1
|
Tempone MH, Borges-Martins VP, César F, Alexandrino-Mattos DP, de Figueiredo CS, Raony Í, dos Santos AA, Duarte-Silva AT, Dias MS, Freitas HR, de Araújo EG, Ribeiro-Resende VT, Cossenza M, P. Silva H, P. de Carvalho R, Ventura ALM, Calaza KC, Silveira MS, Kubrusly RCC, de Melo Reis RA. The Healthy and Diseased Retina Seen through Neuron-Glia Interactions. Int J Mol Sci 2024; 25:1120. [PMID: 38256192 PMCID: PMC10817105 DOI: 10.3390/ijms25021120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 01/10/2024] [Accepted: 01/12/2024] [Indexed: 01/24/2024] Open
Abstract
The retina is the sensory tissue responsible for the first stages of visual processing, with a conserved anatomy and functional architecture among vertebrates. To date, retinal eye diseases, such as diabetic retinopathy, age-related macular degeneration, retinitis pigmentosa, glaucoma, and others, affect nearly 170 million people worldwide, resulting in vision loss and blindness. To tackle retinal disorders, the developing retina has been explored as a versatile model to study intercellular signaling, as it presents a broad neurochemical repertoire that has been approached in the last decades in terms of signaling and diseases. Retina, dissociated and arranged as typical cultures, as mixed or neuron- and glia-enriched, and/or organized as neurospheres and/or as organoids, are valuable to understand both neuronal and glial compartments, which have contributed to revealing roles and mechanisms between transmitter systems as well as antioxidants, trophic factors, and extracellular matrix proteins. Overall, contributions in understanding neurogenesis, tissue development, differentiation, connectivity, plasticity, and cell death are widely described. A complete access to the genome of several vertebrates, as well as the recent transcriptome at the single cell level at different stages of development, also anticipates future advances in providing cues to target blinding diseases or retinal dysfunctions.
Collapse
Affiliation(s)
- Matheus H. Tempone
- Laboratory of Neurochemistry, Institute of Biophysics Carlos Chagas Filho, Federal University of Rio de Janeiro, Rio de Janeiro 21949-000, Brazil; (M.H.T.); (F.C.); (D.P.A.-M.); (V.T.R.-R.)
| | - Vladimir P. Borges-Martins
- Department of Physiology and Pharmacology, Biomedical Institute and Program of Neurosciences, Federal Fluminense University, Niterói 24020-150, Brazil; (V.P.B.-M.); (A.A.d.S.); (M.C.); (R.C.C.K.)
| | - Felipe César
- Laboratory of Neurochemistry, Institute of Biophysics Carlos Chagas Filho, Federal University of Rio de Janeiro, Rio de Janeiro 21949-000, Brazil; (M.H.T.); (F.C.); (D.P.A.-M.); (V.T.R.-R.)
| | - Dio Pablo Alexandrino-Mattos
- Laboratory of Neurochemistry, Institute of Biophysics Carlos Chagas Filho, Federal University of Rio de Janeiro, Rio de Janeiro 21949-000, Brazil; (M.H.T.); (F.C.); (D.P.A.-M.); (V.T.R.-R.)
| | - Camila S. de Figueiredo
- Department of Neurobiology and Program of Neurosciences, Institute of Biology, Federal Fluminense University, Niterói 24020-141, Brazil; (C.S.d.F.); (A.T.D.-S.); (E.G.d.A.); (R.P.d.C.); (A.L.M.V.); (K.C.C.)
| | - Ícaro Raony
- Institute of Medical Biochemistry Leopoldo de Meis, Federal University of Rio de Janeiro, Rio de Janeiro 21941-902, Brazil; (Í.R.); (H.R.F.)
| | - Aline Araujo dos Santos
- Department of Physiology and Pharmacology, Biomedical Institute and Program of Neurosciences, Federal Fluminense University, Niterói 24020-150, Brazil; (V.P.B.-M.); (A.A.d.S.); (M.C.); (R.C.C.K.)
| | - Aline Teixeira Duarte-Silva
- Department of Neurobiology and Program of Neurosciences, Institute of Biology, Federal Fluminense University, Niterói 24020-141, Brazil; (C.S.d.F.); (A.T.D.-S.); (E.G.d.A.); (R.P.d.C.); (A.L.M.V.); (K.C.C.)
| | - Mariana Santana Dias
- Laboratory of Gene Therapy and Viral Vectors, Institute of Biophysics Carlos Chagas Filho, Federal University of Rio de Janeiro, Rio de Janeiro 21949-000, Brazil; (M.S.D.); (H.P.S.)
| | - Hércules Rezende Freitas
- Institute of Medical Biochemistry Leopoldo de Meis, Federal University of Rio de Janeiro, Rio de Janeiro 21941-902, Brazil; (Í.R.); (H.R.F.)
| | - Elisabeth G. de Araújo
- Department of Neurobiology and Program of Neurosciences, Institute of Biology, Federal Fluminense University, Niterói 24020-141, Brazil; (C.S.d.F.); (A.T.D.-S.); (E.G.d.A.); (R.P.d.C.); (A.L.M.V.); (K.C.C.)
- National Institute of Science and Technology on Neuroimmunomodulation—INCT-NIM, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro 21040-360, Brazil
| | - Victor Tulio Ribeiro-Resende
- Laboratory of Neurochemistry, Institute of Biophysics Carlos Chagas Filho, Federal University of Rio de Janeiro, Rio de Janeiro 21949-000, Brazil; (M.H.T.); (F.C.); (D.P.A.-M.); (V.T.R.-R.)
| | - Marcelo Cossenza
- Department of Physiology and Pharmacology, Biomedical Institute and Program of Neurosciences, Federal Fluminense University, Niterói 24020-150, Brazil; (V.P.B.-M.); (A.A.d.S.); (M.C.); (R.C.C.K.)
| | - Hilda P. Silva
- Laboratory of Gene Therapy and Viral Vectors, Institute of Biophysics Carlos Chagas Filho, Federal University of Rio de Janeiro, Rio de Janeiro 21949-000, Brazil; (M.S.D.); (H.P.S.)
| | - Roberto P. de Carvalho
- Department of Neurobiology and Program of Neurosciences, Institute of Biology, Federal Fluminense University, Niterói 24020-141, Brazil; (C.S.d.F.); (A.T.D.-S.); (E.G.d.A.); (R.P.d.C.); (A.L.M.V.); (K.C.C.)
| | - Ana L. M. Ventura
- Department of Neurobiology and Program of Neurosciences, Institute of Biology, Federal Fluminense University, Niterói 24020-141, Brazil; (C.S.d.F.); (A.T.D.-S.); (E.G.d.A.); (R.P.d.C.); (A.L.M.V.); (K.C.C.)
| | - Karin C. Calaza
- Department of Neurobiology and Program of Neurosciences, Institute of Biology, Federal Fluminense University, Niterói 24020-141, Brazil; (C.S.d.F.); (A.T.D.-S.); (E.G.d.A.); (R.P.d.C.); (A.L.M.V.); (K.C.C.)
| | - Mariana S. Silveira
- Laboratory for Investigation in Neuroregeneration and Development, Institute of Biophysics Carlos Chagas Filho, Federal University of Rio de Janeiro, Rio de Janeiro 21949-000, Brazil;
| | - Regina C. C. Kubrusly
- Department of Physiology and Pharmacology, Biomedical Institute and Program of Neurosciences, Federal Fluminense University, Niterói 24020-150, Brazil; (V.P.B.-M.); (A.A.d.S.); (M.C.); (R.C.C.K.)
| | - Ricardo A. de Melo Reis
- Laboratory of Neurochemistry, Institute of Biophysics Carlos Chagas Filho, Federal University of Rio de Janeiro, Rio de Janeiro 21949-000, Brazil; (M.H.T.); (F.C.); (D.P.A.-M.); (V.T.R.-R.)
| |
Collapse
|
2
|
da Silva Sampaio L, Kubrusly RCC, Colli YP, Trindade PP, Ribeiro-Resende VT, Einicker-Lamas M, Paes-de-Carvalho R, Gardino PF, de Mello FG, De Melo Reis RA. Cannabinoid Receptor Type 1 Expression in the Developing Avian Retina: Morphological and Functional Correlation With the Dopaminergic System. Front Cell Neurosci 2018; 12:58. [PMID: 29662438 PMCID: PMC5890097 DOI: 10.3389/fncel.2018.00058] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2017] [Accepted: 02/19/2018] [Indexed: 01/19/2023] Open
Abstract
The avian retina has been used as a model to study signaling by different neuro- and gliotransmitters. It is unclear how dopaminergic and cannabinoid systems are related in the retina. Here we studied the expression of type 1 and 2 cannabinoid receptors (CB1 and CB2), as well as monoacylglycerol lipase (MAGL), the enzyme that degrades 2-arachidonoylglycerol (2-AG), during retina development. Our data show that CB1 receptor is highly expressed from embryonic day 5 (E5) until post hatched day 7 (PE7), decreasing its levels throughout development. CB1 is densely found in the ganglion cell layer (GCL) and inner plexiform layer (IPL). CB2 receptor was also found from E5 until PE7 with a decrease in its contents from E9 afterwards. CB2 was mainly present in the lamination of the IPL at PE7. MAGL is expressed in all retinal layers, mainly in the IPL and OPL from E9 to PE7 retina. CB1 and CB2 were found both in neurons and glia cells, but MAGL was only expressed in Müller glia. Older retinas (PE7) show CB1 positive cells mainly in the INL and co-expression of CB1 and tyrosine hydroxylase (TH) are shown in a few cells when both systems are mature. CB1 co-localized with TH and was heavily associated to D1 receptor labeling in primary cell cultures. Finally, cyclic AMP (cAMP) was activated by the selective D1 agonist SKF38393, and inhibited when cultures were treated with WIN55, 212–2 (WIN) in a CB1 dependent manner. The results suggest a correlation between the endocannabinoid and dopaminergic systems (DSs) during the avian retina development. Activation of CB1 limits cAMP accumulation via D1 receptor activation and may influence embryological parameters during avian retina differentiation.
