1
|
Yoshikawa K. Necdin: A purposive integrator of molecular interaction networks for mammalian neuron vitality. Genes Cells 2021; 26:641-683. [PMID: 34338396 PMCID: PMC9290590 DOI: 10.1111/gtc.12884] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Revised: 06/27/2021] [Accepted: 06/29/2021] [Indexed: 12/29/2022]
Abstract
Necdin was originally found in 1991 as a hypothetical protein encoded by a neural differentiation‐specific gene transcript in murine embryonal carcinoma cells. Virtually all postmitotic neurons and their precursor cells express the necdin gene (Ndn) during neuronal development. Necdin mRNA is expressed only from the paternal allele through genomic imprinting, a placental mammal‐specific epigenetic mechanism. Necdin and its homologous MAGE (melanoma antigen) family, which have evolved presumedly from a subcomplex component of the SMC5/6 complex, are expressed exclusively in placental mammals. Paternal Ndn‐mutated mice totally lack necdin expression and exhibit various types of neuronal abnormalities throughout the nervous system. Ndn‐null neurons are vulnerable to detrimental stresses such as DNA damage. Necdin also suppresses both proliferation and apoptosis of neural stem/progenitor cells. Functional analyses using Ndn‐manipulated cells reveal that necdin consistently exerts antimitotic, anti‐apoptotic and prosurvival effects. Necdin interacts directly with a number of regulatory proteins including E2F1, p53, neurotrophin receptors, Sirt1 and PGC‐1α, which serve as major hubs of protein–protein interaction networks for mitosis, apoptosis, differentiation, neuroprotection and energy homeostasis. This review focuses on necdin as a pleiotropic protein that integrates molecular interaction networks to promote neuronal vitality in modern placental mammals.
Collapse
|
2
|
Nojehdehian H, Moztarzadeh F, Baharvand H, Mehrjerdi NZ, Nazarian H, Tahriri M. Effect of Poly-L-lysine Coating on Retinoic Acid-Loaded PLGA Microspheres in the Differentiation of Carcinoma Stem Cells into Neural Cells. Int J Artif Organs 2018. [DOI: 10.1177/039139881003301005] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
In this study, PLGA microspheres were prepared using a water-in-oil-in-water emulsion/solvent evaporation technique. Some microspheres were coated with poly-L-lysine (an extracellular matrix (ECM) component), and then pluripotent P19 embryonic carcinoma cells were seeded on them. P19 cells attached onto the PLGA microspheres; subsequently, by adding retinoic acid (RA) to cell culture medium as a neurogenic inducer (RA was released from the microspheres), the cells differentiated into neural cells. Size and morphology of PLGA microspheres was characterized by scanning electron microscopy (SEM). Neurogenic differentiation was studied by immunofluorescent staining, real-time polymerase chain reaction (RT-PCR), and light microscopy. Histological assay showed that more cells attached onto microspheres coated with poly-L-lysine than the uncoated group. Immunofluoresent staining and RT-PCR analysis for β-Tubulin, Nestin and Pax6 genes indicated differentiation of P19 cells into neural cells on both coated and uncoated microspheres. It was found that a high surface area of microspheres improves cell attachment and expansion, which was significantly increased in those coated with poly-L-lysine. Finally, these results highlight the versatility of these sample scaffolds as a model system for nerve tissue engineering.
Collapse
Affiliation(s)
- Hanieh Nojehdehian
- Stem Cell Department, Cell Science Research Center, Royan Institute, Tehran - Iran
- Biomaterials Group, Faculty of Biomedical Engineering (Center of Excellence), Amirkabir University of Technology, Tehran - Iran
- Faculty of Biomedical Engineering, Azad University, Tehran - Iran
| | - Fathollah Moztarzadeh
- Biomaterials Group, Faculty of Biomedical Engineering (Center of Excellence), Amirkabir University of Technology, Tehran - Iran
| | - Hossein Baharvand
- Stem Cell Department, Cell Science Research Center, Royan Institute, Tehran - Iran
| | | | - Hamid Nazarian
- Stem Cell Department, Cell Science Research Center, Royan Institute, Tehran - Iran
| | - Mohammadreza Tahriri
- Biomaterials Group, Faculty of Biomedical Engineering (Center of Excellence), Amirkabir University of Technology, Tehran - Iran
| |
Collapse
|
3
|
Podleśny-Drabiniok A, Sobska J, de Lera AR, Gołembiowska K, Kamińska K, Dollé P, Cebrat M, Krężel W. Distinct retinoic acid receptor (RAR) isotypes control differentiation of embryonal carcinoma cells to dopaminergic or striatopallidal medium spiny neurons. Sci Rep 2017; 7:13671. [PMID: 29057906 PMCID: PMC5651880 DOI: 10.1038/s41598-017-13826-x] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2017] [Accepted: 09/26/2017] [Indexed: 01/03/2023] Open
Abstract
Embryonal carcinoma (EC) cells are pluripotent stem cells extensively used for studies of cell differentiation. Although retinoic acid (RA) is a powerful inducer of neurogenesis in EC cells, it is not clear what specific neuronal subtypes are generated and whether different RAR isotypes may contribute to such neuronal diversification. Here we show that RA treatment during EC embryoid body formation is a highly robust protocol for generation of striatal-like GABAergic neurons which display molecular characteristics of striatopallidal medium spiny neurons (MSNs), including expression of functional dopamine D2 receptor. By using RARα, β and γ selective agonists we show that RARγ is the functionally dominant RAR in mediating RA control of early molecular determinants of MSNs leading to formation of striatopallidal-like neurons. In contrast, activation of RARα is less efficient in generation of this class of neurons, but is essential for differentiation of functional dopaminergic neurons, which may correspond to a subpopulation of inhibitory dopaminergic neurons expressing glutamic acid decarboxylase in vivo.
