1
|
Mitchell V, Frenguelli BG, Bakker S, Ngomba RT, Richardson M, Hill E, Wall MJ. Soluble tau aggregates decrease the threshold for thalamic oscillations and increase the excitability of thalamic neurons. Neuropharmacology 2025; 273:110455. [PMID: 40189019 DOI: 10.1016/j.neuropharm.2025.110455] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2025] [Revised: 03/26/2025] [Accepted: 04/03/2025] [Indexed: 04/17/2025]
Abstract
Sleep disturbances frequently occur early in dementias such as Alzheimer's disease (AD) and potentially arise from many factors including cortico-thalamo-cortical (CTC) loop dysfunction. It has been reported that tau filament deposition occurs in the thalamus and there is thalamic atrophy in symptomatic AD patients which could contribute to CTC loop disturbance. Here we have investigated whether human recombinant tau soluble aggregates can induce dysfunction in thalamic circuits. Electrophysiological measurements were made from acutely isolated male and female rat corticothalamic slices following incubation with tau aggregates. Tau aggregates markedly reduced the threshold for inducing spindle-like oscillations and increased the excitability of thalamic neurons. Tau aggregates also significantly enhanced the frequency of miniature excitatory postsynaptic currents recorded in ventrobasal thalamic neurons, suggesting possible changes in terminal Ca2+ influx. These pro-excitatory effects of tau aggregates could contribute to the aberrant CTC loop dysfunction observed in AD models and patients, which manifests as sleep disturbances and absence seizures.
Collapse
Affiliation(s)
| | | | | | - Richard T Ngomba
- School of Life Sciences, University of Warwick, UK; College of Health and Science, School of Health and Care Sciences, Pharmacy, University of Lincoln, Joseph Banks Laboratories, Room JBL2W25, Green Lane, Lincoln, Lincolnshire LN6 7DL, UK
| | - Magnus Richardson
- School of Life Sciences, University of Warwick, UK; Institute of Mathematics, University of Warwick, UK
| | - Emily Hill
- School of Life Sciences, University of Warwick, UK
| | - Mark J Wall
- School of Life Sciences, University of Warwick, UK.
| |
Collapse
|
2
|
Sheroziya M, Khazipov R. Synaptic Origin of Early Sensory-evoked Oscillations in the Immature Thalamus. Neuroscience 2023; 532:50-64. [PMID: 37769898 DOI: 10.1016/j.neuroscience.2023.09.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2023] [Revised: 08/22/2023] [Accepted: 09/08/2023] [Indexed: 10/03/2023]
Abstract
During the critical period of postnatal development, brain maturation is extremely sensitive to external stimuli. Newborn rodents already have functional somatosensory pathways and the thalamus, but the cortex is still forming. Immature thalamic synapses may produce large postsynaptic potentials in immature neurons, while non-synaptic membrane currents remain relatively weak and slow. The thalamocortical system generates spontaneous and evoked early gamma and spindle-burst oscillations in newborn rodents. How relatively strong synapses and weak intrinsic currents interact with each other and how they contribute to early thalamic activities remains largely unknown. Here, we performed local field potential (LFP), juxtacellular, and patch-clamp recordings in the somatosensory thalamus of urethane-anesthetized rat pups at postnatal days 6-7 with one whisker stimulation. We removed the overlying cortex and hippocampus to reach the thalamus with electrodes. Deflection of only one (the principal) whisker induced spikes in a particular thalamic cell. Whisker deflection evoked a group of large-amplitude excitatory events, likely originating from lemniscal synapses and multiple inhibitory postsynaptic events in thalamocortical cells. Large-amplitude excitatory events produced a group of spike bursts and could evoke a depolarization block. Juxtacellular recordings confirmed the partial inactivation of spikes. Inhibitory events prevented inactivation of action potentials and gamma-modulated neuronal firing. We conclude that the interplay of strong excitatory and inhibitory synapses and relatively weak intrinsic currents produces sensory-evoked early gamma oscillations in thalamocortical cells. We also propose that sensory-evoked large-amplitude excitatory events contribute to evoked spindle-bursts.
Collapse
Affiliation(s)
- Maxim Sheroziya
- Laboratory of Neurobiology, Kazan Federal University, Kazan, Russia.
| | - Roustem Khazipov
- Laboratory of Neurobiology, Kazan Federal University, Kazan, Russia; Aix Marseille University, INSERM, INMED, Marseille, France
| |
Collapse
|
3
|
Perez-García P, Pardillo-Díaz R, Geribaldi-Doldán N, Gómez-Oliva R, Domínguez-García S, Castro C, Nunez-Abades P, Carrascal L. Refinement of Active and Passive Membrane Properties of Layer V Pyramidal Neurons in Rat Primary Motor Cortex During Postnatal Development. Front Mol Neurosci 2021; 14:754393. [PMID: 34924951 PMCID: PMC8671142 DOI: 10.3389/fnmol.2021.754393] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Accepted: 10/19/2021] [Indexed: 11/13/2022] Open
Abstract
Achieving the distinctive complex behaviors of adult mammals requires the development of a great variety of specialized neural circuits. Although the development of these circuits begins during the embryonic stage, they remain immature at birth, requiring a postnatal maturation process to achieve these complex tasks. Understanding how the neuronal membrane properties and circuits change during development is the first step to understand their transition into efficient ones. Thus, using whole cell patch clamp recordings, we have studied the changes in the electrophysiological properties of layer V pyramidal neurons of the rat primary motor cortex during postnatal development. Among all the parameters studied, only the voltage threshold was established at birth and, although some of the changes occurred mainly during the second postnatal week, other properties such as membrane potential, capacitance, duration of the post-hyperpolarization phase or the maximum firing rate were not defined until the beginning of adulthood. Those modifications lead to a decrease in neuronal excitability and to an increase in the working range in young adult neurons, allowing more sensitive and accurate responses. This maturation process, that involves an increase in neuronal size and changes in ionic conductances, seems to be influenced by the neuronal type and by the task that neurons perform as inferred from the comparison with other pyramidal and motor neuron populations.
