1
|
Spencer NJ, Kyloh M, Beckett EA, Brookes S, Hibberd T. Different types of spinal afferent nerve endings in stomach and esophagus identified by anterograde tracing from dorsal root ganglia. J Comp Neurol 2016; 524:3064-83. [DOI: 10.1002/cne.24006] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2015] [Revised: 03/21/2016] [Accepted: 03/24/2016] [Indexed: 12/11/2022]
Affiliation(s)
- Nick J. Spencer
- Discipline of Human Physiology and Centre for Neuroscience, School of Medicine, Flinders University; Adelaide 5001 South Australia Australia
| | - Melinda Kyloh
- Discipline of Human Physiology and Centre for Neuroscience, School of Medicine, Flinders University; Adelaide 5001 South Australia Australia
| | - Elizabeth A Beckett
- Discipline of Physiology, School of Medicine, University of Adelaide; Adelaide 5000 South Australia Australia
| | - Simon Brookes
- Discipline of Human Physiology and Centre for Neuroscience, School of Medicine, Flinders University; Adelaide 5001 South Australia Australia
| | - Tim Hibberd
- Discipline of Human Physiology and Centre for Neuroscience, School of Medicine, Flinders University; Adelaide 5001 South Australia Australia
| |
Collapse
|
2
|
Excitatory and inhibitory enteric innervation of horse lower esophageal sphincter. Histochem Cell Biol 2015; 143:625-35. [PMID: 25578519 DOI: 10.1007/s00418-014-1306-y] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/23/2014] [Indexed: 12/30/2022]
Abstract
The lower esophageal sphincter (LES) is a specialized, thickened muscle region with a high resting tone mediated by myogenic and neurogenic mechanisms. During swallowing or belching, the LES undergoes strong inhibitory innervation. In the horse, the LES seems to be organized as a "one-way" structure, enabling only the oral-anal progression of food. We characterized the esophageal and gastric pericardial inhibitory and excitatory intramural neurons immunoreactive (IR) for the enzymes neuronal nitric oxide synthase (nNOS) and choline acetyltransferase. Large percentages of myenteric plexus (MP) and submucosal (SMP) plexus nNOS-IR neurons were observed in the esophagus (72 ± 9 and 69 ± 8 %, respectively) and stomach (57 ± 17 and 45 ± 3 %, respectively). In the esophagus, cholinergic MP and SMP neurons were 29 ± 14 and 65 ± 24 vs. 36 ± 8 and 38 ± 20 % in the stomach, respectively. The high percentage of nitrergic inhibitory motor neurons observed in the caudal esophagus reinforces the role of the enteric nervous system in the horse LES relaxation. These findings might allow an evaluation of whether selective groups of enteric neurons are involved in horse neurological disorders such as megaesophagus, equine dysautonomia, and white lethal foal syndrome.
Collapse
|
3
|
Gallaher ZR, Ryu V, Herzog T, Ritter RC, Czaja K. Changes in microglial activation within the hindbrain, nodose ganglia, and the spinal cord following subdiaphragmatic vagotomy. Neurosci Lett 2012; 513:31-6. [PMID: 22342909 PMCID: PMC3302977 DOI: 10.1016/j.neulet.2012.01.079] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2011] [Revised: 01/26/2012] [Accepted: 01/31/2012] [Indexed: 11/16/2022]
Abstract
Damage to peripheral nerve branches triggers activation of microglia in CNS areas containing motor neuron soma and primary afferent terminals of the damaged fibers. Furthermore, microglial activation occurs in areas containing the soma and terminals of spared nerve branches of a damaged nerve. Because the abdominal viscera are innervated by spinal afferents as well as vagal afferents and efferents, we speculated that spinal nerves might respond like spared nerve branches following damage to vagal fibers. Therefore, we tested the hypothesis that damage to the abdominal vagus would result in microglial activation in vagal structures-the nucleus of the solitary tract (NTS), dorsal motor nucleus of the vagus nerve (DMV), and nodose ganglia (NG)-as well as spinal cord (SC) segments that innervate the abdominal viscera. To test this hypothesis, rats underwent subdiaphragmatic vagotomy or sham surgery and were treated with saline or the microglial inhibitor, minocycline. Microglial activation was determined by quantifying changes in the intensity of fluorescent staining with a primary antibody against ionizing calcium adapter binding molecule 1 (Iba1). We found that subdiaphragmatic vagotomy significantly activated microglia in the NTS, DMV, and NG two weeks post-vagotomy. Microglial activation remained significantly increased in the NG and DMV for at least 42 days. Surprisingly, vagotomy significantly decreased microglial activation in the SC. Minocycline treatment attenuated microglial activation in all studied areas. Our results indicate that microglial activation in vagal structures following abdominal vagal damage is accompanied by suppression of microglial activation in associated areas of the spinal cord.