Collapse
Affiliation(s)
- Anna Podleśny-Drabiniok
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, Illkirch, France.,Institut de la Santé et de la Recherche Médicale, U964, Illkirch, France.,Centre National de la Recherche Scientifique, UMR 7104, Illkirch, France.,Université de Strasbourg, Illkirch, France.,Laboratory of Molecular and Cellular Immunology, Department of Tumor Immunology, L. Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, Weigla 12, 53-114, Wroclaw, Poland
| | - Joanna Sobska
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, Illkirch, France.,Institut de la Santé et de la Recherche Médicale, U964, Illkirch, France.,Centre National de la Recherche Scientifique, UMR 7104, Illkirch, France.,Université de Strasbourg, Illkirch, France.,Advanced Materials Engineering and Modelling Group, Faculty of Chemistry, Wroclaw University of Science and Technology, Wyb. Wyspianskiego 27, 50-370, Wroclaw, Poland
| | - Angel R de Lera
- Departamento de Química Orgánica, Facultade de Química, CINBIO and IIS Galicia Sur, Universidade de Vigo, Vigo, Spain
| | - Krystyna Gołembiowska
- Department of Pharmacology, Institute of Pharmacology, Polish Academy of Sciences, Kraków, Poland
| | - Katarzyna Kamińska
- Department of Pharmacology, Institute of Pharmacology, Polish Academy of Sciences, Kraków, Poland
| | - Pascal Dollé
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, Illkirch, France.,Institut de la Santé et de la Recherche Médicale, U964, Illkirch, France.,Centre National de la Recherche Scientifique, UMR 7104, Illkirch, France.,Université de Strasbourg, Illkirch, France
| | - Małgorzata Cebrat
- Laboratory of Molecular and Cellular Immunology, Department of Tumor Immunology, L. Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, Weigla 12, 53-114, Wroclaw, Poland
| | - Wojciech Krężel
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, Illkirch, France. .,Institut de la Santé et de la Recherche Médicale, U964, Illkirch, France. .,Centre National de la Recherche Scientifique, UMR 7104, Illkirch, France. .,Université de Strasbourg, Illkirch, France.
| |
Collapse
|
4
|
The controversial role of microglia in malignant gliomas. Clin Dev Immunol 2013; 2013:285246. [PMID: 23983766 PMCID: PMC3741958 DOI: 10.1155/2013/285246] [Citation(s) in RCA: 146] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2013] [Accepted: 06/19/2013] [Indexed: 01/01/2023]
Abstract
Malignant gliomas contain stroma and a variety of immune cells including abundant activated microglia/macrophages. Mounting evidence indicates that the glioma microenvironment converts the glioma-associated microglia/macrophages (GAMs) into glioma-supportive, immunosuppressive cells; however, GAMs can retain intrinsic anti-tumor properties. Here, we review and discuss this duality and the potential therapeutic strategies that may inhibit their glioma-supportive and propagating functions.
Collapse
|
5
|
Aizawa T, Hasegawa K, Ohkumo T, Haga S, Ikeda K, Yoshikawa K. Neural stem cell-like gene expression in a mouse ependymoma cell line transformed by human BK polyomavirus. Cancer Sci 2010; 102:122-9. [PMID: 21073635 DOI: 10.1111/j.1349-7006.2010.01775.x] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
Ependymomas often show characteristics similar to those of neural stem cells in vivo and in vitro. However, few ependymoma cell lines that exhibit neural stem cell-like properties have been reported. In this study, we have characterized a novel cell line, designated Vn19, established from ependymoma that arose in mice inoculated intracerebrally with human BK polyomavirus. Transplanted Vn19 cells in nude mice ubiquitously expressed viral large T antigen in the nucleus and coexpressed neuronal and glial marker proteins in vivo. Remarkably, individual Vn19 cells in dispersed cultures simultaneously expressed marker proteins of neural stem cells (nestin, Bmi1, CD133), neurons (βIII tubulin, neurofilament-M) and glial cells (glial fibrillary acidic protein, A2B5, S100β, O4). Ubiquitous and homogenous expression of these multilineage marker proteins was also observed in cloned Vn19 cells. The Vn19 cells formed neurosphere-like aggregates when cultured in the presence of growth factors. Quantitative RT-PCR analysis revealed that expression of mRNA for nestin, neurofilament-H and glial fibrillary acidic protein significantly increased in Vn19 cells cultured under growth factor-deprived conditions. Among MAGE (melanoma antigen) family genes, MAGE-A (A1-8), MAGE-B (B1-3), MAGE-D1, MAGE-E1, MAGE-G1 (necdin-like 2) and MAGE-H1 were expressed in the Vn19 cells, in which neither necdin nor MAGEL2 was detectable. These results suggest that this murine ependymoma cell line recapitulates the gene expression profile in ependymal cells undergoing malignant transformation.
