced by green, black, and rooibos tea, red wine, morellos, black-currants, kiwi, watermelon, and spinach while plums, red beets, and broccoli (raw) were less potent. Broccoli cooked exerted only moderate and white wine weak antigenotoxic activity. With respect to the possible mechanism(s) of inhibition of genotoxicity, benzo[a]pyrene-7,8-dihydrodiol (BaP-7,8-OH) and N-OH-PhIP were applied as substrates for the CYP1A family and for rSULT 1C1, respectively. Morellos, black-currants, and black tea strongly reduced the genotoxicity of BaP-7,8-OH, onions, rooibos tea, and red wine were less potent while red beets and spinach were inactive. On the other hand, red beets and spinach strongly inhibited the genotoxicity of N-OH-PhIP, rooibos tea was weakly active while all other items were inactive. These results are suggestive for enzyme inhibition as mechanism of protection by complex mixtures of plant origin. Taken together, our results demonstrate that protection by beverages, fruits, and vegetables against genotoxicity of heterocyclic aromatic amines may take place within metabolically competent mammalian cells as well as under the conditions of the Salmonella/reversion assay.
Collapse
Affiliation(s)
- R Edenharder
- Department of Hygiene and Environmental Medicine, University of Mainz, Obere Zahlbacher Str. 67, D-55131 Mainz, Germany.
| | | | | | | | | |
Collapse
|
25
|
Hagiwara A, Yoshino H, Ichihara T, Kawabe M, Tamano S, Aoki H, Koda T, Nakamura M, Imaida K, Ito N, Shirai T. Prevention by natural food anthocyanins, purple sweet potato color and red cabbage color, of 2-amino-1-methyl-6-phenylimidazo[4,5-b]pyridine (PhIP)-associated colorectal carcinogenesis in rats initiated with 1,2-dimethylhydrazine. J Toxicol Sci 2002; 27:57-68. [PMID: 11915369 DOI: 10.2131/jts.27.57] [Citation(s) in RCA: 95] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
The potential of purple sweet potato color (PSPC) and red cabbage color (RCC), natural anthocyanin food colors, to modify colorectal carcinogenesis was investigated in male F344/DuCrj rats, initially treated with 1,2-dimethylhydrazine (DMH) and receiving 2-amino-1-methyl-6-phenylimidazo[4,5-b]pyridine (PhIP) in the diet. After DMH initiation, PSPC and RCC were given at a dietary level of 5.0% in combination with 0.02% PhIP until week 36. No PSPC or RCC-treatment-related changes in clinical signs and body weight were found. Incidences and multiplicities of colorectal adenomas and carcinomas in rats initiated with DMH were clearly increased by PhIP. In contrast, lesion development was suppressed by RCC, or tended to be inhibited by PSPC administration. Furthermore, in the non-DMH initiation groups, induction of aberrant crypt foci (ACF) by PhIP was significantly decreased by RCC supplementation. The results thus demonstrate that while PhIP clearly exerts promoting effects on DMH-induced colorectal carcinogenesis, these can be reduced by 5.0% PSPC or 5.0% RCC in a diet under the present experimental conditions.
Collapse
Affiliation(s)
- Akihiro Hagiwara
- Daiyu-kai Institute of Medical Science, 64 Goura, Nishiazai, Ichinomiya 491-0113, Japan
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Rampazo L, Jordão B, Vicentini V, Mantovani M. Chlorophyllin Antimutagenesis Mechanisms under Different Treatment Conditions in the Micronucleus Assay in V79 Cells. CYTOLOGIA 2002. [DOI: 10.1508/cytologia.67.323] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Affiliation(s)
- L.G.L. Rampazo
- Departmento de Biologia Geral, Universidade Estadual de Londrina
| | - B.Q. Jordão
- Departmento de Biologia Geral, Universidade Estadual de Londrina
| | - V.E.P. Vicentini
- Departamento de Biologia Celular e Genética, Universidade Estadual de Maringá
| | - M.S. Mantovani
- Departmento de Biologia Geral, Universidade Estadual de Londrina
| |
Collapse
|
27
|
Platner JH, Bennett LM, Millikan R, Barker MDG. The partnership between breast cancer advocates and scientists. ENVIRONMENTAL AND MOLECULAR MUTAGENESIS 2002; 39:102-107. [PMID: 11921176 DOI: 10.1002/em.10055] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
The National Breast Cancer Coalition (NBCC) is a grassroots organization that represents breast cancer advocates and is committed to eradicating breast cancer. NBCC defines a breast cancer advocate as someone who has been personally affected by the disease (e.g., a breast cancer survivor, family member, or friend), represents a constituency, and is motivated to join the fight against the disease. One of the organization's goals is to ensure that breast cancer advocates have a seat at the table when decisions are made about breast cancer research and policy. To accomplish this goal, NBCC educates advocates so that they can participate in and make meaningful contributions to legislative, scientific, and regulatory decision-making bodies. In addition to creating educational opportunities for advocates, NBCC has spearheaded several initiatives designed to directly increase the quality and quantity of breast cancer research. NBCC has also played a major role in making funding available to breast cancer researchers. Two of NBCC's most notable programs include Project LEAD, an intensive science-training course for breast cancer advocates, and the Environmental Initiative, a collection of activities designed to improve research into the relationship between breast cancer and the environment. Breast cancer advocates trained by NBCC have partnered with the scientific community and individual scientists to improve the peer review, design, and implementation of breast cancer research.