Collapse
Affiliation(s)
- Z R Gallaher
- Program in Neuroscience, Department of Veterinary and Comparative Anatomy, Pharmacology and Physiology, Washington State University, Pullman, WA 99164, USA
| | | | | | | | | |
Collapse
|
4
|
|
5
|
Roles of gastro-oesophageal afferents in the mechanisms and symptoms of reflux disease. Handb Exp Pharmacol 2009:227-57. [PMID: 19655109 DOI: 10.1007/978-3-540-79090-7_7] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Oesophageal pain is one of the most common reasons for physician consultation and/or seeking medication. It is most often caused by acid reflux from the stomach, but can also result from contractions of the oesophageal muscle. Different forms of pain are evoked by oesophageal acid, including heartburn and non-cardiac chest pain, but the basic mechanisms and pathways by which these are generated remain to be elucidated. Both vagal and spinal afferent pathways are implicated by basic research. The sensitivity of afferent fibres within these pathways may become altered after acid-induced inflammation and damage, but the severity of symptoms in humans does not necessarily correlate with the degree of inflammation. Gastro-oesophageal reflux disease (GORD) is caused by transient relaxations of the lower oesophageal sphincter, which are triggered by activation of gastric vagal mechanoreceptors. Vagal afferents are therefore an emerging therapeutic target for GORD. Pain in the absence of excess acid reflux remains a major challenge for treatment.
Collapse
|
6
|
Hayakawa T, Kuwahara S, Maeda S, Tanaka K, Seki M. Distribution of vagal CGRP-immunoreactive fibers in the lower esophagus and the cardia of the stomach of the rat. J Chem Neuroanat 2009; 38:124-9. [DOI: 10.1016/j.jchemneu.2009.04.001] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
7
|
A previously nondescribed dominant branch from the left splanchnic nerve innervating the gastroesophageal junction: the significance of its preservation during fundoplication for gastroesophageal reflux disease warrants clarification. Surg Endosc 2009; 23:2862-3. [PMID: 19479306 DOI: 10.1007/s00464-009-0524-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2009] [Accepted: 04/11/2009] [Indexed: 10/20/2022]
|
8
|
Neuhuber WL, Raab M, Berthoud HR, Wörl J. Innervation of the mammalian esophagus. ADVANCES IN ANATOMY EMBRYOLOGY AND CELL BIOLOGY 2006. [PMID: 16573241 DOI: 10.1007/978-3-540-32948-0_1] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Understanding the innervation of the esophagus is a prerequisite for successful treatment of a variety of disorders, e.g., dysphagia, achalasia, gastroesophageal reflux disease (GERD) and non-cardiac chest pain. Although, at first glance, functions of the esophagus are relatively simple, their neuronal control is considerably complex. Vagal motor neurons of the nucleus ambiguus and preganglionic neurons of the dorsal motor nucleus innervate striated and smooth muscle, respectively. Myenteric neurons represent the interface between the dorsal motor nucleus and smooth muscle but they are also involved in striated muscle innervation. Intraganglionic laminar endings (IGLEs) represent mechanosensory vagal afferent terminals. They also establish intricate connections with enteric neurons. Afferent information is implemented by the swallowing central pattern generator in the brainstem, which generates and coordinates deglutitive activity in both striated and smooth esophageal muscle and orchestrates esophageal sphincters as well as gastric adaptive relaxation. Disturbed excitation/inhibition balance in the lower esophageal sphincter results in motility disorders, e.g., achalasia and GERD. Loss of mechanosensory afferents disrupts adaptation of deglutitive motor programs to bolus variables, eventually leading to megaesophagus. Both spinal and vagal afferents appear to contribute to painful sensations, e.g., non-cardiac chest pain. Extrinsic and intrinsic neurons may be involved in intramural reflexes using acetylcholine, nitric oxide, substance P, CGRP and glutamate as main transmitters. In addition, other molecules, e.g., ATP, GABA and probably also inflammatory cytokines, may modulate these neuronal functions.
