1
|
Lee JH, Choi S, Lee DE, Kang HW, Lee JS, Kim JH. Discovery of Herbal Remedies and Key Components for Major Depressive Disorder Through Biased Random Walk Analysis on a Multiscale Network. Int J Mol Sci 2025; 26:2162. [PMID: 40076790 PMCID: PMC11900307 DOI: 10.3390/ijms26052162] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2025] [Revised: 02/18/2025] [Accepted: 02/25/2025] [Indexed: 03/14/2025] Open
Abstract
Major depressive disorder (MDD) is a widespread psychiatric condition with substantial socioeconomic impacts, yet single-target pharmacotherapies often yield responses. To address its multifactorial nature, this study employed a multiscale network analysis of herbs, their active components, and MDD-associated protein targets. Using a biased random walk with restart, we calculated interactions between disease-related and herb-derived targets, identifying herbs highly correlated with MDD. Enrichment analysis further revealed key signaling pathways, including oxidative stress, neuroinflammation, and hormone metabolism, underlying these herbs' therapeutic effects. We identified Ephedrae herba, Glehniae radix, Euryales semen, and Campsitis flos as promising candidates, each containing multiple bioactive compounds (such as ephedrine, psoralen, xanthine, and ursolic acid) that modulate critical processes like oxidation-reduction, inflammatory cytokine regulation, and transcriptional control. Network visualization showed how these herbs collectively target both shared and distinct pathways, supporting a synergistic, multi-target therapeutic strategy. This approach underscores the significance of network-based methodologies in addressing complex disorders such as MDD, where focusing on a single target may overlook synergistic interactions. By integrating diverse molecular data, this study provides a systematic framework for identifying novel interventions. Future experimental validation will be crucial to confirm these predictions and facilitate the translation of findings into effective MDD therapies.
Collapse
Affiliation(s)
- Jun-Ho Lee
- Department of Oriental Pharmacy, College of Pharmacy, Wonkwang University, Iksan 54538, Republic of Korea
| | - Sungyoul Choi
- College of Korean Medicine, Gachon University, Seongnam 13120, Republic of Korea
| | - Do-Eun Lee
- Department of Korean Neuropsychiatry Medicine, College of Korean Medicine, Wonkwang University, Iksan 54538, Republic of Korea
| | - Hyung Won Kang
- Department of Korean Neuropsychiatry Medicine, College of Korean Medicine, Wonkwang University, Iksan 54538, Republic of Korea
| | - Jin-Seok Lee
- Institute of Bioscience & Integrative Medicine, Daejeon Hospital of Daejeon University, Daejeon 35235, Republic of Korea
| | - Ji-Hwan Kim
- Department of Sasang Constitutional Medicine, Division of Clinical Medicine, School of Korean Medicine, Pusan National University, Yangsan 50612, Republic of Korea
| |
Collapse
|
2
|
Pan Y, Li Y, Chhetri JK, Liu P, Li B, Liu Z, Shui G, Ma L. Dysregulation of acyl carnitines, pentose phosphate pathway and arginine and ornithine metabolism are associated with decline in intrinsic capacity in Chinese older adults. Aging Clin Exp Res 2024; 36:36. [PMID: 38345670 PMCID: PMC10861606 DOI: 10.1007/s40520-023-02654-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Accepted: 11/03/2023] [Indexed: 02/15/2024]
Abstract
BACKGROUND Intrinsic capacity is the combination of individual physical and mental abilities, reflecting the aging degree of the older adults. However, the mechanisms and metabolic characteristics of the decline in intrinsic capacity are still unclear. AIMS To identify metabolic signatures and associated pathways of decline in intrinsic capacity based on the metabolite features. METHODS We recruited 70 participants aged 77.19 ± 8.31 years. The five domains of intrinsic capacity were assessed by Short Physical Performance Battery (for mobility), Montreal cognition assessment (for cognition), 30-Item Geriatric Depression Scale (for psychology), self-reported hearing/visual impairment (for sensory) and Nutritional risk screening (for vitality), respectively. The serum samples of participants were analyzed by liquid chromatography-mass spectrometry-based metabolomics, followed by metabolite set enrichment analysis and metabolic pathway analysis. RESULTS There were 50 participants with a decline in intrinsic capacity in at least one of the domains. A total of 349 metabolites were identified from their serum samples. Overall, 24 differential metabolites, 5 metabolite sets and 13 pathways were associated with the decline in intrinsic capacity. DISCUSSION Our results indicated that decline in intrinsic capacity had unique metabolomic profiles. CONCLUSION The specific change of acyl carnitines was observed to be a feature of decline in intrinsic capacity. Dysregulation of the pentose phosphate pathway and of arginine and ornithine metabolism was strongly associated with the decline in intrinsic capacity.
Collapse
Affiliation(s)
- Yiming Pan
- Department of Geriatrics, Xuanwu Hospital, Capital Medical University, National Research Center for Geriatric Medicine, 45 Changchun Street, Beijing, 100053, China
- National Clinical Research Center for Geriatric Diseases, Xuanwu Hospital of Capital Medical University, Beijing, 100053, China
| | - Yun Li
- Department of Geriatrics, Xuanwu Hospital, Capital Medical University, National Research Center for Geriatric Medicine, 45 Changchun Street, Beijing, 100053, China.
- National Clinical Research Center for Geriatric Diseases, Xuanwu Hospital of Capital Medical University, Beijing, 100053, China.
| | - Jagadish K Chhetri
- Department of Geriatrics, Xuanwu Hospital, Capital Medical University, National Research Center for Geriatric Medicine, 45 Changchun Street, Beijing, 100053, China
- Department of Neurology and Neurobiology, Xuanwu Hospital of Capital Medical University, Beijing, 100053, China
- National Clinical Research Center for Geriatric Diseases, Xuanwu Hospital of Capital Medical University, Beijing, 100053, China
| | - Pan Liu
- Department of Geriatrics, Xuanwu Hospital, Capital Medical University, National Research Center for Geriatric Medicine, 45 Changchun Street, Beijing, 100053, China
- National Clinical Research Center for Geriatric Diseases, Xuanwu Hospital of Capital Medical University, Beijing, 100053, China
| | - Bowen Li
- LipidALL Technologies Company Limited, Changzhou, 213022, Jiangsu, China
| | - Zuyun Liu
- Center for Clinical Big Data and Analytics, Second Affiliated Hospital and Department of Big Data in Health Science, School of Public Health, The Key Laboratory of Intelligent Preventive Medicine of Zhejiang Province, Zhejiang University School of Medicine, Hangzhou, 310058, Zhejiang, China
| | - Guanghou Shui
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Lina Ma
- Department of Geriatrics, Xuanwu Hospital, Capital Medical University, National Research Center for Geriatric Medicine, 45 Changchun Street, Beijing, 100053, China.