Collapse
|
28
|
Bez GC, Jordão BQ, Vicentini VE, Mantovani MS. Investigation of genotoxic and antigenotoxic activities of chlorophylls and chlorophyllin in cultured V79 cells. Mutat Res 2001; 497:139-45. [PMID: 11525916 DOI: 10.1016/s1383-5718(01)00251-0] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Chlorophyll and its derivatives are examples of plant compounds (purified and/or extracted) which appear to protect DNA from damage caused by chemical or physical agents, although some studies have identified clastogenic activity of these compounds. This study was carried out to assess the genotoxic activity of chlorophyll-a (Chl-a), -b (Chl-b) and chlorophyllin (Chl) and their antigenotoxic activity against the DNA damage induced by methyl methanesulphonate (MMS) under conditions of simultaneous, pre-, post-treatment, and simultaneous treatment after pre-incubation of the chemical with MMS. The micronucleus (MN) test was used in binucleated cells (induced by cytochalasin-B) of a mammalian cell line (V79). The three concentrations of Chl-a, Chl-b or Chl (0.1375, 0.275, 0.55microM) were not genotoxic and the genotoxic action of MMS (400microM) decreased (74-117%) under all treatment conditions. The results showed that there was no significant difference among the treatment types, the concentration or the nature of chlorophyll used. The data obtained suggest that Chl-a, Chl-b and Chl when associated with the DNA damaging agent, MMS, may protect the DNA by desgenotoxic action and/or by bio-antigenotoxic mechanisms, with the similar efficiency.
Collapse
Affiliation(s)
- G C Bez
- Departamento de Biologia Geral, Centro de Ciências Biológicas, Universidade Estadual de Londrina, Londrina, Paraná, Brazil
| | | | | | | |
Collapse
|
29
|
Edenharder R, Keller G, Platt KL, Unger KK. Isolation and characterization of structurally novel antimutagenic flavonoids from spinach (Spinacia oleracea). JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2001; 49:2767-2773. [PMID: 11409964 DOI: 10.1021/jf0013712] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
Thirteen compounds, isolated from spinach (Spinacia oleracea), acted as antimutagens against the dietary carcinogen 2-amino-3-methylimidazo[4,5-f]quinoline in Salmonella typhimurium TA 98. The antimutagens were purified by preparative and micropreparative HPLC from a methanol/water (70:30, v/v) extract of dry spinach (commercial product) after removal of lipophilic compounds such as chlorophylls and carotenoids by solid-phase extraction (SPE). Pure active compounds were identified by instrumental analysis including FT-IR, (1)H and (13)C NMR, UV-vis spectroscopy, and mass spectrometry. All of these compounds were flavonoids and related compounds that could be attributed to five groups: (A, methylenedioxyflavonol glucuronides) 5,3'-dihydroxy-4'-methoxy-6,7-methylenedioxyflavonol 3-O-beta-glucuronide (compound 1), 5,2',3'-trihydroxy-4'-methoxy-6,7-methylenedioxyflavonol 3-O-beta-glucuronide (compound 2), 5-hydroxy-3',4'-dimethoxy-6,7-methylenedioxyflavonol 3-O-beta-glucuronide (compound 3); (B, flavonol glucuronides) 5,6,3'-trihydroxy-7,4'-dimethoxyflavonol 3-O-beta-glucuronide (compound 4), 5,6-dihydroxy-7,3',4'-trimethoxyflavonol 3-O-beta-glucuronide (compound 5); (C, flavonol disaccharides) 5,6,4'-trihydroxy-7,3'-dimethoxyflavonol 3-O-disaccharide (compound 6), 5,6,3',4'-tetrahydroxy-7-methoxyflavonol 3-O-disaccharide (compounds 7 and 8); (D, flavanones) 5,8,4'-trihydroxyflavanone (compound 9), 7,8,4'-trihydroxyflavanone (compound 10); (E, flavonoid-related compounds) compounds 11, 12, and 13 with incompletely elucidated structures. The yield of compound 1 was 0.3%, related to dry weight, whereas the yields of compounds 2-13 ranged between 0.017 and 0.069%. IC(50) values (antimutagenic potencies) of the flavonol glucuronides ranged between 24.2 and 58.2 microM, whereas the flavonol disaccharides (compounds 7 and 8), the flavanones (compounds 9 and 10), and the flavonoid-related glycosidic compounds 11-13 were only weakly active. The aglycons of compounds 7 and 8, however, were potent antimutagens (IC(50) = 10.4 and 13.0 microM, respectively).