Collapse
|
9
|
Medda BK, Sengupta JN, Lang IM, Shaker R. Response properties of the brainstem neurons of the cat following intra-esophageal acid–pepsin infusion. Neuroscience 2005; 135:1285-94. [PMID: 16165290 DOI: 10.1016/j.neuroscience.2005.07.016] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2005] [Revised: 06/24/2005] [Accepted: 07/01/2005] [Indexed: 11/16/2022]
Abstract
Studies in humans have documented that acute acid infusion into the esophagus leads to decrease in threshold for sensations to mechanical distension of the esophagus. It is not known whether acid infusion leads to sensitization of brainstem neurons receiving synaptic input from vagal afferent fibers innervating the esophagus. The aim of this study was to investigate the correlation of responses of vagal afferents and brainstem neurons after acute infusion of acid (0.1 N HCl)+pepsin (1 mg/ml) into the esophagus of cats. The vagal afferent fibers (n=20) exhibited pressure-dependent increase in firing to graded esophageal distension (5-80 mm Hg). Infusion of acid+pepsin into the esophagus produced a significant increase in ongoing resting firing of five of 16 fibers (31%) tested. However, their responses to graded esophageal distension did not change when tested 30 min after infusion. Pepsin infusion did not change the resting firing and response to esophageal distension (n=4). Twenty-one brainstem neurons were recorded that responded in an intensity-dependent manner to graded esophageal distension. Responses of 12 excited neurons were tested after intra-esophageal acid+pepsin infusion. Neurons exhibited a decrease in threshold for response to esophageal distension and increase in firing after acid+pepsin infusion. The sensitization of response after intra-esophageal acid remained unaffected after cervical (C1-C2) spinal transection (n=3). Results indicate that the esophageal distension-sensitive neurons in the brainstem exhibit sensitization of response to esophageal distension after acute acid+pepsin exposure. The sensitization of brainstem neurons is possibly initiated by increased spontaneous firing of the vagal afferent fibers to acid+pepsin, but not to sensitized response of vagal distension-sensitive afferent fibers to esophageal distension. Results also indicate that spinal pathway does not contribute to sensitization of brainstem neurons.
Collapse
Affiliation(s)
- B K Medda
- MCW Dysphagia Institute and Division of Gastroenterology and Hepatology, Medical College of Wisconsin, 9200 West Wisconsin Avenue, Milwaukee, WI 53226, USA
| | | | | | | |
Collapse
|
10
|
Qin C, Chandler MJ, Jou CJ, Foreman RD. Responses and afferent pathways of C1-C2 spinal neurons to cervical and thoracic esophageal stimulation in rats. J Neurophysiol 2003; 91:2227-35. [PMID: 14695350 DOI: 10.1152/jn.00971.2003] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Because vagal and sympathetic inputs activate upper cervical spinal neurons, we hypothesized that stimulation of the esophagus would activate C(1)-C(2) neurons. This study examined responses of C(1)-C(2) spinal neurons to cervical and thoracic esophageal distension (CED, TED) and afferent pathways for CED and TED inputs to C(1)-C(2) spinal neurons. Extracellular potentials of single C(1)-C(2) spinal neurons were recorded in pentobarbital-anesthetized male rats. Graded CED or TED was produced by water inflation (0.1-0.5 ml) of a latex balloon. CED changed activity of 48/219 (22%) neurons; 34 were excited (E), 12 were inhibited (I), and 2 were E-I. CED elicited responses for 18/18 neurons tested after ipsilateral cervical vagotomy, for 12/14 neurons tested after bilateral vagotomy and for 9/11 neurons tested after bilateral vagotomy and C(6)-C(7) spinal cord transection. TED changed activity of 31/190 (16%) neurons (28E, 3 I). Ipsilateral cervical vagotomy abolished TED-evoked responses of 5/12 neurons. Bilateral vagotomy eliminated responses of 2/4 neurons tested, and C(6)-C(7) spinal transection plus bilateral vagotomy eliminated responses of 2/2 neurons. Thus inputs from CED to C(1)-C(2) neurons most likely entered upper cervical dorsal roots, whereas inputs from TED were dependent on vagal pathways and/or sympathetic afferent pathways that entered the thoracic dorsal roots. These results supported a concept that C(1)-C(2) spinal neurons play a role in integrating visceral information from cervical and thoracic esophagus.