- National Clinical Research Center for Geriatric Diseases, Xuanwu Hospital of Capital Medical University, Beijing, 100053, China.
| |
Collapse
|
3
|
Qian X, Jiang J, Yang B, Zhao J, Wang G, Tian P, Chen W. Psychobiotics Regulate Purine Metabolism to Influence Host Emotional Behavior. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:1561-1570. [PMID: 38197881 DOI: 10.1021/acs.jafc.3c06422] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/11/2024]
Abstract
Purine metabolism plays a pivotal role in numerous biological processes with potential implications for brain function and emotional regulation. This study utilizes gene-edited probiotics and pseudo-germ-free mice to unravel this intricate interplay. Transcriptomic analysis identified a ribonucleoside-diphosphate reductase β chain (nrdB) as a pivotal gene in purine metabolism within Bifidobacterium breve CCFM1025. Comparative evaluation between the wild-type and nrdB mutant strains revealed CCFM1025's effective reduction of xanthine and xanthosine levels in the serum and brain of stressed mice. Concomitantly, it downregulated the expression of the adenosine receptor gene (Adora2b) and inhibited the overactivation of microglia. These findings emphasize the potential of psychobiotics in modulating emotional responses by regulating purine metabolites and adenosine receptors. This study sheds light on novel pathways that influence emotional well-being through gut microbiota interactions and purine metabolic processes.
Collapse
Affiliation(s)
- Xin Qian
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu 214122 P. R. China
- School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, P. R. China
| | - Jiahao Jiang
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu 214122 P. R. China
- School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, P. R. China
| | - Bo Yang
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu 214122 P. R. China
- School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, P. R. China
| | - Jianxin Zhao
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu 214122 P. R. China
- School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, P. R. China
- National Engineering Research Center for Functional Food, Jiangnan University, Wuxi, Jiangsu 214122, P. R. China
- (Yangzhou) Institute of Food Biotechnology, Jiangnan University, Yangzhou 225004, P. R. China
| | - Gang Wang
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu 214122 P. R. China
- School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, P. R. China
- National Engineering Research Center for Functional Food, Jiangnan University, Wuxi, Jiangsu 214122, P. R. China
- (Yangzhou) Institute of Food Biotechnology, Jiangnan University, Yangzhou 225004, P. R. China
| | - Peijun Tian
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu 214122 P. R. China
- School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, P. R. China
| | - Wei Chen
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu 214122 P. R. China
- School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, P. R. China
- National Engineering Research Center for Functional Food, Jiangnan University, Wuxi, Jiangsu 214122, P. R. China
| |
Collapse
|
4
|
Shan D, You L, Wan X, Yang H, Zhao M, Chen S, Jiang W, Xu Q, Yuan Y. Serum metabolomic profiling revealed potential diagnostic biomarkers in patients with panic disorder. J Affect Disord 2023; 323:461-471. [PMID: 36493940 DOI: 10.1016/j.jad.2022.12.004] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Revised: 11/30/2022] [Accepted: 12/02/2022] [Indexed: 12/13/2022]
Abstract
BACKGROUND Currently, specific metabolites and diagnostic biomarkers of panic disorder (PD) patients have not been identified in clinical practice. The aim of this study was to explore metabolites and metabolic pathways in serum through a metabolomics method. METHODS Fifty-five PD patients who completed 2 weeks of inpatient treatment and 55 healthy control subjects (HCs) matched for age, sex and BMI were recruited. Ultra-high performance liquid chromatography tandem mass spectrometry (UHPLC-MS/MS) was used to detect metabolites in serum. Multivariate Statistical Analysis was used to identify differential metabolites. The relevant biometabolic pathways were further identified by the online tool MetaboAnalyst 5.0. RESULTS 43 different metabolites in PD patients compared to HCs (P < 0.05) were screened. Pathway analysis showed that these small molecules were mainly associated with amino acid metabolism. 14 metabolites were significantly changed after 2 weeks of drug treatment (P < 0.05), which were mainly associated with tryptophan metabolism. CONCLUSION In conclusion, our analysis of metabolomics of PD patients at baseline and two weeks after treatment screened for differential metabolites that could be potential diagnostic biomarkers involved in PD pathogenesis and influence some biometabolic pathways such as phenylalanine metabolism and tryptophan metabolism. In the future, we can summarize and observe the dynamic changes of differential metabolites that appear more frequently in similar studies to further explore the underlying mechanisms of PD evolution.
Collapse
Affiliation(s)
- Dandan Shan
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, China
| | - Linlin You
- Nanjing Medical University, Nanjing, China; Department of Psychosomatics and Psychiatry, ZhongDa Hospital, School of Medicine, Southeast University, Nanjing, China
| | - Xuerui Wan
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, China
| | - Huan Yang
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, China
| | - Meng Zhao
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, China
| | | | | | - Qian Xu
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, China.
| | - Yonggui Yuan
- Nanjing Medical University, Nanjing, China; Department of Psychosomatics and Psychiatry, ZhongDa Hospital, School of Medicine, Southeast University, Nanjing, China.
| |
Collapse
|
5
|
Greco PS, Hesson AM, Mozurkewich E, Berman DR. Urinary metabolites as a predictive marker for perinatal depression: A secondary analysis of the mothers, Omega-3 & Mental Health Study. PSYCHIATRY RESEARCH COMMUNICATIONS 2022; 2. [PMID: 35958051 PMCID: PMC9364841 DOI: 10.1016/j.psycom.2022.100046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Background: Perinatal depression has been associated with unfavorable pregnancy and childhood development outcomes; however, no objective markers exist to identify perinatal mood disorders. We investigated whether metabolites in maternal urine during pregnancy can predict increased depressive symptoms in late pregnancy and postpartum among pregnant women at risk for perinatal depression. Methods: We evaluated metabolomic markers in urine collected at 12–20 and 34–36 weeks’ gestation. We analyzed 49 urinary metabolites using ion pairing reversed-phase liquid chromatography-mass spectrometry. Depressive symptom severity was identified using Beck Depression Inventory (BDI) scores from 105 participants at 12–20 and 34–36 weeks’ gestation, and 6–8 weeks’ postpartum. Mixed model repeated measures analysis evaluated associations between changes in maternal urinary metabolites and BDI scores across pregnancy. Results: Increases in urinary xanthine and hypoxanthine were positively associated with increases in maternal depressive symptoms throughout pregnancy (p = 0.03 and 0.02, respectively). This finding did not persist after false discovery rate correction. None of the urinary metabolites examined were significantly associated with development of postpartum depressive symptoms. Limitations: This study is an exploratory secondary biologic sample analysis from a trial whose sample size was determined by a different primary outcome and expected effect size, which may have limited statistical power to detect associations between urinary metabolites, depressive symptoms, and mood trajectory over time. Conclusions: Increasing concentrations of xanthine and hypoxanthine were associated with increasing depressive symptoms throughout pregnancy. Further research is needed to evaluate the utility of these metabolic markers in identifying women at risk for perinatal depressive symptoms.
