1
|
Barbaresi P, Fabri M, Lorenzi T, Sagrati A, Morroni M. Intrinsic organization of the corpus callosum. Front Physiol 2024; 15:1393000. [PMID: 39035452 PMCID: PMC11259024 DOI: 10.3389/fphys.2024.1393000] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Accepted: 05/16/2024] [Indexed: 07/23/2024] Open
Abstract
The corpus callosum-the largest commissural fiber system connecting the two cerebral hemispheres-is considered essential for bilateral sensory integration and higher cognitive functions. Most studies exploring the corpus callosum have examined either the anatomical, physiological, and neurochemical organization of callosal projections or the functional and/or behavioral aspects of the callosal connections after complete/partial callosotomy or callosal lesion. There are no works that address the intrinsic organization of the corpus callosum. We review the existing information on the activities that take place in the commissure in three sections: I) the topographical and neurochemical organization of the intracallosal fibers, II) the role of glia in the corpus callosum, and III) the role of the intracallosal neurons.
Collapse
Affiliation(s)
- Paolo Barbaresi
- Department of Experimental and Clinical Medicine, Section of Neuroscience and Cell Biology, Marche Polytechnic University, Ancona, Italy
| | - Mara Fabri
- Department of Life and Environmental Sciences, Marche Polytechnic University, Ancona, Italy
| | - Teresa Lorenzi
- Department of Experimental and Clinical Medicine, Section of Neuroscience and Cell Biology, Marche Polytechnic University, Ancona, Italy
| | - Andrea Sagrati
- Department of Life and Environmental Sciences, Marche Polytechnic University, Ancona, Italy
| | - Manrico Morroni
- Electron Microscopy Unit, Azienda Ospedaliero-Universitaria, Ancona, Italy
| |
Collapse
|
2
|
Deivasigamani S, Miteva MT, Natale S, Gutierrez-Barragan D, Basilico B, Di Angelantonio S, Weinhard L, Molotkov D, Deb S, Pape C, Bolasco G, Galbusera A, Asari H, Gozzi A, Ragozzino D, Gross CT. Microglia complement signaling promotes neuronal elimination and normal brain functional connectivity. Cereb Cortex 2023; 33:10750-10760. [PMID: 37718159 PMCID: PMC10629900 DOI: 10.1093/cercor/bhad313] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Revised: 08/10/2023] [Accepted: 08/11/2023] [Indexed: 09/19/2023] Open
Abstract
Complement signaling is thought to serve as an opsonization signal to promote the phagocytosis of synapses by microglia. However, while its role in synaptic remodeling has been demonstrated in the retino-thalamic system, it remains unclear whether complement signaling mediates synaptic pruning in the brain more generally. Here we found that mice lacking the Complement receptor 3, the major microglia complement receptor, failed to show a deficit in either synaptic pruning or axon elimination in the developing mouse cortex. Instead, mice lacking Complement receptor 3 exhibited a deficit in the perinatal elimination of neurons in the cortex, a deficit that is associated with increased cortical thickness and enhanced functional connectivity in these regions in adulthood. These data demonstrate a role for complement in promoting neuronal elimination in the developing cortex.
Collapse
Affiliation(s)
- Senthilkumar Deivasigamani
- Epigenetics & Neurobiology Unit, EMBL Rome, European Molecular Biology Laboratory, Via Ramarini 32, 00015 Monterotondo, Italy
| | - Mariya T Miteva
- Epigenetics & Neurobiology Unit, EMBL Rome, European Molecular Biology Laboratory, Via Ramarini 32, 00015 Monterotondo, Italy
- Neuroscience Masters Programme, Sapienza University, Piazza Aldo Moro 1, 00185 Roma, Italy
| | - Silvia Natale
- Epigenetics & Neurobiology Unit, EMBL Rome, European Molecular Biology Laboratory, Via Ramarini 32, 00015 Monterotondo, Italy
- Division of Pharmacology, Department of Neuroscience, Reproductive and Odontostomatologic Sciences, School of Medicine, University of Naples Federico II, Via Pansini 5, 80131 Naples, Italy
| | - Daniel Gutierrez-Barragan
- Functional Neuroimaging Laboratory, Istituto Italiano di Tecnologia, Center for Neuroscience and Cognitive Systems @ UNITN, 38068 Rovereto, Italy
| | - Bernadette Basilico
- Department of Physiology and Pharmacology, Sapienza University of Rome, 00185 Rome, Italy
- Center for Life Nano- & Neuro-Science, Istituto Italiano di Tecnologia, 00161 Rome, Italy
| | - Silvia Di Angelantonio
- Department of Physiology and Pharmacology, Sapienza University of Rome, 00185 Rome, Italy
- Center for Life Nano- & Neuro-Science, Istituto Italiano di Tecnologia, 00161 Rome, Italy
| | - Laetitia Weinhard
- Epigenetics & Neurobiology Unit, EMBL Rome, European Molecular Biology Laboratory, Via Ramarini 32, 00015 Monterotondo, Italy
| | - Dmitry Molotkov
- Epigenetics & Neurobiology Unit, EMBL Rome, European Molecular Biology Laboratory, Via Ramarini 32, 00015 Monterotondo, Italy
| | - Sukrita Deb
- Epigenetics & Neurobiology Unit, EMBL Rome, European Molecular Biology Laboratory, Via Ramarini 32, 00015 Monterotondo, Italy
| | - Constantin Pape
- Cell Biology and Biophysics Unit, EMBL Heidelberg, Meyerhofstraße 1, 69117 Heidelberg, Germany
| | - Giulia Bolasco
- Epigenetics & Neurobiology Unit, EMBL Rome, European Molecular Biology Laboratory, Via Ramarini 32, 00015 Monterotondo, Italy
| | - Alberto Galbusera
- Functional Neuroimaging Laboratory, Istituto Italiano di Tecnologia, Center for Neuroscience and Cognitive Systems @ UNITN, 38068 Rovereto, Italy
| | - Hiroki Asari
- Epigenetics & Neurobiology Unit, EMBL Rome, European Molecular Biology Laboratory, Via Ramarini 32, 00015 Monterotondo, Italy
| | - Alessandro Gozzi
- Functional Neuroimaging Laboratory, Istituto Italiano di Tecnologia, Center for Neuroscience and Cognitive Systems @ UNITN, 38068 Rovereto, Italy
| | - Davide Ragozzino
- Department of Physiology and Pharmacology, Sapienza University of Rome, 00185 Rome, Italy
- Santa Lucia Foundation (IRCCS Fondazione Santa Lucia), Via Ardeatina, 00179 Rome, Italy
| | - Cornelius T Gross
- Epigenetics & Neurobiology Unit, EMBL Rome, European Molecular Biology Laboratory, Via Ramarini 32, 00015 Monterotondo, Italy
| |
Collapse
|
3
|
Song H, Chen C, Kelley B, Tomasevich A, Lee H, Dolle JP, Cheng J, Garcia B, Meaney DF, Smith DH. Traumatic brain injury recapitulates developmental changes of axons. Prog Neurobiol 2022; 217:102332. [PMID: 35870679 PMCID: PMC9454890 DOI: 10.1016/j.pneurobio.2022.102332] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Revised: 07/14/2022] [Accepted: 07/19/2022] [Indexed: 11/28/2022]
Abstract
During development, half of brain white matter axons are maintained for growth, while the remainder undergo developmental axon degeneration. After traumatic brain injury (TBI), injured axons also appear to follow pathways leading to either degeneration or repair. These observations raise the intriguing, but unexamined possibility that TBI recapitulates developmental axonal programs. Here, we examined axonal changes in the developing brain in young rats and after TBI in adult rat. Multiple shared changes in axonal microtubule (MT) through tubulin post-translational modifications and MT associated proteins (MAPs), tau and MAP6, were found in both development and TBI. Specifically, degenerating axons in both development and TBI underwent phosphorylation of tau and excessive tubulin tyrosination, suggesting MT instability and depolyermization. Conversely, nearby axons without degenerating morphologies, had increased MAP6 expression and maintenance of tubulin acetylation, suggesting enhanced MT stabilization, thereby supporting survival or repair. Quantitative proteomics revealed similar signaling pathways of axon degeneration and growth/repair, including protein clusters and networks. This comparison approach demonstrates how focused evaluation of developmental processes may provide insight into pathways initiated by TBI. In particular, the data suggest that TBI may reawaken dormant axonal programs that direct axons towards either degeneration or growth/repair, supporting further study in this area.