Collapse
Affiliation(s)
- Patricia Perez-García
- Department of Physiology, School of Pharmacy, University of Seville, Seville, Spain.,Division of Physiology, School of Medicine, University of Cádiz, Cádiz, Spain
| | - Ricardo Pardillo-Díaz
- Division of Physiology, School of Medicine, University of Cádiz, Cádiz, Spain.,Biomedical Research and Innovation Institute of Cádiz (INiBICA), Cádiz, Spain
| | - Noelia Geribaldi-Doldán
- Biomedical Research and Innovation Institute of Cádiz (INiBICA), Cádiz, Spain.,Department of Human Anatomy and Embriology, University of Cádiz, Cádiz, Spain
| | - Ricardo Gómez-Oliva
- Division of Physiology, School of Medicine, University of Cádiz, Cádiz, Spain.,Biomedical Research and Innovation Institute of Cádiz (INiBICA), Cádiz, Spain
| | - Samuel Domínguez-García
- Division of Physiology, School of Medicine, University of Cádiz, Cádiz, Spain.,Biomedical Research and Innovation Institute of Cádiz (INiBICA), Cádiz, Spain
| | - Carmen Castro
- Division of Physiology, School of Medicine, University of Cádiz, Cádiz, Spain.,Biomedical Research and Innovation Institute of Cádiz (INiBICA), Cádiz, Spain
| | - Pedro Nunez-Abades
- Department of Physiology, School of Pharmacy, University of Seville, Seville, Spain.,Biomedical Research and Innovation Institute of Cádiz (INiBICA), Cádiz, Spain
| | - Livia Carrascal
- Department of Physiology, School of Pharmacy, University of Seville, Seville, Spain.,Biomedical Research and Innovation Institute of Cádiz (INiBICA), Cádiz, Spain
| |
Collapse
|
4
|
Desai NV, Varela C. Distinct burst properties contribute to the functional diversity of thalamic nuclei. J Comp Neurol 2021; 529:3726-3750. [PMID: 33723858 PMCID: PMC8440663 DOI: 10.1002/cne.25141] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2020] [Revised: 03/10/2021] [Accepted: 03/12/2021] [Indexed: 12/21/2022]
Abstract
Thalamic neurons fire spikes in two modes, burst and tonic. The function of burst firing is unclear, but the evidence suggests that bursts are more effective at activating cortical cells, and that postinhibition rebound bursting contributes to thalamocortical oscillations during sleep. Bursts are considered stereotyped signals; however, there is limited evidence regarding how burst properties compare across thalamic nuclei of different functional or anatomical organization. Here, we used whole-cell patch clamp recordings and compartmental modeling to investigate the properties of bursts in six sensory thalamic nuclei, to study the mechanisms that can lead to different burst properties, and to assess the implications of different burst properties for thalamocortical transmission and oscillatory functions. We found that bursts in higher-order cells on average had higher number of spikes and longer latency to the first spike. Additionally, burst features in first-order neurons were determined by sensory modality. Shifting the voltage-dependence and density of the T-channel conductance in a compartmental model replicates the burst properties from the intracellular recordings, pointing to molecular mechanisms that can generate burst diversity. Furthermore, the model predicts that bursts with higher number of spikes will drastically reduce the effectiveness of thalamocortical transmission. In addition, the latency to burst limited the rebound oscillatory frequency in modeled cells. These results demonstrate that burst properties vary according to the thalamocortical hierarchy and with sensory modality. The findings imply that, while in burst mode, thalamocortical transmission and firing frequency will be determined by the number of spikes and latency to burst.
Collapse
Affiliation(s)
- Nidhi Vasant Desai
- Psychology Department, Jupiter Life Sciences Initiative, Florida Atlantic University, Boca Raton, Florida, USA
| | - Carmen Varela
- Psychology Department, Jupiter Life Sciences Initiative, Florida Atlantic University, Boca Raton, Florida, USA
| |
Collapse
|
5
|
Experimentally-constrained biophysical models of tonic and burst firing modes in thalamocortical neurons. PLoS Comput Biol 2019; 15:e1006753. [PMID: 31095552 PMCID: PMC6541309 DOI: 10.1371/journal.pcbi.1006753] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2018] [Revised: 05/29/2019] [Accepted: 04/10/2019] [Indexed: 01/12/2023] Open
Abstract
Somatosensory thalamocortical (TC) neurons from the ventrobasal (VB) thalamus are central components in the flow of sensory information between the periphery and the cerebral cortex, and participate in the dynamic regulation of thalamocortical states including wakefulness and sleep. This property is reflected at the cellular level by the ability to generate action potentials in two distinct firing modes, called tonic firing and low-threshold bursting. Although the general properties of TC neurons are known, we still lack a detailed characterization of their morphological and electrical properties in the VB thalamus. The aim of this study was to build biophysically-detailed models of VB TC neurons explicitly constrained with experimental data from rats. We recorded the electrical activity of VB neurons (N = 49) and reconstructed morphologies in 3D (N = 50) by applying standardized protocols. After identifying distinct electrical types, we used a multi-objective optimization to fit single neuron electrical models (e-models), which yielded multiple solutions consistent with the experimental data. The models were tested for generalization using electrical stimuli and neuron morphologies not used during fitting. A local sensitivity analysis revealed that the e-models are robust to small parameter changes and that all the parameters were constrained by one or more features. The e-models, when tested in combination with different morphologies, showed that the electrical behavior is substantially preserved when changing dendritic structure and that the e-models were not overfit to a specific morphology. The models and their analysis show that automatic parameter search can be applied to capture complex firing behavior, such as co-existence of tonic firing and low-threshold bursting over a wide range of parameter sets and in combination with different neuron morphologies. Thalamocortical neurons are one of the main components of the thalamocortical system, which is implicated in key functions including sensory transmission and the transition between brain states. These functions are reflected at the cellular level by the ability to generate action potentials in two distinct modes, called burst and tonic firing. Biophysically-detailed computational modeling of these cells can provide a tool to understand the role of these neurons within thalamocortical circuitry. We started by collecting single cell experimental data by applying standardized experimental procedures in brain slices of the rat. Prior work has demonstrated that biological constraints can be integrated using multi-objective optimization to build biologically realistic models of neurons. Here, we employed similar techniques, but extended them to capture the multiple firing modes of thalamic neurons. We compared the model results with additional experimental data, test their generalization and quantitatively reject those that deviated significantly from the experimental variability. These models can be readily integrated in a data-driven pipeline to reconstruct and simulate circuit activity in the thalamocortical system.
Collapse
|
6
|
Differential expression patterns of sodium potassium ATPase alpha and beta subunit isoforms in mouse brain during postnatal development. Neurochem Int 2019; 128:163-174. [PMID: 31009649 DOI: 10.1016/j.neuint.2019.04.009] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2018] [Revised: 04/05/2019] [Accepted: 04/15/2019] [Indexed: 11/21/2022]
Abstract
The sodium potassium ATPase (Na+/K+ ATPase) is essential for the maintenance of a low intracellular Na+ and a high intracellular K+ concentration. Loss of function of the Na+/K+ ATPase due to mutations in Na+/K+ ATPase genes, anoxic conditions, depletion of ATP or inhibition of the Na+/K+ ATPase function using cardiac glycosides such as digitalis, causes a depolarization of the resting membrane potential. While in non-excitable cells, the uptake of glucose and amino acids is decreased if the function of the Na+/K+ ATPase is compromised, in excitable cells the symptoms range from local hyper-excitability to inactivating depolarization. Although several studies have demonstrated the differential expression of the various Na+/K+ ATPase alpha and beta isoforms in the brain tissue of rodents, their expression profile during development has yet to be thoroughly investigated. An immunohistochemical analysis of postnatal day 19 mouse brain showed ubiquitous expression of Na+/K+ ATPase isoforms α1, β1 and β2 in both neurons and glial cells, whereas α2 was expressed mostly in glial cells and the α3 and β3 isoforms were expressed in neurons. Furthermore, we examined potential changes in the relative expression of the different Na+/K+ ATPase isoforms in different brain areas of postnatal day 6 and in adult 9 months old animals using immunoblot analysis. Our results show a significant up-regulation of the α1 isoform in cortex, hippocampus and cerebellum, whereas, the α2 isoform was significantly up-regulated in midbrain. The β3 isoform showed a significant up-regulation in all brain areas investigated. The up-regulation of the α3 isoform matched that of the β2 isoform which were both significantly up-regulated in cortex, hippocampus and midbrain, suggesting that the increased maturation of the neuronal network is accompanied by an increase in expression of α3/β2 complexes in these brain structures.