Collapse
Affiliation(s)
- R Edenharder
- Department of Hygiene and Environmental Medicine, University of Mainz, Obere Zahlbacher Strasse 67, D-55131 Mainz, Germany.
| | | | | | | |
Collapse
|
30
|
Krul C, Luiten-Schuite A, Tenfelde A, van Ommen B, Verhagen H, Havenaar R. Antimutagenic activity of green tea and black tea extracts studied in a dynamic in vitro gastrointestinal model. Mutat Res 2001; 474:71-85. [PMID: 11239964 DOI: 10.1016/s0027-5107(00)00158-5] [Citation(s) in RCA: 59] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Abstract
An in vitro gastrointestinal model, which simulates the conditions in the human digestive tract, was used to determine potential antimutagenic activity of extracts of black tea and green tea. In this paper, results are presented on the availability for absorption of potential antimutagenic compounds present in tea and on the influence of the food matrix on this activity. Between 60 and 180min after the tea was introduced into the model, antimutagenic activity was recovered from the jejunal compartment by means of dialysis: the dialysate appeared to inhibit the mutagenicity of the food mutagen MeIQx in the direct plate assay with Salmonella typhimurium (Ames test). The maximum inhibition was measured at 2h after the start of the experiment and was comparable for black tea and green tea extract. To determine the influence of food matrices on the antimutagenic activity of tea, the model was loaded with black tea together with milk or a homogenized standard breakfast. The maximum inhibition observed with black tea was reduced by 22, 42 and 78% in the presence of whole milk, semi-skimmed milk, and skimmed milk, respectively. Whole milk and skimmed milk abolished the antimutagenic activity of green tea by more than 90%; for semi-skimmed milk the inhibition was more than 60%. When a homogenized breakfast was added into the model together with the black tea extract, the antimutagenic activity was completely eliminated. When tea and MeIQx were added together into the digestion model, MeIQx mutagenicity was efficiently inhibited, with green tea showing a slightly stronger antimutagenic activity than black tea. In this case, the addition of milk had only a small inhibiting effect on the antimutagenicity. Antioxidant capacity and the concentration of catechins were also measured in the jejunal dialysates. The reduction in antimutagenic activity corresponded with reduction in antioxidant capacity and with a decrease of concentration of three catechins, viz. catechin, epigallocatechin gallate and epigallocatechin. The in vitro gastrointestinal model appears to be a useful tool to study the antimutagenicity of food components.
Collapse
Affiliation(s)
- C Krul
- TNO Nutrition and Food Research, P.O. Box 360, 3700, AJ Zeist, The Netherlands.
| | | | | | | | | | | |
Collapse
|
31
|
Morita K, Ogata M, Hasegawa T. Chlorophyll derived from Chlorella inhibits dioxin absorption from the gastrointestinal tract and accelerates dioxin excretion in rats. ENVIRONMENTAL HEALTH PERSPECTIVES 2001; 109:289-94. [PMID: 11333191 PMCID: PMC1240248 DOI: 10.1289/ehp.01109289] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
We investigated the effects of chlorophyll derived from Chlorella on gastrointestinal absorption of seven types of polychlorinated dibenzo-p-dioxin (PCDD) and 10 types of polychlorinated dibenzofuran (PCDF) in Wistar rats. Twenty-eight rats were randomly distributed into seven groups (n = 4). After overnight food deprivation, rats were given 4 g of the basal diet or 4 g of the chlorophyll diet containing 0.01-0.5% chlorophyll one time on day 1; each diet also contained 0.2 mL PCDD and PCDF standard solutions. The amounts of fecal excretion of PCDD and PCDF congeners from days 1 to 5 in the group fed 0.01% chlorophyll were 64.8% for 1,2,3,7,8-pentaCDD, 78.6% for 1,2,3,4,7,8-hexaCDD, 73.5% for 1,2,3,6,7,8-hexaCDD, 58.5% for 1,2,3,7,8,9-hexaCDD, 33.3% for 1,2,3,4,6,7,8-heptaCDD, 85.7% for 1,2,3,7,8-pentaCDF, 77.3% for 2,3,4,7,8-pentaCDF, 88.6% for 1,2,3,4,7,8-hexaCDF, 78.0% for 1,2,3,6,7,8-hexaCDF, 62.5% for 1,2,3,7,8,9-hexaCDF, 84.1% for 2,3,4,6,7,8-hexaCDF, 41.7% for 1,2,3,4,6,7,8-heptaCDF, and 40.0% for 1,2,3,4,6,7,8-heptaCDF greater (p < 0.01) than those of the control group, respectively. The fecal excretion of PCDD and PCDF congeners was remarkably increased along with the increasing dietary chlorophyll. The amounts of PCDD and PCDF congeners in rats on day 5 administered dioxin mixtures were lower in the 0.01% chlorophyll group than in the control group, ranging from 3.5 to 50.0% for PCDD congeners and from 3.7 to 41.7% lower for PCDF congeners, except for 2,3,7,8-tetrachlorodibenzofuran. The amount of PCDD and PCDF congeners in rats was remarkably decreased along with the increasing dietary chlorophyll. These findings suggest that chlorophyll is effective for preventing dioxin absorption via foods.