Collapse
Affiliation(s)
- Hailong Song
- Department of Neurosurgery, Center for Brain Injury and Repair, University of Pennsylvania, Philadelphia, PA 19104, United States
| | - Chen Chen
- Department of Computer Sciences, University of Missouri, Columbia, MO 65211, United States
| | - Brian Kelley
- Department of Neurosurgery, Center for Brain Injury and Repair, University of Pennsylvania, Philadelphia, PA 19104, United States
| | - Alexandra Tomasevich
- Department of Neurosurgery, Center for Brain Injury and Repair, University of Pennsylvania, Philadelphia, PA 19104, United States
| | - Hyoungjoo Lee
- Department of Biochemistry and Biophysics, Quantitative Proteomics Resource Core, University of Pennsylvania, Philadelphia, PA 19104, United States
| | - Jean-Pierre Dolle
- Department of Neurosurgery, Center for Brain Injury and Repair, University of Pennsylvania, Philadelphia, PA 19104, United States
| | - Jianlin Cheng
- Department of Computer Sciences, University of Missouri, Columbia, MO 65211, United States
| | - Benjamin Garcia
- Department of Biochemistry and Biophysics, Quantitative Proteomics Resource Core, University of Pennsylvania, Philadelphia, PA 19104, United States
| | - David F Meaney
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA 19104, United States
| | - Douglas H Smith
- Department of Neurosurgery, Center for Brain Injury and Repair, University of Pennsylvania, Philadelphia, PA 19104, United States.
| |
Collapse
|
4
|
Transitory and Vestigial Structures of the Developing Human Nervous System. Pediatr Neurol 2021; 123:86-101. [PMID: 34416613 DOI: 10.1016/j.pediatrneurol.2021.07.003] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/20/2021] [Revised: 07/02/2021] [Accepted: 07/03/2021] [Indexed: 11/23/2022]
Abstract
As with many body organs, the human central nervous system contains many structures and cavities that may have had functions in embryonic and fetal life but are vestigial or atrophic at maturity. Examples are the septum pellucidum, remnants of the lamina terminalis, Cajal-Retzius neurons, induseum griseum, habenula, and accessory olfactory bulb. Other structures are transitory in fetal or early postnatal life, disappearing from the mature brain. Examples are the neural crest, subpial granular glial layer of Brun over cerebral cortex, radial glial cells, and subplate zone of cerebral cortex. At times persistent fetal structures that do not regress may cause neurological problems or indicate a pathologic condition, such as Blake pouch cyst. Transitory structures thus can become vestigial. Examples are an excessively wide cavum septi pellucidi, suprapineal recess of the third ventricle, trigeminal artery of the posterior fossa circulation, and hyaloid ocular artery. Arrested maturation might be considered another aspect of vestigial structure. An example is the persistent microcolumnar cortical architecture in focal cortical dysplasia type Ia, in cortical zones of chronic fetal ischemia, and in some metabolic/genetic congenital encephalopathies. Some transitory structures in human brain are normal adult structures in lower vertebrates. Recognition of transitory and vestigial structures by fetal or postnatal neuroimaging and neuropathologically enables better understanding of cerebral ontogenesis and avoids misinterpretations.
Collapse
|
5
|
Oka Y, Doi M, Taniguchi M, Tiong SYX, Akiyama H, Yamamoto T, Iguchi T, Sato M. Interstitial Axon Collaterals of Callosal Neurons Form Association Projections from the Primary Somatosensory to Motor Cortex in Mice. Cereb Cortex 2021; 31:5225-5238. [PMID: 34228058 PMCID: PMC8491696 DOI: 10.1093/cercor/bhab153] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Revised: 05/12/2021] [Accepted: 05/12/2021] [Indexed: 11/14/2022] Open
Abstract
Association projections from cortical pyramidal neurons connect disparate intrahemispheric cortical areas, which are implicated in higher cortical functions. The underlying developmental processes of these association projections, especially the initial phase before reaching the target areas, remain unknown. To visualize developing axons of individual neurons with association projections in the mouse neocortex, we devised a sparse labeling method that combined in utero electroporation and confocal imaging of flattened and optically cleared cortices. Using the promoter of an established callosal neuron marker gene that was expressed in over 80% of L2/3 neurons in the primary somatosensory cortex (S1) that project to the primary motor cortex (M1), we found that an association projection of a single neuron was the longest among the interstitial collaterals that branched out in L5 from the earlier-extended callosal projection. Collaterals to M1 elongated primarily within the cortical gray matter with little branching before reaching the target. Our results suggest that dual-projection neurons in S1 make a significant fraction of the association projections to M1, supporting the directed guidance mechanism in long-range corticocortical circuit formation over random projections followed by specific pruning.
Collapse
Affiliation(s)
- Yuichiro Oka
- Department of Anatomy and Neuroscience, Graduate School of Medicine, Osaka University, Suita, Osaka 565-0871, Japan.,Molecular Brain Science, Division of Developmental Neuroscience, Department of Child Development, United Graduate School of Child Development, Osaka University, Kanazawa University, Hamamatsu University School of Medicine, Chiba University, and University of Fukui (UGSCD), Osaka University, Suita, Osaka 565-0871, Japan.,Division of Cell Biology and Neuroscience, Department of Morphological and Physiological Sciences, Faculty of Medical Sciences, University of Fukui, Eiheiji, Fukui 910-1193, Japan.,Research Center for Child Mental Development, University of Fukui, Eiheiji, Fukui 910-1193, Japan
| | - Miyuki Doi
- Department of Anatomy and Neuroscience, Graduate School of Medicine, Osaka University, Suita, Osaka 565-0871, Japan
| | - Manabu Taniguchi
- Department of Anatomy and Neuroscience, Graduate School of Medicine, Osaka University, Suita, Osaka 565-0871, Japan
| | - Sheena Y X Tiong
- Department of Anatomy and Neuroscience, Graduate School of Medicine, Osaka University, Suita, Osaka 565-0871, Japan.,Molecular Brain Science, Division of Developmental Neuroscience, Department of Child Development, United Graduate School of Child Development, Osaka University, Kanazawa University, Hamamatsu University School of Medicine, Chiba University, and University of Fukui (UGSCD), Osaka University, Suita, Osaka 565-0871, Japan.,Institute of Biological Sciences, Faculty of Science, University of Malaya, Kuala Lumpur 50603, Malaysia
| | - Hisanori Akiyama
- Department of Anatomy and Neuroscience, Graduate School of Medicine, Osaka University, Suita, Osaka 565-0871, Japan
| | - Takuto Yamamoto
- Department of Anatomy and Neuroscience, Graduate School of Medicine, Osaka University, Suita, Osaka 565-0871, Japan
| | - Tokuichi Iguchi
- Department of Anatomy and Neuroscience, Graduate School of Medicine, Osaka University, Suita, Osaka 565-0871, Japan.,Division of Cell Biology and Neuroscience, Department of Morphological and Physiological Sciences, Faculty of Medical Sciences, University of Fukui, Eiheiji, Fukui 910-1193, Japan.,Department of Nursing, Faculty of Health Science, Fukui Health Science University, Fukui, Fukui 910-3190, Japan
| | - Makoto Sato
- Department of Anatomy and Neuroscience, Graduate School of Medicine, Osaka University, Suita, Osaka 565-0871, Japan.,Molecular Brain Science, Division of Developmental Neuroscience, Department of Child Development, United Graduate School of Child Development, Osaka University, Kanazawa University, Hamamatsu University School of Medicine, Chiba University, and University of Fukui (UGSCD), Osaka University, Suita, Osaka 565-0871, Japan.,Graduate School of Frontier Biosciences, Osaka University, Suita, Osaka 565-0871, Japan.,Division of Cell Biology and Neuroscience, Department of Morphological and Physiological Sciences, Faculty of Medical Sciences, University of Fukui, Eiheiji, Fukui 910-1193, Japan.,Research Center for Child Mental Development, University of Fukui, Eiheiji, Fukui 910-1193, Japan
| |
Collapse
|
6
|
Fenlon LR, Suarez R, Lynton Z, Richards LJ. The evolution, formation and connectivity of the anterior commissure. Semin Cell Dev Biol 2021; 118:50-59. [PMID: 33958283 DOI: 10.1016/j.semcdb.2021.04.009] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2021] [Revised: 04/08/2021] [Accepted: 04/10/2021] [Indexed: 10/21/2022]
Abstract
The anterior commissure is the most ancient of the forebrain interhemispheric connections among all vertebrates. Indeed, it is the predominant pallial commissure in all non-eutherian vertebrates, universally subserving basic functions related to olfaction and survival. A key feature of the anterior commissure is its ability to convey connections from diverse brain areas, such as most of the neocortex in non-eutherian mammals, thereby mediating the bilateral integration of diverse functions. Shared developmental mechanisms between the anterior commissure and more evolutionarily recent commissures, such as the corpus callosum in eutherians, have led to the hypothesis that the former may have been a precursor for additional expansion of commissural circuits. However, differences between the formation of the anterior commissure and other telencephalic commissures suggest that independent developmental mechanisms underlie the emergence of these connections in extant species. Here, we review the developmental mechanisms and connectivity of the anterior commissure across evolutionarily distant species, and highlight its potential functional importance in humans, both in the course of normal neurodevelopment, and as a site of plastic axonal rerouting in the absence or damage of other connections.