Collapse
Affiliation(s)
- Chao Qin
- Department of Physiology, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma 73190, USA.
| | | | | | | |
Collapse
|
11
|
Blondeau C, Clerc N, Baude A. Neurokinin-1 and neurokinin-3 receptors are expressed in vagal efferent neurons that innervate different parts of the gastro-intestinal tract. Neuroscience 2002; 110:339-49. [PMID: 11958875 DOI: 10.1016/s0306-4522(01)00452-3] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Vagal efferent neurons innervating the digestive tract are mainly contained in the dorsal motor nucleus of the vagus. Previous studies have suggested that neurokinins and their neurokinin-1 and neurokinin-3 receptors are involved in the parasympathetic control of digestive functions. The purpose of the present study was to analyze the distribution of neurokinin-1 and neurokinin-3 receptors amongst vagal efferent neurons innervating the stomach, the duodenum, the ileum and the cecum. The immunocytochemical detection of neurokinin-1 and neurokinin-3 receptors was combined with the immunocytochemical detection of retrogradely transported cholera toxin-B subunit, previously injected in the gut wall. Neurokinin-1 and neurokinin-3 receptors were present in 19+/-7% and 8+/-3% of retrogradely labeled neurons innervating the stomach. Almost half of the labeled neurons innervating the duodenum (46+/-7%) expressed neurokinin-1 receptors but less than 0.5% contained neurokinin-3 receptors. None of the retrogradely labeled vagal efferent neurons innervating the ileum and the cecum were immunoreactive for neurokinin-1 and neurokinin-3 receptors. We conclude that neurokinin-1 and neurokinin-3 receptors are located on vagal efferent neurons which innervate the stomach and that neurokinin-1 receptors are common, whereas neurokinin-3 receptors are rare on neurons projecting to the duodenum. Additionally, the distal part of the rat small intestine is innervated by vagal efferent neurons that do not express neurokinins receptors on their membrane. This suggests that neurokinins may influence the parasympathetic control of different regions of the gastro-intestinal tract in specific ways.
Collapse
Affiliation(s)
- C Blondeau
- ITIS Laboratory, CNRS, Bâtiment N', 31 chemin J. Aiguier, 13402 Marseille Cedex 20, France
| | | | | |
Collapse
|
12
|
Abstract
The neurophysiological basis of esophageal pain and discomfort is not well known. Functional disorder, such as noncardiac chest pain, is thought to be associated with hypersensitivity of primary afferents innervating the esophagus and/or sensitization of spinal dorsal horn cells receiving input from the organ. Although we have accumulated a large body of information about the morphologic structure and neuropeptide contents of the extrinsic primary afferents, we lack a full understanding of its integrative function in esophageal pain. The esophagus is innervated dually by vagus and spinal nerves. The majority of sensory afferents in the vagal and spinal pathway are pseudounipolar cells, with their cell bodies (soma) located in the nodose and dorsal root ganglia, respectively. These afferent fibers innervate serosa (adventitia), longitudinal and circular muscles, and mucosa of the esophagus. Afferents innervating the muscle are sensitive to intraluminal distension. In the vagus, these afferents exhibit low threshold for response, whereas the spinal afferents, including the splanchnic nerve afferents, have either low or high thresholds for response. In addition, these afferents are chemosensitive. Both vagal and spinal afferents also innervate the mucosa of the esophagus. These fibers are exquisitely sensitive to light touch of the mucosa and are sensitive to pH and chemicals. The spinal afferents, including splanchnic nerve afferents, project to the spinal cord, spanning from upper cervical (C1) to upper lumbar (L2) segments. A majority of the spinal dorsal horn neurons receiving input from the esophageal spinal afferents also receives somatic converging input. The somatic receptive fields are distributed mainly ipsilaterally over the chest and forearm area. These spinal dorsal horn neurons exhibit either excitatory, inhibitory, or biphasic (i.e., excitation followed by inhibition) responses to esophageal distension.