Collapse
Affiliation(s)
- Luzia da Silva Sampaio
- Laboratório de Neuroquímica, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Regina C C Kubrusly
- Laboratório de Neurofarmacologia, Instituto Biomédico, Universidade Federal Fluminense, Niterói, Brazil
| | - Yolanda P Colli
- Laboratório de Neuroquímica, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Priscila P Trindade
- Laboratório de Neuroquímica, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Victor T Ribeiro-Resende
- Laboratório de Neuroquímica, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Marcelo Einicker-Lamas
- Laboratório de Biomembranas, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Roberto Paes-de-Carvalho
- Laboratório de Neurobiologia Celular, Programa de Neurociências, Universidade Federal Fluminense, Niterói, Brazil
| | - Patricia F Gardino
- Laboratório de Neuroquímica, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Fernando G de Mello
- Laboratório de Neuroquímica, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Ricardo A De Melo Reis
- Laboratório de Neuroquímica, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| |
Collapse
|
3
|
Brito R, Pereira-Figueiredo D, Socodato R, Paes-de-Carvalho R, Calaza KC. Caffeine exposure alters adenosine system and neurochemical markers during retinal development. J Neurochem 2016; 138:557-70. [PMID: 27221759 DOI: 10.1111/jnc.13683] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2016] [Revised: 05/11/2016] [Accepted: 05/12/2016] [Indexed: 01/18/2023]
Abstract
Evidence points to beneficial properties of caffeine in the adult central nervous system, but teratogenic effects have also been reported. Caffeine exerts most of its effects by antagonizing adenosine receptors, especially A1 and A2A subtypes. In this study, we evaluated the role of caffeine on the expression of components of the adenosinergic system in the developing avian retina and the impact of caffeine exposure upon specific markers for classical neurotransmitter systems. Caffeine exposure (5-30 mg/kg by in ovo injection) to 14-day-old chick embryos increased the expression of A1 receptors and concomitantly decreased A2A adenosine receptors expression after 48 h. Accordingly, caffeine (30 mg/kg) increased [(3) H]-8-cyclopentyl-1,3-dipropylxanthine (A1 antagonist) binding and reduced [(3) H]-ZM241385 (A2A antagonist) binding. The caffeine time-response curve demonstrated a reduction in A1 receptors 6 h after injection, but an increase after 18 and 24 h. In contrast, caffeine exposure increased the expression of A2A receptors from 18 and 24 h. Kinetic assays of [(3) H]-S-(4-nitrobenzyl)-6-thioinosine binding to the equilibrative adenosine transporter ENT1 revealed an increase in Bmax with no changes in Kd , an effect accompanied by an increase in adenosine uptake. Immunohistochemical analysis showed a decrease in retinal content of tyrosine hydroxylase, calbindin and choline acetyltransferase, but not Brn3a, after 48 h of caffeine injection. Furthermore, retinas exposed to caffeine had increased levels of phosphorylated extracellular signal-regulated kinase and cAMP-response element binding protein. Overall, we show an in vivo regulation of the adenosine system, extracellular signal-regulated kinase and cAMP-response element binding protein function and protein expression of specific neurotransmitter systems by caffeine in the developing retina. The beneficial or maleficent effects of caffeine have been demonstrated by the work of different studies. It is known that during animal development, caffeine can exert harmful effects, impairing the correct formation of CNS structures. In this study, we demonstrated cellular and tissue effects of caffeine's administration on developing chick embryo retinas. Those effects include modulation of adenosine receptors (A1 , A2 ) content, increasing in cAMP response element-binding protein (pCREB) and extracellular signal-regulated kinase phosphorylation (pERK), augment of adenosine equilibrative transporter content/activity, and a reduction of some specific cell subpopulations. ENT1, Equilibrative nucleoside transporter 1.
Collapse
Affiliation(s)
- Rafael Brito
- Neurobiology of the Retina Laboratory, Department of Neurobiology and Program of Neurosciences, Institute of Biology, Fluminense Federal University, Niterói, Rio de Janeiro, Brazil.,Laboratory of Cellular Neurobiology, Department of Neurobiology and Program of Neurosciences, Institute of Biology, Fluminense Federal University, Niterói, Rio de Janeiro, Brazil
| | - Danniel Pereira-Figueiredo
- Neurobiology of the Retina Laboratory, Department of Neurobiology and Program of Neurosciences, Institute of Biology, Fluminense Federal University, Niterói, Rio de Janeiro, Brazil
| | - Renato Socodato
- Instituto de Investigação e Inovação em Saúde (i3S) and Instituto de Biologia Molecular e Celular (IBMC), Universidade do Porto, Porto, Portugal
| | - Roberto Paes-de-Carvalho
- Laboratory of Cellular Neurobiology, Department of Neurobiology and Program of Neurosciences, Institute of Biology, Fluminense Federal University, Niterói, Rio de Janeiro, Brazil
| | - Karin C Calaza
- Neurobiology of the Retina Laboratory, Department of Neurobiology and Program of Neurosciences, Institute of Biology, Fluminense Federal University, Niterói, Rio de Janeiro, Brazil
| |
Collapse
|
4
|
Klafke R, Prem Anand AA, Wurst W, Prakash N, Wizenmann A. Differences in the spatiotemporal expression and epistatic gene regulation of the mesodiencephalic dopaminergic precursor marker PITX3 during chicken and mouse development. Development 2016; 143:691-702. [DOI: 10.1242/dev.126748] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2015] [Accepted: 01/05/2016] [Indexed: 11/20/2022]
Abstract
Mesodiencephalic dopaminergic (mdDA) neurons are located in the ventral mesencephalon and caudal diencephalon of all tetrapod species studied so far. They are the most prominent DA neuronal population and are implicated in control and modulation of motor, cognitive and rewarding/affective behaviors. Their degeneration or dysfunction is intimately linked to several neurological and neuropsychiatric human diseases. To gain further insights into their generation, we studied spatiotemporal expression patterns and epistatic interactions in chick embryos of selected marker genes and signaling pathways associated with mdDA neuron development in mouse. We detected striking differences in the expression patterns of the chick orthologs of the mouse mdDA marker genes Pitx3 and Aldh1a1, which suggests important differences between the species in the generation/generating of these cells. We also discovered that the Sonic hedgehog signaling pathway is both, necessary and sufficient for the induction of ectopic PITX3 expression in chick mesencephalon downstream of WNT9A induced LMX1a transcription. These aspects of early chicken development resemble the ontogeny of zebrafish diencephalic DA neuronal populations, and suggest a divergence between birds and mammals during evolution.