Collapse
|
7
|
Neonatal general anesthesia causes lasting alterations in excitatory and inhibitory synaptic transmission in the ventrobasal thalamus of adolescent female rats. Neurobiol Dis 2019; 127:472-481. [PMID: 30825640 DOI: 10.1016/j.nbd.2019.01.016] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2018] [Revised: 01/22/2019] [Accepted: 01/24/2019] [Indexed: 12/25/2022] Open
Abstract
Ample evidence has surfaced documenting the neurotoxic effects of various general anesthetic (GA) agents in the mammalian brain when administered at critical periods of synaptogenesis. However, little is known about how this neurotoxic insult affects persisting neuronal excitability after the initial exposure. Here we investigated synaptic activity and intrinsic excitability of the ventrobasal nucleus (VB) of the thalamus caused by neonatal GA administration. We used patch-clamp recordings from acute thalamic slices in young rats up to two weeks after neurotoxic GA exposure of isoflurane and nitrous oxide for 6 h at postnatal age of 7 (P7) days. We found that GA exposure at P7 increases evoked excitatory postsynaptic currents (eEPSCs) two fold by means through AMPA mediated mechanisms, while NMDA component was spared. In addition, miniature EPSCs showed a faster decay rate in neurons from GA treated animals when compared to sham controls. Likewise, we discovered that the amplitudes of evoked inhibitory postsynaptic currents (eIPSCs) were increased in VB neurons from GA animals about two-fold. Interestingly, these results were observed in female but not male rats. In contrast, intrinsic excitability and properties of T-type voltage gated calcium currents were minimally affected by GA exposure. Together, these data further the idea that GAs cause lasting alterations in synaptic transmission and neuronal excitability depending upon the placing and connectivity of neurons in the thalamus. Given that function of thalamocortical circuits critically depends on the delicate balance between excitation and inhibition, future development of therapies aimed at addressing consequences of altered excitability in the developing brain by GAs may be an attractive possibility.
Collapse
|
8
|
Venkataraman Y, Bartlett EL. Postnatal development of auditory central evoked responses and thalamic cellular properties. Dev Neurobiol 2013; 74:541-55. [PMID: 24214269 DOI: 10.1002/dneu.22148] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2013] [Revised: 10/23/2013] [Accepted: 11/04/2013] [Indexed: 01/04/2023]
Abstract
During development, the sense of hearing changes rapidly with age, especially around hearing onset. During this period, auditory structures are highly sensitive to alterations of the acoustic environment, such as hearing loss or background noise. This sensitivity includes auditory temporal processing, which is important for processing complex sounds, and for acquiring reading and language skills. Developmental changes can be observed at multiple levels of brain organization-from behavioral responses to cellular responses, and at every auditory nucleus. Neuronal properties and sound processing change dramatically in auditory cortex neurons after hearing onset. However, development of its primary source, the auditory thalamus, or medial geniculate body (MGB), has not been well studied over this critical time window. Furthermore, to understand how temporal processing develops, it is important to determine the relative maturation of temporal processing not only in the MGB, but also in its inputs. Cellular properties of rat MGB neurons were studied using in vitro whole-cell patch-clamp recordings, at ages postnatal day (P) 7-9; P15-17, and P22-32. Auditory evoked potentials were measured in P14-17 and P22-32 rats. MGB action potentials became about five times faster, and the ability to generate spike trains increased with age, particularly at frequencies of 50 Hz and higher. Evoked potential responses, including auditory brainstem responses (ABR), middle latency responses (MLR), and amplitude modulation following responses, showed increased amplitudes with age, and ABRs and MLRs additionally showed decreased latencies with age. Overall, temporal processing at subthalamic nuclei is concurrently maturing with MGB cellular properties.
Collapse
Affiliation(s)
- Yamini Venkataraman
- Weldon School of Biomedical Engineering, Purdue University, West Lafayette, Indiana
| | | |
Collapse
|
9
|
Venkataraman Y, Bartlett EL. Postnatal development of synaptic properties of the GABAergic projection from the inferior colliculus to the auditory thalamus. J Neurophysiol 2013; 109:2866-82. [PMID: 23536710 DOI: 10.1152/jn.00021.2013] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
The development of auditory temporal processing is important for processing complex sounds as well as for acquiring reading and language skills. Neuronal properties and sound processing change dramatically in auditory cortex neurons after the onset of hearing. However, the development of the auditory thalamus or medial geniculate body (MGB) has not been well studied over this critical time window. Since synaptic inhibition has been shown to be crucial for auditory temporal processing, this study examined the development of a feedforward, GABAergic connection to the MGB from the inferior colliculus (IC), which is also the source of sensory glutamatergic inputs to the MGB. IC-MGB inhibition was studied using whole cell patch-clamp recordings from rat brain slices in current-clamp and voltage-clamp modes at three age groups: a prehearing group [postnatal day (P)7-P9], an immediate posthearing group (P15-P17), and a juvenile group (P22-P32) whose neuronal properties are largely mature. Membrane properties matured substantially across the ages studied. GABAA and GABAB inhibitory postsynaptic potentials were present at all ages and were similar in amplitude. Inhibitory postsynaptic potentials became faster to single shocks, showed less depression to train stimuli at 5 and 10 Hz, and were overall more efficacious in controlling excitability with age. Overall, IC-MGB inhibition becomes faster and more precise during a time period of rapid changes across the auditory system due to the codevelopment of membrane properties and synaptic properties.
Collapse
Affiliation(s)
- Yamini Venkataraman
- Weldon School of Biomedical Engineering, Purdue University, West Lafayette, IN, USA
| | | |
Collapse
|
10
|
The sleep relay--the role of the thalamus in central and decentral sleep regulation. Pflugers Arch 2011; 463:53-71. [PMID: 21912835 DOI: 10.1007/s00424-011-1014-6] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2011] [Revised: 08/08/2011] [Accepted: 08/11/2011] [Indexed: 10/17/2022]
Abstract
Surprisingly, the concept of sleep, its necessity and function, the mechanisms of action, and its elicitors are far from being completely understood. A key to sleep function is to determine how and when sleep is induced. The aim of this review is to merge the classical concepts of central sleep regulation by the brainstem and hypothalamus with the recent findings on decentral sleep regulation in local neuronal assemblies and sleep regulatory substances that create a scenario in which sleep is both local and use dependent. The interface between these concepts is provided by thalamic cellular and network mechanisms that support rhythmogenesis of sleep-related activity. The brainstem and the hypothalamus centrally set the pace for sleep-related activity throughout the brain. Decentral regulation of the sleep-wake cycle was shown in the cortex, and the homeostat of non-rapid-eye-movement sleep is made up by molecular networks of sleep regulatory substances, allowing individual neurons or small neuronal assemblies to enter sleep-like states. Thalamic neurons provide state-dependent gating of sensory information via their ability to produce different patterns of electrogenic activity during wakefulness and sleep. Many mechanisms of sleep homeostasis or sleep-like states of neuronal assemblies, e.g. by the action of adenosine, can also be found in thalamic neurons, and we summarize cellular and network mechanisms of the thalamus that may elicit non-REM sleep. It is argued that both central and decentral regulators ultimately target the thalamus to induce global sleep-related oscillatory activity. We propose that future studies should integrate ideas of central, decentral, and thalamic sleep generation.