Collapse
Affiliation(s)
- Laura R Fenlon
- The University of Queensland, The Queensland Brain Institute, Brisbane, Australia.
| | - Rodrigo Suarez
- The University of Queensland, The Queensland Brain Institute, Brisbane, Australia
| | - Zorana Lynton
- The University of Queensland, The Queensland Brain Institute, Brisbane, Australia; The Faculty of Medicine, Brisbane, Australia
| | - Linda J Richards
- The University of Queensland, The Queensland Brain Institute, Brisbane, Australia; The School of Biomedical Sciences, Brisbane, Australia.
| |
Collapse
|
7
|
De León Reyes NS, Bragg-Gonzalo L, Nieto M. Development and plasticity of the corpus callosum. Development 2020; 147:147/18/dev189738. [PMID: 32988974 DOI: 10.1242/dev.189738] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
The corpus callosum (CC) connects the cerebral hemispheres and is the major mammalian commissural tract. It facilitates bilateral sensory integration and higher cognitive functions, and is often affected in neurodevelopmental diseases. Here, we review the mechanisms that contribute to the development of CC circuits in animal models and humans. These species comparisons reveal several commonalities. First, there is an early period of massive axonal projection. Second, there is a postnatal temporal window, varying between species, in which early callosal projections are selectively refined. Third, sensory-derived activity influences axonal refinement. We also discuss how defects in CC formation can lead to mild or severe CC congenital malformations.
Collapse
Affiliation(s)
- Noelia S De León Reyes
- Department of Cellular and Molecular Biology, Centro Nacional de Biotecnología, Consejo Superior de Investigaciones Científicas, (CNB-CSIC) Campus de Cantoblanco, Darwin 3, 28049 Madrid, Spain
| | - Lorena Bragg-Gonzalo
- Department of Cellular and Molecular Biology, Centro Nacional de Biotecnología, Consejo Superior de Investigaciones Científicas, (CNB-CSIC) Campus de Cantoblanco, Darwin 3, 28049 Madrid, Spain
| | - Marta Nieto
- Department of Cellular and Molecular Biology, Centro Nacional de Biotecnología, Consejo Superior de Investigaciones Científicas, (CNB-CSIC) Campus de Cantoblanco, Darwin 3, 28049 Madrid, Spain
| |
Collapse
|
8
|
Charvet CJ, Das A, Song JW, Tindal-Burgess DJ, Kabaria P, Dai G, Kane T, Takahashi E. High Angular Resolution Diffusion MRI Reveals Conserved and Deviant Programs in the Paths that Guide Human Cortical Circuitry. Cereb Cortex 2020; 30:1447-1464. [PMID: 31667494 PMCID: PMC7132938 DOI: 10.1093/cercor/bhz178] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2019] [Revised: 06/13/2019] [Accepted: 07/10/2019] [Indexed: 02/07/2023] Open
Abstract
Diffusion magnetic resonance (MR) tractography represents a novel opportunity to investigate conserved and deviant developmental programs between humans and other species such as mice. To that end, we acquired high angular resolution diffusion MR scans of mice [embryonic day (E) 10.5 to postnatal week 4] and human brains [gestational week (GW) 17-30] at successive stages of fetal development to investigate potential evolutionary changes in radial organization and emerging pathways between humans and mice. We compare radial glial development as well as commissural development (e.g., corpus callosum), primarily because our findings can be integrated with previous work. We also compare corpus callosal growth trajectories across primates (i.e., humans and rhesus macaques) and rodents (i.e., mice). One major finding is that the developing cortex of humans is predominated by pathways likely associated with a radial glial organization at GW 17-20, which is not as evident in age-matched mice (E 16.5, 17.5). Another finding is that, early in development, the corpus callosum follows a similar developmental timetable in primates (i.e., macaques and humans) as in mice. However, the corpus callosum grows for an extended period of time in primates compared with rodents. Taken together, these findings highlight deviant developmental programs underlying the emergence of cortical pathways in the human brain.
Collapse
Affiliation(s)
| | - Avilash Das
- Medical Sciences in the College of Arts and Sciences, Boston University, Boston, MA 02215, USA
- Division of Newborn Medicine, Department of Medicine, Boston Children’s Hospital, Harvard Medical School, Boston, MA 02215, USA
- Fetal-Neonatal Brain Imaging and Developmental Science Center, Boston Children’s Hospital, Harvard Medical School, Boston, MA 02215, USA
| | - Jae W Song
- Division of Neuroradiology, Department of Radiology, Massachusetts General Hospital, Boston, MA 02114, USA
| | | | - Priya Kabaria
- Department of Behavioral Neuroscience, Northeastern University, Boston, MA 02115, USA
| | - Guangping Dai
- Science Center, Wellesley College, Wellesley, MA 02481, USA
| | - Tara Kane
- Department of Behavioral Neuroscience, Northeastern University, Boston, MA 02115, USA
| | - Emi Takahashi
- Division of Newborn Medicine, Department of Medicine, Boston Children’s Hospital, Harvard Medical School, Boston, MA 02215, USA
- Fetal-Neonatal Brain Imaging and Developmental Science Center, Boston Children’s Hospital, Harvard Medical School, Boston, MA 02215, USA
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA 02129, USA
| |
Collapse
|
9
|
De León Reyes NS, Mederos S, Varela I, Weiss LA, Perea G, Galazo MJ, Nieto M. Transient callosal projections of L4 neurons are eliminated for the acquisition of local connectivity. Nat Commun 2019; 10:4549. [PMID: 31591398 PMCID: PMC6779895 DOI: 10.1038/s41467-019-12495-w] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2018] [Accepted: 09/15/2019] [Indexed: 12/11/2022] Open
Abstract
Interhemispheric axons of the corpus callosum (CC) facilitate the higher order functions of the cerebral cortex. According to current views, callosal and non-callosal fates are determined early after a neuron's birth, and certain populations, such as cortical layer (L) 4 excitatory neurons of the primary somatosensory (S1) barrel, project only ipsilaterally. Using a novel axonal-retrotracing strategy and GFP-targeted visualization of Rorb+ neurons, we instead demonstrate that L4 neurons develop transient interhemispheric axons. Locally restricted L4 connectivity emerges when exuberant contralateral axons are refined in an area- and layer-specific manner during postnatal development. Surgical and genetic interventions of sensory circuits demonstrate that refinement rates depend on distinct inputs from sensory-specific thalamic nuclei. Reductions in input-dependent refinement result in mature functional interhemispheric hyperconnectivity, demonstrating the plasticity and bona fide callosal potential of L4 neurons. Thus, L4 neurons discard alternative interhemispheric circuits as instructed by thalamic input. This may ensure optimal wiring.