Collapse
Affiliation(s)
- Ruth Klafke
- Institute of Developmental Genetics, Helmholtz Zentrum München, Deutsches Forschungszentrum für Gesundheit und Umwelt (GmbH), Ingolstädter Landstr. 1, 85764 Neuherberg, Germany
| | - A. Alwin Prem Anand
- Institute of Clinical Anatomy and Cell Analysis, University of Tübingen, Oesterbergstrasse 3, 72074 Tuebingen, Germany
| | - Wolfgang Wurst
- Institute of Developmental Genetics, Helmholtz Zentrum München, Deutsches Forschungszentrum für Gesundheit und Umwelt (GmbH), Ingolstädter Landstr. 1, 85764 Neuherberg, Germany
- Technische Universität München-Weihenstephan, Lehrstuhl für Entwicklungsgenetik c/o Helmholtz Zentrum München, Ingolstädter Landstr. 1, 85764 Neuherberg, Germany
- Deutsches Zentrum für Neurodegenerative Erkrankungen (DZNE) Standort München, Schillerstr. 44, 80336 München, Germany
- Munich Cluster for Systems Neurology (SyNergy), Adolf-Butenandt-Institut, Ludwig-Maximilians-Universität München, Schillerstrasse 44, 80336 München, Germany
| | - Nilima Prakash
- Institute of Developmental Genetics, Helmholtz Zentrum München, Deutsches Forschungszentrum für Gesundheit und Umwelt (GmbH), Ingolstädter Landstr. 1, 85764 Neuherberg, Germany
- Technische Universität München-Weihenstephan, Lehrstuhl für Entwicklungsgenetik c/o Helmholtz Zentrum München, Ingolstädter Landstr. 1, 85764 Neuherberg, Germany
| | - Andrea Wizenmann
- Institute of Clinical Anatomy and Cell Analysis, University of Tübingen, Oesterbergstrasse 3, 72074 Tuebingen, Germany
| |
Collapse
|
5
|
Sampaio LDFS, Mesquita FP, de Sousa PRM, Silva JL, Alves CN. The melatonin analog 5-MCA-NAT increases endogenous dopamine levels by binding NRH:quinone reductase enzyme in the developing chick retina. Int J Dev Neurosci 2014; 38:119-26. [PMID: 25218627 DOI: 10.1016/j.ijdevneu.2014.09.001] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2014] [Revised: 08/22/2014] [Accepted: 09/02/2014] [Indexed: 12/15/2022] Open
Abstract
NRH:quinone reductase (QR2) is present in the retinas of embryonic and post-hatched (PH) chicks. 5-Methoxycarbonylamino-N-acetyltryptamine (5-MCA-NAT) is a QR2 ligand that increases cAMP levels in developing retinas, but it does not affect cAMP levels in CHO-QR2 cells. The dopamine quinone reductase activity of QR2 retrieves dopamine, which increases cAMP levels in developing retinas. The objective of the present study was to investigate whether 5-MCA-NAT increases endogenous dopamine levels in retinas from chick embryos and post-hatched chicks. Endogenous dopamine was measured by enzyme-linked immunosorbent assay (ELISA). 5-MCA-NAT increased retinal endogenous dopamine levels at all developmental stages studied and in PH chicks (-logEC50=11.62±0.34 M). This effect was inhibited by non-selective antagonists of receptors and melatonin binding sites N-acetyl-2-benzyltryptamine (luzindole, 5 μM), but it was not inhibited by the Mel1b melatonin receptor antagonist 4-phenyl-2-propionamidotetralin (4-P-PDOT, 10 nM). The QR2 cosubstrate, N-methyl-dihydronicotinamide (NMH) (-logEC50=6.74±0.26 M), increased endogenous dopamine levels in controls and in retinas stimulated with 5-MCA-NAT (3 nM). The QR2 inhibitor benzo[e]pyrene inhibited endogenous dopamine levels in both control (-logIC50=7.4±0.28 M) and NMH-stimulated (at 100 nM and 1 μM benzo[e]pyrene concentrations) retinas. Theoretical studies using Molegro Virtual Docking software corroborated these experimental results. We conclude that 5-MCA-NAT increases the level of endogenous dopamine via QR2. We suggest that this enzyme triggers double reduction of the dopamine quinone, recovering dopamine in retinal development.
Collapse
Affiliation(s)
- Lucia de Fatima Sobral Sampaio
- Lab. de Bioquímica do Desenvolvimento do Sistema Nervoso, Instituto de Ciências Biológicas, Universidade Federal do Pará, Rua Augusto Corrêa No. 1, CEP: 66075-110 Belém, PA, Brazil.
| | - Felipe Pantoja Mesquita
- Lab. de Bioquímica do Desenvolvimento do Sistema Nervoso, Instituto de Ciências Biológicas, Universidade Federal do Pará, Rua Augusto Corrêa No. 1, CEP: 66075-110 Belém, PA, Brazil
| | - Paulo Robson Monteiro de Sousa
- Lab. de Planejamento e Desenvolvimento de Fármacos, Instituto de Ciências Exatas e Naturais, Universidade Federal do Pará, Rua Augusto Corrêa No. 1, CEP: 66075-110 Belém, PA, Brazil
| | - Jerônimo Lameira Silva
- Lab. de Planejamento e Desenvolvimento de Fármacos, Instituto de Ciências Exatas e Naturais, Universidade Federal do Pará, Rua Augusto Corrêa No. 1, CEP: 66075-110 Belém, PA, Brazil
| | - Claudio Nahum Alves
- Lab. de Planejamento e Desenvolvimento de Fármacos, Instituto de Ciências Exatas e Naturais, Universidade Federal do Pará, Rua Augusto Corrêa No. 1, CEP: 66075-110 Belém, PA, Brazil
| |
Collapse
|
6
|
Abstract
Dopamine is the main catecholamine found in the retina of most species, being synthesized from the L-amino acid tyrosine. Its effects are mediated by G protein coupled receptors subfamilies that are commonly coupled to adenylyl cyclase in opposite manners. There is evidence that this amine works as a developmental signal in the embryonic retina and several distinct roles have been attributed to dopamine in the retina such as proliferation, synaptogenesis, neuroprotection, increased signal transmission in cone, gap junction modulation, neuronal-pigmented epithelium-glial communication, and neuron-glia interaction. Here we describe methods that have been used in the study of the dopaminergic function in the retina in the last 40 years. We emphasize the approaches used in the studies on the development of the avian and rodent retina. The dopaminergic system is one of the first phenotypes to appear in the developing vertebrate retina.
Collapse
|
7
|
Feldkaemper M, Schaeffel F. An updated view on the role of dopamine in myopia. Exp Eye Res 2013; 114:106-19. [PMID: 23434455 DOI: 10.1016/j.exer.2013.02.007] [Citation(s) in RCA: 275] [Impact Index Per Article: 22.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2012] [Revised: 01/23/2013] [Accepted: 02/05/2013] [Indexed: 10/27/2022]
Abstract
A large body of data is available to support the hypothesis that dopamine (DA) is one of the retinal neurotransmitters involved in the signaling cascade that controls eye growth by vision. Initially, reduced retinal DA levels were observed in eyes deprived of sharp vision by either diffusers ("deprivation myopia", DM) or negative lenses ("lens induced myopia", LIM). Simulating high retinal DA levels by intravitreal application of a DA agonist can suppress the development of both DM and LIM. Also more recent studies using knock-out mouse models of DA receptors support the idea of an association between decreased DA levels and DM. There seem to be differences in the magnitude of the effects of DA on DM and LIM, with larger changes in DM but the degrees of image degradation by both treatments need to be matched to support this conclusion. Although a number of studies have shown that the inhibitory effects of dopamine agonists on DM and LIM are mediated through stimulation of the D2-receptor, there is also recent evidence that the balance of D2- and D1-receptor activation is important. Inhibition of D2-receptors can also slow the development of spontaneous myopia in albino guinea pigs. Retinal DA content displays a distinct endogenous diurnal, and partially circadian rhythm. In addition, retinal DA is regulated by a number of visual stimuli like retinal illuminance, spatial frequency content of the image, temporal contrast and, in chicks, by the light input from the pineal organ. A close interaction was found between muscarinergic and dopaminergic systems, and between nitric oxide and dopaminergic pathways, and there is evidence for crosstalk between the different pathways, perhaps multiple binding of the ligands to different receptors. It was shown that DA agonists interact with the immediate early signaling molecule ZENK which triggers the first steps in eye growth regulation. However, since long treatment periods were often needed to induce significant changes in retinal dopamine synthesis and release, the role of dopamine in the early steps is unclear. The wide spatial distribution of dopaminergic amacrine cells in the retina and the observation that changes in dopamine levels can be locally induced by local retinal deprivation is in line with the assumption that dopaminergic mechanisms control both central and peripheral eye growth. The protective effect of outdoor activity on myopia development in children seems to be partly mediated by the stimulatory effect of light on retinal dopamine production and release. However, the dose-response function linking light exposure to dopamine and to the suppression of myopia is not known and requires further studies.
Collapse
Affiliation(s)
- Marita Feldkaemper
- Centre for Ophthalmology, Institute for Ophthalmic Research, Section of Neurobiology of the Eye, Calwerstraße 7/1, 72076 Tuebingen, Germany.
