1
|
Ishijima T, Nakajima K. Mechanisms of Microglia Proliferation in a Rat Model of Facial Nerve Anatomy. BIOLOGY 2023; 12:1121. [PMID: 37627005 PMCID: PMC10452325 DOI: 10.3390/biology12081121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 07/27/2023] [Accepted: 08/09/2023] [Indexed: 08/27/2023]
Abstract
Although microglia exist as a minor glial cell type in the normal state of the brain, they increase in number in response to various disorders and insults. However, it remains unclear whether microglia proliferate in the affected area, and the mechanism of the proliferation has long attracted the attention of researchers. We analyzed microglial mitosis using a facial nerve transection model in which the blood-brain barrier is left unimpaired when the nerves are axotomized. Our results showed that the levels of macrophage colony-stimulating factor (M-CSF), cFms (the receptor for M-CSF), cyclin A/D, and proliferating cell nuclear antigen (PCNA) were increased in microglia in the axotomized facial nucleus (axotFN). In vitro experiments revealed that M-CSF induced cFms, cyclin A/D, and PCNA in microglia, suggesting that microglia proliferate in response to M-CSF in vivo. In addition, M-CSF caused the activation of c-Jun N-terminal kinase (JNK) and p38, and the specific inhibitors of JNK and p38 arrested the microglial mitosis. JNK and p38 were shown to play roles in the induction of cyclins/PCNA and cFms, respectively. cFms was suggested to be induced through a signaling cascade of p38-mitogen- and stress-activated kinase-1 (MSK1)-cAMP-responsive element binding protein (CREB) and/or p38-activating transcription factor 2 (ATF2). Microglia proliferating in the axotFN are anticipated to serve as neuroprotective cells by supplying neurotrophic factors and/or scavenging excite toxins and reactive oxygen radicals.
Collapse
Affiliation(s)
- Takashi Ishijima
- Graduate School of Science and Engineering, Soka University, Tokyo 192-8577, Japan;
| | - Kazuyuki Nakajima
- Graduate School of Science and Engineering, Soka University, Tokyo 192-8577, Japan;
- Glycan & Life Systems Integration Center, Soka University, Tokyo 192-8577, Japan
| |
Collapse
|
2
|
Events Occurring in the Axotomized Facial Nucleus. Cells 2022; 11:cells11132068. [PMID: 35805151 PMCID: PMC9266054 DOI: 10.3390/cells11132068] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Revised: 06/26/2022] [Accepted: 06/27/2022] [Indexed: 01/27/2023] Open
Abstract
Transection of the rat facial nerve leads to a variety of alterations not only in motoneurons, but also in glial cells and inhibitory neurons in the ipsilateral facial nucleus. In injured motoneurons, the levels of energy metabolism-related molecules are elevated, while those of neurofunction-related molecules are decreased. In tandem with these motoneuron changes, microglia are activated and start to proliferate around injured motoneurons, and astrocytes become activated for a long period without mitosis. Inhibitory GABAergic neurons reduce the levels of neurofunction-related molecules. These facts indicate that injured motoneurons somehow closely interact with glial cells and inhibitory neurons. At the same time, these events allow us to predict the occurrence of tissue remodeling in the axotomized facial nucleus. This review summarizes the events occurring in the axotomized facial nucleus and the cellular and molecular mechanisms associated with each event.
Collapse
|
3
|
Okuzono Y, Sakuma H, Miyakawa S, Ifuku M, Lee J, Das D, Banerjee A, Zhao Y, Yamamoto K, Ando T, Sato S. Reduced TREM2 activation in microglia of patients with Alzheimer's disease. FEBS Open Bio 2021; 11:3063-3080. [PMID: 34523252 PMCID: PMC8564098 DOI: 10.1002/2211-5463.13300] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Revised: 08/27/2021] [Accepted: 09/13/2021] [Indexed: 12/13/2022] Open
Abstract
Loss-of-function variants of triggering receptor expressed on myeloid cells 2 (TREM2) increase the risk of developing Alzheimer's disease (AD). The mechanism through which TREM2 contributes to the disease (TREM2 activation vs inactivation) is largely unknown. Here, we analyzed changes in a gene set downstream of TREM2 to determine whether TREM2 signaling is modified by AD progression. We generated an anti-human TREM2 agonistic antibody and defined TREM2 activation in terms of the downstream expression changes induced by this antibody in microglia developed from human induced pluripotent stem cells (iPSC). Differentially expressed genes (DEGs) following TREM2 activation were compared with the gene set extracted from microglial single nuclear RNA sequencing data of patients with AD, using gene set enrichment analysis. We isolated an anti-TREM2-specific agonistic antibody, Hyb87, from anti-human TREM2 antibodies generated using binding and agonism assays, which helped us identify 300 upregulated and 251 downregulated DEGs. Pathway enrichment analysis suggested that TREM2 activation may be associated with Th2-related pathways. TREM2 activation was lower in AD microglia than in microglia from healthy subjects or patients with mild cognitive impairment. TREM2 activation also showed a significant negative correlation with disease progression. Pathway enrichment analysis of DEGs controlled by TREM2 activity indicated that TREM2 activation in AD may lead to anti-apoptotic signaling, immune response, and cytoskeletal changes in the microglia. We showed that TREM2 activation decreases with AD progression, in support of a protective role of TREM2 activation in AD. In addition, the agonistic anti-TREM2 antibody can be used to identify TREM2 activation state in AD microglia.