Collapse
Affiliation(s)
- N S De León Reyes
- Department of Cellular and Molecular Biology, Centro Nacional de Biotecnología, Consejo Superior de Investigaciones Científicas (CNB-CSIC), Campus de Cantoblanco, Darwin 3, 28049, Madrid, Spain
| | - S Mederos
- Instituto Cajal, CSIC. Av. Doctor Arce, 37, 28002, Madrid, Spain
| | - I Varela
- Department of Cellular and Molecular Biology, Centro Nacional de Biotecnología, Consejo Superior de Investigaciones Científicas (CNB-CSIC), Campus de Cantoblanco, Darwin 3, 28049, Madrid, Spain
| | - L A Weiss
- Department of Cellular and Molecular Biology, Centro Nacional de Biotecnología, Consejo Superior de Investigaciones Científicas (CNB-CSIC), Campus de Cantoblanco, Darwin 3, 28049, Madrid, Spain
| | - G Perea
- Instituto Cajal, CSIC. Av. Doctor Arce, 37, 28002, Madrid, Spain
| | - M J Galazo
- Department of Cell and Molecular Biology and Tulane Brain Institute, Tulane University, 6400 Freret Street, Percival Stern Hall suite 2000, New Orleans, LA, 70118, USA
| | - M Nieto
- Department of Cellular and Molecular Biology, Centro Nacional de Biotecnología, Consejo Superior de Investigaciones Científicas (CNB-CSIC), Campus de Cantoblanco, Darwin 3, 28049, Madrid, Spain.
| |
Collapse
|
10
|
Kast RJ, Levitt P. Precision in the development of neocortical architecture: From progenitors to cortical networks. Prog Neurobiol 2019; 175:77-95. [PMID: 30677429 PMCID: PMC6402587 DOI: 10.1016/j.pneurobio.2019.01.003] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2018] [Revised: 01/02/2019] [Accepted: 01/21/2019] [Indexed: 02/07/2023]
Abstract
Of all brain regions, the 6-layered neocortex has undergone the most dramatic changes in size and complexity during mammalian brain evolution. These changes, occurring in the context of a conserved set of organizational features that emerge through stereotypical developmental processes, are considered responsible for the cognitive capacities and sensory specializations represented within the mammalian clade. The modern experimental era of developmental neurobiology, spanning 6 decades, has deciphered a number of mechanisms responsible for producing the diversity of cortical neuron types, their precise connectivity and the role of gene by environment interactions. Here, experiments providing insight into the development of cortical projection neuron differentiation and connectivity are reviewed. This current perspective integrates discussion of classic studies and new findings, based on recent technical advances, to highlight an improved understanding of the neuronal complexity and precise connectivity of cortical circuitry. These descriptive advances bring new opportunities for studies related to the developmental origins of cortical circuits that will, in turn, improve the prospects of identifying pathogenic targets of neurodevelopmental disorders.
Collapse
Affiliation(s)
- Ryan J Kast
- Department of Pediatrics and Program in Developmental Neuroscience and Developmental Neurogenetics, The Saban Research Institute, Children's Hospital Los Angeles, Keck School of Medicine, University of Southern California, Los Angeles, CA, 90027, USA
| | - Pat Levitt
- Department of Pediatrics and Program in Developmental Neuroscience and Developmental Neurogenetics, The Saban Research Institute, Children's Hospital Los Angeles, Keck School of Medicine, University of Southern California, Los Angeles, CA, 90027, USA.
| |
Collapse
|
11
|
Barbaresi P, Mensà E, Bastioli G, Amoroso S. Substance P NK1 receptor in the rat corpus callosum during postnatal development. Brain Behav 2017; 7:e00713. [PMID: 28638718 PMCID: PMC5474716 DOI: 10.1002/brb3.713] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
INTRODUCTION The expression of substance P (SP) receptor (neurokinin 1, NK1) was studied in the rat corpus callosum (cc) from postnatal day 0 (the first 24 hr from birth, P0) to P30. METHODS We used immunocytochemistry to study the presence of intracallosal NK1-immunopositive neurons (NK1IP-n) during cc development. RESULTS NK1IP-n first appeared on P5. Their number increased significantly between P5 and P10, it remained almost constant between P10 and P15, then declined slightly until P30. The size of intracallosal NK1IP-n increased constantly from P5 (102.3 μm2) to P30 (262.07 μm2). From P5 onward, their distribution pattern was adult-like, that is, they were more numerous in the lateral and intermediate parts of the cc, and declined to few or none approaching the midline. At P5, intracallosal NK1IP-n had a predominantly round cell bodies with primary dendrites of different thickness from which originated thinner secondary branches. Between P10 and P15, dendrites were longer and more thickly branched, and displayed several varicosities as well as short, thin appendages. Between P20 and P30, NK1IP-n were qualitatively indistinguishable from those of adult animals and could be classified as bipolar (fusiform and rectangular), round-polygonal, and pyramidal (triangular-pyriform). CONCLUSIONS Number of NK1IP-n increase between P5 and P10, then declines, but unlike other intracallosal neurons, NK1IP-n make up a significant population in the adult cc. These findings suggest that NK1IP-n may be involved in the myelination of callosal axons, could play an important role in their pathfinding. Since they are also found in adult rat cc, it is likely that their role changes during lifetime.
Collapse
Affiliation(s)
- Paolo Barbaresi
- Section of Neuroscience and Cell Biology Department of Experimental and Clinical Medicine Marche Polytechnic University Ancona Italy
| | - Emanuela Mensà
- Section of Neuroscience and Cell Biology Department of Experimental and Clinical Medicine Marche Polytechnic University Ancona Italy
| | - Guendalina Bastioli
- Department of Biomedical Sciences and Public Health Marche Polytechnic University Ancona Italy
| | - Salvatore Amoroso
- Department of Biomedical Sciences and Public Health Marche Polytechnic University Ancona Italy
| |
Collapse
|
12
|
Son AI, Fu X, Suto F, Liu JS, Hashimoto-Torii K, Torii M. Proteome dynamics during postnatal mouse corpus callosum development. Sci Rep 2017; 7:45359. [PMID: 28349996 PMCID: PMC5368975 DOI: 10.1038/srep45359] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2016] [Accepted: 02/27/2017] [Indexed: 02/08/2023] Open
Abstract
Formation of cortical connections requires the precise coordination of numerous discrete phases. This is particularly significant with regard to the corpus callosum, whose development undergoes several dynamic stages including the crossing of axon projections, elimination of exuberant projections, and myelination of established tracts. To comprehensively characterize the molecular events in this dynamic process, we set to determine the distinct temporal expression of proteins regulating the formation of the corpus callosum and their respective developmental functions. Mass spectrometry-based proteomic profiling was performed on early postnatal mouse corpus callosi, for which limited evidence has been obtained previously, using stable isotope of labeled amino acids in mammals (SILAM). The analyzed corpus callosi had distinct proteomic profiles depending on age, indicating rapid progression of specific molecular events during this period. The proteomic profiles were then segregated into five separate clusters, each with distinct trajectories relevant to their intended developmental functions. Our analysis both confirms many previously-identified proteins in aspects of corpus callosum development, and identifies new candidates in understudied areas of development including callosal axon refinement. We present a valuable resource for identifying new proteins integral to corpus callosum development that will provide new insights into the development and diseases afflicting this structure.
Collapse
Affiliation(s)
- Alexander I Son
- Center for Neuroscience Research, Children's Research Institute, Children's National Medical Center, Washington, DC 20010, USA
| | - Xiaoqin Fu
- Center for Neuroscience Research, Children's Research Institute, Children's National Medical Center, Washington, DC 20010, USA
| | - Fumikazu Suto
- Department of Ultrastructural Research, National Institute of Neuroscience, National Center of Neurology and Psychiatry, Tokyo 187-8502, Japan
| | - Judy S Liu
- Center for Neuroscience Research, Children's Research Institute, Children's National Medical Center, Washington, DC 20010, USA.,Department of Pediatrics, Pharmacology and Physiology, School of Medicine and Health Sciences, The George Washington University, Washington, DC 20052, USA
| | - Kazue Hashimoto-Torii
- Center for Neuroscience Research, Children's Research Institute, Children's National Medical Center, Washington, DC 20010, USA.,Department of Pediatrics, Pharmacology and Physiology, School of Medicine and Health Sciences, The George Washington University, Washington, DC 20052, USA.,Department of Neurobiology and Kavli Institute for Neuroscience, School of Medicine, Yale University, New Haven, CT 06510, USA
| | - Masaaki Torii
- Center for Neuroscience Research, Children's Research Institute, Children's National Medical Center, Washington, DC 20010, USA.,Department of Pediatrics, Pharmacology and Physiology, School of Medicine and Health Sciences, The George Washington University, Washington, DC 20052, USA.,Department of Neurobiology and Kavli Institute for Neuroscience, School of Medicine, Yale University, New Haven, CT 06510, USA
| |
Collapse
|
13
|
Fenlon LR, Suárez R, Richards LJ. The anatomy, organisation and development of contralateral callosal projections of the mouse somatosensory cortex. Brain Neurosci Adv 2017; 1:2398212817694888. [PMID: 32166131 PMCID: PMC7058258 DOI: 10.1177/2398212817694888] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2016] [Accepted: 01/30/2017] [Indexed: 11/21/2022] Open
Abstract
Background: Alterations in the development of neuronal connectivity can result in dramatic outcomes for brain function. In the cerebral cortex, most sensorimotor and higher-order functions require coordination between precise regions of both hemispheres through the axons that form the corpus callosum. However, little is known about how callosal axons locate and innervate their contralateral targets. Methods: Here, we use a combination of in utero electroporation, retrograde tracing, sensory deprivation and high-resolution axonal quantification to investigate the development, organisation and activity dependence of callosal axons arising from the primary somatosensory cortex of mice. Results: We show that distinct contralateral projections arise from different neuronal populations and form homotopic and heterotopic circuits. Callosal axons innervate the contralateral hemisphere following a dorsomedial to ventrolateral and region-specific order. Furthermore, we identify two periods of region- and layer-specific developmental exuberance that correspond to initial callosal axon innervation and subsequent arborisation. Early sensory deprivation affects only the latter of these events. Conclusion: Taken together, these results reveal the main developmental events of contralateral callosal targeting and may aid future understanding of the formation and pathologies of brain connectivity.