Collapse
Affiliation(s)
- K Morita
- Fukuoka Institute of Health and Environmental Sciences, Dazaifu City, Japan
| | | | | |
Collapse
|
32
|
Edenharder R, Ortseifen M, Koch M, Wesp HF. Soil mutagens are airborne mutagens: variation of mutagenic activities induced in Salmonella typhimurium TA 98 and TA 100 by organic extracts of agricultural and forest soils in dependence on location and season. Mutat Res 2000; 472:23-36. [PMID: 11113695 DOI: 10.1016/s1383-5718(00)00089-9] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
As our hypothesis was that soil mutagens are airborne mutagens, possibly modified by soil microorganisms, we checked solvent extracts from agricultural and forest soils collected during late summer in the environment of Mainz, a region highly charged by anthropogenic air pollution, or near Bayreuth, a rural low charged region of Germany, or in a remote region of western Corsica without anthropogenic air pollution for the presence of mutagenicity in Salmonella typhimurium. Levels of mutagenic activities were quantified by calculation of revertants/g from the initial slope of dose-response curves applying tester strains S. typhimurium TA 98 and TA 100 in the absence and presence of an activation system from rat liver (S9). Three soils from Corsica did not induce mutagenicity under any test condition. However, most soils from Germany exhibited mutagenic activities, though preferentially in strain TA 98, but no statistically significant differences could be detected between 27 soils from the Mainz and nine soils from the Bayreuth regions. On the other hand, no correlation could be detected between the levels of mutagenic activities at any test condition and agricultural practice - rye growing, viniculture, fruit growing, meadow, and fallow - texture of soils - % composition of clay, slit, and sand - or the contents of organic matter. The only significant difference of mutagenicity was, however, found with S. typhimurium TA 98-S9 between forest soils of pH approximately 4.0 as compared with agricultural soils of pH approximately 7.0. The presence of antimutagens in soil as demonstrated by the course of dose-response curves of the three soils from Corsica may be another possible confounder. Calculation of mean values of mutagenic activities for all soils from Germany gave the following results: S. typhimurium TA 98: 69.7+/-153.2 (-S9); 63.0+/-176.3 (+S9); S. typhimurium TA 100:-144.7+/-399.4 (-S9); 43.3+/-172.0 (+S9) revertants/g of dry soil. In another series of experiments, soil mutagenicity in 10 rye fields near Mainz was monitored for 1 year. It became evident that low levels of mutagenic activities in late summer increased during autumn, reached a peak in late winter, and subsequently, decreased during spring and summer. These results agree with the hypothesis of an airborne origin of soil mutagens, deposition, and an adjacent transformation to non-mutagenic compounds by soil microorganisms.
Collapse
Affiliation(s)
- R Edenharder
- Department of Hygiene and Environmental Medicine, University of Mainz, Obere Zahlbacher Strasse 67, D-55131, Mainz, Germany
| | | | | | | |
Collapse
|
33
|
Wesp HF, Tang X, Edenharder R. The influence of automobile exhausts on mutagenicity of soils: contamination with, fractionation, separation, and preliminary identification of mutagens in the Salmonella/reversion assay and effects of solvent fractions on the sister-chromatid exchanges in human lymphocyte cultures and in the in vivo mouse bone marrow micronucleus assay. Mutat Res 2000; 472:1-21. [PMID: 11113694 DOI: 10.1016/s1383-5718(00)00088-7] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
To test the assumption that automobile exhausts contribute to soil mutagenicity, two soils with low levels of mutagenic activities were exposed to traffic exhausts at a heavily charged junction of German motorways (Autobahnen) for 3, 7, 10, 13, 17, 21, and 26 weeks. Indeed, in the presence of a metabolic activation system from rat liver (S9), an average increase of 8 and 9 (4 and 12) revertants per gram per week was found in Salmonella typhimurium TA 98 (TA 100). In the absence of S9, meaningful measurements were impossible on account of a concurrent dose dependent increase of toxicity. No correlation between the increase of mutagenicity and the contents of polycyclic aromatic hydrocarbons (PAH) could be detected. In another series, soils sampled at the roadside and at distances of 10 and 50m of five roads near Mainz expressed 10-20-fold higher mutagenicity (revertants per gram) under identical test conditions as compared with the average of agricultural soils. Toxic effects, however, again confounded the results and no correlation between the distance from roads and the levels of mutagenicity could be demonstrated. Subsequently, Soxhlet-extraction with the solvent sequence dichloromethane, acetone, and toluene/diethylketone was found to be an optimum procedure for soils at roadsides. The mass balance of solvent fractionation of such soils revealed that <2% each belonged to organic acids and bases, approximately 4% to fractions designed polar neutrals, approximately 8% to polar aromatics, approximately 7% to dichloromethane solubles, and approximately 79% to cylohexane solubles, among them approximately 63% acetone soluble compounds. The major part of mutagenicity (55-65%) was present in the fraction of polar aromatics, followed by polar neutrals and the acetone subfraction of cyclohexane solubles ( approximately 10% each) summarizing the results obtained with S. typhimurium TA 98, TA 98NR, YG 1021, YG 1024, TA 100, YG 1026, and YG 1029 with and without addition of S9. The modified tester strains, either deficient in nitroreductase (TA 98NR) or overproducing nitroreductase (YG 1021, 1026) or O-acetyl-transferase (YG 1024, 1026), indicated a major contribution of nitroarenes to soil mutagenicity. With respect to mutagenic PAH, high pressure liquid chromatography (HPLC) revealed that >90% of dibenz[a,h]anthracene (4.18mg/kg soil), benzo[a]pyrene (1.96mg), benzofluoranthenes (0.14mg), and benz[a]anthracene (0. 18mg) were present in the acetone subfraction of cyclohexane solubles. Concentrations and mutagenic activities, however, did not correlate. Additional preparative and analytical HPLC of the solvent fractions of polar neutrals and polar aromatics, resulted in the tentative identification of 2-nitrofluorene. Analysis of the vertical profile of soil revealed an increase of mutagenicity per gram from the surface to a maximum at 5-15cm depth and a subsequent decrease with very little activity remaining deeper than 35cm. In human lymphocyte cultures, the fraction of polar aromatics, 0.01-0. 3microg/ml, induced 11.27+/-4.76-20.70+/-6.19 sister-chromatid exchanges (SCE) per cell in the absence of S9 (solvent control: 10. 16+/-4.83 SCE per cell) and 12.77+/-6.53-17.87+/-4.93 SCE per cell in the presence of S9 (solvent control: 8.37+/-3.92 SCE per cell). However, no activities could be detected in the fractions of polar neutrals and non-polar neutrals. Again, negative results were obtained in the in vivo mouse bone marrow micronucleus assay at 2000mg/kg p.o. with all fractions.