Collapse
Affiliation(s)
- Patricia S. Greco
- University of Michigan, Department of Obstetrics and Gynecology, United States
- Corresponding author. 1500 E. Medical Center Dr. Ann Arbor, MI 48109 260, United States. , (P.S. Greco)
| | - Ashley M. Hesson
- University of Michigan, Department of Obstetrics and Gynecology, United States
| | - Ellen Mozurkewich
- University of New Mexico, Department of Obstetrics and Gynecology, United States
| | - Deborah R. Berman
- University of Michigan, Department of Obstetrics and Gynecology, United States
| |
Collapse
|
6
|
Tian P, Bastiaanssen TFS, Song L, Jiang B, Zhang X, Zhao J, Zhang H, Chen W, Cryan JF, Wang G. Unraveling the Microbial Mechanisms Underlying the Psychobiotic Potential of a Bifidobacterium breve Strain. Mol Nutr Food Res 2021; 65:e2000704. [PMID: 33594816 DOI: 10.1002/mnfr.202000704] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2020] [Revised: 12/20/2020] [Indexed: 12/17/2022]
Abstract
SCOPE The antidepressant-like effect of psychobiotics has been observed in both pre-clinical and clinical studies, but the molecular mechanisms of action are largely unclear. To address this, the psychobiotic strain Bifidobacterium breve CCFM1025 is investigated for its genomic features, metabolic features, and gut microbial and metabolic modulation effect. METHODS AND RESULTS Unlike B. breve FHLJDQ3M5, CCFM1025 significantly decreases the chronically stressed mice's depressive-like behaviors and neurological abnormalities. CCFM1025 has more genes encoding glycoside hydrolases (GHs) when comparing to FHLJDQ3M5's genome, which means CCFM1025 has a superior carbohydrate utilization capacity and living adaptivity in the gut. CCFM1025 also produces higher levels of neuromodulatory metabolites, including hypoxanthine, tryptophan, and nicotinate. The administration of CCFM1025 reshapes the gut microbiome of chronically stressed mice. It results in higher cecal xanthine, tryptophan, short-chain fatty acid levels, and enhances fatty acid and tryptophan biosynthesis capability in the gut-brain interaction (identified by in silico analyses) than FHLJDQ3M5-treated mice. CONCLUSIONS Genomic and metabolic features involving GHs and neuromodulatory metabolites may determine the antidepressant-like effect of B. breve CCFM1025. Psychobiotics' characterization in this manner may provide guidelines for developing novel psychopharmacological agents in the future.
Collapse
Affiliation(s)
- Peijun Tian
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China
- School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China
| | - Thomaz F S Bastiaanssen
- APC Microbiome Ireland, University College Cork, Cork, Ireland
- Department of Anatomy and Neuroscience, University College Cork, Cork, Ireland
| | - Linhong Song
- State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Laboratory for Optoelectronics, National Center for Magnetic Resonance (Wuhan), Key Laboratory of Magnetic Resonance in Biological Systems, Wuhan Institute of Physics and Mathematics Chinese Academy of Sciences, Wuhan, 430071, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Bin Jiang
- State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Laboratory for Optoelectronics, National Center for Magnetic Resonance (Wuhan), Key Laboratory of Magnetic Resonance in Biological Systems, Wuhan Institute of Physics and Mathematics Chinese Academy of Sciences, Wuhan, 430071, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Xu Zhang
- State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Laboratory for Optoelectronics, National Center for Magnetic Resonance (Wuhan), Key Laboratory of Magnetic Resonance in Biological Systems, Wuhan Institute of Physics and Mathematics Chinese Academy of Sciences, Wuhan, 430071, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Jianxin Zhao
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China
- School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China
- International Joint Research Center for Probiotics & Gut Health, Jiangnan University, Wuxi, Jiangsu, China
| | - Hao Zhang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China
- School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China
- Yangzhou Institute of Food Biotechnology, Jiangnan University, Yangzhou, Jiangsu, China
- National Engineering Center of Functional Food, Jiangnan University, Wuxi, Jiangsu, China
- Wuxi Translational Medicine Research Center and Jiangsu Translational Medicine Research Institute Wuxi Branch, Wuxi, 214122, China
| | - Wei Chen
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China
- School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China
- National Engineering Center of Functional Food, Jiangnan University, Wuxi, Jiangsu, China
- Beijing Innovation Centre of Food Nutrition and Human Health, Beijing Technology and Business University, Beijing, China
| | - John F Cryan
- APC Microbiome Ireland, University College Cork, Cork, Ireland
- Department of Anatomy and Neuroscience, University College Cork, Cork, Ireland
| | - Gang Wang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China
- School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China
- International Joint Research Center for Probiotics & Gut Health, Jiangnan University, Wuxi, Jiangsu, China
- Yangzhou Institute of Food Biotechnology, Jiangnan University, Yangzhou, Jiangsu, China
| |
Collapse
|
7
|
Szopa A, Socała K, Serefko A, Doboszewska U, Wróbel A, Poleszak E, Wlaź P. Purinergic transmission in depressive disorders. Pharmacol Ther 2021; 224:107821. [PMID: 33607148 DOI: 10.1016/j.pharmthera.2021.107821] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Accepted: 12/11/2020] [Indexed: 12/13/2022]
Abstract
Purinergic signaling involves the actions of purine nucleotides and nucleosides (such as adenosine) at P1 (adenosine), P2X, and P2Y receptors. Here, we present recent data contributing to a comprehensive overview of the association between purinergic signaling and depression. We start with background information on adenosine production and metabolism, followed by a detailed characterization of P1 and P2 receptors, with an emphasis on their expression and function in the brain as well as on their ligands. We provide data suggestive of altered metabolism of adenosine in depressed patients, which might be regarded as a disease biomarker. We then turn to considerable amount of preclinical/behavioral data obtained with the aid of the forced swim test, tail suspension test, learned helplessness model, or unpredictable chronic mild stress model and genetic activation/inactivation of P1 or P2 receptors as well as nonselective or selective ligands of P1 or P2 receptors. We also aimed to discuss the reason underlying discrepancies observed in such studies.
Collapse
Affiliation(s)
- Aleksandra Szopa
- Department of Applied and Social Pharmacy, Laboratory of Preclinical Testing, Medical University of Lublin, Chodźki 1, PL 20-093 Lublin, Poland.
| | - Katarzyna Socała
- Department of Animal Physiology and Pharmacology, Institute of Biological Sciences, Maria Curie-Skłodowska University, Akademicka 19, PL 20-033 Lublin, Poland
| | - Anna Serefko
- Department of Applied and Social Pharmacy, Laboratory of Preclinical Testing, Medical University of Lublin, Chodźki 1, PL 20-093 Lublin, Poland
| | - Urszula Doboszewska
- Department of Animal Physiology and Pharmacology, Institute of Biological Sciences, Maria Curie-Skłodowska University, Akademicka 19, PL 20-033 Lublin, Poland
| | - Andrzej Wróbel
- Second Department of Gynecology, Medical University of Lublin, Jaczewskiego 8, PL 20-090 Lublin, Poland
| | - Ewa Poleszak
- Department of Applied and Social Pharmacy, Laboratory of Preclinical Testing, Medical University of Lublin, Chodźki 1, PL 20-093 Lublin, Poland.