Collapse
Affiliation(s)
- Laura R Fenlon
- Queensland Brain Institute, The University of Queensland, Brisbane, QLD, Australia
| | - Rodrigo Suárez
- Queensland Brain Institute, The University of Queensland, Brisbane, QLD, Australia
| | - Linda J Richards
- Queensland Brain Institute, The University of Queensland, Brisbane, QLD, Australia.,School of Biomedical Sciences, The University of Queensland, Brisbane, QLD, Australia
| |
Collapse
|
14
|
Chovsepian A, Empl L, Correa D, Bareyre FM. Heterotopic Transcallosal Projections Are Present throughout the Mouse Cortex. Front Cell Neurosci 2017; 11:36. [PMID: 28270750 PMCID: PMC5318386 DOI: 10.3389/fncel.2017.00036] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2016] [Accepted: 02/06/2017] [Indexed: 11/13/2022] Open
Abstract
Transcallosal projection neurons are a population of pyramidal excitatory neurons located in layers II/III and to a lesser extent layer V of the cortex. Their axons form the corpus callosum thereby providing an inter-hemispheric connection in the brain. While transcallosal projection neurons have been described in some detail before, it is so far unclear whether they are uniformly organized throughout the cortex or whether different functional regions of the cortex contain distinct adaptations of their transcallosal connectivity. To address this question, we have therefore conducted a systematic analysis of transcallosal projection neurons and their axons across six distinct stereotactic coordinates in the mouse cortex that cover different areas of the motor and somatosensory cortices. Using anterograde and retrograde tracing techniques, we found that in agreement with previous studies, most of the transcallosal projections show a precise homotopic organization. The somata of these neurons are predominantly located in layer II/III and layer V but notably smaller numbers of these cells are also found in layer IV and layer VI. In addition, regional differences in the distribution of their somata and the precision of their projections exist indicating that while transcallosal neurons show a uniform organization throughout the mouse cortex, there is a sizeable fraction of these connections that are heterotopic. Our study thus provides a comprehensive characterization of transcallosal connectivity in different cortical areas that can serve as the basis for further investigations of the establishment of inter-hemispheric projections in development and their alterations in disease.
Collapse
Affiliation(s)
- Alexandra Chovsepian
- Institute of Clinical Neuroimmunology, Biomedical Center and University Hospital, Ludwig-Maximilians Universität München Munich, Germany
| | - Laura Empl
- Institute of Clinical Neuroimmunology, Biomedical Center and University Hospital, Ludwig-Maximilians Universität München Munich, Germany
| | - Daphne Correa
- Institute of Clinical Neuroimmunology, Biomedical Center and University Hospital, Ludwig-Maximilians Universität München Munich, Germany
| | - Florence M Bareyre
- Institute of Clinical Neuroimmunology, Biomedical Center and University Hospital, Ludwig-Maximilians Universität MünchenMunich, Germany; Munich Cluster of System Neurology (SyNergy), Ludwig-Maximilians Universität MünchenMunich, Germany
| |
Collapse
|
15
|
Meijer EJ, Niemarkt HJ, Raaijmakers IPPC, Mulder AM, van Pul C, Wijn PFF, Andriessen P. Interhemispheric connectivity estimated from EEG time-correlation analysis in preterm infants with normal follow-up at age of five. Physiol Meas 2016; 37:2286-2298. [DOI: 10.1088/1361-6579/37/12/2286] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
16
|
Sarnat HB, Philippart M, Flores-Sarnat L, Wei XC. Timing in neural maturation: arrest, delay, precociousness, and temporal determination of malformations. Pediatr Neurol 2015; 52:473-86. [PMID: 25797487 DOI: 10.1016/j.pediatrneurol.2015.01.020] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/21/2014] [Revised: 01/29/2015] [Accepted: 01/31/2015] [Indexed: 11/30/2022]
Abstract
Timing is primordial in initiating and synchronizing each developmental process in tissue morphogenesis. Maturational arrest, delay, and precociousness all are conducive to neurological dysfunction and may determine different malformations depending on when in development the faulty timing occurred, regardless of the identification of a specific genetic mutation or an epigenetic teratogenic event. Delay and arrest are distinguished by whether further progressive development over time can be expected or the condition is static. In general, retardation of early developmental processes, such as neurulation, cellular proliferation, and migration, leads to maturational arrest. Retardation of late processes, such as synaptogenesis and myelination, are more likely to result in maturational delay. Faulty timing of neuronal maturation in relation to other developmental processes causes neurological dysfunction and abnormal electroencephalograph maturation in preterm neonates. Precocious synaptogenesis, including pruning to provide plasticity, may facilitate prenatal formation of epileptic circuitry leading to severe postnatal infantile epilepsies. The anterior commissure forms 3 weeks earlier than the corpus callosum; its presence or absence in callosal agenesis is a marker for the onset of the initial insult. An excessively thick corpus callosum may be due to delayed retraction of transitory collateral axons. Malformations that arise at different times can share a common pathogenesis with variations on the extent: timing of mitotic cycles in mosaic somatic mutations may distinguish hemimegalencephaly from focal cortical dysplasia type 2. Timing should always be considered in interpreting cerebral dysgeneses in both imaging and neuropathological diagnoses.
Collapse
Affiliation(s)
- Harvey B Sarnat
- Department of Paediatrics, University of Calgary Faculty of Medicine and Alberta Children's Hospital Research Institute, Calgary, Alberta, Canada; Department of Pathology (Neuropathology), University of Calgary Faculty of Medicine and Alberta Children's Hospital Research Institute, Calgary, Alberta, Canada; Department of Clinical Neurosciences, University of Calgary Faculty of Medicine and Alberta Children's Hospital Research Institute, Calgary, Alberta, Canada.
| | | | - Laura Flores-Sarnat
- Department of Paediatrics, University of Calgary Faculty of Medicine and Alberta Children's Hospital Research Institute, Calgary, Alberta, Canada; Department of Clinical Neurosciences, University of Calgary Faculty of Medicine and Alberta Children's Hospital Research Institute, Calgary, Alberta, Canada
| | - Xing-Chang Wei
- Department of Paediatrics, University of Calgary Faculty of Medicine and Alberta Children's Hospital Research Institute, Calgary, Alberta, Canada; Department of Radiology and Diagnostic Imaging, University of Calgary Faculty of Medicine and Alberta Children's Hospital Research Institute, Calgary, Alberta, Canada
| |
Collapse
|
17
|
Hatanaka Y, Namikawa T, Yamauchi K, Kawaguchi Y. Cortical Divergent Projections in Mice Originate from Two Sequentially Generated, Distinct Populations of Excitatory Cortical Neurons with Different Initial Axonal Outgrowth Characteristics. Cereb Cortex 2015; 26:2257-2270. [PMID: 25882037 DOI: 10.1093/cercor/bhv077] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Excitatory cortical neurons project to various subcortical and intracortical regions, and exhibit diversity in their axonal connections. Although this diversity may develop from primary axons, how many types of axons initially occur remains unknown. Using a sparse-labeling in utero electroporation method, we investigated the axonal outgrowth of these neurons in mice and correlated the data with axonal projections in adults. Examination of lateral cortex neurons labeled during the main period of cortical neurogenesis (E11.5-E15.5) indicated that axonal outgrowth commonly occurs in the intermediate zone. Conversely, the axonal direction varied; neurons labeled before E12.5 and the earliest cortical plate neurons labeled at E12.5 projected laterally, whereas neurons labeled thereafter projected medially. The expression of Ctip2 and Satb2 and the layer destinations of these neurons support the view that lateral and medial projection neurons are groups of prospective subcortical and callosal projection neurons, respectively. Consistently, birthdating experiments demonstrated that presumptive lateral projection neurons were generated earlier than medial projection neurons, even within the same layer. These results suggest that the divergent axonal connections of excitatory cortical neurons begin from two types of primary axons, which originate from two sequentially generated distinct subpopulations: early-born lateral (subcortical) and later-born medial (callosal) projection neuron groups.