Collapse
Affiliation(s)
- Yuumi Okuzono
- Immune Cell Engineered TherapeuticsResearch, Takeda Pharmaceutical Company LimitedFujisawaJapan
| | - Hiroyuki Sakuma
- Neuroscience Drug Discovery UnitResearch, Takeda Pharmaceutical Company LimitedFujisawaJapan
| | - Shuuichi Miyakawa
- Immune Cell Engineered TherapeuticsResearch, Takeda Pharmaceutical Company LimitedFujisawaJapan
| | - Masataka Ifuku
- Immune Cell Engineered TherapeuticsResearch, Takeda Pharmaceutical Company LimitedFujisawaJapan
| | - Jonghun Lee
- Computational BiologyResearch, Takeda Pharmaceutical Company LimitedFujisawaJapan
| | - Debashree Das
- Early Target DiscoveryResearch, Takeda California, Inc.San DiegoCAUSA
| | - Antara Banerjee
- GI ImmunologyResearch, Takeda California, Inc.San DiegoCAUSA
| | - Yang Zhao
- Computational BiologyResearch, Takeda Pharmaceutical Company LimitedFujisawaJapan
| | - Koji Yamamoto
- Computational BiologyResearch, Takeda Pharmaceutical Company LimitedFujisawaJapan
| | - Tatsuya Ando
- Computational BiologyResearch, Takeda Pharmaceutical Company LimitedFujisawaJapan
| | - Shuji Sato
- Neuroscience Drug Discovery UnitResearch, Takeda Pharmaceutical Company LimitedFujisawaJapan
| |
Collapse
|
4
|
Hammond BP, Manek R, Kerr BJ, Macauley MS, Plemel JR. Regulation of microglia population dynamics throughout development, health, and disease. Glia 2021; 69:2771-2797. [PMID: 34115410 DOI: 10.1002/glia.24047] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Revised: 05/20/2021] [Accepted: 05/28/2021] [Indexed: 12/11/2022]
Abstract
The dynamic expansions and contractions of the microglia population in the central nervous system (CNS) to achieve homeostasis are likely vital for their function. Microglia respond to injury or disease but also help guide neurodevelopment, modulate neural circuitry throughout life, and direct regeneration. Throughout these processes, microglia density changes, as does the volume of area that each microglia surveys. Given that microglia are responsible for sensing subtle alterations to their environment, a change in their density could affect their capacity to mobilize rapidly. In this review, we attempt to synthesize the current literature on the ligands and conditions that promote microglial proliferation across development, adulthood, and neurodegenerative conditions. Microglia display an impressive proliferative capacity during development and in neurodegenerative diseases that is almost completely absent at homeostasis. However, the appropriate function of microglia in each state is critically dependent on density fluctuations that are primarily induced by proliferation. Proliferation is a natural microglial response to insult and often serves neuroprotective functions. In contrast, inappropriate microglial proliferation, whether too much or too little, often precipitates undesirable consequences for nervous system health. Thus, fluctuations in the microglia population are tightly regulated to ensure these immune cells can execute their diverse functions.
Collapse
Affiliation(s)
- Brady P Hammond
- Neuroscience and Mental Health Institute, University of Alberta, Edmonton, Alberta, Canada
| | - Rupali Manek
- Department of Biological Sciences, University of Alberta, Edmonton, Alberta, Canada
| | - Bradley J Kerr
- Neuroscience and Mental Health Institute, University of Alberta, Edmonton, Alberta, Canada.,Department of Anesthesiology & Pain Medicine, University of Alberta, Edmonton, Alberta, Canada
| | - Matthew S Macauley
- Department of Chemistry, University of Alberta, Edmonton, Alberta, Canada.,Department of Medical Microbiology and Immunology, University of Alberta, Edmonton, Alberta, Canada
| | - Jason R Plemel
- Neuroscience and Mental Health Institute, University of Alberta, Edmonton, Alberta, Canada.,Department of Medicine, Division of Neurology, University of Alberta, Edmonton, Alberta, Canada
| |
Collapse
|
5
|
Zhao J, Liu Y, Hu JN, Peng M, Dong N, Zhu XM, Ma T, Yao YM. Autocrine Regulation of Interleukin-3 in the Activity of Regulatory T Cells and its Effectiveness in the Pathophysiology of Sepsis. J Infect Dis 2020; 223:893-904. [PMID: 32702107 DOI: 10.1093/infdis/jiaa441] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2020] [Accepted: 07/17/2020] [Indexed: 01/12/2023] Open
Abstract
Regulatory T cells (Tregs) play a crucial role in modulating the inflammatory response and participated in sepsis-related immune dysfunctions. However, little is known about the regulatory mechanisms by which Tregs are kept in check during immune responses. Here, we verified the simultaneous expression of interleukin-3 (IL-3) and its receptor (IL-3R) in Tregs. Then, by modulation of IL-3 expression via lentiviral transduction-mediated small interfering RNA, we demonstrated that IL-3 negatively regulated Tregs activity via an autocrine mechanism. Furthermore, we found that anti-IL-3 antibody treatment significantly diminished inflammatory cytokines and organ injury, and improved survival in septic mice, which was associated with enhanced Treg percentage and function. Collectively, these results suggest that IL-3 negatively regulates the activity of Tregs in a previously unrecognized autocrine manner, and plays an important role in the excessive inflammatory response in sepsis, which might be utilized as a therapeutic strategy for the treatment of complications in sepsis.