| | | |
Collapse
|
8
|
Fleming RL, Silveira MS, Santos LE, Henze IP, Gardino PF, de Mello MCF, de Mello FG. Pituitary adenylyl cyclase-activating polypeptide receptor re-sensitization induces plastic changes in the dopaminergic phenotype in the mature avian retina. J Neurochem 2012; 124:621-31. [DOI: 10.1111/jnc.12121] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2012] [Revised: 12/04/2012] [Accepted: 12/04/2012] [Indexed: 01/08/2023]
Affiliation(s)
- Renata L. Fleming
- Laboratório de Neuroquímica; Instituto de Biofísica Carlos Chagas Filho; Universidade Federal do Rio de Janeiro; RJ Brazil
| | - Mariana S. Silveira
- Laboratório de Neurogênese; Instituto de Biofísica Carlos Chagas Filho; Universidade Federal do Rio de Janeiro; RJ Brazil
| | - Luís E. Santos
- Laboratório de Neuroquímica; Instituto de Biofísica Carlos Chagas Filho; Universidade Federal do Rio de Janeiro; RJ Brazil
| | - Isabela P. Henze
- Laboratório de Neuroquímica; Instituto de Biofísica Carlos Chagas Filho; Universidade Federal do Rio de Janeiro; RJ Brazil
| | - Patrícia F. Gardino
- Laboratório de Neurobiologia da Retina; Instituto de Biofísica Carlos Chagas Filho; Universidade Federal do Rio de Janeiro; RJ Brazil
| | - Maria Christina F. de Mello
- Laboratório de Neuroquímica; Instituto de Biofísica Carlos Chagas Filho; Universidade Federal do Rio de Janeiro; RJ Brazil
| | - Fernando G. de Mello
- Laboratório de Neuroquímica; Instituto de Biofísica Carlos Chagas Filho; Universidade Federal do Rio de Janeiro; RJ Brazil
| |
Collapse
|
9
|
Brito R, Pereira MR, Paes-de-Carvalho R, Calaza KDC. Expression of A1 adenosine receptors in the developing avian retina: in vivo modulation by A(2A) receptors and endogenous adenosine. J Neurochem 2012; 123:239-49. [PMID: 22862679 DOI: 10.1111/j.1471-4159.2012.07909.x] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2012] [Revised: 07/30/2012] [Accepted: 08/01/2012] [Indexed: 12/13/2022]
Abstract
Little is known about the mechanisms that regulate the expression of adenosine receptors during CNS development. We demonstrate here that retinas from chick embryos injected in ovo with selective adenosine receptor ligands show changes in A1 receptor expression after 48 h. Exposure to A1 agonist N⁶-cyclohexyladenosine (CHA) or antagonist 8-Cyclopentyl-1, 3-dipropylxanthine (DPCPX) reduced or increased, respectively, A1 receptor protein and [³H]DPCPX binding, but together, CHA+DPCPX had no effect. Interestingly, treatment with A(2A) agonist 3-[4-[2-[[6-amino-9-[(2R,3R,4S,5S)-5-(ethylcarbamoyl)-3,4-dihydroxy-oxolan-2-yl]purin-2-yl]amino] ethyl]phenyl] propanoic acid (CGS21680) increased A1 receptor protein and [³H]DPCPX binding, and reduced A(2A) receptors. The A(2A) antagonists 7-(2-phenylethyl)-5-amino-2-(2-furyl)-pyrazolo-[4,3-e]-1,2,4-trizolo[1,5-c] pyrimidine (SCH58261) and 4-(2-[7-amino-2-[2-furyl][1,2,4]triazolo[2,3-a][1,3,5]triazo-5-yl-amino]ethyl)phenol (ZM241385) had opposite effects on A1 receptor expression. Exposure to CGS21680 + CHA did not change A1 receptor levels, whereas CHA + ZM241385 or CGS21680 + DPCPX had no synergic effect. The blockade of adenosine transporter with S-(4-nitrobenzyl)-6-thioinosine (NBMPR) also reduced [³H]DPCPX binding, an effect blocked by DPCPX, but not enhanced by ZM241385. [³H]DPCPX binding kinetics showed that treatment with CHA reduced and CGS21680 increased the Bmax, but did not affect Kd values. CHA, DPCPX, CGS21680, and ZM241385 had no effect on A1 receptor mRNA. These data demonstrated an in vivo regulation of A1 receptor expression by endogenous adenosine or long-term treatment with A1 and A(2A) receptors modulators.
Collapse
Affiliation(s)
- Rafael Brito
- Neurobiology of the Retina Laboratory, Department of Neurobiology and Program of Neurosciences, Institute of Biology, Fluminense Federal University, Niteroi, RJ, Brazil
| | | | | | | |
Collapse
|
10
|
Ring H, Boije H, Daniel C, Ohlson J, Ohman M, Hallböök F. Increased A-to-I RNA editing of the transcript for GABAA receptor subunit α3 during chick retinal development. Vis Neurosci 2010; 27:149-57. [PMID: 20843408 DOI: 10.1017/s0952523810000180] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Adenosine-to-inosine (A-to-I) RNA editing is a cotranscriptional or posttranscriptional gene regulatory mechanism that increases the diversity of the proteome in the nervous system. Recently, the transcript for GABA type A receptor subunit α3 was found to be subjected to RNA editing. The aim of this study was to determine if editing of the chicken α3 subunit transcript occurs in the retina and if the editing is temporally regulated during development. We also raised the question if editing of the α3 transcript was temporally associated with the suggested developmental shift from excitation to inhibition in the GABA system. The editing frequency was studied by using Sanger and Pyrosequencing, and to monitor the temporal aspects, we studied the messenger RNA expression of the GABAA receptor subunits and chloride pumps, known to be involved in the switch. The results showed that the chick α3 subunit was subjected to RNA editing, and its expression was restricted to cells in the inner nuclear and ganglion cell layer in the retina. The extent of editing increased during development (after embryonic days 8-9) concomitantly with an increase of expression of the chloride pump KCC2. Expression of several GABAA receptor subunits known to mediate synaptic GABA actions was upregulated at this time. We conclude that editing of the chick GABAA subunit α3 transcript in chick retina gives rise to an amino acid change that may be of importance in the switch from excitatory to inhibitory receptors.
Collapse
Affiliation(s)
- Henrik Ring
- Department of Neuroscience, Biomedical Center, Uppsala University, Uppsala, Sweden
| | | | | | | | | | | |
Collapse
|
11
|
calaza KDC, Gardino PF. Neurochemical phenotype and birthdating of specific cell populations in the chick retina. AN ACAD BRAS CIENC 2010; 82:595-608. [DOI: 10.1590/s0001-37652010000300007] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2009] [Accepted: 11/16/2009] [Indexed: 11/21/2022] Open
Abstract
The chick embryo is one of the most traditional models in developing neuroscience and its visual system has been one of the most exhaustively studied. The retina has been used as a model for studying the development of the nervous system. Here, we describe the morphological features that characterize each stage of the retina development and studies of the neurogenesis period of some specific neurochemical subpopulations of retinal cells by using a combination of immunohistochemistry and autoradiography of tritiated-thymidine. It could be concluded that the proliferation period of dopaminergic, GABAergic, cholinoceptive and GABAceptive cells does not follow a common rule of the neurogenesis. In addition, some specific neurochemical cell groups can have a restrict proliferation period when compared to the total cell population.
Collapse
|
12
|
Differential immunodetection of
l
‐DOPA decarboxylase and tyrosine hydroxylase in the vertebrate retina. Int J Dev Neurosci 2009; 27:469-76. [DOI: 10.1016/j.ijdevneu.2009.05.003] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2009] [Revised: 04/23/2009] [Accepted: 05/06/2009] [Indexed: 11/19/2022] Open
|
13
|
Neurochemical differentiation of horizontal and amacrine cells during transformation of the sea lamprey retina. J Chem Neuroanat 2008; 35:225-32. [DOI: 10.1016/j.jchemneu.2007.12.002] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2007] [Revised: 12/10/2007] [Accepted: 12/10/2007] [Indexed: 11/19/2022]
|
14
|
Martins RAP, Pearson RA. Control of cell proliferation by neurotransmitters in the developing vertebrate retina. Brain Res 2007; 1192:37-60. [PMID: 17597590 DOI: 10.1016/j.brainres.2007.04.076] [Citation(s) in RCA: 82] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2007] [Revised: 04/04/2007] [Accepted: 04/20/2007] [Indexed: 01/24/2023]
Abstract
In the developing vertebrate retina, precise coordination of retinal progenitor cell proliferation and cell-cycle exit is essential for the formation of a functionally mature retina. Unregulated or disrupted cell proliferation may lead to dysplasia, retinal degeneration or retinoblastoma. Both cell-intrinsic and -extrinsic factors regulate the proliferation of progenitor cells during CNS development. There is now growing evidence that in the developing vertebrate retina, both slow and fast neurotransmitter systems modulate the proliferation of retinal progenitor cells. Classic neurotransmitters, such as GABA (gamma-amino butyric acid), glycine, glutamate, ACh (acetylcholine) and ATP (adenosine triphosphate) are released, via vesicular or non-vesicular mechanisms, into the immature retinal environment. Furthermore, these neurotransmitters signal through functional receptors even before synapses are formed. Recent evidence indicates that the activation of purinergic and muscarinic receptors may regulate the cell-cycle machinery and consequently the expansion of the retinal progenitor pool. Interestingly, GABA and glutamate appear to have opposing roles, inducing retinal progenitor cell-cycle exit. In this review, we present recent findings that begin to elucidate the roles of neurotransmitters as regulators of progenitor cell proliferation at early stages of retinal development. These studies also raise several new questions, including how these neurotransmitters regulate specific cell-cycle pathways and the mechanisms by which retinal progenitor cells integrate the signals from neurotransmitters and other exogenous factors during vertebrate retina development.