Collapse
Affiliation(s)
- Yumiko Hatanaka
- Division of Cerebral Circuitry, National Institute for Physiological Sciences, Myodaiji, Okazaki, Aichi 444-8787, Japan
- Japan Science and Technology Agency, Core Research for Evolutional Science and Technology, Tokyo 102-0076, Japan
- Graduate School of Biological Sciences, Nara Institute of Science and Technology, Takayama-cho, Ikoma, Nara 630-0192, Japan
| | - Tomohiro Namikawa
- Graduate School of Biological Sciences, Nara Institute of Science and Technology, Takayama-cho, Ikoma, Nara 630-0192, Japan
- Current addresses: Division of Developmental Neurobiology, Kobe University Graduate School of Medicine, Kusunoki-cho, Chuo-ku, Kobe, Hyogo 650-0017, Japan
| | - Kenta Yamauchi
- Laboratory of Neuroscience, Graduate School of Frontier Biosciences, Osaka University, Suita, Osaka 565-0178, Japan
- Division of Brain Function, National Institute of Genetics, Yata, Mishima, Shizuoka 411-8540, Japan
| | - Yasuo Kawaguchi
- Division of Cerebral Circuitry, National Institute for Physiological Sciences, Myodaiji, Okazaki, Aichi 444-8787, Japan
- Japan Science and Technology Agency, Core Research for Evolutional Science and Technology, Tokyo 102-0076, Japan
- Department of Physiological Sciences, Graduate University for Advanced Studies (SOKENDAI), Okazaki, Aichi 444-8787, Japan
| |
Collapse
|
18
|
Contralateral targeting of the corpus callosum in normal and pathological brain function. Trends Neurosci 2015; 38:264-72. [PMID: 25841797 DOI: 10.1016/j.tins.2015.02.007] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2014] [Revised: 02/25/2015] [Accepted: 02/27/2015] [Indexed: 12/14/2022]
Abstract
The corpus callosum connects the two cortical hemispheres of the mammalian brain and is susceptible to structural defects during development, which often result in significant neuropsychological dysfunction. To date, such individuals have been studied primarily with regards to the integrity of the callosal tract at the midline. However, the mechanisms regulating the contralateral targeting of the corpus callosum, after midline crossing has occurred, are less well understood. Recent evidence suggests that defects in contralateral targeting can occur in isolation from midline-tract malformations, and may have significant functional implications. We propose that contralateral targeting is a crucially important and relatively under-investigated event in callosal development, and that defects in this process may constitute an undiagnosed phenotype in several neurological disorders.
Collapse
|
19
|
Functional connectivity in preterm infants derived from EEG coherence analysis. Eur J Paediatr Neurol 2014; 18:780-9. [PMID: 25205233 DOI: 10.1016/j.ejpn.2014.08.003] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/26/2014] [Revised: 08/12/2014] [Accepted: 08/16/2014] [Indexed: 11/22/2022]
Abstract
OBJECTIVE To quantify the neuronal connectivity in preterm infants between homologous channels of both hemispheres. METHODS EEG coherence analysis was performed on serial EEG recordings collected from preterm infants with normal neurological follow-up. The coherence spectrum was divided in frequency bands: δnewborn(0-2 Hz), θnewborn(2-6 Hz), αnewborn(6-13 Hz), βnewborn(13-30 Hz). Coherence values were evaluated as a function of gestational age (GA) and postnatal maturation. RESULTS All spectra show two clear peaks in the δnewborn and θnewborn-band, corresponding to the delta and theta EEG waves observed in preterm infants. In the δnewborn-band the peak magnitude coherence decreases with GA and postnatal maturation for all channels. In the θnewborn-band, the peak magnitude coherence decreases with GA for all channels, but increases with postnatal maturation for the frontal polar channels. In the βnewborn-band a modest magnitude coherence peak was observed in the occipital channels, which decreases with GA. CONCLUSIONS Interhemispherical connectivity develops analogously with electrocortical maturation: signal intensities at low frequencies decrease with GA and postnatal maturation, but increase at high frequencies with postnatal maturation. In addition, peak magnitude coherence is a clear trend indicator for brain maturation. SIGNIFICANCE Coherence analysis can aid in the clinical assessment of the functional connectivity of the infant brain with maturation.
Collapse
|
20
|
Axon position within the corpus callosum determines contralateral cortical projection. Proc Natl Acad Sci U S A 2013; 110:E2714-23. [PMID: 23812756 DOI: 10.1073/pnas.1310233110] [Citation(s) in RCA: 73] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
How developing axons in the corpus callosum (CC) achieve their homotopic projection to the contralateral cortex remains unclear. We found that axonal position within the CC plays a critical role in this projection. Labeling of nearby callosal axons in mice showed that callosal axons were segregated in an orderly fashion, with those from more medial cerebral cortex located more dorsally and subsequently projecting to more medial contralateral cortical regions. The normal axonal order within the CC was grossly disturbed when semaphorin3A/neuropilin-1 signaling was disrupted. However, the order in which axons were positioned within the CC still determined their contralateral projection, causing a severe disruption of the homotopic contralateral projection that persisted at postnatal day 30, when the normal developmental refinement of contralateral projections is completed in wild-type (WT) mice. Thus, the orderly positioning of axons within the CC is a primary determinant of how homotopic interhemispheric projections form in the contralateral cortex.
Collapse
|
21
|
Abstract
Adolescent brain maturation is characterized by the emergence of executive function mediated by the prefrontal cortex, e.g., goal planning, inhibition of impulsive behavior and set shifting. Synaptic pruning of excitatory contacts is the signature morphologic event of late brain maturation during adolescence. Mounting evidence suggests that glutamate receptor-mediated synaptic plasticity, in particular long-term depression (LTD), is important for elimination of synaptic contacts in brain development. This review examines the possibility (1) that LTD mechanisms are enhanced in the prefrontal cortex during adolescence due to ongoing synaptic pruning in this late developing cortex and (2) that enhanced synaptic plasticity in the prefrontal cortex represents a key molecular substrate underlying the critical period for maturation of executive function. Molecular sites of interaction between environmental factors, such as alcohol and stress, and glutamate receptor mediated plasticity are considered. The accentuated negative impact of these factors during adolescence may be due in part to interference with LTD mechanisms that refine prefrontal cortical circuitry and when disrupted derail normal maturation of executive function. Diminished prefrontal cortical control over risk-taking behavior could further exacerbate negative outcomes associated with these behaviors, as for example addiction and depression. Greater insight into the neurobiology of the adolescent brain is needed to fully understand the molecular basis for heightened vulnerability during adolescence to the injurious effects of substance abuse and stress.
Collapse
Affiliation(s)
- L D Selemon
- Department of Neurobiology, Yale University School of Medicine, New Haven, CT 06520-8001, USA.
| |
Collapse
|
22
|
Zlotkowski K, Pierce-Shimomura J, Siegel D. Small-molecule-mediated axonal branching in Caenorhabditis elegans. Chembiochem 2013; 14:307-10. [PMID: 23362121 PMCID: PMC4470382 DOI: 10.1002/cbic.201200712] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2012] [Indexed: 01/22/2023]
Abstract
An in vivo system for monitoring small-molecule-mediated neuronal branching has been developed by using C. elegans. Growth-promoting compounds can be detected by visual inspection of GFPlabeled cholinergic neurons, as axonal branching occurs following treatment with neurotrophic agents. Investigation of the structure-activity relationship of the neurotrophic natural product clovanemagnolol (1) led us to a comparable chemically edited derivative.