Collapse
Affiliation(s)
- Jie Zhao
- Department of Intensive Care, Tianjin Medical University General Hospital, Tianjin, China
| | - Ying Liu
- Tianjin Medical University, Tianjin, China
| | | | - Min Peng
- Department of Intensive Care, Tianjin Medical University General Hospital, Tianjin, China
| | - Ning Dong
- Department of Microbiology and Immunology, Trauma Research Center, Fourth Medical Center of the Chinese PLA General Hospital, Beijing, China
| | - Xiao-Mei Zhu
- Department of Microbiology and Immunology, Trauma Research Center, Fourth Medical Center of the Chinese PLA General Hospital, Beijing, China
| | - Tao Ma
- Department of General Surgery, Tianjin Medical University General Hospital, Tianjin, China
| | - Yong-Ming Yao
- Department of Microbiology and Immunology, Trauma Research Center, Fourth Medical Center of the Chinese PLA General Hospital, Beijing, China
| |
Collapse
|
6
|
Renner K, Hellerbrand S, Hermann F, Riedhammer C, Talke Y, Schiechl G, Rodriguez Gomez M, Kutzi S, Halbritter D, Goebel N, Brühl H, Weissert R, Mack M. IL-3 promotes the development of experimental autoimmune encephalitis. JCI Insight 2016; 1:e87157. [PMID: 27734026 DOI: 10.1172/jci.insight.87157] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Little is known about the role of IL-3 in multiple sclerosis (MS) in humans and in experimental autoimmune encephalomyelitis (EAE). Using myelin oligodendrocyte glycoprotein (MOG) peptide-induced EAE, we show that CD4+ T cells are the main source of IL-3 and that cerebral IL-3 expression correlates with the influx of T cells into the brain. Blockade of IL-3 with monoclonal antibodies, analysis of IL-3 deficient mice, and adoptive transfer of leukocytes demonstrate that IL-3 plays an important role for development of clinical symptoms of EAE, for migration of leukocytes into the brain, and for cerebral expression of adhesion molecules and chemokines. In contrast, injection of recombinant IL-3 exacerbates EAE symptoms and cerebral inflammation. In patients with relapsing-remitting MS (RRMS), IL-3 expression by T cells is markedly upregulated during episodes of relapse. Our data indicate that IL-3 plays an important role in EAE and may represent a new target for treatment of MS.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | - Hilke Brühl
- Department of Internal Medicine I, University Hospital Regensburg, Regensburg, Germany
| | - Robert Weissert
- Department of Neurology.,Regensburg Center for Interventional Immunology, Regensburg, Germany
| | - Matthias Mack
- Department of Internal Medicine II - Nephrology.,Regensburg Center for Interventional Immunology, Regensburg, Germany
| |
Collapse
|
7
|
Interleukin and growth factor levels in subretinal fluid in rhegmatogenous retinal detachment: a case-control study. PLoS One 2011; 6:e19141. [PMID: 21556354 PMCID: PMC3083411 DOI: 10.1371/journal.pone.0019141] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2010] [Accepted: 03/28/2011] [Indexed: 11/25/2022] Open
Abstract
Background Rhegmatogenous retinal detachment (RRD) is a major cause of visual loss in developed countries. Proliferative vitreoretinopathy (PVR), an eye-sight threatening complication of RRD surgery, resembles a wound-healing process with inflammation, scar tissue formation, and membrane contraction. This study was performed to determine the possible involvement of a wide range of cytokines in the future development of PVR, and to identify predictors of PVR and visual outcome. Methodology A multiplex immunoassay was used for the simultaneous detection of 29 different cytokines in subretinal fluid samples from patients with primary RRD. Of 306 samples that were collected and stored in our BioBank between 2001 and 2008, 21 samples from patients who developed postoperative PVR were compared with 54 age-, sex-, and storage-time–matched RRD control patients who had an uncomplicated postoperative course during the overall follow-up period. Findings Levels of IL-1α, IL-2, IL-3, IL-6, VEGF, and ICAM-1 were significantly higher (P<0.05) in patients who developed postoperative PVR after reattachment surgery than in patients with an uncomplicated postoperative course, whereas levels of IL-1β, IL-4, IL-5, IL-7, IL-9, IL-10, IL-11, IL-12p70, IL-13, IL-15, IL-17, IL-18, IL-21, IL-22, IL-23, IL-25, IL-33, TNF-α, IFN-γ, IGF-1, bFGF, HGF, and NGF were not (P>0.05). Multivariate logistic regression analysis revealed that IL-3 (P = 0.001), IL-6 (P = 0.047), ICAM-1 (P = 0.010), and preoperative visual acuity (P = 0.026) were independent predictors of postoperative PVR. Linear regression analysis showed that ICAM-1 (P = 0.005) and preoperative logMAR visual acuity (P = 0.001) were predictive of final visual outcome after primary RRD repair. Conclusions/Significance Our findings indicate that after RRD onset an exaggerated response of certain cytokines may predispose to PVR. Sampling at a time close to the onset of primary RRD may thus provide clues as to which biological events may initiate the development of PVR and, most importantly, may provide a means for therapeutic control.
Collapse
|
8
|
Scheikl T, Pignolet B, Mars LT, Liblau RS. Transgenic mouse models of multiple sclerosis. Cell Mol Life Sci 2010; 67:4011-34. [PMID: 20714779 PMCID: PMC11115830 DOI: 10.1007/s00018-010-0481-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2010] [Revised: 07/08/2010] [Accepted: 07/27/2010] [Indexed: 01/08/2023]
Abstract
Multiple sclerosis (MS) is an inflammatory demyelinating disease affecting the central nervous system (CNS) and a frequent cause of neurological disability in young adults. Multifocal inflammatory lesions in the CNS white matter, demyelination, oligodendrocyte loss, axonal damage, as well as astrogliosis represent the histological hallmarks of the disease. These pathological features of MS can be mimicked, at least in part, using animal models. This review discusses the current concepts of the immune effector mechanisms driving CNS demyelination in murine models. It highlights the fundamental contribution of transgenesis in identifying the mediators and mechanisms involved in the pathophysiology of MS models.
Collapse
Affiliation(s)
- Tanja Scheikl
- Institut National de la Santé et de la Recherche Médicale, Unité 563, Toulouse, France.
| | | | | | | |
Collapse
|
9
|
Suzumura A. Immune Response in the Brain: Glial Response and Cytokine Production. CYTOKINES AND THE BRAIN 2008. [PMCID: PMC7185635 DOI: 10.1016/s1567-7443(07)10014-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
10
|
Konishi Y, Harano T, Tabira T. Neurotrophic Effect of Interleukin-3 (IL-3) and Its Mechanisms of Action in the Nervous System1. CNS DRUG REVIEWS 2006. [DOI: 10.1111/j.1527-3458.1999.tb00104.x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
11
|
Abstract
Cytokines constitute a significant portion of the immuno- and neuromodulatory messengers that can be released by activated microglia. By virtue of potent effects on resident and invading cells, microglial cyto- and chemokines regulate innate defense mechanisms, help the initiation and influence the type of immune responses, participate in the recruitment of leukocytes to the CNS, and support attempts of tissue repair and recovery. Microglia can also receive cyto- and chemokine signals as part of auto- and paracrine communications with astrocytes, neurons, the endothelium, and leukocyte infiltrates. Strong responses and modulatory influences can be demonstrated, adding to the emerging view that microglial behavior is highly dependent on the (cytokine) environment and that reactions to a challenge may vary with the stimulation context. In principle, microglial activation aims at CNS protection. However, failed microglial engagement due to excessive or sustained activation could significantly contribute to acute and chronic neuropathologies. Dysregulation of microglial cytokine production could thereby promote harmful actions of the defense mechanisms, result in direct neurotoxicity, as well as disturb neural cell functions as they are sensitive to cytokine signaling.
