1
|
Paz ML, Barrantes FJ. Autoimmune Attack of the Neuromuscular Junction in Myasthenia Gravis: Nicotinic Acetylcholine Receptors and Other Targets. ACS Chem Neurosci 2019; 10:2186-2194. [PMID: 30916550 DOI: 10.1021/acschemneuro.9b00041] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
The nicotinic acetylcholine receptor (nAChR) family, the archetype member of the pentameric ligand-gated ion channels, is ubiquitously distributed in the central and peripheral nervous systems, and its members are the targets for both genetic and acquired forms of neurological disorders. In the central nervous system, nAChRs contribute to the pathological mechanisms of neurodegenerative disorders, such as Alzheimer and Parkinson diseases. In the peripheral nerve-muscle synapse, the vertebrate neuromuscular junction, "classical" myasthenia gravis (MG) and other forms of neuromuscular transmission disorders are antibody-mediated autoimmune diseases. In MG, antibodies to the nAChR bind to the postsynaptic receptors and activate the classical complement pathway culminating in the formation of the membrane attack complex, with the subsequent destruction of the postsynaptic apparatus. Divalent nAChR-antibodies also cause internalization and loss of the nAChRs. Loss of receptors by either mechanism results in the muscle weakness and fatigability that typify the clinical manifestations of the disease. Other targets for antibodies, in a minority of patients, include muscle specific kinase (MuSK) and low-density lipoprotein related protein 4 (LRP4). This brief Review analyzes the current status of muscle-type nAChR in relation to the pathogenesis of autoimmune diseases affecting the peripheral cholinergic synapse.
Collapse
Affiliation(s)
- Mariela L. Paz
- Immunology Department, Faculty of Pharmacy and Biochemistry, IDEHU-CONICET, University of Buenos Aires, Junin 956, C1113AAD Buenos Aires, Argentina
| | - Francisco J. Barrantes
- Laboratory of Molecular Neurobiology, Biomedical Research Institute (BIOMED), UCA-CONICET, Av. Alicia Moreau de Justo 1600, C1107AFF Buenos Aires, Argentina
| |
Collapse
|
2
|
Lazaridis K, Baltatzidi V, Trakas N, Koutroumpi E, Karandreas N, Tzartos SJ. Characterization of a reproducible rat EAMG model induced with various human acetylcholine receptor domains. J Neuroimmunol 2017; 303:13-21. [DOI: 10.1016/j.jneuroim.2016.12.011] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2016] [Revised: 12/04/2016] [Accepted: 12/05/2016] [Indexed: 01/08/2023]
|
3
|
Melzer N, Ruck T, Fuhr P, Gold R, Hohlfeld R, Marx A, Melms A, Tackenberg B, Schalke B, Schneider-Gold C, Zimprich F, Meuth SG, Wiendl H. Clinical features, pathogenesis, and treatment of myasthenia gravis: a supplement to the Guidelines of the German Neurological Society. J Neurol 2016; 263:1473-94. [PMID: 26886206 PMCID: PMC4971048 DOI: 10.1007/s00415-016-8045-z] [Citation(s) in RCA: 161] [Impact Index Per Article: 17.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2015] [Revised: 01/20/2016] [Accepted: 01/21/2016] [Indexed: 01/20/2023]
Abstract
Myasthenia gravis (MG) is an autoimmune antibody-mediated disorder of neuromuscular synaptic transmission. The clinical hallmark of MG consists of fluctuating fatigability and weakness affecting ocular, bulbar and (proximal) limb skeletal muscle groups. MG may either occur as an autoimmune disease with distinct immunogenetic characteristics or as a paraneoplastic syndrome associated with tumors of the thymus. Impairment of central thymic and peripheral self-tolerance mechanisms in both cases is thought to favor an autoimmune CD4(+) T cell-mediated B cell activation and synthesis of pathogenic high-affinity autoantibodies of either the IgG1 and 3 or IgG4 subclass. These autoantibodies bind to the nicotinic acetylcholine receptor (AchR) itself, or muscle-specific tyrosine-kinase (MuSK), lipoprotein receptor-related protein 4 (LRP4) and agrin involved in clustering of AchRs within the postsynaptic membrane and structural maintenance of the neuromuscular synapse. This results in disturbance of neuromuscular transmission and thus clinical manifestation of the disease. Emphasizing evidence from clinical trials, we provide an updated overview on immunopathogenesis, and derived current and future treatment strategies for MG divided into: (a) symptomatic treatments facilitating neuromuscular transmission, (b) antibody-depleting treatments, and
Collapse
Affiliation(s)
- Nico Melzer
- Department of Neurology, University of Münster, Albert-Schweitzer-Campus 1, 48149 Münster, Germany
| | - Tobias Ruck
- Department of Neurology, University of Münster, Albert-Schweitzer-Campus 1, 48149 Münster, Germany
| | - Peter Fuhr
- Department of Neurology, University of Basel, Basel, Switzerland
| | - Ralf Gold
- Department of Neurology, University of Bochum, Bochum, Germany
| | - Reinhard Hohlfeld
- Institute of Clinical Neuroimmunology, Ludwig-Maximilians-University Munich, Munich, Germany
| | - Alexander Marx
- Institute of Pathology, University Medical Centre Mannheim, University of Heidelberg, Mannheim, Germany
| | - Arthur Melms
- Department of Neurology, University of Erlangen, Erlangen, Germany
| | - Björn Tackenberg
- Department of Neurology, University of Marburg, Marburg, Germany
| | - Berthold Schalke
- Department of Neurology, University of Regensburg, Regensburg, Germany
| | | | - Fritz Zimprich
- Department of Neurology, Medical University of Vienna, Vienna, Austria
| | - Sven G. Meuth
- Department of Neurology, University of Münster, Albert-Schweitzer-Campus 1, 48149 Münster, Germany
| | - Heinz Wiendl
- Department of Neurology, University of Münster, Albert-Schweitzer-Campus 1, 48149 Münster, Germany
| |
Collapse
|
4
|