Collapse
Affiliation(s)
- H F Wesp
- Department of Hygiene and Environmental Medicine, University of Mainz, Obere Zahlbacher Strabetae 67, D-55131, Mainz, Germany
| | | | | |
Collapse
|
34
|
Schwab CE, Huber WW, Parzefall W, Hietsch G, Kassie F, Schulte-Hermann R, Knasmuller S. Search for compounds that inhibit the genotoxic and carcinogenic effects of heterocyclic aromatic amines. Crit Rev Toxicol 2000; 30:1-69. [PMID: 10680768 DOI: 10.1080/10408440091159167] [Citation(s) in RCA: 80] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
Over the last 30 years approximately 160 reports have been published on dietary compounds that protect from the mutagenic and carcinogenic effects of heterocyclic aromatic amines (HAAs). In the first section of this review, the current state of knowledge is briefly summarized. Based on the evaluation of the available data, various protective mechanisms are described, and the use of different methodologies for the detection of protective effects is critically discussed. In most antimutagenicity studies (>70%) bacterial indicators (predominantly Salmonella strain TA98) were used, and about 600 individual compounds and complex mixtures have been identified that attenuate the effects of HAAs. The most frequently used in vivo method to detect protective effects are adduct measurements; anticarcinogenic dietary factors were identified by aberrant crypt foci assays and liver foci tests with rats. The mechanisms of protection include inactivation of HAAs and their metabolites by direct binding, inhibition of enzymes involved in the metabolic activation of the amines, induction of detoxifying enzymes, and interaction with DNA repair processes. The detection spectrum of conventional in vitro mutagenicity assays with metabolically incompetent indicator cells is limited. These procedures reflect only simple mechanisms such as direct binding of the HAAs to pyrroles and fibers. It has been shown that these compounds are also effective in rodents. More complex mechanisms, namely, interactions with metabolic activation reactions are not adequately represented in in vitro assays with exogenous enzyme homogenates, and false-negative as well as false-positive results may be obtained. More appropriate approaches for the detection of protective effects are recently developed test systems with metabolically competent cells such as the human Hep G2 line or primary hepatocytes. SCGE tests and DNA adduct measurements with laboratory rodents enable the detection of antigenotoxic effects in different organs, including those that are targets for tumor induction by the amines. Medium term assays based on aberrant crypt foci in colon and liver foci tests have been used to prove that certain compounds that prevented DNA damage by HAAs also reduced their carcinogenic effects. These experiments are costly and time consuming and, due to the weak induction capacity of the amines, only pronounced anticarcinogenic effects can be detected. Over the years, a large bulk of data on HAA protective compounds has accumulated, but only for a few (e.g., fibers, pyrroles, constituents of teas, and lactic acid bacteria) is there sufficient evidence to support the assumption that they are protective in humans as well.