Collapse
Affiliation(s)
- Katherine Zlotkowski
- Department of Chemistry and Biochemistry The University of Texas at Austin, Austin TX, 78701 (USA)
| | - Jon Pierce-Shimomura
- Department of Neurobiology, The University of Texas at Austin Austin TX, 78701 (USA)
| | - Dionicio Siegel
- Department of Chemistry and Biochemistry The University of Texas at Austin, Austin TX, 78701 (USA)
| |
Collapse
|
23
|
Sohur US, Padmanabhan HK, Kotchetkov IS, Menezes JRL, Macklis JD. Anatomic and molecular development of corticostriatal projection neurons in mice. ACTA ACUST UNITED AC 2012; 24:293-303. [PMID: 23118198 DOI: 10.1093/cercor/bhs342] [Citation(s) in RCA: 70] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Corticostriatal projection neurons (CStrPN) project from the neocortex to ipsilateral and contralateral striata to control and coordinate motor programs and movement. They are clinically important as the predominant cortical population that degenerates in Huntington's disease and corticobasal ganglionic degeneration, and their injury contributes to multiple forms of cerebral palsy. Together with their well-studied functions in motor control, these clinical connections make them a functionally, behaviorally, and clinically important population of neocortical neurons. Little is known about their development. "Intratelencephalic" CStrPN (CStrPNi), projecting to the contralateral striatum, with their axons fully within the telencephalon (intratelencephalic), are a major population of CStrPN. CStrPNi are of particular interest developmentally because they share hodological and axon guidance characteristics of both callosal projection neurons (CPN) and corticofugal projection neurons (CFuPN); CStrPNi send axons contralaterally before descending into the contralateral striatum. The relationship of CStrPNi development to that of broader CPN and CFuPN populations remains unclear; evidence suggests that CStrPNi might be evolutionary "hybrids" between CFuPN and deep layer CPN-in a sense "chimeric" with both callosal and corticofugal features. Here, we investigated the development of CStrPNi in mice-their birth, maturation, projections, and expression of molecular developmental controls over projection neuron subtype identity.
Collapse
Affiliation(s)
- U Shivraj Sohur
- Department of Stem Cell and Regenerative Biology and Harvard Stem Cell Institute, Harvard University, Cambridge, MA, USA
| | | | | | | | | |
Collapse
|
24
|
The corpus callosum and the visual cortex: plasticity is a game for two. Neural Plast 2012; 2012:838672. [PMID: 22792494 PMCID: PMC3388387 DOI: 10.1155/2012/838672] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2011] [Accepted: 04/19/2012] [Indexed: 01/03/2023] Open
Abstract
Throughout life, experience shapes and selects the most appropriate brain functional connectivity to adapt to a changing environment. An ideal system to study experience-dependent plasticity is the visual cortex, because visual experience can be easily manipulated. In this paper, we focus on the role of interhemispheric, transcallosal projections in experience-dependent plasticity of the visual cortex. We review data showing that deprivation of sensory experience can modify the morphology of callosal fibres, thus altering the communication between the two hemispheres. More importantly, manipulation of callosal input activity during an early critical period alters developmental maturation of functional properties in visual cortex and modifies its ability to remodel in response to experience. We also discuss recent data in rat visual cortex, demonstrating that the corpus callosum plays a role in binocularity of cortical neurons and is involved in the plastic shift of eye preference that follows a period of monocular eyelid suture (monocular deprivation) in early age. Thus, experience can modify the fine connectivity of the corpus callosum, and callosal connections represent a major pathway through which experience can mediate functional maturation and plastic rearrangements in the visual cortex.
Collapse
|
25
|
Parakalan R, Jiang B, Nimmi B, Janani M, Jayapal M, Lu J, Tay SSW, Ling EA, Dheen ST. Transcriptome analysis of amoeboid and ramified microglia isolated from the corpus callosum of rat brain. BMC Neurosci 2012; 13:64. [PMID: 22697290 PMCID: PMC3441342 DOI: 10.1186/1471-2202-13-64] [Citation(s) in RCA: 77] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2011] [Accepted: 05/16/2012] [Indexed: 02/03/2023] Open
Abstract
Background Microglia, the resident immune cells of the central nervous system (CNS), have two distinct phenotypes in the developing brain: amoeboid form, known to be amoeboid microglial cells (AMC) and ramified form, known to be ramified microglial cells (RMC). The AMC are characterized by being proliferative, phagocytic and migratory whereas the RMC are quiescent and exhibit a slow turnover rate. The AMC transform into RMC with advancing age, and this transformation is indicative of the gradual shift in the microglial functions. Both AMC and RMC respond to CNS inflammation, and they become hypertrophic when activated by trauma, infection or neurodegenerative stimuli. The molecular mechanisms and functional significance of morphological transformation of microglia during normal development and in disease conditions is not clear. It is hypothesized that AMC and RMC are functionally regulated by a specific set of genes encoding various signaling molecules and transcription factors. Results To address this, we carried out cDNA microarray analysis using lectin-labeled AMC and RMC isolated from frozen tissue sections of the corpus callosum of 5-day and 4-week old rat brain respectively, by laser capture microdissection. The global gene expression profiles of both microglial phenotypes were compared and the differentially expressed genes in AMC and RMC were clustered based on their functional annotations. This genome wide comparative analysis identified genes that are specific to AMC and RMC. Conclusions The novel and specific molecules identified from the trancriptome explains the quiescent state functioning of microglia in its two distinct morphological states.
Collapse
Affiliation(s)
- Rangarajan Parakalan
- Department of Anatomy, Yong Loo Lin School of Medicine, National University of Singapore, Blk MD10, 4 Medical Drive, Singapore, 117597, Singapore
| | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Seelke AMH, Dooley JC, Krubitzer LA. The emergence of somatotopic maps of the body in S1 in rats: the correspondence between functional and anatomical organization. PLoS One 2012; 7:e32322. [PMID: 22393398 PMCID: PMC3290658 DOI: 10.1371/journal.pone.0032322] [Citation(s) in RCA: 55] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2011] [Accepted: 01/25/2012] [Indexed: 11/29/2022] Open
Abstract
Most of what we know about cortical map development and plasticity comes from studies in mice and rats, and for the somatosensory cortex, almost exclusively from the whisker-dominated posteromedial barrel fields. Whiskers are the main effector organs of mice and rats, and their representation in cortex and subcortical pathways is a highly derived feature of murine rodents. This specialized anatomical organization may therefore not be representative of somatosensory cortex in general, especially for species that utilize other body parts as their main effector organs, like the hands of primates. For these reasons, we examined the emergence of whole body maps in developing rats using electrophysiological recording techniques. In P5, P10, P15, P20 and adult rats, multiple recordings were made in the medial portion of S1 in each animal. Subsequently, these functional maps were related to anatomical parcellations of S1 based on a variety of histological stains. We found that at early postnatal ages (P5) medial S1 was composed almost exclusively of the representation of the vibrissae. At P10, other body part representations including the hindlimb and forelimb were present, although these were not topographically organized. By P15, a clear topographic organization began to emerge coincident with a reduction in receptive field size. By P20, body maps were adult-like. This study is the first to describe how topography of the body develops in S1 in any mammal. It indicates that anatomical parcellations and functional maps are initially incongruent but become tightly coupled by P15. Finally, because anatomical and functional specificity of developing barrel cortex appears much earlier in postnatal life than the rest of the body, the entire primary somatosensory cortex should be considered when studying general topographic map formation in development.
Collapse
Affiliation(s)
- Adele M. H. Seelke
- Center for Neuroscience, University of California Davis, Davis, California, United States of America
| | - James C. Dooley
- Center for Neuroscience, University of California Davis, Davis, California, United States of America
| | - Leah A. Krubitzer
- Center for Neuroscience, University of California Davis, Davis, California, United States of America
- Department of Psychology, University of California Davis, Davis, California, United States of America
| |
Collapse
|
27
|
Abstract
During development, axons are guided to their appropriate targets by a variety of guidance factors. On arriving at their synaptic targets, or while en route, axons form branches. Branches generated de novo from the main axon are termed collateral branches. The generation of axon collateral branches allows individual neurons to make contacts with multiple neurons within a target and with multiple targets. In the adult nervous system, the formation of axon collateral branches is associated with injury and disease states and may contribute to normally occurring plasticity. Collateral branches are initiated by actin filament– based axonal protrusions that subsequently become invaded by microtubules, thereby allowing the branch to mature and continue extending. This article reviews the current knowledge of the cellular mechanisms of the formation of axon collateral branches. The major conclusions of this review are (1) the mechanisms of axon extension and branching are not identical; (2) active suppression of protrusive activity along the axon negatively regulates branching; (3) the earliest steps in the formation of axon branches involve focal activation of signaling pathways within axons, which in turn drive the formation of actin-based protrusions; and (4) regulation of the microtubule array by microtubule-associated and severing proteins underlies the development of branches. Linking the activation of signaling pathways to specific proteins that directly regulate the axonal cytoskeleton underlying the formation of collateral branches remains a frontier in the field.