Collapse
|
11
|
Weiss T, Veh RW. Morphological and electrophysiological characteristics of neurons within identified subnuclei of the lateral habenula in rat brain slices. Neuroscience 2010; 172:74-93. [PMID: 20974229 DOI: 10.1016/j.neuroscience.2010.10.047] [Citation(s) in RCA: 75] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2010] [Revised: 10/15/2010] [Accepted: 10/16/2010] [Indexed: 11/26/2022]
Abstract
Based on the specificity of its inputs and targets, the lateral habenular complex (LHb) constitutes a pivotal motor-limbic interface implicated in various cerebral functions particularly in regulating monoamine transmission. Despite its functional significance, cellular characteristics underlying LHb functionality have not been examined systematically. The present study aimed to correlate morphological and electrophysiological properties of neurons within the different subnuclei of the LHb using whole-cell recording and neurobiotin labeling in rat slice preparations. Morphological analysis revealed a heterogeneous population of projection neurons randomly distributed throughout the LHb. According to somatodendritic characteristics four main categories were classified including spherical, fusiform, polymorphic and vertical cells. Electrophysiological characterization of neurons within the different categories demonstrated homologous profiles and no significant differences between groups. Typically, LHb neurons possessed high input resistances and long membrane time constants. They also displayed time-dependent inward rectification and distinct afterhyperpolarization. A salient electrophysiological feature of LHb neurons was their ability to generate rebound bursts of action potentials in response to membrane hyperpolarization. Based on the pattern of spontaneous activity, neurons were classified as silent, tonic or bursting. The occurrence of distinctive firing modes was not related to topographic allocation. The patterns of spontaneous firing and evoked discharge were highly sensitive to alterations in membrane potential and merged upon de- and hyperpolarizing current injection and synaptic stimulation. Besides projection neurons, recordings revealed the existence of a subpopulation of cells possessing morphological and physiological properties of neocortical neurogliaform cells. They were considered to be interneurons. Our data suggest that neurons within the different LHb subnuclei behave electrophysiologically more similar than expected, considering their morphological heterogeneity. We conclude that the formation of functional neuronal entities within the LHb may be achieved through defined synaptic inputs to particular neurons, rather than by individual neuronal morphologies and intrinsic membrane properties.
Collapse
Affiliation(s)
- T Weiss
- Institut für Integrative Neuroanatomie, Centrum für Anatomie, Charité—Universitätsmedizin Berlin, Berlin, Germany.
| | | |
Collapse
|
12
|
Lee SC, Cruikshank SJ, Connors BW. Electrical and chemical synapses between relay neurons in developing thalamus. J Physiol 2010; 588:2403-15. [PMID: 20457735 PMCID: PMC2915516 DOI: 10.1113/jphysiol.2010.187096] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2010] [Accepted: 05/07/2010] [Indexed: 11/08/2022] Open
Abstract
Gap junction-mediated electrical synapses interconnect diverse types of neurons in the mammalian brain, and they may play important roles in the synchronization and development of neural circuits. Thalamic relay neurons are the major source of input to neocortex. Electrical synapses have not been directly observed between relay neurons in either developing or adult animals. We tested for electrical synapses by recording from pairs of relay neurons in acute slices of developing ventrobasal nucleus (VBN) of the thalamus from rats and mice. Electrical synapses were common between VBN relay neurons during the first postnatal week, and then declined sharply during the second week. Electrical coupling was reduced among cells of connexin36 (Cx36) knockout mice; however, some neuron pairs remained coupled. This implies that electrical synapses between the majority of coupled VBN neurons require Cx36 but that other gap junction proteins also contribute. The anatomical distribution of a beta-galactosidase reporter indicated that Cx36 was expressed in some VBN neurons during the first postnatal week and sharply declined over the second week, consistent with our physiological results. VBN relay neurons also communicated via chemical synapses. Rare pairs of relay neurons excited one another monosynaptically. Much more commonly, spikes in one relay neuron evoked disynaptic inhibition (via the thalamic reticular nucleus) in the same or a neighbouring relay neuron. Disynaptic inhibition between VBN cells emerged as electrical coupling was decreasing, during the second postnatal week. Our results demonstrate that thalamic relay neurons communicate primarily via electrical synapses during early postnatal development, and then lose their electrical coupling as a chemical synapse-mediated inhibitory circuit matures.
Collapse
Affiliation(s)
- Seung-Chan Lee
- Department of Neuroscience, Division of Biology and Medicine, Brown University, Providence, RI 02912, USA
| | | | | |
Collapse
|
13
|
Shoykhet M, Simons DJ. Development of thalamocortical response transformations in the rat whisker-barrel system. J Neurophysiol 2007; 99:356-66. [PMID: 17989240 DOI: 10.1152/jn.01063.2007] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Extracellular single-unit recordings were used to characterize responses of thalamic barreloid and cortical barrel neurons to controlled whisker deflections in 2, 3-, and 4-wk-old and adult rats in vivo under fentanyl analgesia. Results indicate that response properties of thalamic and cortical neurons diverge during development. Responses to deflection onsets and offsets among thalamic neurons mature in parallel, whereas among cortical neurons responses to deflection offsets become disproportionately smaller with age. Thalamic neuron receptive fields become more multiwhisker, whereas those of cortical neurons become more single-whisker. Thalamic neurons develop a higher degree of angular selectivity, whereas that of cortical neurons remains constant. In the temporal domain, response latencies decrease both in thalamic and cortical neurons, but the maturation time-course differs between the two populations. Response latencies of thalamic cells decrease primarily between 2 and 3 wk of life, whereas response latencies of cortical neurons decrease in two distinct steps--the first between 2 and 3 wk of life and the second between the fourth postnatal week and adulthood. Although the first step likely reflects similar subcortical changes, the second phase likely corresponds to developmental myelination of thalamocortical fibers. Divergent development of thalamic and cortical response properties indicates that thalamocortical circuits in the whisker-to-barrel pathway undergo protracted maturation after 2 wk of life and provides a potential substrate for experience-dependent plasticity during this time.
Collapse
Affiliation(s)
- Michael Shoykhet
- Department of Neurobiology, Univiversity of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania 15261, USA
| | | |
Collapse
|
14
|
Brocard F, Verdier D, Arsenault I, Lund JP, Kolta A. Emergence of intrinsic bursting in trigeminal sensory neurons parallels the acquisition of mastication in weanling rats. J Neurophysiol 2006; 96:2410-24. [PMID: 16914618 DOI: 10.1152/jn.00352.2006] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
There is increasing evidence that a subpopulation of neurons in the dorsal principal sensory trigeminal nucleus are not simple sensory relays to the thalamus but may form the core of the central pattern generating circuits responsible for mastication. In this paper, we used whole cell patch recordings in brain stem slices of young rats to show that these neurons have intrinsic bursting abilities that persist in absence of extracellular Ca(2+). Application of different K(+) channel blockers affected duration and firing rate of bursts, but left bursting ability intact. Bursting was voltage dependent and was abolished by low concentrations of Na(+) channel blockers. The proportion of bursting neurons increased dramatically in the second postnatal week, in parallel with profound changes in several electrophysiological properties. This is the period in which masticatory movements appear and mature. Bursting was associated with the development of an afterdepolarization that depend on maturation of a persistent sodium conductance (I(NaP)). An interesting finding was that the occurrence of bursting and the magnitude of I(NaP) were both modulated by the extracellular concentration of Ca(2+). Lowering extracellular [Ca(2+)] increased both I(NaP) and probability of bursting. We suggest that these mechanisms underlie burst generation in mastication and that similar processes may be found in other motor pattern generators.