Collapse
Affiliation(s)
- Takako Aizawa
- Tokyo Institute of Psychiatry, Setagaya, Tokyo, Japan
| | | | | | | | | | | |
Collapse
|
6
|
Lee JH, Shin SY, Kim S, Choo J, Lee YH. Suppression of PTEN expression during aggregation with retinoic acid in P19 mouse embryonal carcinoma cells. Biochem Biophys Res Commun 2006; 347:715-22. [PMID: 16842746 DOI: 10.1016/j.bbrc.2006.06.161] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2006] [Accepted: 06/25/2006] [Indexed: 12/19/2022]
Abstract
Apoptosis is thought to be involved in the maintenance of cellular homeostasis, as well as various pathological processes. However, little information is available about the regulation of apoptosis during the aggregation stage of P19 embryonal carcinoma (EC) cells. Here we report that aggregation-induced apoptosis is markedly attenuated by treatment with retinoic acid (RA). PTEN (phosphatase and tensin homolog deleted on chromosome 10) expression was down-regulated during the aggregation phase of P19 EC cells in the presence, but not in the absence, of RA. Suppression of PTEN expression during the aggregation was accompanied by increased phosphorylation of serine/threonine kinase Akt and glycogen synthase kinase-3beta (GSK-3beta). Our results suggest that RA attenuates the induction of apoptosis during the aggregation phase of P19 EC cells, probably by suppressing PTEN expression.
Collapse
Affiliation(s)
- Joon Ho Lee
- Division of Molecular and Life Sciences, College of Science and Technology, Hanyang University, Ansan, Gyeonggi-do, South Korea
| | | | | | | | | |
Collapse
|
7
|
Wentlandt K, Kushnir M, Naus CCG, Carlen PL. Ethanol inhibits gap-junctional coupling between P19 cells. Alcohol Clin Exp Res 2004; 28:1284-90. [PMID: 15365297 DOI: 10.1097/01.alc.0000139705.17646.ba] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
BACKGROUND Gap junctions are plaques of multiple intercellular channels that connect the cytoplasm of adjacent cells. They provide both electrical and metabolic coupling and are an essential element in normal growth, development, and physiology. Little research exists on the relationship between alcohol administration and gap-junctional function or expression. This study looks at the function and expression of gap junctions after incubation and withdrawal of ethanol with P19 cell cultures. METHODS Gap-junctional communication was assessed after 24 and 48 hr of exposure to 20 and 40 mM ethanol and after a 24-hr withdrawal period. The seeding technique was used, and diacyl-3,3'-indocarbocyanine iodide/calcein-stained donor cells were seeded on an unstained monolayer and then reviewed by confocal microscope and counted by flow cytometry. Analysis of connexin (Cx) proteins was performed by Western blot, gel electrophoresis, and immunoblots with antibodies for Cx26 and Cx43. RESULTS All treatment regimens produced similar results, reducing dye coupling by more than 50% without recovery after a 24-hr withdrawal period. Exposing the cells to 20 mM ethanol for 48 hr did not significantly change the levels of Cx26 protein, but ethanol significantly decreased the levels of Cx43 in cultured P19 cells. CONCLUSIONS This study illustrates that ethanol can inhibit gap-junction function in the P19 cell line. Chronic exposure to 20 mM ethanol selectively decreased the levels of Cx43 protein in the membrane fraction of the cell cultures.