| | - Piotr Wlaź
- Department of Animal Physiology and Pharmacology, Institute of Biological Sciences, Maria Curie-Skłodowska University, Akademicka 19, PL 20-033 Lublin, Poland.
| |
Collapse
|
8
|
He Y, Wang Y, Wu Z, Lan T, Tian Y, Chen X, Li Y, Dang R, Bai M, Cheng K, Xie P. Metabolomic abnormalities of purine and lipids implicated olfactory bulb dysfunction of CUMS depressive rats. Metab Brain Dis 2020; 35:649-659. [PMID: 32152797 DOI: 10.1007/s11011-020-00557-8] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/29/2019] [Accepted: 02/24/2020] [Indexed: 12/27/2022]
Abstract
Major depressive disorder (MDD) is a serious mood disorder and leads to a high suicide rate as well as financial burden. The volume and function (the sensitivity and neurogenesis) of the olfactory bulb (OB) were reported to be altered among the MDD patients and rodent models of depression. In addition, the olfactory epithelium was newly reported to decrease its volume and function under chronic unpredictable mild stress (CUMS) treatment. However, the underlying molecular mechanism still remains unclear. Herein, we conducted the non-targeted metabolomics method based on gas chromatography-mass spectrometry (GC-MS) coupled with multivariate statistical analysis to characterize the differential metabolites in OB of CUMS rats. Our results showed that 19 metabolites were categorized into two perturbed pathways: purine metabolism and lipid metabolism, which were regarded as the vital pathways concerned with dysfunction of OB. These findings indicated that the turbulence of metabolic pathways may be partly responsible for the dysfunction of OB in MDD.
Collapse
Affiliation(s)
- Yong He
- Chongqing Key Laboratory of Neurobiology, Chongqing, 400016, China
- Institute of Neuroscience and the Collaborative Innovation Center for Brain Science, Chongqing Medical University, Chongqing, 400016, China
| | - Yue Wang
- Chongqing Key Laboratory of Neurobiology, Chongqing, 400016, China
- Institute of Neuroscience and the Collaborative Innovation Center for Brain Science, Chongqing Medical University, Chongqing, 400016, China
- Institute of Neuroscience, Basic Medical College, Chongqing Medical University, Chongqing, 400016, China
| | - Zhonghao Wu
- Chongqing Key Laboratory of Neurobiology, Chongqing, 400016, China
- Institute of Neuroscience and the Collaborative Innovation Center for Brain Science, Chongqing Medical University, Chongqing, 400016, China
- College of Biomedical Engineering, Chongqing Medical University, Chongqing, 400016, China
| | - Tianlan Lan
- Chongqing Key Laboratory of Neurobiology, Chongqing, 400016, China
- Institute of Neuroscience and the Collaborative Innovation Center for Brain Science, Chongqing Medical University, Chongqing, 400016, China
- College of Biomedical Engineering, Chongqing Medical University, Chongqing, 400016, China
| | - Yu Tian
- Chongqing Key Laboratory of Neurobiology, Chongqing, 400016, China
- Institute of Neuroscience and the Collaborative Innovation Center for Brain Science, Chongqing Medical University, Chongqing, 400016, China
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China
| | - Xi Chen
- Chongqing Key Laboratory of Neurobiology, Chongqing, 400016, China
- Institute of Neuroscience and the Collaborative Innovation Center for Brain Science, Chongqing Medical University, Chongqing, 400016, China
- Department of Neurology, Yongchuan Hospital of Chongqing Medical University, Chongqing, 402460, China
| | - Yan Li
- Chongqing Key Laboratory of Neurobiology, Chongqing, 400016, China
- Institute of Neuroscience and the Collaborative Innovation Center for Brain Science, Chongqing Medical University, Chongqing, 400016, China
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China
| | - Ruozhi Dang
- Chongqing Key Laboratory of Neurobiology, Chongqing, 400016, China
- Institute of Neuroscience and the Collaborative Innovation Center for Brain Science, Chongqing Medical University, Chongqing, 400016, China
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China
| | - Mengge Bai
- Chongqing Key Laboratory of Neurobiology, Chongqing, 400016, China
- Institute of Neuroscience and the Collaborative Innovation Center for Brain Science, Chongqing Medical University, Chongqing, 400016, China
- Key Laboratory of Laboratory Medical Diagnostics of Education, Department of Laboratory Medicine, Chongqing Medical University, Chongqing, 400016, China
| | - Ke Cheng
- Chongqing Key Laboratory of Neurobiology, Chongqing, 400016, China.
- Institute of Neuroscience and the Collaborative Innovation Center for Brain Science, Chongqing Medical University, Chongqing, 400016, China.
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China.
| | - Peng Xie
- Chongqing Key Laboratory of Neurobiology, Chongqing, 400016, China.
- Institute of Neuroscience and the Collaborative Innovation Center for Brain Science, Chongqing Medical University, Chongqing, 400016, China.
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China.
- Department of Neurology, Yongchuan Hospital of Chongqing Medical University, Chongqing, 402460, China.
| |
Collapse
|
9
|
Purinergic Signaling and Related Biomarkers in Depression. Brain Sci 2020; 10:brainsci10030160. [PMID: 32178222 PMCID: PMC7139781 DOI: 10.3390/brainsci10030160] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2020] [Revised: 03/09/2020] [Accepted: 03/11/2020] [Indexed: 12/12/2022] Open
Abstract
It is established that purinergic signaling can shape a wide range of physiological functions, including neurotransmission and neuromodulation. The purinergic system may play a role in the pathophysiology of mood disorders, influencing neurotransmitter systems and hormonal pathways of the hypothalamic-pituitary-adrenal axis. Treatment with mood stabilizers and antidepressants can lead to changes in purinergic signaling. In this overview, we describe the biological background on the possible link between the purinergic system and depression, possibly involving changes in adenosine- and ATP-mediated signaling at P1 and P2 receptors, respectively. Furthermore, evidence on the possible antidepressive effects of non-selective adenosine antagonist caffeine and other purinergic modulators is reviewed. In particular, A2A and P2X7 receptors have been identified as potential targets for depression treatment. Preclinical studies highlight that both selective A2A and P2X7 antagonists may have antidepressant effects and potentiate responses to antidepressant treatments. Consistently, recent studies feature the possible role of the purinergic system peripheral metabolites as possible biomarkers of depression. In particular, variations of serum uric acid, as the end product of purinergic metabolism, have been found in depression. Although several open questions remain, the purinergic system represents a promising research area for insights into the molecular basis of depression.