Collapse
Affiliation(s)
- C E Schwab
- Institute of Cancer Research, University of Vienna, Austria
| | | | | | | | | | | | | |
Collapse
|
35
|
Edenharder R, Worf-Wandelburg A, Decker M, Platt KL. Antimutagenic effects and possible mechanisms of action of vitamins and related compounds against genotoxic heterocyclic amines from cooked food. Mutat Res 1999; 444:235-48. [PMID: 10477359 DOI: 10.1016/s1383-5718(99)00098-4] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Abstract
Possible antimutagenic activity of 26 vitamins and related compounds - ascorbic acid, beta-carotene, cyanocobalamin, folic acid, nicotinic acid, nicotinamide, pantothenic acid, pyridoxale, pyridoxamine, pyridoxine, retinal, retinol, retinoic acid, retinyl acetate, retinyl palmitate, riboflavin, riboflavin 5'-phosphate, flavin adenine dinucleotide (FAD), alpha-tocopherol, alpha-tocopherol acetate, vitamins K(1), K(3), K(4), 1, 4-naphthoquinone, and coenzyme Q(10) - was tested against six heterocyclic amine (HCA) mutagens, i.e., 2-amino-3-methyl-imidazo[4, 5-f]quinoline (IQ), 2-amino-3,4-dimethyl-imidazo[4,5-f]quinoline (MeIQ), 2-amino-3,8-dimethyl-imidazo[4,5-f]quinoxaline (MeIQx), 2-amino-1-methyl-6-phenylimidazo[4,5-b]pyridine (PhIP), 2-amino-6-methyl-dipyrido[1,2-a:3',2'-d]imidazole (Glu-P-1) and 3-amino-1-methyl-5H-pyrido[4,3-b]indole (Trp-P-2) in the Salmonella/reversion assay using tester strains Salmonella typhimurium TA 98 and TA 100. Retinol, retinal, riboflavin, riboflavin 5'-phosphate, FAD, vitamins K(1), K(3), K(4), 1, 4-naphthoquinone, and coenzyme Q(10) caused a concentration-dependent decrease in the mutagenicity of all six mutagens in both tester strains. Quantification of antimutagenic potencies by calculating ID(50)1000; vitamin K(1): 401-740; vitamin K(3) (menadione): 85-590; vitamin K(4): 45-313; 1,4-naphthoquinone: 170-290; coenzyme Q(10): 490-860. In general, there were no major differences between HCAs tested except in part with Trp-P-2 nor between the two tester strains. In enzyme kinetic experiments with Salmonella, retinol, vitamins K(3), and K(4) behaved as competitive inhibitors of IQ induced mutagenesis. However, at the highest concentration of menadione (200 nmol/plate) and of riboflavin 5'-phosphate (2000 nmol/plate), non-competitive inhibition was observed. At other concentrations of riboflavin 5'-phosphate and at all concentrations of FAD, meaningful interpretation of enzyme kinetics were not possible. Reduction of the activity of 7-ethoxy- and 7-methoxyresorufin-O-dealkylases with IC(50) values of 2.03-30.8 microM indicated strong inhibition of 1A1 and 1A2 dependent monooxygenases by menadione and retinol. Riboflavin 5'-phosphate and FAD were less effective (IC(50): 110-803.7 microM). Nicotinamide-adenine-dinucleotidephosphate (NADPH) cytochrome P-450 reductase was not affected by retinoids but stimulated by naphthoquinones and both riboflavin derivatives up to about 50 and 80%, respectively. Again, the mutagenic activity of N-hydroxy-2-amino-3-methyl-imidazo[4,5-f]quinoline (N-OH-IQ) in Salmonella was not suppressed by K-vitamins but marginally reduced by retinol, retinal, and FAD but distinctly by riboflavin 5'-phosphate. In various experiments designed for modulation of the mutagenic response, inhibition of metabolic activation of IQ to N-OH-IQ was found to be the only relevant mechanism of antimutagenesis of menadione while a weak contribution of an other way seemed possible for retinol and FAD.
Collapse
Affiliation(s)
- R Edenharder
- Department of Hygiene and Environmental Medicine, University of Mainz, Obere Zahlbacher Strasse 67, D-55131, Mainz, Germany
| | | | | | | |
Collapse
|
36
|
de Mejía EG, Castaño-Tostado E, Loarca-Piña G. Antimutagenic effects of natural phenolic compounds in beans. Mutat Res 1999; 441:1-9. [PMID: 10224317 DOI: 10.1016/s1383-5718(99)00040-6] [Citation(s) in RCA: 57] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Polyphenols in fruits, vegetables (e.g., flavonols like quercetin) and tea (e.g., catechins such as epigallocatechin gallate) are good antioxidants with antimutagenic and anticarcinogenic properties. In the present study, the Salmonella typhimurium tester strain YG1024 was used in the plate-incorporation test to examine the antimutagenic effect of phenolic compounds, extracted from common beans (Phaseolus vulgaris), on 1-NP and B[a]P mutagenicity. Dose-response curves for 1-NP and B[a]P were obtained; the number of net revertants/plate at the peak mutagenic dosage were 880 for 1-NP and 490 for B[a]P. For the antimutagenicity studies doses of 0.1 microg/plate and 2 microg/plate for 1-NP and B[a]P, respectively, were chosen. We obtained a dose-response curve of ellagic acid (EA) against B[a]P and 1-NP mutagenicity. To test the bean extract, a dose of 300 microg/plate of EA was chosen as the antimutagenic control. The EA and bean extracts were not toxic to the bacteria at the concentrations tested. The inhibitory effects of the bean extracts and EA against B[a]P mutagenicity were dose-dependent. The percentages of inhibition produced against B[a]P (2 microg/plate) using 300 microg/plate of EA and for the extracts 500 microg equivalent catechin/plate were 82%, 83%, 81% and 83% for EA, water extract, water/methanol extract and methanol extract, respectively. However, for 1-NP mutagenicity, only the methanolic extract from beans showed an inhibitory effect. These results suggest that common beans, as other legumes, can function as health-promoting foods.