Collapse
Affiliation(s)
- Frédéric Brocard
- Université de Montréal, Pavillon Paul Desmarais, C.P. 6128, Succursale Centre Ville, Montreal, Quebec H3C 3J7, Canada
| | | | | | | | | |
Collapse
|
15
|
Carrascal L, Nieto-Gonzalez JL, Núñez-Abades P, Torres B. Temporal sequence of changes in electrophysiological properties of oculomotor motoneurons during postnatal development. Neuroscience 2006; 140:1223-37. [PMID: 16631312 DOI: 10.1016/j.neuroscience.2006.03.006] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2005] [Revised: 02/13/2006] [Accepted: 03/01/2006] [Indexed: 01/19/2023]
Abstract
The temporal sequence of changes in electrophysiological properties during postnatal development in different neuronal populations has been the subject of previous studies. Those studies demonstrated major physiological modifications with age, and postnatal periods in which such changes are more pronounced. Until now, no similar systematic study has been performed in motoneurons of the oculomotor nucleus. This work has two main aims: first, to determine whether the physiological changes in oculomotor nucleus motoneurons follow a similar time course for different parameters; and second, to compare the temporal sequence with that in other neuronal populations. We recorded the electrophysiological properties of 134 identified oculomotor nucleus motoneurons from 1 to 40 days postnatal in brain slices of rats. The resting membrane potential did not significantly change with postnatal development, and it had a mean value of -61.8 mV. The input resistance and time constant diminished from 82.9-53.1 M omega and from 9.4-4.9 ms respectively with age. These decrements occurred drastically in a short time after birth (1-5 days postnatally). The motoneurons' rheobase gradually decayed from 0.29-0.11 nA along postnatal development. From birth until postnatal day 15 and postnatal day 20 respectively, the action potential shortened from 2.3-1.2 ms, and the medium afterhyperpolarization from 184.8-94.4 ms. The firing gain and the maximum discharge increased with age. The former rose continuously, while the increase in maximum discharge was most pronounced between postnatal day 16 and postnatal day 20. We conclude that the developmental sequence was not similar for all electrophysiological properties, and was unique for each neuronal population.
Collapse
Affiliation(s)
- L Carrascal
- Department of Physiology and Zoology, University of Seville, Avenida Reina Mercedes, 6, 41012 Sevilla, Spain
| | | | | | | |
Collapse
|
16
|
Postnatal maturational properties of rat parafascicular thalamic neurons recorded in vitro. ACTA ACUST UNITED AC 2006; 3:89-113. [PMID: 19305519 DOI: 10.1017/s1472928805000105] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Thalamic relay neurons have homogeneous, adult-like firing properties and similar morphology by 12 days postnatally (PN 12). Parafascicular (Pf) neurons have a different morphology compared with typical thalamic relay neurons, but the development of their electrophysiological properties is not well studied. Intracellular recordings in PN 12-50 Pf neurons revealed several heterogeneous firing patterns different from those in thalamic relay neurons. Two types of cells were identified: Type I cells displayed a fast afterhyperpolarization (AHP) followed by a large-amplitude, slow AHP; whereas Type II cells had only a fast AHP. These cell types had overlapping membrane properties but differences in excitability. Some properties of Pf neurons were adult-like by PN 12, but, unlike thalamic relay neurons, there were significant maturational changes thereafter, including decreased action potential (AP) duration, increased fast AHP amplitude and increased excitability. Pf neurons did not exhibit rhythmic bursting and generally lacked low-threshold spike (LTS) responses that characterize thalamic relay neurons. Pf neurons exhibited nonlinear I-V relationships, and only a third of the cells expressed the time and voltage-dependent hyperpolarization activated (Ih) current, which declined with age. These results indicate that the morphological differences between Pf neurons and typical thalamic relay neurons are paralleled by electrophysiological differences, and that Pf membrane properties change during postnatal development.
Collapse
|
17
|
Li J, Bickford ME, Guido W. Distinct firing properties of higher order thalamic relay neurons. J Neurophysiol 2003; 90:291-9. [PMID: 12634282 DOI: 10.1152/jn.01163.2002] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
It has been proposed that the thalamus is composed of at least two types of nuclei. First-order relay nuclei transmit signals from the periphery to the cortex while higher order nuclei may route information from one cortical area to another. Although much is known about the functional properties of relay neurons in first-order nuclei, little is known about relay neurons belonging to higher-order nuclei. We investigated the electrophysiological properties of relay cells in a higher-order thalamic nucleus using in vitro intracellular recordings from thalamic slices of the rat's lateral posterior nucleus (LPN). We found neurons of the LPN possess many of the same membrane properties as first-order relay neurons. These included low-threshold calcium spikes (IT) and burst firing, a mixed cation conductance (IH) that prevented membrane hyperpolarization, and a transient K+ conductance that delayed spike firing (IA). The repetitive firing characteristics of LPN neurons were more distinct. One group of cells, located in the more caudal regions of the LPN responded to depolarizing current pulses with a train of action potentials or in a regular spiking (RS) mode. This form of firing showed a steep but highly linear increase in firing frequency with increasing levels of membrane depolarization. Another group of cells, located in the more rostral regions of the LPN, responded to depolarizing current pulses with clusters of high-frequency bursts or in a clustered spiking (CS) mode. The overall firing frequency rose nonlinearly with membrane depolarization, but the frequency of a given burst remained relatively constant. The caudal LPN receives input from the superior colliculus, whereas the rostral LPN receives input from layers V and VI of the visual cortex. Thus the RS and CS cells may be driven by subcortical and cortical inputs respectively, and the distinct temporal properties of their response modes may be a necessary component of the LPN circuitry.
Collapse
Affiliation(s)
- Jianli Li
- Department of Anatomical Sciences and Neurobiology, University of Louisville, Louisville, Kentucky 40292, USA
| | | | | |
Collapse
|
18
|
Parri HR, Gould TM, Crunelli V. Spontaneous astrocytic Ca2+ oscillations in situ drive NMDAR-mediated neuronal excitation. Nat Neurosci 2001; 4:803-12. [PMID: 11477426 DOI: 10.1038/90507] [Citation(s) in RCA: 453] [Impact Index Per Article: 18.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Astrocytes respond to chemical, electrical and mechanical stimuli with transient increases in intracellular calcium concentration ([Ca2+]i). We now show that astrocytes in situ display intrinsic [Ca2+]i oscillations that are not driven by neuronal activity. These spontaneous astrocytic oscillations can propagate as waves to neighboring astrocytes and trigger slowly decaying NMDA receptor-mediated inward currents in neurons located along the wave path. These findings show that astrocytes in situ can act as a primary source for generating neuronal activity in the mammalian central nervous system.