Collapse
Affiliation(s)
- Kirsten Wentlandt
- Toronto Western Research Institute, University Health Network, Toronto, Ontario, Canada
| | | | | | | |
Collapse
|
8
|
Newman KD, McBurney MW. Poly(d,l lactic-co-glycolic acid) microspheres as biodegradable microcarriers for pluripotent stem cells. Biomaterials 2004; 25:5763-71. [PMID: 15147822 DOI: 10.1016/j.biomaterials.2004.01.027] [Citation(s) in RCA: 97] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2003] [Accepted: 01/20/2004] [Indexed: 01/20/2023]
Abstract
The pluripotent nature and proliferative capacity of embryonic stem cells makes them an attractive cell source for tissue engineering and regeneration. In our study we investigated the use of poly(D,L-lactic-co-glycolic acid) (PLGA) microspheres as biodegradable microcarriers of pluripotent cells and as delivery systems of bioactive factors, which influence cell differentiation. The pluripotent P19 embryonal carcinoma cell line was used as a model to study cell attachment, growth and differentiation of pluripotent stem cells on PLGA microspheres. Retinoic acid (RA) was encapsulated in the PLGA microcarriers to influence cell differentiation-more specifically, to induce P19 cell differentiation into neurons. The results revealed that P19 cells attach and grow on the surface of the RA loaded PLGA microspheres. Moreover, the RA loaded PLGA microspheres were shown to be as effective as soluble RA at inducing P19 cell differentiation into neurons. Hence, the results of these ex vivo studies clearly demonstrate the capacity of PLGA microspheres to serve a dual role as both delivery systems of bioactive factors and as scaffolds for pluripotent cells. More importantly, our study demonstrates the potential use of PLGA microspheres as transplantation matrices of pluripotent stem cells for tissue engineering and regeneration.
Collapse
Affiliation(s)
- Kimberley D Newman
- Ottawa Regional Cancer Centre and Departments of Medicine, University of Ottawa, Ottawa, Ont., Canada K1H 1C4.
| | | |
Collapse
|
9
|
Bani-Yaghoub M, Underhill TM, Naus CC. Gap junction blockage interferes with neuronal and astroglial differentiation of mouse P19 embryonal carcinoma cells. DEVELOPMENTAL GENETICS 2000; 24:69-81. [PMID: 10079512 DOI: 10.1002/(sici)1520-6408(1999)24:1/2<69::aid-dvg8>3.0.co;2-m] [Citation(s) in RCA: 66] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
During embryonic development, cells not only increase in number, they also undergo specialization and differentiate into diverse cell types that are organized into different tissues and organs. Nervous system development, for example, involves a complex series of events such as neuronal and astroglial differentiation that are coordinated among adjacent cells. The organization of growth and differentiation may be mediated, at least partly, by exchange of small ions and molecules via intercellular gap junction channels. These structures are mode of connexons (hemichannels), which are hexameric assemblies of the gap junction proteins, connexins. We investigated the role of intercellular communication in neuronal and astroglial differentiation by using a gap junction blocking agent, carbenoxolone (CBX), in comparison to its inactive (control) analog, glycyrrhizic acid (GZA). We used the mouse P19 embryonal carcinoma cell line, which differentiates into neurons and astrocytes upon retinoic acid (RA) induction. Our results show that both GZA- and CBX-treated cells express alpha 1 connexin (connexin43). The level of alpha 1 connexin decreases upon RA induction. CBX treated cells show significant reduction in both neuronal (5-fold) and astrocytic (13-fold) differentiation compared with those of control. These results clearly indicate that the blockage of gap junction-mediated intercellular communication interferes with differentiation of P19 cells into neurons and astrocytes.
Collapse
Affiliation(s)
- M Bani-Yaghoub
- Department of Anatomy & Cell Biology, University of Western Ontario, London, Canada
| | | | | |
Collapse
|
10
|
Abstract
In the mammalian central nervous system, neurons withdraw from the cell cycle immediately after their differentiation from proliferative neuroepithelial cells. Even while postmitotic neurons remain in permanent mitotic quiescence, they express a number of cell cycle regulators required for cell cycle progression. This review focuses on the expression and functions of members of the retinoblastoma protein (Rb) family (Rb, p107, p130) and necdin, all of which are growth suppressors that interact with the viral oncoproteins and the E2F family proteins. These molecules are differentially expressed in proliferative neural progenitors and postmitotic neurons in the developing neuroepithelium in vivo and differentiating embryonal carcinoma cells in vitro. During neurogenesis, dysfunction of the Rb family proteins causes impaired neuronal differentiation accompanied by cell death (apoptosis). Thus, the Rb family proteins are essential for both terminal mitosis of neuronal progenitors and survival of nascent neurons. However, the Rb family proteins seem to be dispensable for the maintenance of the postmitotic state of terminally differentiated neurons. Necdin is expressed exclusively in postmitotic cells and may contribute to their permanent mitotic arrest. These cell cycle regulators coordinately act in the generation, survival and demise of postmitotic neurons.