Huijbers MG, Lipka AF, Plomp JJ, Niks EH, van der Maarel SM, Verschuuren JJ. Pathogenic immune mechanisms at the neuromuscular synapse: the role of specific antibody-binding epitopes in myasthenia gravis. J Intern Med 2014; 275:12-26. [PMID: 24215230 DOI: 10.1111/joim.12163] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Autoantibodies against three different postsynaptic antigens and one presynaptic antigen at the neuromuscular junction are known to cause myasthenic syndromes. The mechanisms by which these antibodies cause muscle weakness vary from antigenic modulation and complement-mediated membrane damage to inhibition of endogenous ligand binding and blocking of essential protein-protein interactions. These mechanisms are related to the autoantibody titre, specific epitopes on the target proteins and IgG autoantibody subclass. We here review the role of specific autoantibody-binding epitopes in myasthenia gravis, their possible relevance to the pathophysiology of the disease and potential implications of epitope mapping knowledge for new therapeutic strategies.
Collapse
Affiliation(s)
- M G Huijbers
- Department of Neurology, Leiden University Medical Center, Leiden, the Netherlands; Department of Human Genetics, Leiden University Medical Center, Leiden, the Netherlands
| | | | | | | | | | | |
Collapse
|
5
|
Mayer MC, Breithaupt C, Reindl M, Schanda K, Rostásy K, Berger T, Dale RC, Brilot F, Olsson T, Jenne D, Pröbstel AK, Dornmair K, Wekerle H, Hohlfeld R, Banwell B, Bar-Or A, Meinl E. Distinction and temporal stability of conformational epitopes on myelin oligodendrocyte glycoprotein recognized by patients with different inflammatory central nervous system diseases. THE JOURNAL OF IMMUNOLOGY 2013; 191:3594-604. [PMID: 24014878 DOI: 10.4049/jimmunol.1301296] [Citation(s) in RCA: 111] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Autoantibodies targeting conformationally intact myelin oligodendrocyte glycoprotein (MOG) are found in different inflammatory diseases of the CNS, but their antigenic epitopes have not been mapped. We expressed mutants of MOG on human HeLa cells and analyzed sera from 111 patients (104 children, 7 adults) who recognized cell-bound human MOG, but had different diseases, including acute disseminated encephalomyelitis (ADEM), one episode of transverse myelitis or optic neuritis, multiple sclerosis (MS), anti-aquaporin-4 (AQP4)-negative neuromyelitis optica (NMO), and chronic relapsing inflammatory optic neuritis (CRION). We obtained insight into the recognition of epitopes in 98 patients. All epitopes identified were located at loops connecting the β strands of MOG. The most frequently recognized MOG epitope was revealed by the P42S mutation positioned in the CC'-loop. Overall, we distinguished seven epitope patterns, including the one mainly recognized by mouse mAbs. In half of the patients, the anti-MOG response was directed to a single epitope. The epitope specificity was not linked to certain disease entities. Longitudinal analysis of 11 patients for up to 5 y indicated constant epitope recognition without evidence for intramolecular epitope spreading. Patients who rapidly lost their anti-MOG IgG still generated a long-lasting IgG response to vaccines, indicating that their loss of anti-MOG reactivity did not reflect a general lack of capacity for long-standing IgG responses. The majority of human anti-MOG Abs did not recognize rodent MOG, which has implications for animal studies. Our findings might assist in future detection of potential mimotopes and pave the way to Ag-specific depletion.
Collapse
Affiliation(s)
- Marie C Mayer
- Institute of Clinical Neuroimmunology, Ludwig-Maximilians-University, 81377 Munich, Germany
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
6
|
Marx A, Pfister F, Schalke B, Saruhan-Direskeneli G, Melms A, Ströbel P. The different roles of the thymus in the pathogenesis of the various myasthenia gravis subtypes. Autoimmun Rev 2013; 12:875-84. [DOI: 10.1016/j.autrev.2013.03.007] [Citation(s) in RCA: 218] [Impact Index Per Article: 18.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/12/2013] [Indexed: 01/13/2023]
|
7
|
Simon-Keller K, Barth S, Vincent A, Marx A. Targeting the fetal acetylcholine receptor in rhabdomyosarcoma. Expert Opin Ther Targets 2012; 17:127-38. [PMID: 23231343 DOI: 10.1517/14728222.2013.734500] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
INTRODUCTION Rhabdomyosarcoma (RMS) is the most common soft tissue sarcoma of childhood and adolescence. Recent efforts to enhance overall survival of patients with clinically advanced RMS have failed and there is a demand for conceptually novel treatments. Immune therapeutic options targeting the fetal nicotinic acetylcholine receptor (fnAChR), which is broadly expressed on RMS, are novel approaches to overcome the therapeutic resistance of RMS. Expression of the fnAChR is restricted to developing fetal muscles, some apparently dispensable ocular muscle fibers and thymic myoid cells. Therefore, after-birth fnAChR is a tumor-associated and almost tumor-specific antigen on RMS cells. AREAS COVERED This review gives an overview on nAChR function and expression pattern in RMS tumor cells, and deals with the immunological significance of fnAChR-expressing cells, including the risk of anti-nAChR autoimmunity as a potential side effect of fnAChR-directed immunotherapies. The article also addresses the advantages and disadvantages of vaccination strategies, immunotoxins and chimeric T cells targeting the fnAChR. EXPERT OPINION Finally, we suggest technical and biological strategies to improve the available immunotherapeutic tools including increasing the in vivo expression of the target fnAChR on RMS cells.