Collapse
Affiliation(s)
- Uwe-Karsten Hanisch
- Department of Cellular Neurosciences, Max Delbrück Center for Molecular Medicine, Berlin-Buch, Germany
- University of Applied Sciences Lausitz, Senftenberg, Germany
| |
Collapse
|
12
|
The toll-like receptor TLR4 is necessary for lipopolysaccharide-induced oligodendrocyte injury in the CNS. J Neurosci 2002. [PMID: 11923412 DOI: 10.1523/jneurosci.22-07-02478.2002] [Citation(s) in RCA: 483] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
The immediate or innate immune response is the first line of defense against diverse microbial pathogens and requires the expression of recently discovered toll-like receptors (TLRs). TLR4 serves as a specific receptor for lipopolysaccharide (LPS) and is localized on the surface of a subset of mammalian cells. Although innate immunity is a necessary host defense against microbial pathogens, the consequences of its activation in the CNS can be deleterious, as we show here in a developing neural model. We examined the major non-neuronal cell types in the CNS for expression of TLR4 and found that microglia expressed high levels, whereas astrocytes and oligodendrocytes expressed none. Consistent with TLR4 expression solely in microglia, we show that microglia are the only CNS glial cells that bind fluorescently tagged lipopolysaccharide. Lipopolysaccharide led to extensive oligodendrocyte death in culture only under conditions in which microglia were present. To determine whether TLR4 is necessary for lipopolysaccharide-induced oligodendrocyte death in mixed glial cultures, we studied cultures generated from mice bearing a loss-of-function mutation in the tlr4 gene. Lipopolysaccharide failed to induce oligodendrocyte death in such cultures, in contrast to the death induced in cultures from wild-type mice. Finally, stereotactic intracerebral injection of lipopolysaccharide into the developing pericallosal white matter of immature rodents resulted in loss of oligodendrocytes and hypomyelination and periventricular cysts. Our data provide a general mechanistic link between (1) lipopolysaccharide and similar microbial molecular motifs and (2) injury to oligodendrocytes and myelin as occurs in periventricular leukomalacia and multiple sclerosis.
Collapse
|
13
|
Hinze-Selch D, Pollmächer T. In vitro cytokine secretion in individuals with schizophrenia: results, confounding factors, and implications for further research. Brain Behav Immun 2001; 15:282-318. [PMID: 11782101 DOI: 10.1006/brbi.2001.0645] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The present paper reviews the results of all publications on in vitro cytokine secretion in patients with schizophrenia, as published by March 2001. The authors supply easy to read tables with respect to the individual cytokines and soluble cytokine receptors investigated, the in vitro methodology used, characterization of the patient samples, and the results on cytokine secretion as stated in these studies. Inconsistent results, e.g., regarding in vitro secretion of IL-2 with 11/18 studies finding decreased secretion, 5/18 finding no change, and 2/18 finding increases, cannot systematically be correlated with any methodological procedures nor any diagnostic subtypes, per se. However, factors such as medication and cigarette smoking are likely to play a role. The authors suggest that more hypothesis-driven research, together with more carefully designed studies, as well as better communication between basic or animal researchers and clinicians might help to answer the question of whether there are meaningful peripheral changes in the immune system related to schizophrenia.
Collapse
Affiliation(s)
- D Hinze-Selch
- Department of Psychiatry and Psychotherapy, Christian-Albrechts University, Niemannsweg 147, D-24105 Kiel, Germany
| | | |
Collapse
|
14
|
Laurenzi MA, Arcuri C, Rossi R, Marconi P, Bocchini V. Effects of microenvironment on morphology and function of the microglial cell line BV-2. Neurochem Res 2001; 26:1209-16. [PMID: 11874202 DOI: 10.1023/a:1013911205494] [Citation(s) in RCA: 44] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Effects of microenvironmental changes were examined in the microglial cell line BV-2. In serum supplemented medium cells were ameboid shaped and exhibited thin cytoplasmatic processes at lower concentration or in absence of serum. High levels of acetylated low-density lipoprotein (LDL) receptor and of phagocytic and proliferative activity were detected. Lipopolysaccharide (LPS) and the neuropeptide substance P (SP) induced secretion of interleukin-6. Low interleukin-3 secretion was detected only occasionally and was not influenced by LPS and SP. In defined medium, "process-bearing" cells were evident. Compared to cultures in serum supplemented medium, the cells expressed lower acetylated LDL-binding and phagocytic activity while actively proliferated, the response to LPS was reduced and to SP absent. Granulocyte/macrophage colony-stimulating factor increased the number of process-bearing cells, of acetylated LDL-binding and of IL-6 secretion induced by LPS. Cell morphology was not influenced by neurotrophins like nerve growth factor and brain-derived neurotrophic factor. The described phenotypical and functional plasticity makes the BV-2 cell line a useful model to investigate mechanisms of microglial activation.
Collapse
Affiliation(s)
- M A Laurenzi
- Department of Clinical Medicine, Pathology, Pharmacology, University of Perugia, Policlinico Monteluce, Italy.
| | | | | | | | | |
Collapse
|
15
|
Abstract
Inflammatory events in the CNS are associated with injuries as well as with well-known chronic degenerative diseases, such as Multiple Sclerosis, Parkinson's, or Alzheimer's disease. Compared to inflammation in peripheral tissues, inflammation in brain appears to follow distinct pathways and time-courses, which likely has to do with a relatively strong immunosuppression in that organ. For this reason, it is of great importance to get insights into the molecular mechanism governing immune reactions in brain tissue. This task is hard to achieve in vivo, but can be approached by studying the major cell type responsible for brain inflammation, the microglia, in culture. Since these cells are the only professional antigen-presenting cells resident in brain parenchyma, molecular mechanisms of antigen presentation are being discussed first. After covering the expression and regulation of anti- and proinflammatory cytokines, induction and regulation of two key enzymes and their products-COX-2 and iNOS-are summarized. Possibly, pivotal molecular targets for drug therapies of brain disorders will be discovered in intracellular signaling pathways leading to activation of transcription factors. Finally, the impact of growth factors, of neurotrophins in particular, is highlighted. It is concluded that the presently available data on the molecular level is far from being statisfying, but that only from better insights into molecular events will we obtain the information required for more specific therapies.