Collapse
Affiliation(s)
- H R Parri
- School of Biosciences, Cardiff University, Museum Avenue, PO Box 911, Cardiff, CF10 3US, Wales, UK
| | | | | |
Collapse
|
19
|
Lo FS, Erzurumlu RS. Neonatal deafferentation does not alter membrane properties of trigeminal nucleus principalis neurons. J Neurophysiol 2001; 85:1088-96. [PMID: 11247979 PMCID: PMC3676675 DOI: 10.1152/jn.2001.85.3.1088] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
In the brain stem trigeminal complex of rats and mice, presynaptic afferent arbors and postsynaptic target cells form discrete modules ("barrelettes"), the arrangement of which duplicates the patterned distribution of whiskers and sinus hairs on the ipsilateral snout. Within the barrelette region of the nucleus principalis of the trigeminal nerve (PrV), neurons participating in barrelettes and those with dendritic spans covering multiple barrelettes (interbarrelette neurons) can be identified by their morphological and electrophysiological characteristics as early as postnatal day 1. Barrelette cells have focal dendritic processes, are characterized by a transient K(+) conductance (I(A)), whereas interbarrelette cells with larger soma and extensive dendritic fields characteristically exhibit low-threshold T-type Ca(2+) spikes (LTS). In this study, we surveyed membrane properties of barrelette and interbarrelette neurons during and after consolidation of barrelettes in the PrV and effects of peripheral deafferentation on these properties. During postnatal development (PND1-13), there were no changes in the resting potential, composition of active conductances and Na(+) spikes of both barrelette and interbarrelette cells. The only notable changes were a decline in input resistance and a slight increase in the amplitude of LTS. The infraorbital (IO) branch of the trigeminal nerve provides the sole afferent input source to the whisker pad. IO nerve transection at birth abolishes barrelette formation as well as whisker-related neuronal patterns all the way to the neocortex. Surprisingly this procedure had no effect on membrane properties of PrV neurons. The results of the present study demonstrate that distinct membrane properties of barrelette and interbarrelette cells are maintained even in the absence of input from the whiskers during the critical period of pattern formation.
Collapse
Affiliation(s)
- F S Lo
- Department of Cell Biology and Anatomy, Louisiana State University Health Sciences Center, New Orleans, Louisiana 70112, USA.
| | | |
Collapse
|
20
|
Osteen CL, Moore AH, Prins ML, Hovda DA. Age-dependency of 45calcium accumulation following lateral fluid percussion: acute and delayed patterns. J Neurotrauma 2001; 18:141-62. [PMID: 11229708 DOI: 10.1089/08977150150502587] [Citation(s) in RCA: 105] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
This study was designed to determine the regional and temporal profile of 45calcium (45Ca2+) accumulation following mild lateral fluid percussion (LFP) injury and how this profile differs when traumatic brain injury occurs early in life. Thirty-six postnatal day (P) 17, thirty-four P28, and 17 adult rats were subjected to a mild (approximately 2.75 atm) LFP or sham injury and processed for 45Ca2+ autoradiography immediately, 6 h, and 1, 2, 4, 7, and 14 days after injury. Optical densities were measured bilaterally within 16 regions of interest. 45Ca2+ accumulation was evident diffusely within the ipsilateral cerebral cortex immediately after injury (18-64% increase) in all ages, returning to sham levels by 2-4 days in P17s, 1 day in P28s, and 4 days in adults. While P17s showed no further 45Ca2+ accumulation, P28 and adult rats showed an additional delayed, focal accumulation in the ipsilateral thalamus beginning 2-4 days postinjury (12-49% increase) and progressing out to 14 days (26-64% increase). Histological analysis of cresyl violet-stained, fresh frozen tissue indicated little evidence of neuronal loss acutely (in all ages), but considerable delayed cell death in the ipsilateral thalamus of the P28 and adult animals. These data suggest that two temporal patterns of 45Ca2+ accumulation exist following LFP: acute, diffuse calcium flux associated with the injury-induced ionic cascade and blood brain barrier breakdown and delayed, focal calcium accumulation associated with secondary cell death. The age-dependency of posttraumatic 45Ca2+ accumulation may be attributed to differential biomechanical consequences of the LFP injury and/or the presence or lack of secondary cell death.
Collapse
Affiliation(s)
- C L Osteen
- Department of Physiological Science, UCLA, Los Angeles, California 90024-7039, USA.
| | | | | | | |
Collapse
|
21
|
Dammerman RS, Flint AC, Noctor S, Kriegstein AR. An excitatory GABAergic plexus in developing neocortical layer 1. J Neurophysiol 2000; 84:428-34. [PMID: 10899216 DOI: 10.1152/jn.2000.84.1.428] [Citation(s) in RCA: 60] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Layer 1 of the developing rodent somatosensory cortex contains a dense, transient GABAergic fiber plexus. Axons arising from the zona incerta (ZI) of the ventral thalamus contribute to this plexus, as do axons of intrinsic GABAergic cells of layer 1. The function of this early-appearing fiber plexus is not known, but these fibers are positioned to contact the apical dendrites of most postmigratory neurons. Here we show that electrical stimulation of layer 1 results in a GABA(A)-mediated postsynaptic current (PSC) in pyramidal neurons. Gramicidin perforated patch recording demonstrates that the GABAergic layer 1 synapse is excitatory and can trigger action potentials in cortical neurons. In contrast to electrical stimulation, activation of intrinsic layer 1 neurons with a glutamate agonist fails to produce PSCs in pyramidal cells. In addition, responses can be evoked by stimulation of layer 1 at relatively large distances from the recording site. These findings are consistent with a contribution of the widely projecting incertocortical pathway, the only described GABAergic projection to neonatal cortex. Recording of identified neonatal incertocortical neurons reveals a population of active cells that exhibit high frequencies of spontaneous action potentials and are capable of robustly activating neonatal cortical neurons. Because the fiber plexus is confined to layer 1, this pathway provides a spatially restricted excitatory GABAergic innervation of the distal apical dendrites of pyramidal neurons during the peak period of cortical synaptogenesis.
Collapse
Affiliation(s)
- R S Dammerman
- Department of Neurology and the Center for Neurobiology and Behavior, Columbia University College of Physicians and Surgeons, New York, New York 10032, USA
| | | | | | | |
Collapse
|
22
|
Budde T, Sieg F, Braunewell KH, Gundelfinger ED, Pape HC. Ca2+-induced Ca2+ release supports the relay mode of activity in thalamocortical cells. Neuron 2000; 26:483-92. [PMID: 10839366 DOI: 10.1016/s0896-6273(00)81180-0] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Ca2+ ions play an important role during rhythmic bursting of thalamocortical neurons within sleep. The function of Ca2+ during the tonic relay mode of these neurons during wakefulness is less clear. Here, we report that tonic activity in thalamocortical cells results in an increase in the intracellular Ca2+ concentration and subsequent release of Ca2+ from intracellular stores mediated via ryanodine receptors (RyRs). Blockade of Ca2+ release shifted the regular firing of single action potentials toward the generation of spike clusters. Regular spike firing and intracellular Ca2+ release thus appear to be functionally coupled in a positive feedback manner, thereby supporting the relay mode of thalamocortical cells during wakefulness. Regulatory influences may be coupled to this system via the cyclic ADP ribose pathway.