Collapse
Affiliation(s)
- Rodrigo A P Martins
- Department of Developmental Neurobiology, St. Jude Children's Research Hospital, MS323, Memphis, TN 38105, USA.
| | | |
Collapse
|
15
|
Reis RAM, Ventura ALM, Kubrusly RCC, de Mello MCF, de Mello FG. Dopaminergic signaling in the developing retina. ACTA ACUST UNITED AC 2007; 54:181-8. [PMID: 17292477 DOI: 10.1016/j.brainresrev.2007.01.001] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2006] [Revised: 01/03/2007] [Accepted: 01/09/2007] [Indexed: 11/16/2022]
Abstract
The role of dopamine in the retina has been studied for the last 30 years and there is now increasing evidence that dopamine is used as a developmental signal in the embryonic retina. Dopamine is the main catecholamine found in the retina of most species, being synthesized from the L-amino acid tyrosine. Its effects are mediated by G protein coupled receptors constituting the D(1) (D(1) and D(5)) and D(2) (D(2), D(3) and D(4)) receptor subfamilies that can be coupled to adenylyl cyclase in opposite manners. Dopamine-mediated cyclic AMP (cAMP) accumulation, via D(1)-like receptors, is observed very early during retina ontogeny, before synaptogenesis and, in some species, before the expression of tyrosine hydroxylase (TH), the enzyme that characterizes the neuronal dopaminergic phenotype. D(2)-like receptors appear in the tissue days after D(1)-like activity is detected. In the embryonic avian retina, before the tissue is capable of synthesizing its own dopamine via TH, dopamine synthesis is observed from L-DOPA supplied to the neuroretina from retina pigmented epithelium which results in dopaminergic communication in the embryonic tissue before TH expression. Müller cells, the main glia type found in the retina, seem to actively contribute to dopaminergic activity in the retinal tissue. Understanding the dopaminergic role during retina development may contribute to novel strategies approaching certain visual dysfunctions such as those found in ocular albinism.
Collapse
Affiliation(s)
- Ricardo A M Reis
- Lab. Neurochemistry, Program in Neurobiology IBCCF, UFRJ, Rio de Janeiro, Brazil.
| | | | | | | | | |
Collapse
|
16
|
Tibber MS, Becker D, Jeffery G. Levels of transient gap junctions between the retinal pigment epithelium and the neuroblastic retina are influenced by catecholamines and correlate with patterns of cell production. J Comp Neurol 2007; 503:128-34. [PMID: 17480016 DOI: 10.1002/cne.21388] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Retinal mitosis takes place at the interface between the retinal pigment epithelium (RPE) and the neural retina. Multiple studies have highlighted the essential role that gap junction-mediated communication plays in the regulation of retinal organogenesis. Here, the localization pattern and function of the gap junction protein connexin 43 were examined in vivo in the rat at the interface between the retina and RPE during the main phases of retinal cell production. Connexin 43 was expressed at this site from E15 onward, and levels were subsequently temporally regulated. When Cx43 protein levels were reduced experimentally, by using antisense oligodeoxynucleotides, mitotic activity in the retina decreased significantly. Conversely, in the hypopigmented eye elevated mitotic levels were associated with a significant increase of connexin 43. Both excess protein levels and elevated mitosis were corrected by the in vivo administration of L-DOPA (a dopamine precursor and intermediary compound in the melanin synthesis pathway). These findings suggest that connexin 43-mediated communication between the retina and RPE is essential for the correct pacing of retinal organogenesis. Furthermore, this pathway may be gated by levels of ocular catecholamines.
Collapse
Affiliation(s)
- Marc S Tibber
- Institute of Ophthalmology, University College London, London, UK
| | | | | |
Collapse
|
17
|
Calaza KC, Gardino PF, de Mello FG. Transporter mediated GABA release in the retina: Role of excitatory amino acids and dopamine. Neurochem Int 2006; 49:769-77. [PMID: 16956697 DOI: 10.1016/j.neuint.2006.07.003] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2006] [Revised: 07/05/2006] [Accepted: 07/07/2006] [Indexed: 10/24/2022]
Abstract
In general, the release of neurotransmitters in the central nervous system is accomplished by a calcium-dependent process which constitutes a common feature of exocytosis, a conserved mechanism for transmitter release in all species. However, neurotransmitters can also be released by the reversal of their transporters. In the retina, a large portion of GABA is released by this mechanism, which is under the control of neuroactive agents, such as excitatory amino acids and dopamine. In this review, we will focus on the transporter mediated GABA release and the role played by excitatory amino acids and dopamine in this process. First, we will discuss the works that used radiolabeled GABA to study the outflow of the neurotransmitter and then the works that took into consideration the endogenous pool of GABA and the topography of GABAergic circuits influenced by excitatory amino acids and dopamine.
Collapse
Affiliation(s)
- K C Calaza
- Departamento de Neurobiologia do Instituto de Biologia da UFF, Brazil.
| | | | | |
Collapse
|
18
|
Kubrusly RCC, Ventura ALM, de Melo Reis RA, Serra GCF, Yamasaki EN, Gardino PF, de Mello MCF, de Mello FG. Norepinephrine acts as D1-dopaminergic agonist in the embryonic avian retina: late expression of beta1-adrenergic receptor shifts norepinephrine specificity in the adult tissue. Neurochem Int 2006; 50:211-8. [PMID: 17014930 DOI: 10.1016/j.neuint.2006.08.004] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2006] [Revised: 08/01/2006] [Accepted: 08/15/2006] [Indexed: 10/24/2022]
Abstract
Dopamine is the main catecholamine found in the chick retina whereas norepinephrine is only found in trace amounts. We compared the effectiveness of dopamine and norepinephrine in promoting cyclic AMP accumulation in retinas at embryonic day 13 (E13) and from post-hatched chicken (P15). Dopamine (EC(50)=10microM) and norepinephrine (EC(50)=30microM), but not the beta(1)-adrenergic agonist isoproterenol, stimulated over seven-fold the production of cyclic AMP in E13 retina. The cyclic AMP accumulation induced by both catecholamines in embryonic tissue was entirely blocked by 2microM SCH23390, a D(1) receptor antagonist, but not by alprenolol (beta-adrenoceptor antagonist). In P15 retinas, 100microM isoproterenol stimulated five-fold the accumulation of cAMP. This effect was blocked by propanolol (10microM), but not by 2microM SCH23390. Embryonic and adult retina display beta(1) adrenergic receptor mRNA as detected by RT-PCR, but the beta(1) adrenergic receptor protein was detected only in post-hatched tissue. We conclude that norepinephrine cross-reacts with D(1) dopaminergic receptor with affinity similar to that of dopamine in the embryonic retina. In the mature retina, however, D(1) receptors become restricted to activation by dopamine. Moreover, as opposed to the embryonic tissue, norepinephrine seems to stimulate cAMP accumulation via beta(1)-like adrenergic receptors in the mature tissue.
Collapse
|
19
|
Kubrusly RCC, da Cunha MCC, Reis RADM, Soares H, Ventura ALM, Kurtenbach E, de Mello MCF, de Mello FG. Expression of functional receptors and transmitter enzymes in cultured Muller cells. Brain Res 2005; 1038:141-9. [PMID: 15757630 DOI: 10.1016/j.brainres.2005.01.031] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2004] [Revised: 01/04/2005] [Accepted: 01/09/2005] [Indexed: 11/26/2022]
Abstract
Glia represents the most numerous group of nervous system cells and CNS development and function depend on glial cells. We developed a purified Muller glia culture to investigate the expression of several neurotransmitter markers on these cells, such as dopaminergic, cholinergic, GABAergic and peptidergic receptors or enzymes, based on functional assays measuring second messenger levels or Western blot for specific proteins. Purified Muller cell culture was obtained from 8-day-old (E8) embryonic chick. Glial cells cultured for 15 days (E8C15) expressed D1A and D1B receptors mRNAs, but not D1D, as detected by RT-PCR. The binding of [3H]-SCH 23390 revealed an amount of expressed receptors around 40 fmol/mg protein. Dopamine (100 microM), PACAP (50 nM) and forskolin (10 microM) induced a 50-, 30- and 40-fold cAMP accumulation on glial cells, respectively, but not ip3 production. The dopamine-promoted cAMP accumulation was blocked by 2 microM SCH 23390. Carbachol stimulated a 3-fold ip3 accumulation. Western blot analysis also revealed the expression of tyrosine hydroxylase, L-dopa decarboxylase, PAC1 receptor, GAD67 and beta2-nicotinic receptor subunit by these cells. These results indicate that several components of neurotransmitter signaling and metabolism are found in cultured Muller cells.