Collapse
Affiliation(s)
- P J Gebicke-Haerter
- Department of Psychopharmacology, Central Institute for Mental Health, Mannheim, Germany.
| |
Collapse
|
16
|
Nakajima K, Honda S, Nakamura Y, López-Redondo F, Kohsaka S, Yamato M, Kikuchi A, Okano T. Intact microglia are cultured and non-invasively harvested without pathological activation using a novel cultured cell recovery method. Biomaterials 2001; 22:1213-23. [PMID: 11336293 DOI: 10.1016/s0142-9612(00)00270-2] [Citation(s) in RCA: 54] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Because spontaneous host regeneration of damaged tissues is limited, novel therapeutics utilizing cultured cells with the aid of tissue engineering methods are promising alternatives for tissue replacement. One critical shortcoming is current requirement for invasive cell harvest from culture to fabricate cell-based devices. Although microglia that secrete neurotrophic factors are attractive candidates for novel cell transplantation therapy for damaged central nervous system tissue, the intact harvest of cultured microglia is presently not achievable. Therefore, primary microglia were plated onto culture surfaces grafted with the temperature-responsive polymer, poly(N-isopropylacrylamide) (PIPAAm). This surface undergoes rapid, reversible temperature-dependent changes in its hydration state and surface hydrophilicity. Microglia attached and proliferated on PIPAAm-grafted dishes at 37 degrees C. By reducing culture temperature, more than 90% of the cells spontaneously detached from the dishes within several minutes without trypsin or EDTA treatment. Recovered and replated microglia exhibited phenotypic properties comparable to those of primary microglia freshly isolated from brain. By contrast, less than 60% of the cells were harvested by trypsin digestion, and exhibited significant alteration of characteristic cellular properties as monitored by pathological states in vivo. This new technology exhibits utility for the preparation of cell sources required for cell transplantation as well as microglial function analysis.
Collapse
Affiliation(s)
- K Nakajima
- Department of Neurochemistry, National Institute of Neuroscience, Kodaira, Tokyo, Japan
| | | | | | | | | | | | | | | |
Collapse
|
17
|
D'Andrea RJ, Harrison-Findik D, Butcher CM, Finnie J, Blumbergs P, Bartley P, McCormack M, Jones K, Rowland R, Gonda TJ, Vadas MA. Dysregulated hematopoiesis and a progressive neurological disorder induced by expression of an activated form of the human common beta chain in transgenic mice. J Clin Invest 1998; 102:1951-60. [PMID: 9835620 PMCID: PMC509147 DOI: 10.1172/jci3729] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
Previously we described activating mutations of hbetac, the common signaling subunit of the receptors for the hematopoietic and inflammatory cytokines, GM-CSF, IL-3, and IL-5. The activated mutant, hbetacFIDelta, is able to confer growth factor-independent proliferation on the murine myeloid cell line FDC-P1, and on primary committed myeloid progenitors. We have used this activating mutation to study the effects of chronic cytokine receptor stimulation. Transgenic mice were produced carrying the hbetacFIDelta cDNA linked to the constitutive promoter derived from the phosphoglycerate kinase gene, PGK-1. Transgene expression was demonstrated in several tissues and functional activity of the mutant receptor was confirmed in hematopoietic tissues by the presence of granulocyte macrophage and macrophage colony-forming cells (CFU-GM and CFU-M) in the absence of added cytokines. All transgenic mice display a myeloproliferative disorder characterized by splenomegaly, erythrocytosis, and granulocytic and megakaryocytic hyperplasia. This disorder resembles the human disease polycythemia vera, suggesting that activating mutations in hbetac may play a role in the pathogenesis of this myeloproliferative disorder. In addition, these transgenic mice develop a sporadic, progressive neurological disease and display bilateral, symmetrical foci of necrosis in the white matter of brain stem associated with an accumulation of macrophages. Thus, chronic hbetac activation has the potential to contribute to pathological events in the central nervous system.
Collapse
Affiliation(s)
- R J D'Andrea
- The Hanson Centre for Cancer Research, Division of Human Immunology, Adelaide, 5000 South Australia, Australia.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
18
|
Chavany C, Vicario-Abejón C, Miller G, Jendoubi M. Transgenic mice for interleukin 3 develop motor neuron degeneration associated with autoimmune reaction against spinal cord motor neurons. Proc Natl Acad Sci U S A 1998; 95:11354-9. [PMID: 9736740 PMCID: PMC21646 DOI: 10.1073/pnas.95.19.11354] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Interleukin 3 (IL-3) stimulates the proliferation and differentiation of various haematopoietic progenitor cells. Recently, IL-3 and other cytokines were reported to exert a neurotrophic activity and to be associated with neurological disorders, suggesting their complex role in the central nervous system. We now show that overexpression of IL-3 in transgenic mice causes a motor neuron disease with several features of amyotrophic lateral sclerosis and progressive muscular atrophy. These animals exhibit hind limb paralysis at 7 months of age, associated with dendritic and axonal degeneration, loss of motor neurons in the spinal cord, and autoimmune reaction against these cells. We examined the effect of IL-3 on embryonic motor neurons survival in mixed spinal cord cultures. Our results suggest that motor neuronal degeneration is not directly triggered by the high level of expression of IL-3.