Collapse
Affiliation(s)
- T Budde
- Institut für Physiologie, Otto-von-Guericke-Universität, Magdeburg, Federal Republic of Germany.
| | | | | | | | | |
Collapse
|
23
|
Action potential backpropagation and somato-dendritic distribution of ion channels in thalamocortical neurons. J Neurosci 2000. [PMID: 10662820 DOI: 10.1523/jneurosci.20-04-01307.2000] [Citation(s) in RCA: 97] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Thalamocortical (TC) neurons of the dorsal thalamus integrate sensory inputs in an attentionally relevant manner during wakefulness and exhibit complex network-driven and intrinsic oscillatory activity during sleep. Despite these complex intrinsic and network functions, little is known about the dendritic distribution of ion channels in TC neurons or the role such channel distributions may play in synaptic integration. Here we demonstrate with simultaneous somatic and dendritic recordings from TC neurons in brain slices that action potentials evoked by sensory or cortical excitatory postsynaptic potentials are initiated near the soma and backpropagate into the dendrites of TC neurons. Cell-attached recordings demonstrated that TC neuron dendrites contain a nonuniform distribution of sodium but a roughly uniform density of potassium channels across the somatodendritic area examined that corresponds to approximately half the average path length of TC neuron dendrites. Dendritic action potential backpropagation was found to be active, but compromised by dendritic branching, such that action potentials may fail to invade relatively distal dendrites. We have also observed that calcium channels are nonuniformly distributed in the dendrites of TC neurons. Low-threshold calcium channels were found to be concentrated at proximal dendritic locations, sites known to receive excitatory synaptic connections from primary afferents, suggesting that they play a key role in the amplification of sensory inputs to TC neurons.
Collapse
|
24
|
Liu X, Tilwalli S, Ye G, Lio PA, Pasternak JF, Trommer BL. Morphologic and electrophysiologic maturation in developing dentate gyrus granule cells. Brain Res 2000; 856:202-12. [PMID: 10677627 DOI: 10.1016/s0006-8993(99)02421-x] [Citation(s) in RCA: 63] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Dentate gyrus granule cells from immature (7-28 days) Sprague-Dawley rats were examined with whole cell patch clamp recordings and biocytin filling in in vitro hippocampal slice preparations. Although recordings were confined to the middle third of the suprapyramidal limb of the dentate, the granule cells exhibited marked variability in their physiologic properties: input resistance (IR) ranged from 250 MOmega to 3 GOmega, and resting membrane potential (RMP) from -82 to -41 mV. Both IR and RMP were inversely correlated with dendritic length, a morphometric indicator of cell maturity. Thus the highest IR cells were the youngest, and maturation was characterized by a progressive decrease in IR, hyperpolarization of RMP, and elongation of the dendritic arbor. When cells were grouped by IR, significant intergroup differences were found in RMP, dendritic length, and number of dendritic terminal branches. Although cells of all IR categories were examined throughout the age spectrum under study, none of the inter-IR group differences was age-dependent. These data suggest that IR provides a reasonable estimate of granule cell maturity and that maturation entails predictable changes in cell properties and morphology. These aspects of maturation correlate with each other, are independent of animal age, and most likely proceed according to a program related to cell birth.
Collapse
Affiliation(s)
- X Liu
- Evanston Northwestern Healthcare Research Institute, Evanston, IL, USA
| | | | | | | | | | | |
Collapse
|
25
|
Stable properties of spontaneous EPSCs and miniature retinal EPSCs during the development of ON/OFF sublamination in the ferret lateral geniculate nucleus. J Neurosci 1999. [PMID: 9870954 DOI: 10.1523/jneurosci.19-01-00236.1999] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Retinal projections to the lateral geniculate nucleus (LGN) in ferrets progressively segregate into eye-specific laminae and subsequently into sublaminae that receive inputs from either ON-center or OFF-center afferents. To study the development of synaptic efficacy during a period of activity-dependent growth and reorganization in the CNS, we recorded spontaneous EPSCs (sEPSCs) from cells of the LGN during ON/OFF sublamination. We also examined retinal inputs specifically by stimulating the optic tract in the presence of strontium and recording evoked miniature EPSCs (emEPSCs). The rise times, areas, half-widths, and decay times of sEPSCs and emEPSCs and interevent intervals of sEPSCs recorded at the beginning of ON/OFF sublamination were not different from those recorded after its completion. Typically EPSC areas were small (10-20 fC) but varied greatly both within and between neurons. The frequency of sEPSCs was also quite variable, ranging from 0.2 to 5 Hz. sEPSCs were equivalent to miniature EPSCs recorded in the presence of tetrodotoxin, and both sEPSCs and emEPSCs were CNQX-sensitive. No difference was observed between sEPSCs recorded at room temperature and those recorded at 34 degreesC, and strontium could be substituted for calcium with no effect on sEPSC shape. These data argue for a remarkable stability in the components of at least AMPA-mediated synaptic transmission during a period of major synaptic rearrangement in the LGN.
Collapse
|
26
|
Tennigkeit F, Schwarz DW, Puil E. Postnatal development of signal generation in auditory thalamic neurons. BRAIN RESEARCH. DEVELOPMENTAL BRAIN RESEARCH 1998; 109:255-63. [PMID: 9729416 DOI: 10.1016/s0165-3806(98)00056-x] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Using whole cell recording techniques, we distinguished immature from mature stages of development in auditory thalamic neurons of rats at ages P5 to P21. We compared voltage responses to injected currents and firing patterns of neurons in ventral partition of medial geniculate body (MGBv) in slices. Resting potential, input resistance and membrane time constant diminished to mature values between P5 and P14. Responses of young neurons to hyperpolarizing pulses showed delayed inward rectification; after P13, this was obscured by a rapid onset of another inward rectifier. All neurons possessed tetrodotoxin (TTX)-sensitive, depolarization-activated rectification, implying persistent Na+-current involvement. Despite a slightly higher voltage threshold for spiking, the current threshold was lower in younger neurons. Young neurons fired a short latency spike with afterhyperpolarization whereas older neurons exhibited a slow ramplike depolarization before tonic firing. Large currents caused continuous firing in all neurons. Before day P13, a high threshold Ca2+ spike (HTS) often was appended to action potentials. The low threshold Ca2+-spike (LTS) was too small in amplitude to evoke action potentials before P11 but produced a single spike at P12 and P13 and burst firing with HTS after P13. MGBv neurons have mature properties after P14, relevant for reactions to sound and the oscillations of slow-wave sleep.
Collapse
Affiliation(s)
- F Tennigkeit
- Department of Pharmacology and Therapeutics, Faculty of Medicine, The University of British Columbia, Vancouver, B.C., Canada
| | | | | |
Collapse
|
27
|
Frank MG, Morrissette R, Heller HC. Effects of sleep deprivation in neonatal rats. THE AMERICAN JOURNAL OF PHYSIOLOGY 1998; 275:R148-57. [PMID: 9688973 DOI: 10.1152/ajpregu.1998.275.1.r148] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
This investigation represents the first systematic study of sleep homeostasis in developing mammals that spans the preweaning and postweaning periods. Neonatal rats from 12 to 24 days of postnatal life (P12-P24) were anesthetized with Metofane (methoxyflurane) and implanted with miniaturized electroencephalographic (EEG) and electromyographic electrodes. After 48 h of recovery, neonatal rats were sleep deprived for 3 h by either gentle handling or forced locomotion. We find that 3-h sleep deprivation produces dramatically different compensatory responses at different stages of postnatal development. In striking contrast to adult rats, sleep deprivation does not increase slow-wave sleep EEG delta (0.5-4.0 Hz) activity in rats younger than P24. However, P12-P20 rats do show evidence of sleep regulation because they show compensatory increases in sleep time and sleep continuity during recovery. In P12 rats, approximately 90% of total slow wave sleep time lost during the sleep-deprivation period was recovered during subsequent sleep. A similar recovery of active sleep time was observed in P20-P24 rats. These findings suggest not only that sleep is regulated in neonatal rats but that the accumulation and/or discharge of sleep need changes dramatically between the third and fourth postnatal weeks.