Collapse
Affiliation(s)
- Regina Celia Cussa Kubrusly
- Laboratory of Neurochemistry, Program in Neurobiology IBCCF, Sala C1-031, CCS, UFRJ, Ilha do Fundao, 21949-900, Rio de Janeiro, Brazil.
| | | | | | | | | | | | | | | |
Collapse
|
20
|
Borba JC, Henze IP, Silveira MS, Kubrusly RCC, Gardino PF, de Mello MCF, Hokoç JN, de Mello FG. Pituitary adenylate cyclase-activating polypeptide (PACAP) can act as determinant of the tyrosine hydroxylase phenotype of dopaminergic cells during retina development. BRAIN RESEARCH. DEVELOPMENTAL BRAIN RESEARCH 2005; 156:193-201. [PMID: 16099306 DOI: 10.1016/j.devbrainres.2005.02.016] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2004] [Revised: 02/21/2005] [Accepted: 02/27/2005] [Indexed: 11/16/2022]
Abstract
In the chick retina, dopaminergic cells are generated between embryonic days 3 and 7 (E3/E7). However, the expression of tyrosine hydroxylase (TH), the first enzyme in the catecholamine synthetic pathway, is only detected after E11/E12. During the interval comprising E7 to E12, signals conveyed by cAMP are important to determine the TH phenotype. The present study shows that pituitary adenylyl cyclase-activating polypeptide (PACAP), via cAMP, is a major endogenous component in defining the TH phenotype of retina dopaminergic cells during development. PACAP type 1 receptor and its mRNA were detected in retinas since E6. PACAP was also immunodetected in cells localized in the inner nuclear layer of retinas since E8. This peptide promoted greater than 10-fold increase in cAMP accumulation of retinas obtained from embryos since E8, an effect that was blocked by PACAP6-38 (PAC1 receptor antagonist). In cultured retina cells from E8 and E9, maintained for 6 days in vitro with 10 nM PACAP (for 5 days), the number of dopaminergic cells expressing tyrosine hydroxylase increased 2.4-fold. The cAMP analog, 8-Br-cAMP and 3-isobutyl-1-methylxanthine (IBMX, a phosphodiesterase inhibitor) also increased the number of tyrosine hydroxylase-positive cells by 4- to 6-fold. IBMX plus PACAP treatment resulted in 17-fold increase in the number of cells positive for tyrosine hydroxylase. Under this condition the amount of tyrosine hydroxylase expression, as detected by western blot analysis, was also increased. The protein kinase-A inhibitor, rp-cAMPS, significantly reduced the effect of PACAP. Our data show that this peptide is an important factor influencing the definition of the tyrosine hydroxylase phenotype of retina dopaminergic cells within a narrow window of development.
Collapse
MESH Headings
- 1-Methyl-3-isobutylxanthine/pharmacology
- 8-Bromo Cyclic Adenosine Monophosphate/pharmacology
- Age Factors
- Animals
- Animals, Newborn
- Blotting, Western/methods
- Cell Count/methods
- Cell Culture Techniques
- Chick Embryo
- Colforsin/pharmacology
- Cyclic AMP/metabolism
- Dopamine/metabolism
- Dose-Response Relationship, Drug
- Drug Interactions
- Gene Expression Regulation/drug effects
- Gene Expression Regulation/physiology
- Immunohistochemistry/methods
- Microscopy, Confocal/methods
- Nerve Growth Factors/antagonists & inhibitors
- Nerve Growth Factors/physiology
- Neurons/drug effects
- Neurons/enzymology
- Neurons/metabolism
- Neuropeptides/antagonists & inhibitors
- Neuropeptides/physiology
- Neurotransmitter Agents/antagonists & inhibitors
- Neurotransmitter Agents/physiology
- Phenotype
- Phosphodiesterase Inhibitors/pharmacology
- Pituitary Adenylate Cyclase-Activating Polypeptide
- RNA, Messenger/metabolism
- Receptors, Cell Surface/genetics
- Receptors, Cell Surface/metabolism
- Receptors, Pituitary Adenylate Cyclase-Activating Polypeptide
- Receptors, Pituitary Adenylate Cyclase-Activating Polypeptide, Type I
- Retina/cytology
- Retina/embryology
- Retina/enzymology
- Retina/metabolism
- Reverse Transcriptase Polymerase Chain Reaction/methods
- Time Factors
- Tyrosine 3-Monooxygenase/genetics
- Tyrosine 3-Monooxygenase/metabolism
Collapse
Affiliation(s)
- Juliana Carrazzoni Borba
- Laboratórios de Neuroquímica and Neurobiologia da Retina, Instituto de Biofísica Carlos Chagas Filho-UFRJ, Centro de Ciências da Saúde-Bloco G, Universidade Federal do Rio de Janeiro, Ilha do Fundão, Rio de Janeiro, RJ 21949-900, Brazil
| | | | | | | | | | | | | | | |
Collapse
|
21
|
Pearson RA, Catsicas M, Becker DL, Bayley P, Lüneborg NL, Mobbs P. Ca2+ signalling and gap junction coupling within and between pigment epithelium and neural retina in the developing chick. Eur J Neurosci 2004; 19:2435-45. [PMID: 15128397 DOI: 10.1111/j.0953-816x.2004.03338.x] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Development of the neural retina is controlled in part by the adjacent retinal pigment epithelium (RPE). To understand better the mechanisms involved, we investigated calcium signalling and gap junctional coupling within and between the RPE and the neural retina in embryonic day (E) 5 chick. We show that the RPE and the ventricular zone (VZ) of the neural retina display spontaneous Ca(2+) transients. In the RPE, these often spread as waves between neighbouring cells. In the VZ, the frequency of both Ca(2+) transients and waves was lower than in RPE, but increased two-fold in its presence. Ca(2+) signals occasionally crossed the boundary between the RPE and VZ in either direction. In both tissues, the frequency of propagating Ca(2+) waves, but not of individual cell transients, was reduced by gap junction blockers. Use of the gap junction permeant tracer Neurobiotin showed that neural retina cells are coupled into clusters that span the thickness of the retina, and that RPE cells are both coupled together and to clusters of cells in the neural retina. Immunolabelling for Cx43 showed this gap junction protein is present at the junction between the RPE and VZ and thus could potentially mediate the coupling of the two tissues. Immunolabelling for beta-tubulin and vimentin showed that clusters of coupled cells in the neural retina comprised mainly progenitor cells. We conclude that gap junctions between progenitor cells, and between these cells and the RPE, may orchestrate retinal proliferation/differentiation, via the propagation of Ca(2+) or other signalling molecules.
Collapse
Affiliation(s)
- Rachael A Pearson
- Department of Physiology, University College London, Gower Street, London, WC1E 6BT
| | | | | | | | | | | |
Collapse
|
22
|
Kubrusly RCC, Guimarães MZP, Vieira APB, Hokoç JN, Casarini DE, de Mello MCF, de Mello FG. L-DOPA supply to the neuro retina activates dopaminergic communication at the early stages of embryonic development. J Neurochem 2003; 86:45-54. [PMID: 12807423 DOI: 10.1046/j.1471-4159.2003.01813.x] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
DOPA decarboxylase (DDC; aromatic-l-amino acid decarboxylase; EC 4.1.1.28) is absent in retinas from 6-day-old chicken embryos (E6) but is expressed in retina of E8 embryos, in the presumptive outer plexiform layer. Thereafter, DDC appears in cell bodies of presumptive amacrine cells. The dopamine (DA) content of E9/10 and E15/16 retinas, pre-incubated with l-DOPA for 1 h, increased 250- and 600-fold, respectively, showing that DDC is active since early in development. Intercellular communication, measured by endogenous cyclic AMP accumulation, was observed when retinas from E9/10 to E15/16 were pre-incubated for 1 h with 1 mm l-DOPA, washed and followed by incubation in the presence of 0.5 mm 3-isobutyl-1-methylxanthine, a phosphodiesterase inhibitor. Cyclic AMP accumulation was prevented when pre-incubation with l-DOPA was carried out in the presence of carbidopa. Moreover, the accumulation of cyclic AMP was inhibited by SCH 23390 (2 micro m). The incubation of retinas in medium previously conditioned by retina-pigmented epithelium (RPE) also increased its cyclic AMP content with the characteristics described for l-DOPA. Our results show that dopaminergic communication takes place in the embryonic retina, before tyrosine hydroxylase expression, provided l-DOPA is supplied to the tissue. It also shows that RPE is a potential source of l-DOPA early in development.
Collapse
|
23
|
Zhang Y, Coleman JE, Fuchs GE, Semple-Rowland SL. Circadian oscillator function in embryonic retina and retinal explant cultures. BRAIN RESEARCH. MOLECULAR BRAIN RESEARCH 2003; 114:9-19. [PMID: 12782388 DOI: 10.1016/s0169-328x(03)00122-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Retinal circadian oscillators regulate many aspects of retinal function. Investigations of these oscillators and the biochemical cascades that entrain them would be greatly facilitated if experimental paradigms could be identified that permit long-term monitoring of retinal circadian oscillator function in vitro. The purpose of this study was to determine if chicken retinas maintained in explant culture conditions could serve in this capacity. Retinal circadian oscillator function was studied by monitoring iodopsin transcription under cyclic light, constant dark, and following reversal of the light cycle. Rhythms observed in the explant cultures were compared to those observed in retinas of embryos (in ovo) and post-hatch chickens. Robust iodopsin transcript rhythms were observed for up to 9 days in explant cultures maintained under cyclic light. These rhythms persisted for 48 h in constant darkness and the time course for re-entrainment of the rhythm to a reversed light/dark cycle was similar to that observed in post-hatch chicken retinas. These results show that circadian oscillators located within the retina play a key role in the regulation of iodopsin transcription in retinal explant cultures and in retinas of post-hatch chickens. Interestingly, our data show that iodopsin transcription in retinas of intact embryos is primarily, if not entirely, driven by light. These results show that the circadian oscillators driving iodopsin transcription in embryonic retinal explant cultures exhibit functional characteristics similar to those found in post-hatch chicken retina, supporting use of this paradigm in further studies of entrainment of these oscillators in retina.