Collapse
Affiliation(s)
- Katja Simon-Keller
- University Medical Centre Mannheim, University of Heidelberg, Institute of Pathology, Theodor-Kutzer-Ufer 1-3, D-68135 Mannheim, Germany.
| | | | | | | |
Collapse
|
8
|
Feferman T, Im SH, Fuchs S, Souroujon MC. Breakage of tolerance to hidden cytoplasmic epitopes of the acetylcholine receptor in experimental autoimmune myasthenia gravis. J Neuroimmunol 2003; 140:153-8. [PMID: 12864983 DOI: 10.1016/s0165-5728(03)00209-1] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The acetylcholine receptor (AChR) is the major autoantigen in the antibody-mediated disease myasthenia gravis (MG) and its animal model experimental autoimmune myasthenia gravis (EAMG). This study demonstrates that rats immunized with a recombinant fragment corresponding to the normally exposed extracellular region of the rat AChR alpha-subunit first develop antibodies to the injected extracellular portion only, but later develop antibodies to intracellular cytoplasmic epitopes of AChR. The presence of autoantibodies to intracellular epitopes seems to be correlated with development of clinical signs of disease. We propose that a similar process of epitope spreading may take place in the natural course of myasthenia.
Collapse
Affiliation(s)
- Tali Feferman
- Department of Immunology, The Weizmann Institute of Science, Rehovot 76100, Israel
| | | | | | | |
Collapse
|
9
|
Skeie GO, Mygland A, Treves S, Gilhus NE, Aarli JA, Zorzato F. Ryanodine receptor antibodies in myasthenia gravis: epitope mapping and effect on calcium release in vitro. Muscle Nerve 2003; 27:81-9. [PMID: 12508299 DOI: 10.1002/mus.10294] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Patients with myasthenia gravis can have antibodies against skeletal muscle ryanodine receptor (Ry1), the sarcoplasmic reticulum calcium-release channel, which plays a crucial role in excitation-contraction coupling. We have screened a panel of overlapping Ry1 fusion proteins with Ry1 antibody-containing myasthenia gravis sera to identify the main immunogenic region. The pc2 Ry1 fusion protein representing a Ry1 region close to the N-terminus (residues 799-1172) was identified as the main immunogenic region for the antibodies. The binding kinetics of the Ry1 antibodies to the pc2 Ry1 fusion protein were tested using an optical biosensor. Ry1 antibodies in the IgG fraction from sera of patients with myasthenia gravis bound with high affinity and with a stoichiometry of 1:1. The functional effect of these Ry1 antibodies was tested in an in vitro Ca2+-release assay. The Ry1 antibodies induced a twofold increase of the half-maximal concentration for 4-Cl-m-cresol-induced Ca2+ release from terminal cisternae vesicles but had no effect on V(max). The effect on 4-Cl-m-cresol-induced Ca2+ release was specific, as preincubation of the active IgG fraction with the pc2 Ry1 fusion protein abolished the inhibition. These data suggest that the Ry1 sequence defined by residues 799-1172 is involved in the regulation of Ry1 function, and that this regulation could be functionally affected in vivo in patients with myasthenia gravis.
Collapse
Affiliation(s)
- Geir Olve Skeie
- Department of Neurology, University of Bergen, N-5021 Bergen, Norway.
| | | | | | | | | | | |
Collapse
|
10
|
Vanderlugt CL, Miller SD. Epitope spreading in immune-mediated diseases: implications for immunotherapy. Nat Rev Immunol 2002; 2:85-95. [PMID: 11910899 DOI: 10.1038/nri724] [Citation(s) in RCA: 647] [Impact Index Per Article: 28.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Evidence continues to accumulate supporting the hypothesis that tissue damage during an immune response can lead to the priming of self-reactive T and/or B lymphocytes, regardless of the specificity of the initial insult. This review will focus primarily on epitope spreading at the T-cell level. Understanding the cellular and molecular basis of epitope spreading in various chronic immune-mediated human diseases and their animal models is crucial to understanding the pathogenesis of these diseases and to the ultimate goal of designing antigen-specific treatments.