Collapse
Affiliation(s)
- K Yoshikawa
- Division of Regulation of Macromolecular Functions, Institute for Protein Research, Osaka University, Yamadaoka 3-2, Suita, Osaka, Japan.
| |
Collapse
|
11
|
Yokote H, Terada T, Matsumoto H, Kakishita K, Kinoshita Y, Nakao N, Nakai K, Itakura T. Dephosphorylation-induced decrease of anti-apoptotic function of Bcl-2 in neuronally differentiated P19 cells following ischemic insults. Brain Res 2000; 857:78-86. [PMID: 10700555 DOI: 10.1016/s0006-8993(99)02414-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
It is known that Bcl-2 has a protective effect against neuronal ischemia. Some reports speculate anti-apoptotic function of Bcl-2 depends not on the expression level but on the phosphorylation state. We found induction of apoptosis and CPP32 activation by energy impairment (3-nitropropionic acid (3-NP)-treatment or glucose-deprivation) in the neuronally differentiated P19 cells. Time course study of cell viability following ischemic insults showed that the number of viable cells decreased along with the increase in the amount of dephosphorylated Bcl-2 without obvious quantitative alteration of the protein. Then, we generated differentiated P19 cells overexpressing wild-type Bcl-2 (P19/wt. Bcl-2) or phosphorylation-negative Bcl-2 mutant (P19/mut.Bcl-2), in which alanine was substituted for serine 70. When the cell viability was examined within 24 h, P19/mut.Bcl-2 was more vulnerable to energy impairment as compared with P19/wt.Bcl-2. In addition, overexpression of wild-type Bcl-2 inhibited DNA laddering and CPP32 activation induced by the insults, while that of mutant Bcl-2 did not. These findings suggest that the phosphorylation state, as well as the expression level, of Bcl-2 plays an important role to modulate its protective effect against ischemic insults.
Collapse
Affiliation(s)
- H Yokote
- Department of neurosurgery, Wakayama Medical College, Kimiidera 811-1, Wakayama, Japan.
| | | | | | | | | | | | | | | |
Collapse
|
12
|
Azuma-Hara M, Taniura H, Uetsuki T, Niinobe M, Yoshikawa K. Regulation and deregulation of E2F1 in postmitotic neurons differentiated from embryonal carcinoma P19 cells. Exp Cell Res 1999; 251:442-51. [PMID: 10471329 DOI: 10.1006/excr.1999.4593] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Neurons withdraw from the cell cycle immediately after differentiation from their proliferative precursors. E2F1, a principal transcription factor that promotes cell cycle progression, must be silenced in neurons. We investigated the E2F1 system in postmitotic neurons derived from murine embryonal carcinoma P19 cells. P19 cells highly expressed the E2F1 gene during neural differentiation, and enriched neurons contained a high abundance of E2F1 mRNA. In contrast, postmitotic neurons possessed extremely low levels of E2F1 protein as assessed by the electrophoretic mobility shift assay and Western blotting. A recombinant E2F1 fusion protein was ubiquitinated in vitro when incubated with neuronal lysates. In addition, treatment with the proteasome inhibitor MG132 increased the endogenous level of E2F1 protein in neurons. These results suggest that the ubiquitin-proteasome pathway contributes, at least in part, to the downregulation of E2F1 protein in postmitotic neurons. Adenovirus-mediated transfer of E2F1 cDNA into postmitotic neurons induced both bromodeoxyuridine incorporation and chromatin condensation, suggesting that deregulated E2F1 expression causes both aberrant S-phase entry and apoptosis of postmitotic neurons. Thus, downregulation of endogenous E2F1 protein in postmitotic neurons may be indispensable for the prevention of their reentry into the cell cycle.
Collapse
Affiliation(s)
- M Azuma-Hara
- Division of Regulation of Macromolecular Functions, Institute for Protein Research, Osaka University, Yamadaoka 3-2, Suita, Osaka, 565-0871, Japan
| | | | | | | | | |
Collapse
|
13
|
Staines WA, Craig J, Reuhl K, McBurney MW. Retinoic acid treated P19 embryonal carcinoma cells differentiate into oligodendrocytes capable of myelination. Neuroscience 1996; 71:845-53. [PMID: 8867053 DOI: 10.1016/0306-4522(95)00494-7] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Retinoic acid treatment of P19 embryonal carcinoma cells induces their differentiation into cultures containing neurons and astrocytes. We present two lines of experimentation indicating that oligodendrocytes also develop from retinoic acid-treated P19 cells. We isolated an immortal cell line from retinoic acid-treated P19 cell cultures whose proliferation is dependent upon epidermal growth factor. Upon removal of the growth factor these cells differentiate into both astrocytes and oligodendrocytes as determined by immunostaining with antibodies to the astrocyte marker glial fibrillar acidic protein and the oligodendrocyte markers, myelin associated glycoprotein and 2', 3'-cyclic nucleotide 3'-phosphodiesterase. This cell line appears to be a bi-potential glial precursor. We also found that oligodendrocytes developed directly from P19 cells when retinoic acid-treated cells were transplanted into the brains of neonatal rat pups. Cells that developed into oligodendrocytes migrated into fiber bundles up to several millimeters from the site of the graft. These P19-derived oligodendrocytes appeared to myelinate axons from host neurons. Thus, retinoic acid-treated P19 cells differentiate into neurons, astrocytes and oligodendrocytes, the three cell types that normally develop from embryonic neuroectoderm, indicating that these cell cultures differentiate in a fashion closely resembling that of embryonic neuroectoderm.