Collapse
|
10
|
Steen NE, Dieset I, Hope S, Vedal TSJ, Smeland OB, Matson W, Kaddurah-Daouk R, Agartz I, Melle I, Djurovic S, Jönsson EG, Bogdanov M, Andreassen OA. Metabolic dysfunctions in the kynurenine pathway, noradrenergic and purine metabolism in schizophrenia and bipolar disorders. Psychol Med 2020; 50:595-606. [PMID: 30867076 DOI: 10.1017/s0033291719000400] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
BACKGROUND We aimed at exploring potential pathophysiological processes across psychotic disorders, applying metabolomics in a large and well-characterized sample of patients and healthy controls. METHODS Patients with schizophrenia and bipolar disorders (N = 212) and healthy controls (N = 68) had blood sampling with subsequent metabolomics analyses using electrochemical coulometric array detection. Concentrations of 52 metabolites including tyrosine, tryptophan and purine pathways were compared between patients and controls while controlling for demographic and clinical characteristics. Significant findings were further tested in medication-free subsamples. RESULTS Significantly decreased plasma concentrations in patients compared to healthy controls were found for 3-hydroxykynurenine (3OHKY, p = 0.0008), xanthurenic acid (XANU, p = 1.5×10-5), vanillylmandelic acid (VMA, p = 4.5×10-5) and metanephrine (MN, p = 0.0001). Plasma concentration of xanthine (XAN) was increased in the patient group (p = 3.5×10-5). Differences of 3OHKY, XANU, VMA and XAN were replicated across schizophrenia spectrum disorders and bipolar disorders subsamples of medication-free individuals. CONCLUSIONS Although prone to residual confounding, the present results suggest the kynurenine pathway of tryptophan metabolism, noradrenergic and purinergic system dysfunction as trait factors in schizophrenia spectrum and bipolar disorders. Of special interest is XANU, a metabolite previously not found to be associated with bipolar disorders.
Collapse
Affiliation(s)
- Nils Eiel Steen
- NORMENT, KG Jebsen Centre for Psychosis Research, Division of Mental Health and Addiction, Oslo University Hospital, and Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - Ingrid Dieset
- NORMENT, KG Jebsen Centre for Psychosis Research, Division of Mental Health and Addiction, Oslo University Hospital, and Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - Sigrun Hope
- NORMENT, KG Jebsen Centre for Psychosis Research, Division of Mental Health and Addiction, Oslo University Hospital, and Institute of Clinical Medicine, University of Oslo, Oslo, Norway
- Department of Neurohabilitation, Oslo University Hospital, Oslo, Norway
| | - Trude S J Vedal
- NORMENT, KG Jebsen Centre for Psychosis Research, Division of Mental Health and Addiction, Oslo University Hospital, and Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - Olav B Smeland
- NORMENT, KG Jebsen Centre for Psychosis Research, Division of Mental Health and Addiction, Oslo University Hospital, and Institute of Clinical Medicine, University of Oslo, Oslo, Norway
- Department of Neuroscience, University of California San Diego, La Jolla, CA92093, USA
| | | | - Rima Kaddurah-Daouk
- Duke Molecular Physiology Institute, Duke University, Durham, NC, USA
- Duke Institute of Brain Sciences, Duke University, Durham, NC, USA
- Department of Medicine, Duke University, Durham, NC, USA
| | - Ingrid Agartz
- NORMENT, KG Jebsen Centre for Psychosis Research, Division of Mental Health and Addiction, Oslo University Hospital, and Institute of Clinical Medicine, University of Oslo, Oslo, Norway
- Department of Psychiatric Research, Diakonhjemmet Hospital, Oslo, Norway
| | - Ingrid Melle
- NORMENT, KG Jebsen Centre for Psychosis Research, Division of Mental Health and Addiction, Oslo University Hospital, and Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - Srdjan Djurovic
- NORMENT, KG Jebsen Centre for Psychosis Research, Division of Mental Health and Addiction, Oslo University Hospital, and Institute of Clinical Medicine, University of Oslo, Oslo, Norway
- Department of Medical Genetics, Oslo University Hospital, Oslo, Norway
- Department of Clinical Science, University of Bergen, Bergen, Norway
| | - Erik G Jönsson
- NORMENT, KG Jebsen Centre for Psychosis Research, Division of Mental Health and Addiction, Oslo University Hospital, and Institute of Clinical Medicine, University of Oslo, Oslo, Norway
- Department of Clinical Neuroscience, Centre for Psychiatric Research, Karolinska Institutet, Stockholm, Sweden
| | | | - Ole A Andreassen
- NORMENT, KG Jebsen Centre for Psychosis Research, Division of Mental Health and Addiction, Oslo University Hospital, and Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| |
Collapse
|
11
|
Prefrontal cortex alterations in glia gene expression in schizophrenia with and without suicide. J Psychiatr Res 2020; 121:31-38. [PMID: 31739114 DOI: 10.1016/j.jpsychires.2019.11.002] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/31/2019] [Revised: 10/01/2019] [Accepted: 11/08/2019] [Indexed: 01/15/2023]
Abstract
BACKGROUND Patients with schizophrenia (SCZ) run a lifelong risk of suicide. Alterations in glia activities in the prefrontal cortex (PFC) have been reported in relation to suicide in patients with SCZ. While immune processes in the CNS have been related to the susceptibility and course of SCZ, there are hardly any direct comparisons between individuals with SCZ, both those who died of natural causes and those that committed suicide, and healthy controls. MATERIALS AND METHODS We compared mRNA expression using real time qPCR of 16 glia-related genes in the dorsal lateral prefrontal cortex (DLPFC) and the anterior cingulate cortex (ACC) between 35 patients with SCZ (7 suicide completers and 28 patients who died of natural causes) and 34 well-matched controls without psychiatric or neurological diseases. RESULTS We found an increased expression of the astrocytic gene aldehyde dehydrogenase-1 family member L1 (ALDH1L1) mRNA, a marker involved in dopaminergic activity, in SCZ versus controls. Excluding individuals with SCZ that committed suicide resulted in an elevated expression in the DLPFC of both ALDH1L1 and glutamine synthetase (GS) genes in patients with SCZ, compared to suicide completers and non-psychiatric controls. Regarding microglia genes: in the ACC, homeostatic markers such as chemokine (C-X3-C motif) ligand 1 (CX3CR1) mRNA expression was increased in SCZ without suicide as compared to suicide completers, while no change was found when compared to controls. Another, purinergic receptor 12 (P2RY12) mRNA was exclusively elevated in the ACC of suicide completers, compared to either other group. Triggering receptor expressed on myeloid cells 2 (TREM2) expression, which maintains microglial metabolism, was reduced in non-suicide patients with SCZ, compared to suicide victims and control subjects. CONCLUSIONS Differential changes are found in astrocyte and microglia genes in the PFC subregions in relation to SCZ and suicide, indicating possible disturbances of glia homeostasis in these conditions.