Collapse
Affiliation(s)
- Carol L Vanderlugt
- Department of Microbiology-Immunology, Interdepartmental Immunobiology Center, Northwestern University Medical School, 303 E. Chicago Avenue, Chicago, IL 60611, USA
| | | |
Collapse
|
11
|
Xu L, Robinson N, Miller SD, Chan LS. Characterization of BALB/c mice B lymphocyte autoimmune responses to skin basement membrane component type XVII collagen, the target antigen of autoimmune skin disease bullous pemphigoid. Immunol Lett 2001; 77:105-11. [PMID: 11377704 DOI: 10.1016/s0165-2478(01)00212-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Bullous pemphigoid is an autoimmune blistering skin disease characterized by IgG autoantibodies targeting the skin basement membrane component type XVII collagen (BPAg2). To gain understanding of the disease's induction phase, we subcutaneously immunized adult BALB/c mice with peptides of human and/or the murine-equivalent BPAg2 pathogenic NC16A domain. Female mice were injected with peptides (human, murine, or combined human and murine), or PBS control emulsified in CFA, on a four-week interval. At the fourth and subsequent immunizations, all peptide-immunized mice were given murine peptides. Two weeks after the sixth immunization, ELISA detected IgG circulating autoantibodies against self peptides in 92% (47/51) of mice immunized with murine peptides; whereas none of the preimmune sera or the sera from PBS control-immunized mice reacted to the self peptides. In four mice their autoantibodies labeled mouse skin basement membrane. Breaking B-cell tolerance to BPAg2 sets the first step in dissecting the disease's induction phase.
Collapse
Affiliation(s)
- L Xu
- Department of Dermatology, Northwestern University Medical School, 675 N. St. Clair Street, Suite 19-150, Chicago, IL 60611, USA
| | | | | | | |
Collapse
|
12
|
Wang HB, Shi FD, Li H, Chambers BJ, Link H, Ljunggren HG. Anti-CTLA-4 antibody treatment triggers determinant spreading and enhances murine myasthenia gravis. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2001; 166:6430-6. [PMID: 11342669 DOI: 10.4049/jimmunol.166.10.6430] [Citation(s) in RCA: 61] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
CTLA-4 appears to be a negative regulator of T cell activation and is implicated in T cell-mediated autoimmune diseases. Experimental autoimmune myasthenia gravis (EAMG), induced by immunization of C57BL/6 mice with acetylcholine receptor (AChR) in adjuvant, is an autoantibody-mediated disease model for human myasthenia gravis (MG). The production of anti-AChR Abs in MG and EAMG is T cell dependent. In the present study, we demonstrate that anti-CTLA-4 Ab treatment enhances T cell responses to AChR, increases anti-AChR Ab production, and provokes a rapid onset and severe EAMG. To address possible mechanisms underlying the enhanced autoreactive T cell responses after anti-CTLA-4 Ab treatment, mice were immunized with the immunodominant peptide alpha(146-162) representing an extracellular sequence of the ACHR: Anti-CTLA-4 Ab, but not control Ab, treatment subsequent to peptide immunization results in clinical EAMG with diversification of the autoantibody repertoire as well as enhanced T cell proliferation against not only the immunizing alpha(146-162) peptide, but also against other subdominant epitopes. Thus, treatment with anti-CTLA-4 Ab appears to induce determinant spreading, diversify the autoantibody repertoire, and enhance B cell-mediated autoimmune disease in this murine model of MG.
Collapse
MESH Headings
- Abatacept
- Adjuvants, Immunologic/administration & dosage
- Amino Acid Sequence
- Animals
- Antibodies/administration & dosage
- Antibody Diversity
- Antigens, CD
- Antigens, Differentiation/immunology
- Autoantibodies/biosynthesis
- CTLA-4 Antigen
- Disease Models, Animal
- Disease Progression
- Epitopes, T-Lymphocyte/metabolism
- Female
- Immunization
- Immunoconjugates
- Immunodominant Epitopes/metabolism
- Immunoglobulin G/biosynthesis
- Injections, Subcutaneous
- Mice
- Mice, Inbred C57BL
- Molecular Sequence Data
- Myasthenia Gravis/etiology
- Myasthenia Gravis/immunology
- Peptide Fragments/administration & dosage
- Peptide Fragments/immunology
- Receptors, Cholinergic/administration & dosage
- Receptors, Cholinergic/immunology
- Receptors, Cholinergic/metabolism
- T-Lymphocytes/immunology
- T-Lymphocytes/metabolism
Collapse
Affiliation(s)
- H B Wang
- Experimental Neurology Unit, Division of Neurology, and Department of Medicine, Center for Infectious Medicine, Karolinska Institute, Huddinge University Hospital, Stockholm, Sweden
| | | | | | | | | | | |
Collapse
|
13
|
Hill M, Beeson D, Moss P, Jacobson L, Bond A, Corlett L, Newsom-Davis J, Vincent A, Willcox N. Early-onset myasthenia gravis: a recurring T-cell epitope in the adult-specific acetylcholine receptor epsilon subunit presented by the susceptibility allele HLA-DR52a. Ann Neurol 1999; 45:224-31. [PMID: 9989625 DOI: 10.1002/1531-8249(199902)45:2<224::aid-ana13>3.0.co;2-b] [Citation(s) in RCA: 49] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
No immunodominant T-cell epitopes have yet been reported in the human acetylcholine receptor (AChR), the target of the pathogenic autoantibodies in myasthenia gravis (MG). We have selected and characterized T cells from MG patients by restimulation in culture with recombinant human AChR to alpha, gamma and epsilon subunits; the gamma and epsilon distinguish the fetal and adult AChR isoforms, respectively. We obtained clones specific for the epsilon, rather than the alpha or gamma, subunit in 3 of the first 4 early-onset MG cases tested. They all responded to peptide epsilon201-219 and to low concentrations of adult but not fetal AChR. Moreover, although using different T-cell receptor genes, they were all restricted to HLA-DR52a (DRB3*0101), a member of the strongly predisposing HLA-A1-B8-DR3 haplotype. This apparently immunodominant epsilon201-219 epitope (plus DR52a) was also recognized by clones from an elderly patient whose MG had recently been provoked by the drug D-penicillamine. In all 4 cases, however, the serum antibodies reacted better with fetal than adult AChR and may thus be end products of determinant spreading initiated by adult AChR-specific T cell responses. Furthermore, as these T cells had a pathogenic Th1 phenotype, with the potential to induce complement-activating antibodies, they should be important targets for selective immunotherapy.