Collapse
Affiliation(s)
- C Chavany
- Genetics and Molecular Immunology Section, Laboratory of Immunology/National Eye Institute, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda MD 20892, USA
| | | | | | | |
Collapse
|
19
|
Popović M, Caballero-Bleda M, Puelles L, Popović N. Importance of immunological and inflammatory processes in the pathogenesis and therapy of Alzheimer's disease. Int J Neurosci 1998; 95:203-36. [PMID: 9777440 DOI: 10.3109/00207459809003341] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
The contribution of autoimmune processes or inflammatory components in the etiology and pathogenesis of Alzheimer's disease (AD) has been suspected for many years. The presence of antigen-presenting, HLA-DR-positive and other immunoregulatory cells, components of complement, inflammatory cytokines and acute phase reactants have been established in tissue of AD neuropathology. Although these data do not confirm the immune response as a primary cause of AD, they indicate involvement of immune processes at least as a secondary or tertiary reaction to the preexisting pathogen and point out its driving-force role in AD pathogenesis. These processes may contribute to systemic immune response. Thus, experimental and clinical studies indicate impairments in both humoral and cellular immunity in an animal model of AD as well as in AD patients. On the other hand, anti-inflammatory drugs applied for the treatment of some chronic inflammatory diseases have been shown to reduce risk of AD in these patients. Therefore, it seems that anti-inflammatory drugs and other substances which can control the activity of immunocompetent cells and the level of endogenous immune response can be valuable in the treatment of AD patients.
Collapse
Affiliation(s)
- M Popović
- Departamento de Ciencias Morfológicas y Psicobiología, Facultad de Medicina, Universidad de Murcia, Espinardo, Spain
| | | | | | | |
Collapse
|
20
|
Htain WW, Leong SK, Ling EA. Effects of interleukin-3 injection on supraventricular amoeboid microglial cells in neonatal BALB/c and athymic mice. Neurosci Lett 1998; 251:133-6. [PMID: 9718992 DOI: 10.1016/s0304-3940(98)00507-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The present study investigated the effects of interleukin-3 (IL-3) on supraventricular amoeboid microglial cells (SAMC) of neonatal BALB/c and athymic mice. After four consecutive daily intraperitoneal injections of IL-3 at the age of 1 day postnatum and perfusion at the age of 5 days, BALB/c and athymic mice showed a 20% and 37% increase, respectively, in the number of Mac-1 positive SAMC. In mice receiving seven successive injections of IL-3 and perfused at the age of 8 days postnatum, Mac-1 labelled SAMC were increased by 14% and 19%, respectively. The increased number of SAMC could be the result of cytokine stimulation of their progenitor cells, viz., the stem cells of bone marrow or monocytes, or the result of direct stimulation of the SAMC themselves.
Collapse
Affiliation(s)
- W W Htain
- Department of Anatomy, Faculty of Medicine, National University of Singapore, Singapore
| | | | | |
Collapse
|
21
|
Spleiss O, Appel K, Boddeke HW, Berger M, Gebicke-Haerter PJ. Molecular biology of microglia cytokine and chemokine receptors and microglial activation. Life Sci 1998; 62:1707-10. [PMID: 9585161 DOI: 10.1016/s0024-3205(98)00132-5] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Activation of brain microglial cells can be subdivided into a number of stages. Early stages likely are proliferation and migration to sites of cell damage. These two stages have been studied exemplarily on the IL-3 receptor beta-subunit and on the CC-chemokine receptor 5 using molecular biological methods. First, IL-3 receptor beta-subunit cDNA has been cloned in full length from rat microglia. Since cultured microglia are already activated to some extent, mRNA of this subunit has been detected in the isolated cells, but was absent in normal rat brain. Lipopolysaccharide (LPS) increased this mRNA in the cultured cells and LPS injected into the circulation of rats induced the mRNA specifically in brain microglia as revealed by in situ hybridizations. Next, we obtained partial cDNAs of receptor-coupled protein tyrosine kinases JAK 1 and JAK 2. These mRNAs were present both in cultured microglia and in rat brain, but were not influenced by LPS. Finally, a full-length cDNA of the rat chemokine receptor 5 has been obtained by PCR methodology. Its mRNA was increased by administration of LPS both in cultured microglia and in vivo. It is expected, that further investigations on these receptors could help to develop improved strategies to combat chronic inflammatory events in the brain.
Collapse
Affiliation(s)
- O Spleiss
- Dept. of Psychiatry, University of Freiburg, Freiburg i.Br., FRG
| | | | | | | | | |
Collapse
|
22
|
Abstract
Cytokines are powerful mediators of biologic responses in the CNS and may contribute to cellular injury in pathophysiologic states. In order to better understand the actions of cytokines in the intact mammalian CNS, a transgenic approach was employed that targeted the expression of different cytokines to astrocytes in mice. Fusion gene constructs consisting of a GFAP expression vector into which was inserted the DNA encoding the cytokines interleukin-6 (IL-6), IL-3, or TNF-alpha were used to generate transgenic mice. Expression of the transgene-encoded cytokines in astrocytes was confirmed at both the RNA and protein levels. Transgenic mice were subject to multilevel analysis to determine the extent of structural and functional CNS alterations. Transgenic mice exhibited distinct adult-onset, chronic-progressive neurological disorders that correlated with the level and anatomic distribution of transgene-encoded cytokine expression. The principal findings were neurodegeneration and cognitive decline due to IL-6 expression, macrophage/microglial-mediated primary demyelination with motor disease resulting from IL-3 expression, and lymphocytic meningoencephalomyelitis with paralysis induced by TNF-alpha expression. These transgenic models (1) indicate that expression of cytokines per se in the intact CNS is pathogenic, with cytokine-specific neural cell injury leading to unique functional deficits; (2) recapitulate many of the structural and functional changes seen in human inflammatory neurological disorders; (3) provide a valuable tool for advancing our understanding of the CNS pathobiology of cytokines; and (4) offer a unique resource for the development and testing of therapies aimed at abrogating the harmful actions of these important mediators.