Collapse
Affiliation(s)
- Gianluca Gallo
- Department of Neurobiology and Anatomy, Drexel University College of Medicine, 2900 Queen Lane, Philadelphia, Pennsylvania 19129, USA.
| |
Collapse
|
28
|
Ganjavi H, Lewis JD, Bellec P, MacDonald PA, Waber DP, Evans AC, Karama S. Negative associations between corpus callosum midsagittal area and IQ in a representative sample of healthy children and adolescents. PLoS One 2011; 6:e19698. [PMID: 21625542 PMCID: PMC3098246 DOI: 10.1371/journal.pone.0019698] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2010] [Accepted: 04/04/2011] [Indexed: 12/22/2022] Open
Abstract
Documented associations between corpus callosum size and cognitive ability have heretofore been inconsistent potentially owing to differences in sample characteristics, differing methodologies in measuring CC size, or the use of absolute versus relative measures. We investigated the relationship between CC size and intelligence quotient (IQ) in the NIH MRI Study of Normal Brain Development sample, a large cohort of healthy children and adolescents (aged six to 18, n = 198) recruited to be representative of the US population. CC midsagittal area was measured using an automated system that partitioned the CC into 25 subregions. IQ was measured using the Wechsler Abbreviated Scale of Intelligence (WASI). After correcting for total brain volume and age, a significant negative correlation was found between total CC midsagittal area and IQ (r = −0.147; p = 0.040). Post hoc analyses revealed a significant negative correlation in children (age<12) (r = −0.279; p = 0.004) but not in adolescents (age≥12) (r = −0.005; p = 0.962). Partitioning the subjects by gender revealed a negative correlation in males (r = −0.231; p = 0.034) but not in females (r = 0.083; p = 0.389). Results suggest that the association between CC and intelligence is mostly driven by male children. In children, a significant gender difference was observed for FSIQ and PIQ, and in males, a significant age-group difference was observed for FSIQ and PIQ. These findings suggest that the correlation between CC midsagittal area and IQ may be related to age and gender.
Collapse
Affiliation(s)
- Hooman Ganjavi
- Department of Psychiatry, McGill University, Montreal, Quebec, Canada
| | - John D. Lewis
- McConnell Brain Imaging Centre, Montreal Neurological Institute, McGill University, Montreal, Quebec, Canada
| | - Pierre Bellec
- McConnell Brain Imaging Centre, Montreal Neurological Institute, McGill University, Montreal, Quebec, Canada
| | - Penny A. MacDonald
- Department of Neurology and Neurosurgery, McGill University, Montreal, Quebec, Canada
| | - Deborah P. Waber
- Department of Psychiatry, Harvard Medical School, Children's Hospital, Boston, Massachusetts, United States of America
| | - Alan C. Evans
- McConnell Brain Imaging Centre, Montreal Neurological Institute, McGill University, Montreal, Quebec, Canada
- Department of Neurology and Neurosurgery, McGill University, Montreal, Quebec, Canada
| | - Sherif Karama
- Department of Psychiatry, McGill University, Montreal, Quebec, Canada
- McConnell Brain Imaging Centre, Montreal Neurological Institute, McGill University, Montreal, Quebec, Canada
- Department of Neurology and Neurosurgery, McGill University, Montreal, Quebec, Canada
- Department of Psychiatry, Douglas Mental Health University Institute, McGill University, Montreal, Quebec, Canada
- * E-mail:
| | | |
Collapse
|
29
|
Zhao H, Maruyama T, Hattori Y, Sugo N, Takamatsu H, Kumanogoh A, Shirasaki R, Yamamoto N. A molecular mechanism that regulates medially oriented axonal growth of upper layer neurons in the developing neocortex. J Comp Neurol 2011; 519:834-48. [DOI: 10.1002/cne.22536] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|
30
|
Frost JD, Lee CL, Hrachovy RA, Swann JW. High frequency EEG activity associated with ictal events in an animal model of infantile spasms. Epilepsia 2011; 52:53-62. [PMID: 21204817 DOI: 10.1111/j.1528-1167.2010.02887.x] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
PURPOSE To describe high frequency (HF) electrographic activity accompanying ictal discharges in the tetrodotoxin (TTX) model of infantile spasms. Previous studies of HF oscillations in humans and animals suggest that they arise at sites of seizure onset. We compared HF oscillations at several cortical sites to determine regional differences. METHODS TTX was infused for 4 weeks into the neocortex of rats beginning on postnatal days 11 or 12. Electroencephalography (EEG) electrodes were implanted 2 weeks later and video-EEG recordings were analyzed between postnatal days 31 and 47. EEG recordings were digitally sampled at 2,048 Hz. HF EEG activity (20-900 Hz) was quantified using compressed spectral arrays and band-pass filtering. KEY FINDINGS Multiple seizures were analyzed in 10 rats. Ictal onset was associated with multiple bands of rhythmic HF activity that could extend to 700 Hz. The earliest and most intense discharging typically occurred contralaterally to where TTX was infused. HF activity continued to occur throughout the seizure (even during the electrodecrement that is recorded with more traditional filter settings), although there was a gradual decrease of the intensity of the highest frequency components as the amplitude of lower frequency oscillations increased. Higher frequencies sometimes reappeared in association with spike/sharp-waves at seizure termination. SIGNIFICANCE The findings show that HF EEG activity accompanies ictal events in the TTX model. Results also suggest that the seizures in this model do not originate from the TTX infusion site. Instead HF discharges are usually most intense and occur earliest contralaterally, suggesting that these homologous regions may be involved in seizure generation.
Collapse
Affiliation(s)
- James D Frost
- Department of Neurology Neuroscience, Baylor College of Medicine, Houston, Texas, USA
| | | | | | | |
Collapse
|
31
|
Parcellation: An explanation of the arrangement of apples and oranges on a severely pruned phylogenetic tree? Behav Brain Sci 2010. [DOI: 10.1017/s0140525x00018392] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
32
|
|
33
|
|
34
|
|
35
|
|
36
|
|
37
|
|
38
|
A milestone in comparative neurology: A specific hypothesis claims rules for conservative connectivity. Behav Brain Sci 2010. [DOI: 10.1017/s0140525x00018409] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
39
|
|
40
|
Behavioral selectivity based on thalamotectal interactions: Ontogenetic and phylogenetic aspects in amphibians. Behav Brain Sci 2010. [DOI: 10.1017/s0140525x0001846x] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
41
|
|
42
|
|
43
|
|
44
|
Axon development and plasticity: Clues from species differences and suggestions for mechanisms of evolutionary change. Behav Brain Sci 2010. [DOI: 10.1017/s0140525x00018574] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
45
|
|
46
|
|
47
|
|
48
|
|
49
|
Abstract
AbstractRecent studies on neural pathways in a broad spectrum of vertebrates suggest that, in addition to migration and an increase in the number of certain select neurons, a significant aspect of neural evolution is a “parcellation” (segregation-isolation) process that involves the loss of selected connections by the new aggregates. A similar process occurs during ontogenetic development. These findings suggest that in many neuronal systems axons do not invade unknown territories during evolutionary or ontogenetic development but follow in their ancestors' paths to their ancestral targets; if the connection is later lost, it reflects the specialization of the circuitry.The pattern of interspecific variability suggests (1) that overlap of circuits is a more common feature in primitive (generalized) than in specialized brain organizations and (2) that most projections, such as the retinal, thalamotelencephalic, corticotectal, and tectal efferent ones, were bilateral in the primitive condition. Specialization of these systems in some vertebrate groups has involved the selective loss of connections, resulting in greater isolation of functions. The parcellation process may also play an important role in cell diversification.The parcellation process as described here is thought to be one of several underlying mechanisms of evolutionary and ontogenetic differentiation.
Collapse
|
50
|
|