Collapse
Affiliation(s)
- M Hill
- Neurosciences Group, Institute of Molecular Medicine, John Radcliffe Hospital, Oxford, England, UK
| | | | | | | | | | | | | | | | | |
Collapse
|
14
|
Vincent A, Willcox N, Hill M, Curnow J, MacLennan C, Beeson D. Determinant spreading and immune responses to acetylcholine receptors in myasthenia gravis. Immunol Rev 1998; 164:157-68. [PMID: 9795773 DOI: 10.1111/j.1600-065x.1998.tb01217.x] [Citation(s) in RCA: 83] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
In myasthenia gravis (MG), antibodies to the muscle acetylcholine receptor (AChR) cause muscle weakness. Experimental autoimmune myasthenia gravis (EAMG) can be induced by immunisation against purified AChR; the main immunogenic region (MIR) is a conformation-dependent site that includes alpha 67-76. EAMG can also occur after immunisation against extracellular AChR sequences, but this probably involves intramolecular determinant spreading. In MG patients, thymic hyperplasia and germinal centres are found in about 50%, and thymoma in 10-15%. The heterogeneous, high affinity, IgG anti-AChR antibodies appear to be end-products of germinal centre responses, and react mainly with the MIR or a site on fetal AChR; the latter contains a gamma subunit and is mainly expressed on myoid cells in the thymic medulla. T cells cloned against recombinant AChR subunits recognise principally two naturally processed epitopes: epsilon 201-219 derived from adult AChR which is expressed in muscle, and sometimes in thymic epithelium, and alpha 146-160, common to fetal and adult AChR. Since AChR is not normally co-expressed with class II, it is unclear how CD4+ responses to AChR alpha and epsilon subunits are initiated, and how and where these spread to induce antibodies against fetal AChR. Various possibilities, including upregulation of class II on muscle/myoid cells and involvement of CD8+ responses to AChR and other muscle antigens, are discussed.
Collapse
Affiliation(s)
- A Vincent
- Department of Clinical Neurology, John Radcliffe Hospital, Oxford, UK.
| | | | | | | | | | | |
Collapse
|
15
|
Moudgil KD. Diversification of response to hsp65 during the course of autoimmune arthritis is regulatory rather than pathogenic. Immunol Rev 1998; 164:175-84. [PMID: 9795775 DOI: 10.1111/j.1600-065x.1998.tb01219.x] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Determinant spreading has been implicated in the pathogenesis of certain autoimmune diseases in animal models. We have observed that during the course of adjuvant arthritis (AA) in the Lewis rat, there is 'diversification' of response to the bacterial 65-kDa heat shock protein (Bhsp65) towards its carboxy-terminal determinants (BCTD). Strikingly, pretreatment of naive Lewis rats with BCTD affords significant protection from AA. Our preliminary studies indicate that the diversification of response to BCTD in the Lewis rat is probably triggered in vivo by the induction and enhanced processing of self(rat) hsp65. Thus, the self hsp65-directed T-cell responses appear to be involved in mediating natural remission from acute inflammatory arthritis induced by a foreign antigen, Mycobacterium tuberculosis. This the first report describing that the new T-cell specificities arising during the course of an autoimmune disease are regulatory/protective rather than pathogenic. Moreover, our results suggest that a final common mechanism involving BCTD might be recruited by other rat strains which either are resistant to AA (WKY rats) or whose susceptibility to AA is modulated significantly by microbial flora (Fisher rats). The results of this study would contribute significantly to understanding of the pathogenesis of human rheumatoid arthritis, and in devising new therapeutic strategies for this disease.
Collapse
Affiliation(s)
- K D Moudgil
- Division of Immune Regulation, La Jolla Institute for Allergy and Immunology, CA 92121, USA.