Collapse
Affiliation(s)
- I L Campbell
- Department of Neuropharmacology, Scripps Research Institute, La Jolla, California 92037, USA.
| |
Collapse
|
23
|
Microglia in ontogeny and brain pathology. NEUROPHYSIOLOGY+ 1998. [DOI: 10.1007/bf02463060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
24
|
Mallat M, Calvo CF, Dobbertin A. Migration and proliferation of mononuclear phagocytes in the central nervous system. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 1997; 429:99-108. [PMID: 9413568 DOI: 10.1007/978-1-4757-9551-6_7] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Affiliation(s)
- M Mallat
- INSERM U.114, Chaire de Neuropharmacologie, Collège de France, Paris, France
| | | | | |
Collapse
|
25
|
Küst B, Buttini M, Sauter A, Boddeke HW, Gebicke-Haerter PJ. K(+)-channels and cytokines as markers for microglial activation. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 1997; 429:109-17. [PMID: 9413569 DOI: 10.1007/978-1-4757-9551-6_8] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Affiliation(s)
- B Küst
- Department of Psychiatry, University of Freiburg, F.R.G
| | | | | | | | | |
Collapse
|
26
|
Ohsawa K, Imai Y, Nakajima K, Kohsaka S. Generation and characterization of a microglial cell line, MG5, derived from a p53-deficient mouse. Glia 1997. [DOI: 10.1002/(sici)1098-1136(199711)21:3<285::aid-glia4>3.0.co;2-4] [Citation(s) in RCA: 63] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
27
|
Compston A, Zajicek J, Sussman J, Webb A, Hall G, Muir D, Shaw C, Wood A, Scolding N. Glial lineages and myelination in the central nervous system. J Anat 1997; 190 ( Pt 2):161-200. [PMID: 9061442 PMCID: PMC1467598 DOI: 10.1046/j.1469-7580.1997.19020161.x] [Citation(s) in RCA: 78] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
Oligodendrocytes, derived from stem cell precursors which arise in subventricular zones of the developing central nervous system, have as their specialist role the synthesis and maintenance of myelin. Astrocytes contribute to the cellular architecture of the central nervous system and act as a source of growth factors and cytokines; microglia are bone-marrow derived macrophages which function as primary immunocompetent cells in the central nervous system. Myelination depends on the establishment of stable relationships between each differentiated oligodendrocyte and short segments of several neighbouring axons. There is growing evidence, especially from studies of glial cell implantation, that oligodendrocyte precursors persist in the adult nervous system and provide a limited capacity for the restoration of structure and function in myelinated pathways damaged by injury or disease.
Collapse
Affiliation(s)
- A Compston
- University of Cambridge Neurology Unit, Addenbrooke's Hospital, UK
| | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Hailer NP, Bechmann I, Heizmann S, Nitsch R. Adhesion molecule expression on phagocytic microglial cells following anterograde degeneration of perforant path axons. Hippocampus 1997; 7:341-9. [PMID: 9228530 DOI: 10.1002/(sici)1098-1063(1997)7:3<341::aid-hipo8>3.0.co;2-n] [Citation(s) in RCA: 62] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Entorhinal cortex lesion (ECL) leads to anterograde degeneration of perforant path axons and is known to induce a rapid and intense reaction of astrocytes and microglial cells in the deafferented dentate gyrus. Phagocytosis of degenerating axons involves the establishment and maintenance of cell-matrix and cell-cell interactions by activated glial cells. It was thus our aim to investigate whether the process of axon phagocytosis is accompanied by the expression of adhesion molecules on activated microglial cells or reactive astrocytes, as such molecules mediate bot cell-matrix and cell-cell interactions. We found that the integrin adhesion molecules leukocyte function antigen-1 (LFA-1), very late antigen-4 (VLA-4), and the ligand for LFA-1, intercellular adhesion molecule-1 (ICAM-1), were expressed on microglial cells accumulating in the outer molecular layer of the deafferented dentate gyrus. This upregulation of adhesion molecule expression on microglial cells showing morphological criteria of activation occurred rapidly following ECL, reached its peak at 3 days post lesion (dpl), and gradually returned to control levels after 9 dpl. Astrocytes were never labeled by antibodies directed against these adhesion molecules. Prelabeling of the perforant path with a fluorescent tracer and subsequent ECL led to phagocytosis of fluorescent-labeled axonal debris by cells that were located in the outer molecular layer and showed typical microglial morphology. Double-fluorescence labeling demonstrated that microglial cells engaged in the phagocytosis of axonal debris expressed LFA-1, VLA-4, and the LFA-1-ligand ICAM-1. In conclusion, our results demonstrate that anterograde degeneration of perforant path axons results in adhesion molecule expression on activated microglial cells engaged in axon phagocytosis. The expression of such molecules could represent a mechanism that retains activated microglia in areas of axonal degeneration and perhaps enables the interaction of microglial cells with each other or with other immunocompetent cells.
Collapse
Affiliation(s)
- N P Hailer
- Department of Cell- and Neurobiology, Humboldt University Hospital Charité, Berlin, Federal Republic of Germany.
| | | | | | | |
Collapse
|
29
|
Mazzoni IE, Kenigsberg RL. Microglia from the developing rat medial septal area can affect cholinergic and GABAergic neuronal differentiation in vitro. Neuroscience 1997; 76:147-57. [PMID: 8971767 DOI: 10.1016/s0306-4522(96)00235-7] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
The normal development of the central nervous system is regulated by glia. In this regard, we have reported that astrocytes, stimulated by epidermal growth factor or transforming growth factor alpha, suppress the biochemical differentiation of rat medial septal cholinergic neurons in vitro, as evidenced by a decrease in choline acetyltransferase activity. In this study, we found that, in contrast to astrocytes, microglia enhance rather than suppress this aspect of cholinergic cell expression. When in excess, microglia can revert the effects of epidermal growth factor on the septal cholinergic neurons without altering the astroglial proliferative response to this growth factor. In the absence of growth factors or other glial cell types, microglia increase choline acetyltransferase activity above control levels and thus, may be a source of cholinergic differentiating activity. The increase in enzyme activity induced by microglia is rapid in onset, detected as early as 2 h after their addition to the septal neurons and maintained up to six or seven days in vitro. Furthermore, in the absence or presence of other glial cell types, microglia also influence septal GABAergic neurons by significantly increasing glutamate decarboxylase activity. As microglia affect neither septal cholinergic nor GABAergic neuronal cell survival, they appear to enhance the biochemical differentiation of these two neuronal cell types. Specific immunoneutralizing antibodies were used to identify the microglia-derived factors affecting these two neuronal types. In this regard, we found that the microglia-derived cholinergic differentiating activity is significantly suppressed by antibodies raised against interleukin-3. Furthermore, interleukin-3 was detected in both conditioned media and cell homogenates from septal neuronal-microglial co-cultures by western blotting. Finally, although basic fibroblast growth factor and interleukin-3 significantly increase septal glutamate decarboxylase activity, neither appears to be implicated in the GABAergic cell response to the microglia. In conclusion, these results demonstrate that microglia can enhance the biochemical differentiation of developing cholinergic and GABAergic neurons in vitro.