Collapse
Affiliation(s)
- Yan Zhang
- Department of Neuroscience, University of Florida McKnight Brain Institute, 100 Newell Drive, Bldg 59, Rm L1-100, Gainesville, FL 32610-0255, USA
| | | | | | | |
Collapse
|
24
|
Barros PHOC, Calaza KDC, Gardino PF. GABA(Abeta2-3) immunoreactive cells in the developing chick retina. Int J Dev Neurosci 2003; 21:35-40. [PMID: 12565694 DOI: 10.1016/s0736-5748(02)00106-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022] Open
Abstract
Gama-aminobutyric acid (GABA) is the major inhibitory neurotransmitter in the central nervous system (CNS). It has been shown that GABA is an important factor for CNS maturation and that its functions are mainly mediated by GABA(A) receptors. Thus, in order to fully comprehend the role of GABA during development, it is essential to establish the developmental features of the catalytic subunits (beta) of GABA(A) receptor. Here, we determine the ontogenesis and neurogenesis of cells expressing beta2-3 subunits of GABA(A) receptor (GABA(Abeta2-3)) in the chick retina. In the ontogenetic experiments, only the immunohistochemistry for GABA(Abeta2-3) approach was employed. For neurogenesis a double-labeling method (autoradiography and immunohistochemistry) was applied. [H(3)]-thymidine was injected into eggs (2-11 days) and the embryos were sacrificed at embryonic day 19 (E19). GABA(Abeta2-3) immunohistochemistry was processed and then autoradiography was performed. We used a cumulative counting method to quantify the autoradiographic grains. The ontogenesis study revealed that at E9, GABA(Abeta2-3) immunoreactivity was restricted to the inner plexiform layer and the first cell bodies immunoreactive to GABA(Abeta2-3) were seen at E14. Thereafter, the number of cell bodies and the intensity of GABA(Abeta2-3) immunoreactivity increased until the adult pattern was established. The neurogenesis study showed that cells that will express GABA(Abeta2-3) were generated between E6 and E9. In addition, from E7 to E9 the rate of neurogenesis of GABA(Abeta2-3) immunoreactive cells quickly increases. Therefore, the detection of GABA(Abeta2-3) occurred only after the end of generation period of this cell population.
Collapse
Affiliation(s)
- Pedro Henrique Oliveira Cavalcanti Barros
- Lab. Neurobiologia da Retina, Depto Neurobiologia, Instituto de Biofísica Carlos Chagas Filho, Cidade Universitária, CCS, Bloco G, UFRJ, RJ 21949-900, Rio de Janeiro, Brazil
| | | | | |
Collapse
|
25
|
Drenhaus U, Morino P, Rager G. Expression of axonin-1 in developing amacrine cells in the chick retina. J Comp Neurol 2003; 468:496-508. [PMID: 14689482 DOI: 10.1002/cne.10986] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
This study focused on the temporal and spatial pattern of expression of the cell adhesion molecule axonin-1 in amacrine cells and the identification of these cells in the developing chick retina. We analyzed 5-20-day-old chick embryos. The antigen was localized and visualized by the indirect immunogold and the immunofluorescence technique. Colocalization studies with antibodies against tyrosine hydroxylase, acetylcholinesterase, choline acetyltransferase, parvalbumin, calbindin, and calretinin served to characterize these cells further and to explore whether they have other properties in common. Axonin-1 was expressed in amacrine cells from E8 onward in the inner nuclear, in the inner plexiform, and in the ganglion cell layer. Their maturation showed a gradient similar to that found for amacrinogenesis. Expression was closely correlated with the period when the cells develop and shape their processes. The interneurons were classified with reference to Cajal, and most of the morphological types described by him were found. In addition, some cells were considered as axon-bearing amacrine cells. However, the total number of labeled cells was rather small. At least two morphologically different types terminated in each of the inner plexiform sublayers. Narrow- and wide-field arbors indicated the existence of a diversified network. The colocalization studies revealed that the neurotransmitters and neuropeptides overlapped partially with axonin-1 expression. This indicated that axonin-1-immunoreactive amacrine cells were also functionally diverse.
Collapse
Affiliation(s)
- U Drenhaus
- Department of Medicine, Division of Anatomy, University of Fribourg, CH-1700 Fribourg, Switzerland.
| | | | | |
Collapse
|
26
|
Holdengreber V, Krieger C, Gütlich M, Schramek N, Vechoropoulos M, Fischer M, Bacher A, Ben-Shaul Y. Localization of two enzymes of the tetrahydrobiopterin biosynthetic pathway in embryonic chick retina. J Histochem Cytochem 2002; 50:265-74. [PMID: 11799145 DOI: 10.1177/002215540205000214] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Tetrahydrobiopterin (BH4) is an essential co-factor for the biosynthesis of catecholamine-type neurotransmitters and of nitric oxide (NO). The expression of the enzymes catalyzing the first two steps of the BH4 biosynthetic pathway was studied in the developing chicken retina by in situ hybridization and immunocytochemistry. GTP-cyclohydrolase-I (GTP-CH-I) and 6-pyruvoyl-tetrahydropterin synthase (PTPS) were already expressed in the undifferentiated and proliferating retina of E7. At stage E11 both enzymes were expressed in photoreceptors, amacrine cells, displaced amacrine cells, and ganglion cells, and in the plexiform layers in which synaptic connections take place. At stage E18 the labeling was comparable to E11 but appeared to be more concentrated in photoreceptors and ganglion cells.
Collapse
Affiliation(s)
- Vered Holdengreber
- Tel-Aviv University, Department of Cell Research and Immunology, Tel Aviv, Israel
| | | | | | | | | | | | | | | |
Collapse
|
27
|
Guimarães MZ, Hokoç JN, Duvoisin R, Reis RA, De Mello FG. Dopaminergic retinal cell differentiation in culture: modulation by forskolin and dopamine. Eur J Neurosci 2001; 13:1931-7. [PMID: 11403686 DOI: 10.1046/j.0953-816x.2001.01575.x] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
We examined the effects of dopamine and cAMP on the differentiation of dopaminergic retinal cells in the chick retina, using an in vitro system and tyrosine hydroxylase immunocytochemistry. Tyrosine hydroxylase-positive cells were detected in cultures prepared from embryonic day 10 retinas. These increased in number as a function of time in vitro and by treatment for 4 days with forskolin. Besides causing a 3.4-fold increase in the tyrosine hydroxylase-positive population, forskolin also caused these cells to developed morphogenetic features of more mature cells. As opposed to forskolin, cultures treated with dopamine exhibited a 55% reduction of the tyrosine hydroxylase-positive cell population, as compared to untreated cultures. Quinpirole was able to mimic the dopamine effect. This dopamine effect could only be blocked by clozapine, whereas raclopride and eticlopride were ineffective. Our results suggest the existence of a narrow window during development when undifferentiated dopaminergic cells are capable of being influenced by specific signals, possibly via cAMP production. The data also indicate that dopamine may act as a regulatory factor limiting the tyrosine hydroxylase-positive population in the retina.
Collapse
Affiliation(s)
- M Z Guimarães
- Programa de Neurobiologia, Instituto de Biofísica Carlos Chagas Filho, CCS Bl-G Universidade Federal do Rio de Janeiro, 21949-900, Brazil
| | | | | | | | | |
Collapse
|
28
|
da Costa Calaza K, Hokoç JN, Gardino PF. Neurogenesis of GABAergic cells in the chick retina. Int J Dev Neurosci 2000; 18:721-6. [PMID: 11154841 DOI: 10.1016/s0736-5748(00)00055-1] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Two classes of retinal neurons in the chick retina, the horizontal and the amacrine cells, are GABAergic. This study evaluates the neurogenesis of glutamic acid decarboxylase immunoreactive cells in the chick retina. Twenty-five microCi [3H]thymidine was injected into eggs of 2-10 days and the embryos were sacrificed at embryonic day 18 (E18). Glutamic acid decarboxylase immunohistochemistry was revealed by avidin-biotin complex method followed by autoradiography of thymidine. We used the cumulative method for counting autoradiographic grains. At E3, 10% of the amacrine cells were thymidine negative/glutamic acid decarboxylase positive and this rate remained constant until E6. From E6 to E8 about 80% of the amacrine cells were thymidine negative/glutamic acid decarboxylase positive. At E9, 100% of these neurons had been generated. On the other hand, at E3 only 1.5% of the horizontal cells had been generated (thymidine negative/glutamic acid decarboxylase positive) while at E6 this number increased to 10%. From E6 to E9 the neurogenesis pattern was similar to that found for amacrine cells. Our data show that the great majority (80%) of glutamic acid decarboxylase positive amacrine and horizontal cells proliferate between E6 and E9, i.e. the last 3 days of the neurogenesis period. From E3 to E6 only 20% of the glutamic acid decarboxylase positive amacrine and horizontal cells are generated, which suggests that glutamic acid decarboxylase positive cells may require a specific signal at about E6, which triggers their withdrawal from the cell cycle.