| |
Collapse
|
16
|
Abstract
Using three reference disease models--insulin-dependent diabetes mellitus (IDDM) as a prototype of T-cell mediated organ-specific autoimmune disease, myasthenia gravis (MG) as a prototype of autoantibody-mediated organ-specific autoimmune disease and systemic lupus erythematosus (SLE) as a prototype of non-organ-specific autoimmune disease--we have reached several conclusions: 1) All three diseases are associated with the presence of multiple autoantibodies and/or autoreactive T cells that recognize a large number of antigenic molecules. The apparent predominant role of certain antibodies in some diseases could relate to their functional properties such as acetylcholine receptor (AChR) blockade for anti-AChR autoantibodies in MG or anti-dsDNA in SLE. 2) Major target antigens are clustered in the target cell affected by organ-specific autoimmune diseases: beta cells in IDDM, striated-muscle cells in MG, or apoptotic cells in the case of SLE. 3) Antibodies and T cells recognize multiple epitopes in these molecules. 4) The most evident explanation for the observed clustering and diversity is autoantigen spreading. Spreading probably involves T cells secreting proinflammatory cytokines but also possibly antibodies as in the case of nucleosome autoantibodies in SLE. 5) The counterpart of antigen spreading is bystander suppression in which regulatory cytokines deviate the immune response towards a protective response. 6) The mechanisms underlying the initiation of the autoimmune response and antigen spreading are still undetermined. They could imply a direct abnormality of the target cell in the case of organ-specific autoimmune diseases (e.g. infection with a virus showing a selective tropism for the target cell in organ-specific autoimmune diseases, or loss of physiological regulation of major histocompatibility complex molecule expression) or could be consequence of a ubiquitous cell abnormality such as increased apoptosis in SLE. The respective roles of genetic and environmental factors in these triggering events remain to be determined.
Collapse
Affiliation(s)
- J F Bach
- INSERM U 25, Hôpital Necker, Paris, France.
| | | | | |
Collapse
|
17
|
McCluskey J, Farris AD, Keech CL, Purcell AW, Rischmueller M, Kinoshita G, Reynolds P, Gordon TP. Determinant spreading: lessons from animal models and human disease. Immunol Rev 1998; 164:209-29. [PMID: 9795778 DOI: 10.1111/j.1600-065x.1998.tb01222.x] [Citation(s) in RCA: 108] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Spreading of the immune response is a common theme in organ-specific and systemic autoimmune diseases. We evaluated whether some of the mixed antinuclear antibody patterns characteristic of systemic autoimmunity might be the result of determinant spreading from a single initiating event. Immunisation of healthy mice with individual protein components of the La/Ro ribonucleoprotein (RNP) targeted in systemic lupus erythematosus and primary Sjögren's syndrome induced autoantibodies recognising Ro60 (SS-A), Ro52 (SS-A) and La (SS-B) and in some cases the molecular chaperones calreticulin and Grp78. The endogenous antigen(s) driving determinant spreading might be derived from physiological apoptosis which could explain the involvement of some chaperone proteins in the autoimmune response. Diversified anti-La/Ro antibody responses were initiated by challenge with a single subdominant T epitope of La even though some self epitopes of La were efficiently tolerised. The pattern of autoantibody responses in primary Sjögren's syndrome was strongly influenced by HLA class II phenotype which we speculate controls activation of T cells recognising defined peptides from the La/Ro RNP. In this way, HLA class II alleles may be critical in influencing initiation and spreading of systemic autoimmune reactions. Molecular mimicry of such determinants by exogenous agents might readily initiate spreading of an autoimmune response in genetically susceptible hosts.
Collapse
Affiliation(s)
- J McCluskey
- Department of Microbiology and Immunology, University of Melbourne, Parkville, Victoria, Australia.
| | | | | | | | | | | | | | | |
Collapse
|
18
|
Tzartos SJ, Barkas T, Cung MT, Mamalaki A, Marraud M, Orlewski P, Papanastasiou D, Sakarellos C, Sakarellos-Daitsiotis M, Tsantili P, Tsikaris V. Anatomy of the antigenic structure of a large membrane autoantigen, the muscle-type nicotinic acetylcholine receptor. Immunol Rev 1998; 163:89-120. [PMID: 9700504 DOI: 10.1111/j.1600-065x.1998.tb01190.x] [Citation(s) in RCA: 147] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The neuromuscular junction nicotinic acetylcholine receptor (AChR), a pentameric membrane glycoprotein, is the autoantigen involved in the autoimmune disease myasthenia gravis (MG). In animals immunized with intact AChR and in human MG, the anti-AChR antibody response is polyclonal. However, a small extracellular region of the AChR alpha-subunit, the main immunogenic region (MIR), seems to be a major target for anti-AChR antibodies. A major loop containing overlapping epitopes for several anti-MIR monoclonal antibodies (mAbs) lies within residues alpha 67-76 at the extreme synaptic end of each alpha-subunit: however, anti-MIR mAbs are functionally and structurally quite heterogeneous. Anti-MIR mAbs do not affect channel gating, but are very effective in the passive transfer of MG to animals; in contrast, their Fab or Fv fragments protect the AChR from the pathogenic effects of the intact antibodies. Antibodies against the cytoplasmic region of the AChR can be elicited by immunization with denatured AChR and the precise epitopes of many such mAbs have been identified; however, it is unlikely that such antibodies are present in significant amounts in human MG. Antibodies to other extracellular epitopes on all AChR subunits are present in both experimental and human MG; these include antibodies to the acetylcholine-binding site which affect AChR function in various ways and also induce acute experimental MG. Finally, anti-AChR antibodies cross-reactive with non-AChR antigens exist, suggesting that MG may result from molecular mimicry. Despite extensive studies, many gaps remain in our understanding of the antigenic structure of the AChR; especially in relation to human MG. A thorough understanding of the antigenic structure of the AChR is required for an in-depth understanding, and for possible specific immunotherapy, of MG.