Collapse
|
12
|
Bhattacharyya S, Ahmed AT, Arnold M, Liu D, Luo C, Zhu H, Mahmoudiandehkordi S, Neavin D, Louie G, Dunlop BW, Frye MA, Wang L, Weinshilboum RM, Krishnan RR, Rush AJ, Kaddurah-Daouk R. Metabolomic signature of exposure and response to citalopram/escitalopram in depressed outpatients. Transl Psychiatry 2019; 9:173. [PMID: 31273200 PMCID: PMC6609722 DOI: 10.1038/s41398-019-0507-5] [Citation(s) in RCA: 58] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/05/2018] [Revised: 03/29/2019] [Accepted: 04/29/2019] [Indexed: 12/28/2022] Open
Abstract
Metabolomics provides valuable tools for the study of drug effects, unraveling the mechanism of action and variation in response due to treatment. In this study we used electrochemistry-based targeted metabolomics to gain insights into the mechanisms of action of escitalopram/citalopram focusing on a set of 31 metabolites from neurotransmitter-related pathways. Overall, 290 unipolar patients with major depressive disorder were profiled at baseline, after 4 and 8 weeks of drug treatment. The 17-item Hamilton Depression Rating Scale (HRSD17) scores gauged depressive symptom severity. More significant metabolic changes were found after 8 weeks than 4 weeks post baseline. Within the tryptophan pathway, we noted significant reductions in serotonin (5HT) and increases in indoles that are known to be influenced by human gut microbial cometabolism. 5HT, 5-hydroxyindoleacetate (5HIAA), and the ratio of 5HIAA/5HT showed significant correlations to temporal changes in HRSD17 scores. In the tyrosine pathway, changes were observed in the end products of the catecholamines, 3-methoxy-4-hydroxyphenylethyleneglycol and vinylmandelic acid. Furthermore, two phenolic acids, 4-hydroxyphenylacetic acid and 4-hydroxybenzoic acid, produced through noncanconical pathways, were increased with drug exposure. In the purine pathway, significant reductions in hypoxanthine and xanthine levels were observed. Examination of metabolite interactions through differential partial correlation networks revealed changes in guanosine-homogentisic acid and methionine-tyrosine interactions associated with HRSD17. Genetic association studies using the ratios of these interacting pairs of metabolites highlighted two genetic loci harboring genes previously linked to depression, neurotransmission, or neurodegeneration. Overall, exposure to escitalopram/citalopram results in shifts in metabolism through noncanonical pathways, which suggest possible roles for the gut microbiome, oxidative stress, and inflammation-related mechanisms.
Collapse
Affiliation(s)
- Sudeepa Bhattacharyya
- Department of Biomedical Informatics, University of Arkansas for Medical Sciences, Little Rock, AR, USA
| | - Ahmed T Ahmed
- Department of Psychiatry and Psychology, Mayo Clinic, Rochester, MN, USA
| | - Matthias Arnold
- Department of Psychiatry and Behavioral Sciences, Duke University School of Medicine, Durham, Durham, NC, USA
- Institute of Bioinformatics and Systems Biology, Helmholtz Zentrum München - German Research Center for Environmental Health, Neuherberg, Germany
| | - Duan Liu
- Department of Molecular Pharmacology & Experimental Therapeutics, Mayo Clinic, Rochester, MN, USA
| | - Chunqiao Luo
- Department of Biomedical Informatics, University of Arkansas for Medical Sciences, Little Rock, AR, USA
| | | | - Siamak Mahmoudiandehkordi
- Department of Psychiatry and Behavioral Sciences, Duke University School of Medicine, Durham, Durham, NC, USA
| | - Drew Neavin
- Department of Molecular Pharmacology & Experimental Therapeutics, Mayo Clinic, Rochester, MN, USA
| | - Gregory Louie
- Department of Psychiatry and Behavioral Sciences, Duke University School of Medicine, Durham, Durham, NC, USA
| | - Boadie W Dunlop
- Department of Psychiatry and Behavioral Sciences, Emory University School of Medicine, Atlanta, GA, USA
| | - Mark A Frye
- Department of Psychiatry and Psychology, Mayo Clinic, Rochester, MN, USA
| | - Liewei Wang
- Department of Molecular Pharmacology & Experimental Therapeutics, Mayo Clinic, Rochester, MN, USA
| | - Richard M Weinshilboum
- Department of Molecular Pharmacology & Experimental Therapeutics, Mayo Clinic, Rochester, MN, USA
| | - Ranga R Krishnan
- Department of Psychiatry, Rush University Medical Center, Chicago, IL, USA
| | - A John Rush
- Department of Psychiatry and Behavioral Sciences, Duke University School of Medicine, Durham, Durham, NC, USA
- Texas Tech University, Health Sciences Center, Permian Basin, Odessa, TX, USA
- Duke-National University of Singapore, Singapore, Singapore
| | - Rima Kaddurah-Daouk
- Department of Psychiatry and Behavioral Sciences, Duke University School of Medicine, Durham, Durham, NC, USA.
- Department of Medicine, Duke University, Durham, NC, USA.
- Duke Institute of Brain Sciences, Duke University, Durham, NC, USA.
| |
Collapse
|
13
|
Ali-Sisto T, Tolmunen T, Toffol E, Viinamäki H, Mäntyselkä P, Valkonen-Korhonen M, Honkalampi K, Ruusunen A, Velagapudi V, Lehto SM. Purine metabolism is dysregulated in patients with major depressive disorder. Psychoneuroendocrinology 2016; 70:25-32. [PMID: 27153521 DOI: 10.1016/j.psyneuen.2016.04.017] [Citation(s) in RCA: 96] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/23/2015] [Revised: 04/19/2016] [Accepted: 04/22/2016] [Indexed: 12/20/2022]
Abstract
INTRODUCTION The purine cycle and altered purinergic signaling have been suggested to play a role in major depressive disorder (MDD). Nevertheless, data on this topic are scarce. Based on previous studies, we hypothesized that compared with non-depressed controls, MDD patients have distinct purine metabolite profiles. METHODS The samples comprised 99 MDD patients and 253 non-depressed controls, aged 20-71 years. Background data were collected with questionnaires. Fasting serum samples were analyzed using ultra-performance liquid chromatography coupled to mass spectrometry (UPLC-MS) to determine seven purine cycle metabolites belonging to the purine cycle. We investigated the levels of these metabolites in three settings: (1) MDD patients vs. non-depressed controls and (2) remitted vs. non-remitted MDD patients, and also (3) within-group changes in metabolite levels during the follow-up period. RESULTS In logistic regression adjusted for age, gender, smoking, alcohol use, physical exercise, glycosylated hemoglobin, and high-density lipoprotein cholesterol, lower levels of inosine (OR 0.89, 95% CI 0.82-0.97) and guanosine (OR 0.32, 95% CI 0.17-0.59), and higher levels of xanthine (OR 2.21, 95% CI 1.30-3.75) were associated with MDD vs. the non-depressed group. Levels of several metabolites changed significantly during the follow-up period in the MDD group, but there were no differences between remitted and non-remitted groups. CONCLUSIONS We observed altered purine metabolism in MDD patients compared with non-depressed controls. Furthermore, our observations suggest that circulating xanthine may accumulate in MDD patients.