Collapse
Affiliation(s)
- E G de Mejía
- Research and Graduate Studies in Food Science, School of Chemistry, Universidad Autónoma de Querétaro, Cerro de las Campanas S/N, Querétaro, Qro., 76010, Mexico
| | | | | |
Collapse
|
37
|
Skog KI, Johansson MA, Jägerstad MI. Carcinogenic heterocyclic amines in model systems and cooked foods: a review on formation, occurrence and intake. Food Chem Toxicol 1998; 36:879-96. [PMID: 9737435 DOI: 10.1016/s0278-6915(98)00061-1] [Citation(s) in RCA: 392] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Frying or grilling of meat and fish products may generate low ppb levels of mutagenic/carcinogenic heterocyclic amines (HAs). Many heterocyclic amines are formed via the Maillard reaction from creatine, free amino acids and monosaccharides; compounds naturally occurring in protein-rich foods of animal origin. The formation and yield of HAs are dependent on physical parameters, such as cooking temperature and time, cooking technique and equipment, heat and mass transport, and on chemical parameters, especially the precursors to HAs. This paper reviews the current knowledge on the formation of HAs in cooked foods and model systems, and summarizes data on the content of HAs in various cooked foods, and estimates of the dietary intake of HAs. It should be noted that the presence of carcinogens of other types in food (e.g. nitrosamines, aromatic amines, cholesterol oxide products) and that their generation during frying and grilling are outside the scope of this review.
Collapse
Affiliation(s)
- K I Skog
- Department of Applied Nutrition and Food Chemistry, Center for Chemistry and Chemical Engineering, Lund University, Sweden
| | | | | |
Collapse
|
38
|
Edenharder R, Frangart J, Hager M, Hofmann P, Rauscher R. Protective effects of fruits and vegetables against in vivo clastogenicity of cyclosphosphamide or benzo[a]pyrene in mice. Food Chem Toxicol 1998; 36:637-45. [PMID: 9734714 DOI: 10.1016/s0278-6915(98)00035-0] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Seven fruits and 10 vegetables commonly consumed in Germany were investigated for their anticlastogenic potencies against cyclophosphamide (CP) and benzo[a]pyrene (BaP) in the in vivo mouse bone marrow micronucleus assay. We detected protective effects in 76.5% and 70.6% of the samples, respectively, and more or less distinct quantitative differences between the various plant materials and the two clastogens investigated. With respect to CP, moderate activities were exerted by sweet cherries, strawberries, cucumber, radish and tomatoes, average activities by bananas, oranges, peaches, asparagus and red beets and strong activities by yellow red peppers and especially spinach. Apples (cultivar Jona Gold), brussels sprouts, cauliflower and onions were inactive. With respect to BaP, we found moderate activities in strawberries, brussels sprouts and radish, average activities in sweet cherries, oranges, peaches, asparagus, red beets, cucumber and spinach and strong activities in bananas and kiwi. Apples, cauliflower, onions, tomatoes and yellow-red peppers were inactive. When oranges were fractionated according to previously described schemes (Edenharder et al., 1995), anticlastogenic activities against CP were exerted by materials extracted with n-hexane, acetone and 2-propanol and in the terminal residue, but not in the dichloromethane and water phases. With respect to BaP, materials extracted with acetone showed strong anticlastogenicity while the 2-propanol fraction, the aqueous phase and the terminal residue were less potent. The n-hexane and the dichloromethane fractions were inactive. In red beets, all fractions showed anticlastogenicity against CP and BaP as well. However, the n-hexane and dichloromethane fractions were most potent with respect to CP, while for BaP the aqueous phase and the terminal residue were most effective. These result suggest the presence of various (groups of) anticlastogenic compounds with different chemical structure.
Collapse
Affiliation(s)
- R Edenharder
- Department of Hygiene and Environmental Medicine, University of Mainz, Germany
| | | | | | | | | |
Collapse
|
39
|
Rauscher R, Edenharder R, Platt KL. In vitro antimutagenic and in vivo anticlastogenic effects of carotenoids and solvent extracts from fruits and vegetables rich in carotenoids. Mutat Res 1998; 413:129-42. [PMID: 9639691 DOI: 10.1016/s1383-5718(98)00017-5] [Citation(s) in RCA: 93] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
The water insoluble residues of some carotenoid-rich fruits and vegetables, such as apricots, oranges, brussels sprouts, carrots, yellow-red peppers, and tomatoes, were sequentially extracted with n-hexane, dichloromethane, acetone, and 2-propanol, and solvent extracted materials were tested for inhibition of mutagenicities induced by aflatoxin B1 (AFB1), benzo[a]pyrene (BaP), 2-amino-3-methylimidazo[4,5-f]quinoline (IQ), and cyclophosphamide (CP) in histidine-deficient strains of Salmonella typhimurium. Antimutagenic activities were found in many extracts, but especially in the n-hexane extracts. For example, in the case of oranges, 100 microg of this extract reduced the bacterial mutagenicity of AFB1, BaP, CP and IQ by 72, 67, 53, and 27%, respectively. Separation by semi-preparative HPLC of the n-hexane extracts of