Collapse
Affiliation(s)
- J N Sengupta
- Department of Gastrointestinal Pharmacology, AstraZeneca R&D Mölndal, Sweden
| |
Collapse
|
13
|
Clerc N, Mazzia C. Morphological relationships of choleragenoid horseradish peroxidase-labeled spinal primary afferents with myenteric ganglia and mucosal associated lymphoid tissue in the cat esophagogastric junction. J Comp Neurol 1994; 347:171-86. [PMID: 7814662 DOI: 10.1002/cne.903470203] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
The goal of the present study was to gain insight into the environmental factors influencing the activity of primary spinal afferent fibers in the different layers of the esophagogastric junction of the cat and, thus, to analyze the relationships of these afferents with various cellular components. Spinal primary afferent fibers were selectively labeled by anterogradely transported choleragenoid horseradish peroxidase conjugate (B-HRP). B-HRP was injected into the thoracic dorsal root ganglion at the T8-T13 levels. 6-Hydroxydopamine-induced sympathectomy was performed prior to B-HRP injection in order to prevent otherwise unavoidable labeling of sympathetic fibers in the gut wall. Numerous labeled fibers ran between, around, and within the myenteric ganglia. Others crossed the muscle layers directly and entered the mucosa, where some ran near granulocytes and around or through solitary lymphoid follicles. Labeled fibers were observed in the squamous esophageal epithelium but not in the fundic glandular epithelium. The fibers in the myenteric area are probably connected to the muscular tension receptors that have been detected by electrophysiologic techniques. This assumption is based on the observation that only a few fibers appear to terminate in muscle layers and on the fact that the myenteric area is very narrow and subject to powerful forces. Fibers in the myenteric ganglia could be involved in local efferent functions. Fibers in the mucosa could act as nociceptors and might be involved in local immunological responses.
Collapse
Affiliation(s)
- N Clerc
- Laboratoire de Neurobiologie, CNRS, Marseille, France
| | | |
Collapse
|
14
|
Collman PI, Tremblay L, Diamant NE. The distribution of spinal and vagal sensory neurons that innervate the esophagus of the cat. Gastroenterology 1992; 103:817-22. [PMID: 1499932 DOI: 10.1016/0016-5085(92)90012-n] [Citation(s) in RCA: 43] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
The distribution of spinal and vagal neurons that convey sensory information from the distal smooth muscle esophagus is poorly documented. Therefore, sensory cell bodies were retrogradely labeled by injecting fast blue into the striated and smooth muscle of the esophageal body and into the lower esophageal sphincter of the cat. The maximum distribution of spinal sensory neuron labeling was found in the following dorsal root ganglia: C1-T8 (striated muscle); C5-L2 (smooth muscle), and T1-L3 (lower esophageal sphincter). Vagal sensory neurons in the nodose ganglion were found to have a crude topographic layout. The total number of vagal sensory neurons labeled by injection into the three esophageal areas was greater than the number of spinal neurons labeled (809.7 +/- 166.1 vs. 328.9 +/- 53.4; mean +/- SEM; n = 12; P less than 0.005). It is concluded that spinal sensory neurons of the esophagus are segmentally arranged. Accordingly, each level of the esophagus has a distinct but overlapping sensory projection to the spinal cord, and afferents from all parts of the esophagus overlap the known spinal distribution of cardiac afferents.
Collapse
|
15
|
Garrison DW, Chandler MJ, Foreman RD. Viscerosomatic convergence onto feline spinal neurons from esophagus, heart and somatic fields: effects of inflammation. Pain 1992; 49:373-382. [PMID: 1408304 DOI: 10.1016/0304-3959(92)90245-7] [Citation(s) in RCA: 76] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
One objective of this study was to examine a mechanism for the inability of patients to distinguish esophageal pain from cardiac pain. Patients with esophageal disease and angina pectoris often perceive pain as originating from the same somatic fields. Another objective was to compare the effect of esophageal distension between animals with a non-inflamed or with an inflamed esophagus. For this study in anesthetized cats, we recorded extracellular action potentials from T2-T7 spinal neurons that responded to intraluminal distension of an untreated or a turpentine-inflamed distal esophagus. Threshold distension volumes were compared between these 2 groups of animals. Neurons also were examined for effects of intracardiac bradykinin injection and somatic stimuli. Results showed that spinal neurons responded to a smaller threshold distension volume when cells in animals with an inflamed distal esophagus were compared to cells in animals with a non-inflamed distal esophagus. Spinal neurons that received input from the distal esophagus also received convergent input from the heart and somatic fields. Our data supported the hypotheses that (1) referred pain from the distal esophagus resulted from activation of the same spinal neurons by visceral and somatic input, (2) pain originating from the distal esophagus and heart might be difficult to distinguish because of viscerosomatic and viscerovisceral convergence onto the same spinal neurons, and (3) an inflamed distal esophagus might be more sensitive to distension than a non-inflamed esophagus.