Collapse
Affiliation(s)
- Toni Ali-Sisto
- Institute of Clinical Medicine, University of Eastern Finland, P.O. Box 1627, 70211, Kuopio, Finland.
| | - Tommi Tolmunen
- Institute of Clinical Medicine, University of Eastern Finland, P.O. Box 1627, 70211, Kuopio, Finland; Department of Psychiatry, Kuopio University Hospital, P.O. Box 100, 70029 KYS, Finland
| | - Elena Toffol
- Metabolomics Unit, Institute for Molecular Medicine, Finland
| | - Heimo Viinamäki
- Institute of Clinical Medicine, University of Eastern Finland, P.O. Box 1627, 70211, Kuopio, Finland; Department of Psychiatry, Kuopio University Hospital, P.O. Box 100, 70029 KYS, Finland
| | - Pekka Mäntyselkä
- Primary Health Care Unit, University of Eastern Finland and Kuopio University Hospital, P.O. Box 1627, 70211, Kuopio, Finland
| | - Minna Valkonen-Korhonen
- Institute of Clinical Medicine, University of Eastern Finland, P.O. Box 1627, 70211, Kuopio, Finland; Department of Psychiatry, Kuopio University Hospital, P.O. Box 100, 70029 KYS, Finland
| | - Kirsi Honkalampi
- Department of Education and Psychology, University of Eastern Finland, P.O. Box 111, 80101 Joensuu, Finland
| | - Anu Ruusunen
- Institute of Clinical Medicine, University of Eastern Finland, P.O. Box 1627, 70211, Kuopio, Finland; Department of Psychiatry, Kuopio University Hospital, P.O. Box 100, 70029 KYS, Finland
| | - Vidya Velagapudi
- Metabolomics Unit, Institute for Molecular Medicine, Finland; FIMM, P.O. Box 20, FI-00014, University of Helsinki, Finland
| | - Soili M Lehto
- Institute of Clinical Medicine, University of Eastern Finland, P.O. Box 1627, 70211, Kuopio, Finland; Department of Psychiatry, Kuopio University Hospital, P.O. Box 100, 70029 KYS, Finland
| |
Collapse
|
14
|
Ortiz R, Ulrich H, Zarate CA, Machado-Vieira R. Purinergic system dysfunction in mood disorders: a key target for developing improved therapeutics. Prog Neuropsychopharmacol Biol Psychiatry 2015; 57:117-31. [PMID: 25445063 PMCID: PMC4262688 DOI: 10.1016/j.pnpbp.2014.10.016] [Citation(s) in RCA: 93] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/02/2014] [Revised: 10/20/2014] [Accepted: 10/28/2014] [Indexed: 02/09/2023]
Abstract
Uric acid and purines (such as adenosine) regulate mood, sleep, activity, appetite, cognition, memory, convulsive threshold, social interaction, drive, and impulsivity. A link between purinergic dysfunction and mood disorders was first proposed a century ago. Interestingly, a recent nationwide population-based study showed elevated risk of gout in subjects with bipolar disorder (BD), and a recent meta-analysis and systematic review of placebo-controlled trials of adjuvant purinergic modulators confirmed their benefits in bipolar mania. Uric acid may modulate energy and activity levels, with higher levels associated with higher energy and BD spectrum. Several recent genetic studies suggest that the purinergic system - particularly the modulation of P1 and P2 receptor subtypes - plays a role in mood disorders, lending credence to this model. Nucleotide concentrations can be measured using brain spectroscopy, and ligands for in vivo positron emission tomography (PET) imaging of adenosine (P1) receptors have been developed, thus allowing potential target engagement studies. This review discusses the key role of the purinergic system in the pathophysiology of mood disorders. Focusing on this promising therapeutic target may lead to the development of therapies with antidepressant, mood stabilization, and cognitive effects.
Collapse
Affiliation(s)
- Robin Ortiz
- Experimental Therapeutics and Pathophysiology Branch, National Institute of Mental Health, Division of Intramural Research Programs, National Institutes of Health, Bethesda, MD, USA.
| | - Henning Ulrich
- Departament of Biochemistry, University of Sao Paulo, Sao Paulo, Brazil.
| | - Carlos A Zarate
- Experimental Therapeutics and Pathophysiology Branch, National Institute of Mental Health, Division of Intramural Research Programs, National Institutes of Health, Bethesda, MD, USA.
| | - Rodrigo Machado-Vieira
- Experimental Therapeutics and Pathophysiology Branch, National Institute of Mental Health, Division of Intramural Research Programs, National Institutes of Health, Bethesda, MD, USA; Laboratory of Neuroscience, LIM27, University of Sao Paulo, Sao Paulo, Brazil.
| |
Collapse
|
15
|
Cerebrospinal fluid metabolome in mood disorders-remission state has a unique metabolic profile. Sci Rep 2012; 2:667. [PMID: 22993692 PMCID: PMC3446657 DOI: 10.1038/srep00667] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2011] [Accepted: 08/23/2012] [Indexed: 12/20/2022] Open
Abstract
Targeted metabolomics provides an approach to quantify metabolites involved in specific molecular pathways. We applied an electrochemistry-based, targeted metabolomics platform to define changes in tryptophan, tyrosine, purine and related pathways in the depressed and remitted phases of major depressive disorder (MDD). Biochemical profiles in the cerebrospinal fluid of unmedicated depressed (n = 14; dMDD) or remitted MDD subjects (n = 14; rMDD) were compared against those in healthy controls (n = 18; HC). The rMDD group showed differences in tryptophan and tyrosine metabolism relative to the other groups. The rMDD group also had higher methionine levels and larger methionine-to-glutathione ratios than the other groups, implicating methylation and oxidative stress pathways. The dMDD sample showed nonsignificant differences in the same direction in several of the metabolic branches assessed. The reductions in metabolites associated with tryptophan and tyrosine pathways in rMDD may relate to the vulnerability this population shows for developing depressive symptoms under tryptophan or catecholamine depletion.
Collapse
|
16
|
Ågren H, Lundqvist G. Somatostatin in CSF of depressed patients: Low levels mark active illness episodes. ACTA ACUST UNITED AC 2009. [DOI: 10.3109/08039488509101958] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
17
|
|
18
|
Harkness RA, Saugstad OD. The importance of the measurement of ATP depletion and subsequent cell damage with an estimate of size and nature of the market for a practicable method: a review designed for technology transfer. Scand J Clin Lab Invest 1997; 57:655-72. [PMID: 9458488 DOI: 10.3109/00365519709105227] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
ATP is the energy currency of cells. ATP depletion is a central process in pathogenesis, in particular ischaemia, hypoxia and hypoglycaemia. ATP depletion in cells can be indirectly measured from the increased concentrations of extracellular hypoxanthine, a central intermediate in the metabolism of ATP. Cell damage secondary to ATP depletion can also be measured from extracellular hypoxanthine. The relevant biochemistry and physiology is briefly reviewed. Since market size is needed for investment decisions that would allow technology transfer, the numbers of hypoxanthine analyses that are clinically justified from the extensive published evidence are calculated per million population from UK, Norwegian and other evidence. The concentration of oxygen in blood is measured to estimate whether mitochondrial oxidative phosphorylation is adequate. Measurements of bicarbonate are used to estimate anaerobic glycolysis. Since the indirect estimation of ATP depletion is a major objective of blood gas and acid-base analyses, the number of such analyses per million population provides a good estimate of potential market size for a more direct method of estimating ATP depletion. A method is required for the rapid, dispersed emergency analyses needed clinically. Routes for method development are indicated. Competition, risks, acceptability, consumer motivation and timetables are indicated for the development phase. There are medicolegal pressures, especially in the USA, for the proposed advances to be widely used.