Collapse
Affiliation(s)
- W A Staines
- Department of Anatomy/Neurobiology, University of Ottawa, Ontario, Canada
| | | | | | | |
Collapse
|
14
|
Magnuson DS, Morassutti DJ, Staines WA, McBurney MW, Marshall KC. In vivo electrophysiological maturation of neurons derived from a multipotent precursor (embryonal carcinoma) cell line. BRAIN RESEARCH. DEVELOPMENTAL BRAIN RESEARCH 1995; 84:130-41. [PMID: 7720212 DOI: 10.1016/0165-3806(94)00166-w] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
The multipotent embryonal carcinoma (EC) P19 cell line differentiates into neurons, glia and smooth muscle following exposure to retinoic acid (RA). RA-induced differentiation is irreversible and the neurons that develop are abundant, post-mitotic, and survive for prolonged periods in culture or when grafted into the CNS of adult rats. Striatal slices containing grafted P19 cells were studied with intracellular recording and labelling techniques to examine the development of electrophysiological and morphological properties of P19-derived neurons over a period of 6 to 120 days after grafting into ibotenic acid lesioned striatum. Cells from 1-week-old grafts had a range of immature electrophysiological characteristics including unstable resting membrane potentials (RMP's) and very high membrane input resistances (Rin's). Many were not able to produce action potentials (AP's). In contrast, the majority of cells recorded from 2- and 3-week-old grafts had stable RMP's, moderate Rin's, and were able to produce regenerative AP's. In grafts over 4 weeks of age, the majority of P19-derived neurons had mature neuronal electrophysiological characteristics including RMP's of -60 mV, Rin's of 100-300 M omega, and overshooting AP's. Morphologically, P19 derived neurons increase in soma size from 12-15 mu in diameter in 7-14-day-old grafts, to 25-35 mu in diameter in grafts 50-120 days old. Developing neurons exhibited a variety of morphotypes with increasingly complex processes and lengths of process extension. Our results demonstrate a developmental progression of the electrophysiology of P19-derived neurons, culminating in mature characteristics closely resembling those of adult rodent hippocampal or cortical pyramidal neurons. The ability to easily alter these cells genetically provides a powerful model for addressing issues specific to neuronal development.
Collapse
Affiliation(s)
- D S Magnuson
- Department of Physiology, University of Ottawa, Ont., Canada
| | | | | | | | | |
Collapse
|
15
|
Morassutti DJ, Staines WA, Magnuson DS, Marshall KC, McBurney MW. Murine embryonal carcinoma-derived neurons survive and mature following transplantation into adult rat striatum. Neuroscience 1994; 58:753-63. [PMID: 7910671 DOI: 10.1016/0306-4522(94)90452-9] [Citation(s) in RCA: 54] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
P19 embryonal carcinoma cells are pluripotent and can be efficiently induced to differentiate in culture into neurons and astroglia by brief treatment with retinoic acid. Retinoic acid-treated P19 cells survive after grafting into the adult rat striatum and differentiate into neurons and glia within the transplantation site. No tumours develop from the grafted cells which continue to express foreign genes that had been transfected into the parental P19 cells. The neurons in these grafts express a variety of neurotransmitters similar to those formed in retinoic acid-treated P19 cell cultures and they mature to acquire the electrophysiological properties expected of fully developed neurons. These results suggest that P19 cells may be used for studies related to neuronal cell development and maturation and that P19 cells may be considered for cell replacement strategies in neurodegenerative disorders of the central nervous system.
Collapse
Affiliation(s)
- D J Morassutti
- Department of Medicine and Biology, University of Ottawa, Ontario, Canada
| | | | | | | | | |
Collapse
|
16
|
Staines WA, Morassutti DJ, Reuhl KR, Ally AI, McBurney MW. Neurons derived from P19 embryonal carcinoma cells have varied morphologies and neurotransmitters. Neuroscience 1994; 58:735-51. [PMID: 7910670 DOI: 10.1016/0306-4522(94)90451-0] [Citation(s) in RCA: 90] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Treatment of P19 embryonal carcinoma cells with retinoic acid induces their differentiation into a population of cells consisting of neurons and other cell types normally derived from neuroectoderm. We used immunohistological and histochemical techniques to identify some of the neurotransmitters in the P19-derived neurons. The majority of neurons contained GABA, glutamic acid decarboxylase, and GABA-transaminase. Neuropeptide Y and somatostatin were less frequently found and both were partially co-expressed with GABA and with one another. Smaller numbers of cells were positive for tyrosine hydroxylase, DOPA decarboxylase, serotonin, calcitonin gene-related peptide, galanin and substance P. The variety and proportions of cells with different transmitter types were reproducible from one experiment to the next and varied very little over 40 days in culture except for cells containing enkephalin, which were abundant only in mature cultures of 32 days or more. Synapses formed between neurons and some contained both small clear and large dense-core vesicles within the presynaptic bouton. Because GABA, neuropeptide Y and somatostatin are abundant in P19-derived neurons as well as in embryonic neurons in rostral regions of the mammalian CNS, we suggest that the developmental events occurring in P19 cell cultures closely resemble those of the embryonic neuroectoderm.