Collapse
Affiliation(s)
- M G Frank
- Department of Physiology, University of California San Francisco, San Francisco 94143-0444, California
| | | | | |
Collapse
|
28
|
Abstract
The low-threshold calcium current (IT) underlies burst generation in thalamocortical (TC) relay cells and plays a central role in the genesis of synchronized oscillations by thalamic circuits. Here we have combined in vitro recordings and computational modeling techniques to investigate the consequences of dendritically located IT in TC cells. Simulations of a reconstructed TC cell were compared with the recordings obtained in the same cell to constrain the values of its passive parameters. T-current densities in soma and proximal dendrites were then estimated by matching the model to voltage-clamp recordings obtained in dissociated TC cells, which lack most of the dendrites. The distal dendritic T-current density was constrained by recordings in intact TC cells, which show 5-14 times larger peak T-current amplitudes compared with dissociated cells. Comparison of the model with the recordings of the same cell constrained further the T-current density in dendrites, which had to be 4.5-7.6 times higher than in the soma to reproduce all experimental results. Similar conclusions were reached using a simplified three-compartment model. Functionally, the model shows that the same amount of T-channels can lead to different bursting behaviors if they are exclusively somatic or distributed throughout the dendrites. In conclusion, this combination of models and experiments shows that dendritic T-currents are necessary to reproduce low-threshold calcium electrogenesis in TC cells. Dendritic T-current may also have significant functional consequences, such as an efficient modulation of thalamic burst discharges by corticothalamic feedback.
Collapse
|
29
|
Guido W, Günhan-Agar E, Erzurumlu RS. Developmental changes in the electrophysiological properties of brain stem trigeminal neurons during pattern (barrelette) formation. J Neurophysiol 1998; 79:1295-306. [PMID: 9497411 DOI: 10.1152/jn.1998.79.3.1295] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
In the brain stem trigeminal nuclei of rodents there is a patterned representation of whiskers and sinus hairs. The subnucleus interpolaris (SPI) contains the largest and the most conspicuous whisker patterns (barrelettes). Although neural activity plays a role in pattern formation, little is known about the electrophysiological properties of developing barrelette neurons. Here we examined the functional state of early postnatal SPI neurons during and after the consolidation of patterns by using in vitro intracellular recording techniques. After the consolidation of barrelettes [>/= postnatal day (P)4], responses to intracellular current injection consistently reflected the activation of a number voltage-dependent conductances. Most notable was a mixed cation conductance (IH) that prevented strong hyperpolarization and a large low-threshold Ca2+ conductance, which led to Ca2+ spikes and burst firing. At the oldest ages tested (P11-P14) some cells also exhibited an outward K+ conductance (IA), which led to significant delays in action-potential firing. Between P0-3, a time when the formation of barrelettes in the brain stem is still susceptible to damage of the sensory periphery, cells responded linearly to intracellular current injection, indicating they either lacked such voltage-gated properties or weakly expressed them. At all ages tested (P0-14), SPI cells were capable of generating trains of action potentials in response to intracellular injection of depolarizing current pulses. However, during the first few days of postnatal life, spikes were shorter and longer. Additionally, spike trains rose more linearly with stimulus intensity and showed frequency accommodation at early ages. Taken together, these results indicate that the electrophysiological properties of SPI neurons change markedly during the period of barrelette consolidation. Moreover, the properties of developing SPI neurons may play a significant role in pattern formation by minimizing signal distortion and ensuring that excitatory responses from sensory periphery are accurately received and transmitted according to stimulus strength.
Collapse
Affiliation(s)
- W Guido
- Department of Cell Biology and Anatomy and Neuroscience Center of Excellence, Louisiana State University Medical Center, New Orleans, Louisiana 70112, USA
| | | | | |
Collapse
|
30
|
Leamey CA, Ho SM. Afferent arrival and onset of functional activity in the trigeminothalamic pathway of the rat. BRAIN RESEARCH. DEVELOPMENTAL BRAIN RESEARCH 1998; 105:195-207. [PMID: 9541738 DOI: 10.1016/s0165-3806(97)00170-3] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
In this study, a novel in vitro slice preparation has been used to study the anatomical and physiological development of the trigeminothalamic pathway in the prenatal and neonatal rat. Anterograde tracing studies showed that the most rostral trigeminal fibres had reached the cephalic flexure by embryonic day (E)15, and entered the diencephalon by E16. By E17 the first few fibres had reached the ventroposteromedial thalamic nucleus (VPM) where they terminated in growth cones. The projection was more substantial and fibres had begun branching by E18, and arbors were more elaborate by E19. The fibres densely filled the nucleus by the day of birth (PO). The physiological studies showed that postsynaptic responses to stimulation of the trigeminal nerve or principal sensory nucleus (Pr5) could first be recorded at E17. Reliable responses to stimulation of either the nerve or Pr5 were recorded from E18 on. Stimulation of Pr5 enabled both axonal and synaptic signals to recorded in VPM. A GABAergic influence was acting to decrease the overall level of excitability in the thalamus from E18. In prenatal animals, the excitatory response was primarily mediated by NMDA receptors, and by P1 a non-NMDA mediated component was beginning to appear. These results demonstrate that the capacity for axonal conduction in the trigeminothalamic fibres and synaptic transmission in the thalamus are present from the time that anatomical connections are first established.
Collapse
Affiliation(s)
- C A Leamey
- Research School of Biological Sciences, Australian National University, Canberra, Australia
| | | |
Collapse
|
31
|
Postnatal development of membrane properties and delta oscillations in thalamocortical neurons of the cat dorsal lateral geniculate nucleus. J Neurosci 1997. [PMID: 9204926 DOI: 10.1523/jneurosci.17-14-05428.1997] [Citation(s) in RCA: 46] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
The development of membrane properties, firing patterns, and delta oscillations in neurons of the cat dorsal lateral geniculate nucleus (dLGN) was investigated in vitro during the first 7 postnatal weeks. Compared with adult neurons, the resting membrane potential was more depolarized at postnatal days 1-9 (P1-P9), the input resistance was higher at P1-P7, and action potentials had a higher threshold and a smaller amplitude at P1-P3 and a longer duration at P1-P9. At P1-P3 trains longer than 200 msec were rarely observed, and trains with more than three action potentials were only present in 41% of the neurons, whereas at P1-P7 the normalized slope of the instantaneous frequencies at the first five interspike intervals was smaller than in the adult. A long-lasting (up to 6 sec) afterhyperpolarization followed a short train of action potentials in 88 and 30% of neurons at P1-P3 and P30-P32, respectively, but it was rarely observed in the adult. The low-threshold Ca2+ potential could evoke a burst of action potentials since P1. However, at P1-P7 the number of action potentials per burst was smaller (range, one to five), and at P1-P9 their maximum instantaneous frequency was lower (<190 Hz) than in the adult (range, six to eight, and 344 Hz, respectively). No delta oscillations were observed until P17, and their frequency (0.36 Hz) was lower than that in the adult (1.8 Hz). The percentage of neurons displaying delta oscillations and their frequency reached adult values by the end of the seventh postnatal week, i.e., well after the maturation of the membrane properties and firing patterns (second postnatal week). In conclusion, the maturation of the electrophysiological properties of thalamocortical neurons in the cat dLGN is completed later than the retinogeniculate axon segregation (Shatz CJ, 1983), and the immaturity of the oscillatory, and not of the burst-firing, activity is a limiting factor in the development of delta waves.
Collapse
|