Collapse
Affiliation(s)
- R A Harkness
- Department of Paediatric Research, University of Oslo, Rikshospitalet, Norway
| | | |
Collapse
|
19
|
Harkness RA. Hypoxanthine, xanthine and uridine in body fluids, indicators of ATP depletion. JOURNAL OF CHROMATOGRAPHY 1988; 429:255-78. [PMID: 3062020 DOI: 10.1016/s0378-4347(00)83873-6] [Citation(s) in RCA: 110] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Measurements of hyp, xan and urd in body fluids can provide evidence of energy, ATP, depletion in the body, in organs or in cells. Such information is clinically useful in the many diseases in which cellular energy supplies cannot be maintained like perinatal asphyxia, hydrocephalus and vascular insufficiency in brain, heart, limbs, kidneys or other organs. Similar HPLC methods using reversed-phase C18 columns and quantitation by UV absorption have been employed in a variety of centres to yield almost identical results. These have been assembled in this review to form a series of reference values. The current analytical problems are reviewed. Since concentrations of hyp and xan may alter independently situations are discussed in which separate measurements rather than their summed, total oxypurine concentrations are needed. The biochemistry and physiology underlying the use of such analyses is examined to guide sampling of the appropriate body fluid at a relevant time and to avoid oversimplified interpretation of results as well as unnecessary arguments. Specifically: (1) Intracellular concentrations of hyp and xan are inversely related to adenylate energy change and therefore to the energy currency of the cell ATP. Uridine in tissues is similarly 'controlled'. (2) There is extensive evidence that large increases in hyp, xan and urd in body fluids indicate ATP depletion. (3) Small changes in hyp probably reflect alterations of ATP turnover. (4) Xanthine arises mainly from guanine and can change independently of hyp. (5) Clinically useful information is obtainable from hyp and xan concentrations in CSF, amniotic fluid, urine and plasma. Extensive clinical correlations are reviewed. At present we are in a development phase for which HPLC is ideal but the most efficient way to perform and use such analyses in routine clinical practice remains to be established.
Collapse
Affiliation(s)
- R A Harkness
- Division of Inherited Metabolic Diseases, MRC Clinical Research Centre, Harrow, Middlesex, U.K
| |
Collapse
|
20
|
Affiliation(s)
- J E Morley
- Geriatric Research, Education and Clinical Center, Sepulveda VA Medical Center, CA 91343
| | | |
Collapse
|
21
|
Niklasson F, Hetta J, Degrell I. Hypoxanthine, xanthine, urate and creatinine concentration gradients in cerebrospinal fluid. Ups J Med Sci 1988; 93:225-32. [PMID: 3238822 DOI: 10.3109/03009738809178548] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
The purine metabolites hypoxanthine, xanthine and urate as well as creatinine were measured in cerebrospinal fluid (CSF) from two groups of patients and a reference sample group. In one of the patient groups lumbar CSF was collected in 2 ml portions until a total volume of 14 ml was withdrawn. Every second portion was analysed for its content of the metabolites in focus. In the other patient group both cisternal CSF and a fixed volume (20 ml) of lumbar CSF were obtained and analysed. An increase in concentration of hypoxanthine, xanthine and creatinine and a decrease in urate concentration was found in the successive CSF specimens. The mean individual increase in hypoxanthine concentration between the first and the last 2 ml portion was as high as 39.6%, while it was lower for xanthine, 21.5%, and creatinine, 6.7%. The decrease in urate concentration was 17.2%. The results from the other patient group were in good agreement with these findings. The concentrations in the cisternal CSF was 162% of that in lumbar CSF for hypoxanthine, 155% for xanthine, 123% for creatinine and 80% for urate. Mechanisms behind inter- and intraindividual differences in gradients are discussed.
Collapse
Affiliation(s)
- F Niklasson
- Department of Clinical Chemistry, University Hospital, Uppsala, Sweden
| | | | | |
Collapse
|
22
|
Ronquist G, Callerud T, Niklasson F, Friman G. Studies of biochemical markers in cerebrospinal fluid in patients with meningoencephalitis. Infect Immun 1985; 48:729-34. [PMID: 3997245 PMCID: PMC261244 DOI: 10.1128/iai.48.3.729-734.1985] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Several biochemical markers in the cerebrospinal fluid (CSF) of 120 patients with serous meningoencephalitis (SM) of viral origin were compared with those of 74 patients with viral or bacterial infections accompanied by neck stiffness but no CSF abnormality (i.e., meningism). CSF adenylate kinase was higher (P less than 0.025) in SM and correlated with lactate concentration (r = 0.37; P less than 0.01). CSF hypoxanthine was lower (P less than 0.001) in SM, whereas CSF xanthine was similar in the two conditions. The xanthine/hypoxathine ratio correlated with the CSF leukocyte count (r = 0.32; P less than 0.01), and especially with the mononuclear cell count (r = 0.45; P less than 0.001). CSF adenylate kinase correlated with fever in SM (r = 0.28; P less than 0.01). CSF urate and protein displayed a mutual correlation in both conditions (r = 0.26 and P less than 0.05 for SM; r = 0.55 and P less than 0.001 for meningism). These results support the hypothesis of impaired brain cell metabolism, probably of ischemic nature, in viral meningoencephalitis, causing leakage of adenylate kinase into the CSF, where hypoxanthine may be reutilized by mononuclear leukocytes.
Collapse
|
23
|
Abstract
Somatostatin-like immunoreactivity was measured in the cerebrospinal fluid (CSF) of 85 inpatients with current or recent episodes of major depressive disorders, diagnosed according to Research Diagnostic Criteria (RDC) as assessed with the Schedule for Affective Disorders and Schizophrenia (SADS). Several biopsychiatric tests were run during the same week of investigation. Results indicate low levels of CSF somatostatin to be a state marker for episodes of depression characterized by sad appearance, feelings of tiredness, insomnia, and subjective inability to acknowledge any external precipitants for the depression. CSF somatostatin was negatively related to platelet monoamine oxidase (MAO) activity; MAO activity appeared to account better for the degree of melancholic features than did somatostatin. The ratio between 3-methoxy-4-hydroxyphenylglycol (MHPG) and homovanillic acid (HVA) in CSF also correlated negatively with somatostatin. A positive relationship was noted between CSF xanthine and somatostatin. There was a highly significant curvilinear correlation between CSF somatostatin and serum TSH concentrations, but no correlations between CSF somatostatin and serum GH or prolactin, or with plasma cortisol before or after dexamethasone.
Collapse
|