Collapse
Affiliation(s)
- W A Staines
- Department of Anatomy/Neurobiology, Faculty of Medicine, University of Ottawa, Canada
| | | | | | | | | |
Collapse
|
17
|
Vidricaire G, Jardine K, McBurney MW. Expression of the Brachyury gene during mesoderm development in differentiating embryonal carcinoma cell cultures. Development 1994; 120:115-22. [PMID: 8119120 DOI: 10.1242/dev.120.1.115] [Citation(s) in RCA: 54] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
When aggregated and treated with dimethyl sulfoxide (DMSO), P19 embryonal carcinoma cells differentiate into cell types normally derived from the mesoderm and endoderm including epithelium and cardiac and skeletal muscle. The Brachyury gene is expressed transiently in these differentiating cultures several days before the appearance of markers of the differentiated cell types. The expression of Brachyury is not affected by DMSO but is induced by cell aggregation, which requires extracellular calcium. Expression of Brachyury is also induced by various members of the TGF beta family such as activin and bone morphogenetic proteins. D3 is a mutant clone of P19 cells selected for its failure to differentiate when aggregated in DMSO. Aggregated D3 cells express Brachyury mRNA suggesting that the mutation(s) responsible for the phenotype of D3 cells is downstream of the chain of events initiated by Brachyury expression.
Collapse
Affiliation(s)
- G Vidricaire
- Department of Medicine, University of Ottawa, Canada
| | | | | |
Collapse
|
18
|
Nakajima M, Furukawa S, Hayashi K, Yamada A, Kawashima T, Hayashi Y. Age-dependent survival-promoting activity of vitamin K on cultured CNS neurons. BRAIN RESEARCH. DEVELOPMENTAL BRAIN RESEARCH 1993; 73:17-23. [PMID: 8513553 DOI: 10.1016/0165-3806(93)90041-8] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Neurons from the central nervous system (CNS) of rat embryos die within several days when seeded at a low density of 10(4) cells/cm2 and cultured in a serum-free defined medium. Using these culture systems, we searched for agents to promote the survival of these neurons. As a consequence, a fat-soluble vitamin, vitamin K1, was found to possess such kind of activity: more than 50% of the cortical neurons from 19-day-old rat embryos could survive for 4 days in the presence of vitamin K1, whereas almost all neurons died in its absence. The survival-promoting effect of vitamin K1 was found on neurons from not only cortex, but also hippocampus, striatum, and septum. In addition to vitamin K1, vitamin K2 and K3 also showed the same effect on cortical neurons. The effect of vitamins K1 and K2 was observed at concentrations from 10(-8) to 10(-6) M, and that of vitamin K3 was slightly detected at 10(-6) M. Furthermore, we examined the effect on the neurons from 16- and 21-day-old embryos, too. The activity of vitamin K1 was weaker toward the neurons from 21-day-old embryos compared with that toward 19-day-old ones, and was not recognized toward 16-day-old ones. These results suggest the potential role of the K vitamins on the maintenance of the survival of CNS neurons during the later stages of embryogenesis in vivo.
Collapse
Affiliation(s)
- M Nakajima
- Biochemical Research Laboratory, Morinaga Milk Industry Co., Ltd., Kanagawa, Japan
| | | | | | | | | | | |
Collapse
|
19
|
Abstract
We have examined the possibility of promoting axonal regeneration within lesioned neural tissue using grafted artificial gel matrices. Polymeric matrices which feature a three-dimensional crosslinked macromolecular network were implanted into preformed lesions of the central nervous system (CNS). The host response consisted of matrix invasion by glial elements and the deposition of newly synthesized extracellular molecules. This rearrangement of the brain scarring process into an organized cellular coating promoted axonal regeneration into the gels. Entrapment of embryonic neurons and embryonal carcinoma (EC)-derived neurons, within the gels, was performed to explore the possibility of using polymer brain implants as neural graft microcarriers. Our results suggest that this approach will be useful for the delivery of cells and the promotion of axonal elongation required for successful neurotransplantation.
Collapse
Affiliation(s)
- S Woerly
- Department of Biological Sciences, Keele University, Staffordshire, U.K
| | | |
Collapse
|
20
|
Abstract
A multidisciplinary group met under the auspices of the National Institute on Aging and the Dell Foundation at the Princess Resort in San Diego, CA on April 5-6, 1991. The meeting was organized by Dr. Caleb E. Finch, University of Southern California, Dr. Zaven Khachaturian, National Institute on Aging, Dr. William Markesbery, University of Kentucky, Dr. Patrick McGeer, University of British Columbia, and Dr. Joseph Rogers, Institute for Biogerontology Research, and covered recent data suggesting neuroimmune correlates of Alzheimer's disease (AD). These findings span many of the major immune system phenomena, from major histocompatibility complex (MHC) antigens through cytokines and the complement cascade and suggest that some facets of AD pathogenesis may be immune related.