Collapse
Affiliation(s)
- David W Garrison
- Department of Physical Therapy, University of Oklahoma, Health Sciences Center, Oklahoma City, OK 73190 USA Department of Physiology and Biophysics, University of Oklahoma, Health Sciences Center, Oklahoma City, OK 73190 USA
| | | | | |
Collapse
|
16
|
Abstract
Esophageal pain is transmitted via the sympathetic nervous system to the spinal cord, in which pain from visceral and somatic sources ascends to higher centers in the brain. Primary afferent neurons are bipolar, with the peripheral end specialized to be a sensory receptor. Nociceptors of somatosensory afferents are free nerve endings that can be activated by mechanical, thermal, or chemical stimuli. Esophageal nociceptive neurons have not been specifically identified but probably are also free nerve endings. Most esophageal spinal mechanoreceptors have been shown to be nociceptive. Some esophageal mechanonociceptors have a wide dynamic range and respond to physiologic and painful stimuli, while others have a high threshold of stimulation and are solely nociceptive. Esophageal spinal afferents have their cell bodies in the dorsal root ganglia and contain substance P and calcitonin gene-related peptide. These putative neurotransmitters are transported in both the peripheral and central directions of bipolar afferent neurons. Primary afferent neurons are likely to also contain an excitatory amino acid neurotransmitter such as glutamate. Centrally, nociceptive primary afferents terminate on neurons in specific layers of the dorsal horn of the spinal cord. Convergence of multiple visceral afferents with somatic afferents onto the same dorsal horn neurons may explain referred pain. A patient's inability to distinguish esophageal from cardiac pain may be due to convergence of pain pathways. Second-order neurons in the dorsal horn project in the anterolateral system to the brain. Within the anterolateral system, nociception ascends in the spinothalamic, spinoreticular, and spinomesencephalic tracts. The thalamus relays fast pain to the postcentral areas of the parietal lobe of the cortex. Pathways to the reticular formation are slow and may mediate the increased arousal that occurs in response to pain. The spinomesencephalic tract projects to midbrain sites including the periaqueductal gray. Organ-specific pathways in the brain have yet to be defined, but neuroanatomic tracing techniques employing neurotropic viruses are being developed. The perception of pain can be influenced at multiple levels, such as the receptor in the esophagus, the synapses in the dorsal horn of the spinal cord or thalamus, or the cortex. A fundamental mechanism of modulating nociception is descending inhibition.(ABSTRACT TRUNCATED AT 400 WORDS)
Collapse
Affiliation(s)
- R B Lynn
- Division of Gastroenterology and Hepatology, Jefferson Medical College, Philadelphia, Pennsylvania 19107
| |
Collapse
|
17
|
Khurana RK, Petras JM. Sensory innervation of the canine esophagus, stomach, and duodenum. THE AMERICAN JOURNAL OF ANATOMY 1991; 192:293-306. [PMID: 1759692 DOI: 10.1002/aja.1001920309] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
The sensory innervation of the postpharyngeal foregut was investigated by injecting the enzyme horseradish peroxidase (HRP) into the walls of the esophagus, stomach, or duodenum. The transported HRP was identified histochemically, labeled neurons in the spinal and vagal ganglia were counted, and the results were plotted using an SAS statistical program. The spinal sensory fields of each viscus were defined using three determinations: craniocaudal extent, principal innervation field, and peak innervation field. The data revealed that innervation fields are craniocaudally extensive, the sensory field of each viscus overlaps significantly with its neighbor, yet each viscus can be characterized by a field of peak innervation density. Craniocaudal innervation of the esophagus spans as many as 22-23 paired spinal ganglia (C1-L2). There are two peak innervation fields for the cervical (C2-C6 and T2-T4) and for the thoracic (T2-T4 and T8-T12) sectors of the esophagus. The sensory innervation of the stomach extends craniocaudally over as many as 25 