Collapse
Affiliation(s)
- K da Costa Calaza
- Programa de Neurobiologia, Instituto de Biofísicas Carlos Chagas Filho, Centro de Ciências da Saúde, Universidade Federal do Rio de Janeiro, Brazil
| | | | | |
Collapse
|
29
|
Smeets WJ, González A. Catecholamine systems in the brain of vertebrates: new perspectives through a comparative approach. BRAIN RESEARCH. BRAIN RESEARCH REVIEWS 2000; 33:308-79. [PMID: 11011071 DOI: 10.1016/s0165-0173(00)00034-5] [Citation(s) in RCA: 300] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
A comparative analysis of catecholaminergic systems in the brain and spinal cord of vertebrates forces to reconsider several aspects of the organization of catecholamine systems. Evidence has been provided for the existence of extensive, putatively catecholaminergic cell groups in the spinal cord, the pretectum, the habenular region, and cortical and subcortical telencephalic areas. Moreover, putatively dopamine- and noradrenaline-accumulating cells have been demonstrated in the hypothalamic periventricular organ of almost every non-mammalian vertebrate studied. In contrast with the classical idea that the evolution of catecholamine systems is marked by an increase in complexity going from anamniotes to amniotes, it is now evident that the brains of anamniotes contain catecholaminergic cell groups, of which the counterparts in amniotes have lost the capacity to produce catecholamines. Moreover, a segmental approach in studying the organization of catecholaminergic systems is advocated. Such an approach has recently led to the conclusion that the chemoarchitecture and connections of the basal ganglia of anamniote and amniote tetrapods are largely comparable. This review has also brought together data about the distribution of receptors and catecholaminergic fibers as well as data about developmental aspects. From these data it has become clear that there is a good match between catecholaminergic fibers and receptors, but, at many places, volume transmission seems to play an important role. Finally, although the available data are still limited, striking differences are observed in the spatiotemporal sequence of appearance of catecholaminergic cell groups, in particular those in the retina and olfactory bulb.
Collapse
Affiliation(s)
- W J Smeets
- Graduate School of Neurosciences of Amsterdam, Research Institute of Neurosciences, Amsterdam, The Netherlands.
| | | |
Collapse
|
30
|
Soares HC, de Melo Reis RA, De Mello FG, Ventura AL, Kurtenbach E. Differential expression of D(1A) and D(1B) dopamine receptor mRNAs in the developing avian retina. J Neurochem 2000; 75:1071-5. [PMID: 10936188 DOI: 10.1046/j.1471-4159.2000.0751071.x] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
In the chick retina, the D1 dopaminergic system differentiates very early, as shown by receptor-mediated increases in intracellular cyclic AMP concentration and the presence of [(3)H]SCH23390-specific binding sites. Here, we characterized, by RT-PCR, the expression of defined D1 receptor subtypes D(1A), D(1B), and D(1D) during the development of the chick retina. Total RNA was extracted from retinas of 6-day-old embryos (E6) to 1-day-old hatched chickens and reverse-transcribed. The resulting cDNA was amplified using D(1A)-, D(1B)-, or D(1D)-specific primers, and the PCR-amplified products were analyzed by electrophoresis. The fragment corresponding to D(1A) receptor was detected in developing retina as early as E7, whereas the fragment corresponding to D(1B) was observed starting around E10. No PCR product corresponding to D(1D) was observed in the retina, although it was detected in chick brain. As synaptogenesis in chick retina begins after E11 and [(3)H]SCH 23390 D1 binding sites increase after this stage, the present results show that expression of D(1B) receptor increases during synaptogenesis, whereas D(1A) is the receptor subtype associated with the D1-like actions of dopamine early in retina development.
Collapse
Affiliation(s)
- H C Soares
- Departamento de Bioquímica Médica, Centro de Ciências da Saúde, Universidade Federal do Rio de Janeiro, Brazil
| | | | | | | | | |
Collapse
|
31
|
Cossenza M, Paes de Carvalho R. L-arginine uptake and release by cultured avian retinal cells: differential cellular localization in relation to nitric oxide synthase. J Neurochem 2000; 74:1885-94. [PMID: 10800931 DOI: 10.1046/j.1471-4159.2000.0741885.x] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The availability of L-arginine is of pivotal importance for the synthesis of nitric oxide, a signaling molecule in the CNS. Here we show the presence of a high-affinity L-arginine uptake system (Km of 4.4 +/- 0.5 microM and a Vmax of 26.0 +/- 0.9 fmol/well/min) in cultured chick retinal cells. Different compounds, such as N(G)-mono-methyl-L-arginine and L-lysine, were able to inhibit the uptake that was also inhibited 60-70% in the absence of sodium and/or calcium ions. No trans stimulation was observed when cells were preloaded with L-lysine. The data indicate that the L-arginine uptake in cultured retinal cells is partially mediated by the y+ system, but has a great contribution of the B(0,+) system. Autoradiographic studies revealed that the uptake is predominant in glial cells and can also be detected in neurons, whereas immunocytochemistry of nitric oxide synthase and L-citrulline showed that the enzyme is present in neurons and photoreceptors, but not in glial cells. L-[3H]Arginine is released from purified glial cultures incubated with high concentrations of potassium in the extracellular medium. Moreover, the amino acid released from preloaded glial cells was taken up by purified neuronal cultures. These results indicate that L-arginine released from glial cells is taken up by neurons and used as substrate for the synthesis of nitric oxide.
Collapse
Affiliation(s)
- M Cossenza
- Department of Neurobiology, Federal Fluminense University, Niterói, Brazil
| | | |
Collapse
|
32
|
Mey J, Thanos S. Development of the visual system of the chick. I. Cell differentiation and histogenesis. BRAIN RESEARCH. BRAIN RESEARCH REVIEWS 2000; 32:343-79. [PMID: 10760548 DOI: 10.1016/s0165-0173(99)00022-3] [Citation(s) in RCA: 123] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
This review summarizes present knowledge on the embryonic development of the avian visual projections, based on the domestic chick as a model system. The reductionist goal to understand formation and function of complex neuroanatomical systems on a causal level requires a synthesis of classic developmental biology with recent advances on the molecular mechanisms of cell differentiation and histogenesis. It is the purpose of this article. We are discussing the processes underlying patterning of the anterior neural tube, when the retina and optic tectum are specified and their axial polarity is determined. Then the development of these structures is described from the molecular to the anatomical level. Following sections deal with the establishment of secondary visual connections, and the developmental interactions between compartments of the retinotectal system. Using this latter pathway, from the retina to the optic tectum, many investigations aimed at mechanisms of axonal pathfinding and connectivity have accumulated a vast body of research, which will be covered by a following review.
Collapse
Affiliation(s)
- J Mey
- Institut für Biologie II, Rheinisch-Westfälische Technische Hochschule Aachen, Kopernikusstrasse 16, Aachen, Germany.
| | | |
Collapse
|
33
|
Do Nascimento JL, Kubrusly RC, Reis RA, De Mello MC, De Mello FG. Atypical effect of dopamine in modulating the functional inhibition of NMDA receptors of cultured retina cells. Eur J Pharmacol 1998; 343:103-10. [PMID: 9551720 DOI: 10.1016/s0014-2999(97)01522-7] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Cultured retina cells released accumulated [3H]GABA (gamma-aminobutyric acid) when stimulated by L-glutamate, N-methyl-D-aspartate (NMDA) and kainate. In the absence of Mg2+, dopamine at 200 microM (IC50 60 microM), inhibited in more than 50% the release of [3H]GABA induced by L-glutamate and NMDA, but not by kainate. This effect was not blocked by the D1-like dopamine receptor antagonist, R-(+)-7-chloro-8-hydroxy-3-methyl- -phenyl-2,3,4,5-tetrahydro- H-3-benzazepine hydrochloride (SCH 23390), neither by haloperidol nor spiroperidol (dopamine D2-like receptor antagonists). The dopamine D1-like receptor agonist R(+)-1-phenyl-2,3,4,5-tetrahydro-(1H)-3-benzazepine-7,diol hydrochloride (SKF 38393) at 50 microM, but not its enantiomer, also inhibited the release of [3H]GABA induced by NMDA, but not by kainate; an effect that was not prevented by the antagonists mentioned above. (+/-)-6-Chloro-7,8-dihydroxy-1-phenyl-2,3,4,5-tetrahydro-1H-3-benzazepin e hydrobromide (SKF 812497) had no effect. Neither 8BrcAMP (5 mM) nor forskolin (10 microM) inhibited the release of [3H]GABA. Our results suggest that dopamine and (+)-SKF 38393 inhibit the glutamate and NMDA-evoked [3H]GABA release through mechanisms that seem not to involve known dopaminergic receptor systems.
Collapse
Affiliation(s)
- J L Do Nascimento
- Departamento de Fisiologia, CCB, UFPa, Campus Universitário, Belém, Para, Brazil
| | | | | | | | | |
Collapse
|
34
|
Boumghar L, Marois A, Lolicoeur FJ, Casanova C. Apomorphine modifies the visual responses of cells in the rabbit's lateral geniculate nucleus. Can J Physiol Pharmacol 1997. [DOI: 10.1139/y97-136] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
|