Collapse
Affiliation(s)
- D W Dickson
- Department of Pathology, Albert Einstein College of Medicine, Bronx, NY 10461
| | | |
Collapse
|
21
|
Yoshikawa K, Aizawa T, Hayashi Y. Degeneration in vitro of post-mitotic neurons overexpressing the Alzheimer amyloid protein precursor. Nature 1992; 359:64-7. [PMID: 1301020 DOI: 10.1038/359064a0] [Citation(s) in RCA: 153] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
A pathological hallmark of Alzheimer's disease is the deposition of amyloid fibrils in the brain. The principal component of amyloid fibrils is beta/A4 amyloid protein, which can be generated by the aberrant processing of a large membrane-bound glycoprotein, the beta/A4 amyloid protein precursor (APP)3. To test whether overexpression of APP generates abnormally processed derivatives that affect the viability of neurons, we stably transfected full-length human APP complementary DNA into murine embryonal carcinoma P19 cells. These cells differentiate into post-mitotic neurons and astrocytes after exposure to retinoic acid. When differentiation of the APP cDNA-transfected P19 cells was induced, all neurons showed severe degenerative changes and disappeared within a few days. The degenerating neurons contained large amounts of APP derivatives that were truncated at the amino terminus and encompassed the entire beta/A4 domain. These results suggest that post-mitotic neurons are vulnerable to overexpressed APP, which undergoes aberrant processing to generate potentially amyloidogenic fragments.
Collapse
Affiliation(s)
- K Yoshikawa
- Department of Molecular Biology, Tokyo Institute of Psychiatry, Japan
| | | | | |
Collapse
|
22
|
Aizawa T, Maruyama K, Kondo H, Yoshikawa K. Expression of necdin, an embryonal carcinoma-derived nuclear protein, in developing mouse brain. BRAIN RESEARCH. DEVELOPMENTAL BRAIN RESEARCH 1992; 68:265-74. [PMID: 1394972 DOI: 10.1016/0165-3806(92)90069-9] [Citation(s) in RCA: 73] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Necdin is a polypeptide sequence encoded by neural differentiation-specific mRNA derived from embryonal carcinoma cells. We have examined the expression of necdin and its mRNA in cultured cells and mouse brain by Northern blot analysis and immunohistochemistry. Among various established cell lines including neuroblastoma and glioma cells, only differentiated embryonal carcinoma cells (P19 and F9) expressed necdin mRNA. Necdin immunoreactivity was localized in the nuclei of differentiated neurons derived from P19 cells. Necdin mRNA was detected throughout brain regions of adult mouse; the relative abundances in the hypothalamus and midbrain were the highest, whereas those in the olfactory bulb and cerebellum were the lowest. In developing mouse brain, necdin mRNA was expressed during early periods of neuronal generation and differentiation, and the peak levels were attained during postnatal days 1-4. Necdin immunoreactivity was not detected in the neural stem cells on embryonic day 10, but was concentrated in the nuclei of brain cells, mostly neurons, at advanced stages of differentiation. The majority of differentiated neurons in the brain had necdin-immunoreactive nuclei on postnatal day 33. Thus, necdin may represent a valuable molecular marker for differentiated neurons both in vitro and in vivo.
Collapse
Affiliation(s)
- T Aizawa
- Department of Molecular Biology, Tokyo Institute of Psychiatry, Japan
| | | | | | | |
Collapse
|
23
|
Maruyama K, Usami M, Aizawa T, Yoshikawa K. A novel brain-specific mRNA encoding nuclear protein (necdin) expressed in neurally differentiated embryonal carcinoma cells. Biochem Biophys Res Commun 1991; 178:291-6. [PMID: 2069569 DOI: 10.1016/0006-291x(91)91812-q] [Citation(s) in RCA: 118] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
A novel DNA sequence has been isolated from a subtraction cDNA library of P19 embryonal carcinoma cells treated with retinoic acid which induces neural differentiation of the stem cells. The cDNA insert (4B) hybridized with a single 1.7 kb mRNA, whose abundance was markedly increased in P19 cells after retinoic acid treatment. The 1.7 kb mRNA was also expressed in the brain, but not in other non-neuronal tissues. A 1.6 kb cDNA insert (4BFL), which was cloned by screening another cDNA library with the 4B probe, encodes a novel protein sequence of 325 amino acids (Mr 36,831). The protein expressed in 4BFL-transfected COS cells was translocated into the nuclei as detected with antibodies against subsequences of the predicted protein. The antibodies stained the nuclei of neurally differentiated P19 cells but not of the undifferentiated stem cells. This novel mRNA encoding the nuclear protein, termed necdin, may represent a useful marker for the differentiation and development of brain cells.
Collapse
Affiliation(s)
- K Maruyama
- Department of Molecular Biology, Psychiatric Research Institute of Tokyo, Japan
| | | | | | | |
Collapse
|