paired spinal ganglia (C2-L5). The peak innervation field of the stomach spans a large area comprising the cranial, middle, and the immediately adjoining caudal thoracic ganglia (T2-T10). The duodenum is innervated craniocaudally by as many as 15 paired thoracolumbar ganglia (T2-L3). Peak innervation originates in the middle and caudal thoracic ganglia and cranial lumbar (T6-L1) ganglia. There is a recognizable viscerotopic organization in the sensory innervation of the postpharyngeal foregut; successively more caudal sectors of this region of the alimentary canal are supplied with sensory fibers from successively more caudal spinal dorsal root ganglia. Vagal afferent innervation of the esophagus, stomach, and duodenum is bilateral and originates predominantly, but not exclusively, from vast numbers of neurons in the nodose (distal) ganglia. The esophagus is innervated bilaterally and more abundantly by jugular (proximal) ganglia neurons than is either the stomach or duodenum. The physiological significance of the findings are discussed in relation to the phenomena of visceral pain and referred pain.
Collapse
Affiliation(s)
- R K Khurana
- Department of Neurology, University of Maryland School of Medicine, Baltimore 21201
| | | |
Collapse
|
18
|
Abstract
We review recent studies on the central neural control of esophageal motility, emphasizing the anatomy and chemical coding of esophageal pathways in the spinal cord and medulla. Sympathetic innervation of the proximal esophagus is derived primarily from cervical and upper thoracic paravertebral ganglia, whereas that of the lower esophageal sphincter and proximal stomach is derived from the celiac ganglion. In addition to noradrenaline, many sympathetic fibers in the esophagus contain neuropeptide Y (NPY), and both noradrenaline and NPY appear to decrease blood flow and motility. Preganglionic neurons innervating the cervical and upper thoracic ganglia are located at lower cervical and upper thoracic spinal levels. The preganglionic innervation of the celiac ganglion arises from lower thoracic spinal levels. Both acetylcholine (ACh) and enkephalin (ENK) have been localized in sympathetic preganglionic neurons, and it has been suggested that ENK acts to pre-synaptically inhibit ganglionic transmission. Spinal afferents from the esophagus are few, but have been described in lower cervical and thoracic dorsal root ganglia. A significant percentage contain calcitonin gene-related peptide (CGRP) and substance P (SP). The central distribution of spinal afferents, as well as their subsequent processing within the spinal cord, have not been addressed. Medullary afferents arise from the nodose ganglion and terminate peripherally both in myenteric ganglia, where they have been postulated to act as tension receptors, and, to a lesser extent, in more superficial layers. Centrally, these afferents appear to end in a discrete part of the nucleus of the solitary tract (NTS) termed the central subnucleus. The transmitter specificity of the majority of these afferents remains unknown. The central subnucleus, in turn, sends a dense and topographically discrete projection to esophageal motor neurons in the rostral portion of the nucleus ambiguous (NA). Both somatostatin-(SS) and ENK-related peptides have been localized in this pathway. Finally, motor neurons from the rostral NA innervate striated portions of the esophagus. In addition to ACh, these esophageal motor neurons contain CGRP, galanin (GAL), N-acetylaspartylglutamate (NAAG), and brain natriuretic peptide (BNP). The physiological effect of these peptides on esophageal motility remains unclear. Medullary control of smooth muscle portions of the esophagus have not been thoroughly investigated.
Collapse
Affiliation(s)
- E T Cunningham
- Johns Hopkins University, School of Medicine, Baltimore, Maryland 21205
| | | |
Collapse
|
19
|
Jänig W, Morrison JF. Functional properties of spinal visceral afferents supplying abdominal and pelvic organs, with special emphasis on visceral nociception. PROGRESS IN BRAIN RESEARCH 1986; 67:87-114. [PMID: 3823484 DOI: 10.1016/s0079-6123(08)62758-2] [Citation(s) in RCA: 204] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
|