Collapse
Affiliation(s)
- S J Tzartos
- Department of Biochemistry, Hellenic Pasteur Institute, Athens, Greece.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Oshima M, Yokoi T, Deitiker P, Atassi MZ. T cell responses in EAMG-susceptible and non-susceptible mouse strains after immunization with overlapping peptides encompassing the extracellular part of Torpedo californica acetylcholine receptor alpha chain. Implication to role in myasthenia gravis of autoimmune T-cell responses against receptor degradation products. Autoimmunity 1998; 27:79-90. [PMID: 9583739 DOI: 10.3109/08916939809008038] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
To study the role in myasthenia gravis (MG) of peptides resulting from acetylcholine receptor (AChR) degradation, we examined the ability of AChR peptides to induce T cell responses that are capable of cross-reacting with intact AChR. The studies were carried out in an experimental autoimmune MG (EAMG)-susceptible mouse strain [C57BL/6 (B6)] as well as in two non-susceptible strains [B6.C-H-2bm12 (bm12) and C3H/He]. A set of overlapping peptides encompassing the extracellular part (residues 1-210) of the alpha-chain of Torpedo californica (t) AChR were used, individually or in equimolar mixtures, as immunogens. In B6, immunization with peptides alpha45-60, alpha111-126, alpha146-162 and alpha182-198 gave T cells that responded in vitro to the correlate immunizing peptide. Only the T cells against the latter three peptides cross-reacted with tAChR. Peptide alpha146-162 exhibited the highest in vitro reaction with the immunizing peptide and cross-reaction with tAChR. T cells obtained by immunization of B6 with an equimolar mixture of the peptides responded in vitro to peptides alpha111-126, alpha146-162 and alpha182-198 and cross-reacted very strongly with tAChR. In bm12 and C3H/He, a number of peptides evoked, when used individually as immunogens, strong or moderate T cell responses that recognized in vitro the correlate immunizing peptide but cross-reacted poorly with tAChR. Immunization with the mixture of the peptides gave T cells that recognized several peptides in each strain butdid not cross-react with alpha146-162 or tAChR. The results indicate that the ability to recognize alpha146-162 or AChR by T cells against peptides resulting from receptor degradation can account for the susceptibility to, and aggravation of, MG in B6.
Collapse
Affiliation(s)
- M Oshima
- Verna and Marrs McLean Department of Biochemistry, Baylor College of Medicine, Houston, TX 77030, USA
| | | | | | | |
Collapse
|
20
|
Nagvekar N, Jacobson LW, Willcox N, Vincent A. Epitopes expressed in myasthenia gravis (MG) thymomas are not recognized by patients' T cells or autoantibodies. Clin Exp Immunol 1998; 112:17-20. [PMID: 9566784 PMCID: PMC1904952 DOI: 10.1046/j.1365-2249.1998.00556.x] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Most thymic epithelial tumours that associate with MG express an epitope that resembles the sequence alpha373-380 from the cytoplasmic loop of the acetylcholine receptor (AChR). It has been proposed that sensitization to this linear epitope initiates autoimmunity to the AChR in thymoma-associated MG. We therefore tested whether MG/thymoma patients have T cell responses or antibodies to this region of the AChR. We found no significant recognition of the alpha309-417 region by their thymoma or peripheral blood T cells, or by their serum anti-AChR antibodies. Instead, the T cell epitopes that were recognized, like the previously characterized B cell epitopes, were in the extracellular AChR domain.
Collapse
Affiliation(s)
- N Nagvekar
- Neuroscience Group, Institute of Molecular Medicine, University of Oxford, UK
| | | | | | | |
Collapse
|
21
|
Shi FD, Bai XF, Li HL, Huang YM, Van der Meide PH, Link H. Nasal tolerance in experimental autoimmune myasthenia gravis (EAMG): induction of protective tolerance in primed animals. Clin Exp Immunol 1998; 111:506-12. [PMID: 9528890 PMCID: PMC1904894 DOI: 10.1046/j.1365-2249.1998.00521.x] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Nasal administration of microg doses of acetylcholine receptor (AChR) is effective in preventing the development of B cell-mediated EAMG in the Lewis rat, a model for human MG. In order to investigate whether nasal administration of AChR modulates ongoing EAMG, Lewis rats were treated nasally with AChR 2 weeks after immunization with AChR and Freund's complete adjuvant. Ten-fold higher amounts of AChR given nasally (600 microg/rat) were required to ameliorate the manifestations of EAMG compared with the amounts necessary for prevention of EAMG. In lymph node cells from rats receiving 600 microg/rat of AChR, AChR-induced proliferation and interferon-gamma (IFN-gamma) secretion were reduced compared with control EAMG rats receiving PBS only. The anti-AChR antibodies in rats treated nasally with 600 microg/rat of AChR had lower affinity, reduced proportion of IgG2b and reduced capacity to induce AChR degradation. Numbers of AChR-reactive IFN-gamma and tumour necrosis factor-alpha (TNF-alpha) mRNA-expressing lymph node cells from rats treated nasally with 600 microg/rat of AChR were suppressed, while IL-4, IL-10 and transforming growth factor-beta (TGF-beta) mRNA-expressing cells were not affected. Collectively, these data indicate that nasal administration of AChR in ongoing EAMG induced selective suppression of Th1 functions, i.e. IFN-gamma and IgG2b production, but no influence on Th2 cell functions. The impaired Th1 functions may result in the production of less myasthenic anti-AChR antibodies and contribute to the amelioration of EAMG severity in rats treated with AChR 600 microg/rat by the nasal route.