carrots, tomatoes, and oranges indicated that the antimutagenicity was mainly associated with the fractions of the hydrocarbon carotenoids (alpha-, beta-carotene, lycopene), the xanthophylls (beta-cryptoxanthin, lutein), and also the carotenolesters (oranges). When 16 reference carotenoids were investigated as described above, the following results were obtained: In the case of BaP, antimutagenic activity, quantified by dose-response curves, was exhibited by 8'-apo-beta-carotenal, alpha- and beta-carotene, beta-cryptoxanthin, lutein, retinal, and retinol (ID50-values: 20-100 nmol ml-1 top agar, 50-70% maximum inhibition at 1 micromol ml-1 top agar), while the maximum inhibition by torularhodin did not exceed 40%. Astaxanthin, 10'- and 12'-apo-beta-carotenal, bixin, canthaxanthin, ethyl-8'-apo-beta-caro-ten-8'-oate, lycopene, and zeaxanthin were inactive or at best marginally active (<20% inhibition). Closely similar results were obtained with AFB1. The bacterial mutagenicity of CP was strongly reduced by alpha- and beta-carotene, canthaxanthin, and retinol (ID50-values: 67-112 nmol ml-1 top agar, 50-63% maximum inhibition at 1 micromol ml-1 top agar), moderately by beta-cryptoxanthin, and lutein (45% and 28%, respectively), and only marginally or, not at all, by all remaining carotenoids. In the case of IQ, the carotenoids exhibited the weakest antimutagenic potency (7-43%, ID50-values of retinal and retinol: 160 and 189 nmol ml-1 top agar, 60% and 55% inhibition, respectively). The mutagenic activity of the proximal mutagen of IQ, N-OH-IQ, in S. typhimurium TA 98NR was not significantly reduced by any carotenoid tested. These observations as well as the inhibition of various cytochrome P-450 linked 7-alkoxyresorufin-O-dealkylase activities (EROD, MROD, PROD) by four selected carotenoids (retinol>beta-cryptoxanthin>beta-carotene>lutein, IC50-values: 19-109 microM), indicate that the inhibition of the metabolic activation of the different promutagens could cause antimutagenicity. Finally, it could be demonstrated that the number of BaP or CP induced micronuclei in polychromatic erythrocytes in bone-marrow of mice was reduced significantly by the carotenoids lycopene, canthaxanthin, lutein and beta-cryptoxanthin (25-46%). These results clearly show that carotenoids possess biological activities in vitro and in vivo distinct from their function as precursors of vitamin A or antioxidants suggesting effects on activation of promutagens.
Collapse
Affiliation(s)
- R Rauscher
- Department of Hygiene and Environmental Medicine, University of Mainz, Obere Zahlbacher Strasse 67, D-55131 Mainz, Germany
| | | | | |
Collapse
|
40
|
ISOBE Y, YOKOIGAWA K, KAWAI H. Suppressive Effects of Polysaccharide Produced by Bacillus circulans on Chemical Mutagens-Induced SOS Response in Salmonella typhimurium. ACTA ACUST UNITED AC 1998. [DOI: 10.3136/fsti9596t9798.4.77] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
41
|
Tang X, Edenharder R. Inhibition of the mutagenicity of 2-nitrofluorene, 3-nitrofluoranthene and 1-nitropyrene by vitamins, porphyrins and related compounds, and vegetable and fruit juices and solvent extracts. Food Chem Toxicol 1997; 35:373-8. [PMID: 9207899 DOI: 10.1016/s0278-6915(97)00126-9] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
When 21 vitamins including related compounds haemin, chlorophyllin, chlorophyll, biliverdin and bilirubin, as well as juices from five fruits and 25 vegetables and solvent extracts from the residues of fruits and vegetables were tested for their antimutagenic potencies with respect to mutagenicity induced by 2-nitrofluorene (2-NF), 3-nitrofluoranthene (3-NFA) and 1-nitropyrene(1-NP) in Salmonella typhimurium TA98 the following results were obtained. The tetracyclic nitroarenes 3-NFA and 1-NP were in general more effectively antagonized by potent antimutagenic compounds than the tricyclic 2-NF. beta-Carotene, retinol, retinal, retinoic acid, retinol palmitate, riboflavin 5'-phosphate, alpha-tocopherol, vitamins B12, C, K1 and K3 as well as biliverdin, bilirubin, chlorophyll, chlorophyllin and haemin exerted antimutagenicity against the nitroarenes cited previously. All other vitamins were inactive. While part of the juices were inactive, juices from cauliflower, carrots, chives, radishes and spinach exerted weak antimutagenic activities. However, weak to moderate co-mutagenic effects were seen with grapes, kiwi, pineapple, eggplant, celeriac, chicory greens, fennel leaves and radishes and strong effects with peppers which were not caused by the presence of growth-promoting factors. Most solvent fractions were inactive but fractions containing chlorophyll exerted antimutagenicity.
Collapse
Affiliation(s)
- X Tang
- Department of Hygiene and Environmental Medicine, University of Mainz, Germany
| | | |
Collapse
|
42
|
Edenharder R, Speth C, Decker M, Kolodziej H, Kayser O, Platt KL. Inhibition of mutagenesis of 2-amino-3-methylimidazo[4,5-f]quinoline (IQ) by coumarins and furanocoumarins, chromanones and furanochromanones. Mutat Res 1995; 345:57-71. [PMID: 8524356 DOI: 10.1016/0165-1218(95)90070-5] [Citation(s) in RCA: 26] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Affiliation(s)
- R Edenharder
- Institute of Medical Microbiology and Hygiene, Department of Hygiene, Mainz, Germany
| | | | | | | | | | | |
Collapse
|