Collapse
Affiliation(s)
- F D Shi
- Division of Neurology, Karolinska Institute, Huddinge University Hospital, Stockholm, Sweden
| | | | | | | | | | | |
Collapse
|
22
|
Lübke E, Freiburg A, Skeie GO, Kolmerer B, Labeit S, Aarli JA, Gilhus NE, Wollmann R, Wussling M, Rüegg JC, Linke WA. Striational autoantibodies in myasthenia gravis patients recognize I-band titin epitopes. J Neuroimmunol 1998; 81:98-108. [PMID: 9521611 DOI: 10.1016/s0165-5728(97)00164-1] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Myasthenia gravis (MG) patients develop autoantibodies primarily against the acetylcholine receptor in the motor endplate, but also against intracellular striated muscle proteins, notably titin, the giant elastic protein of the myofibrillar cytoskeleton. Titin antibodies have previously been shown to be directed against a single epitope on the molecule, located at the A-band/I-band junction and referred to as the main immunogenic region (MIR) of titin. By using immunofluorescence microscopy on stretched single myofibrils, we now report that approximately 40% of the sera from 18 MG/thymoma patients and 8 late-onset MG patients with thymus atrophy contain antibodies that bind to a more central I-band titin region. This region consists of homologous immunoglobulin domains and is known to be differentially spliced dependent on muscle type. All patients with I-band titin antibodies also had antibodies against the MIR. Although a statistically significant correlation between the occurrence of I-band titin antibodies and MG severity was not apparent, the results could hint at an initial immunoreactivity to titin's MIR, followed by reactivity along the titin molecule in the course of the disease.
Collapse
Affiliation(s)
- E Lübke
- Institute of Physiology II, University of Heidelberg, Germany
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Affiliation(s)
- S Kosugi
- Department of Laboratory Medicine, Kyoto University School of Medicine, Shogoin, Sakyo-ku, Japan.
| | | | | |
Collapse
|
24
|
Hart IK, Waters C, Vincent A, Newland C, Beeson D, Pongs O, Morris C, Newsom-Davis J. Autoantibodies detected to expressed K+ channels are implicated in neuromyotonia. Ann Neurol 1997; 41:238-46. [PMID: 9029073 DOI: 10.1002/ana.410410215] [Citation(s) in RCA: 208] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Antibody-mediated autoimmunity underlies a diverse range of disorders, particularly in the nervous system where the extracellular domains of ion channels and receptors are especially vulnerable targets. We present here a novel means of detecting autoantibodies where the genes of the suspected target proteins are known, and use it to detect specific autoantibodies in acquired neuromyotonia (Isaacs' syndrome), a disorder characterized by hyperexcitable motor nerves and sometimes by central abnormalities. We expressed different human brain voltage-gated potassium channels in Xenopus oocytes by injecting the relevant alpha-subunit complementary RNA, and detected antibody binding by immunohistochemistry on frozen sections. Antibodies were detected to one or more human brain voltage-gated potassium channel in 12 of 12 neuromyotonia patients and none of 18 control subjects. The results establish neuromyotonia as a new antibody-mediated channelopathy and indicate the investigative potential of this molecular immunohistochemical assay.
Collapse
Affiliation(s)
- I K Hart
- Neurosciences Group, Institute of Molecular Medicine, John Radcliffe Hospital, Oxford, United Kingdom
| | | | | | | | | | | | | | | |
Collapse
|
25
|
Yoshikawa H, Iwasa K, Satoh K, Takamori M. FK506 prevents induction of rat experimental autoimmune myasthenia gravis. J Autoimmun 1997; 10:11-6. [PMID: 9080295 DOI: 10.1006/jaut.1996.0111] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Myasthenia gravis (MG) is an organ-specific autoimmune disease attacking nicotinic acetylcholine receptors (AChR) of the neuromuscular junction. Autoantibody production is regulated by autoimmune helper T cells that are specific to AChR. Therefore the suppression of autoimmune T cell activity could reduce myasthenic symptoms. Amongst immunomodulatory therapies aimed at T cells, we studied the therapeutic effect of FK506 as a T cell-specific immunosuppressive agent. Rats in which experimental autoimmune myasthenia gravis (EAMG) was induced by immunization with synthetic peptide of human AChR alpha-subunit residues 125-147 (H alpha 125-147) were treated daily with FK506 (1 mg/kg). FK506 prevented the reduction in amplitude of miniature endplate potential (MEPP) which was induced by H alpha 125-147 immunization. FK506 also suppressed anti-H alpha 125-147 and anti-rat AChR antibody production accompanied by a decrease in the antigen-specific T cell response against H alpha 125-147. These findings indicate that FK506 prevents induction of rat EAMG evoked by immunizing T cells against H alpha 125-147.
Collapse
Affiliation(s)
- H Yoshikawa
- Department of Neurology, Kanazawa University School of Medicine, Ishikawa, Japan
| | | | | | | |
Collapse
|
26
|
Vincent A. Aetiological factors in development of myasthenia gravis. ADVANCES IN NEUROIMMUNOLOGY 1994; 4:355-71. [PMID: 7719616 DOI: 10.1016/0960-5428(94)00041-l] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Affiliation(s)
- A Vincent
- Department of Clinical Neurology, University of Oxford, UK
| |
Collapse
|