Collapse
Affiliation(s)
- I E Mazzoni
- Department of Physiology, University of Montreal, Quebec, Canada
| | | |
Collapse
|
30
|
Tomozawa Y, Inoue T, Takahashi M, Adachi M, Satoh M. Apoptosis of cultured microglia by the deprivation of macrophage colony-stimulating factor. Neurosci Res 1996; 25:7-15. [PMID: 8808795 DOI: 10.1016/0168-0102(96)01021-8] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Promotion of microglial proliferation and differentiation by colony-stimulating factors (CSFs) and disappearances of microglia at the late neonatal stage by decreasing of CSFs have been reported. In this study, the effects of the deprivation of macrophage CSF (M-CSF) on enriched microglia in cultures were examined by cytochemical methods including in situ nick-end labeling for DNA fragmentation, and Carrazi's hematoxylin nuclear staining. When M-CSF was deprived from the culture medium: (1) at least 40% of the cells were weakly labeled by nick-end within 3 h and more than 70% of the cells were clearly labeled by 16 h; and (2) nuclear condensation or fragmentation, and formation of apoptotic bodies were observed within 48 h. LeY-positive immunoreactivity, identified as a characteristic of cells undergoing apoptosis, was observed on cells positively labeled by nick-end and condensed nucleus, and ones budding apoptotic bodies. From these results, it is conceivable that microglia undergo apoptosis when M-CSF is deprived from the culture medium and, therefore, require CSFs for their survival. This in vitro phenomenon suggests that one of the mechanisms of microglial disappearance in vivo after synaptogenesis may be due to apoptosis by decreasing level of CSFs.
Collapse
Affiliation(s)
- Y Tomozawa
- Department of Molecular Pharmacology, Faculty of Pharmaceutical Science, Kyoto University, Japan
| | | | | | | | | |
Collapse
|
31
|
Acarin L, González B, Castellano B, Castro AJ. Microglial response to N-methyl-D-aspartate-mediated excitotoxicity in the immature rat brain. J Comp Neurol 1996; 367:361-74. [PMID: 8698898 DOI: 10.1002/(sici)1096-9861(19960408)367:3<361::aid-cne4>3.0.co;2-3] [Citation(s) in RCA: 60] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
The intracerebral injection of N-methyl-D-aspartate (NMDA) has been proposed as a model for hypoxic-ischemic insult in the immature brain. In this light, the aim of this study was to describe the time course of the microglial reaction in the areas undergoing primary degeneration at the site of intracortical NMDA injection as well as in areas undergoing secondary anterograde and/or retrograde degeneration. Fifty nanomoles of NMDA were injected in the sensorimotor cortex of 6-day-old rats. After survival times ranging from 10 hours to 28 days, cryostat sections were stained for routine histology and for the demonstration of microglial cells by means of tomato lectin histochemistry. The areas affected by primary degeneration caused by the intracortical injection of NMDA were the neocortex, the hippocampus, and the rostral thalamus. Secondary degeneration (retrograde and anterograde) was observed in the ventrobasal complex of the thalamus. The cortical lesion also caused Wallerian degeneration of the cortical descending efferents as observed in the basilar pons. Microglial reactivity in all these areas was present at 10 hours postinjection and was restricted to the areas undergoing neuronal or axonal degeneration. Reactive microglial cells were stained intensely and showed a round or pseudopodic morphology. At 3 days, an apparent increase in the number of tomato lectin-positive cells was observed in the areas undergoing neuronal death. By 7 days after the injection, the lesion became nonprogressive, and by 14 and 28 days, microglial cells showed moderate lectin binding and a more ramified morphology.
Collapse
Affiliation(s)
- L Acarin
- Department of Cell Biology, Neurobiology and Anatomy, Stritch School of Medicine, Loyola University Chicago, Maywood, Illinois 60153, USA
| | | | | | | |
Collapse
|
32
|
Suzumura A, Sawada M, Marunouchi T. Selective induction of interleukin-6 in mouse microglia by granulocyte-macrophage colony-stimulating factor. Brain Res 1996; 713:192-8. [PMID: 8724991 PMCID: PMC7111018 DOI: 10.1016/0006-8993(95)01535-3] [Citation(s) in RCA: 41] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Astrocytes produce granulocyte/macrophage colony-stimulating factor (GM-CSF) and support the survival and proliferation of microglia. To study the functions of GM-CSF in the central nervous system (CNS), we examined the effects of GM-CSF on cytokine production by glial cells. GM-CSF induced interleukin-6 (IL-6) production by microglia, but not by astrocytes, in a dose-dependent manner as assessed by bioassay and the detection of IL-6 mRNA by reverse transcriptase-polymerase chain reaction (RT-PCR) analysis. GM-CSF did not induce tumor necrosis factor (TNF) alpha or IL-1 in microglia and astrocytes, whereas lipopolysaccharide induced all these cytokines. The induction of IL-6 by GM-CSF in microglia was completely inhibited by antibodies to GM-CSF. Neither IL-3 nor macrophage-CSF (M-CSF) induced IL-6 production in microglia. Given that IL-1 and TNF alpha, monokines derived from microglia, induce IL-6 production in astrocytes, but not in microglia, results indicate that astrocytes and microglia may mutually regulate IL-6 production by different cytokines.
Collapse
Affiliation(s)
- A Suzumura
- Department of Neurology, School of Medicine Fujita Health University, Aichi, Japan
| | | | | |
Collapse
|
33
|
Chiang CS, Powell HC, Gold LH, Samimi A, Campbell IL. Macrophage/microglial-mediated primary demyelination and motor disease induced by the central nervous system production of interleukin-3 in transgenic mice. J Clin Invest 1996; 97:1512-24. [PMID: 8617885 PMCID: PMC507212 DOI: 10.1172/jci118574] [Citation(s) in RCA: 84] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
Activated macrophage/microglia may mediate tissue injury in a variety of CNS disorders. To examine this, transgenic mice were developed in which the expression of a macrophage/microglia activation cytokine, interleukin-3 (IL-3), was targeted to astrocytes using a murine glial fibrillary acidic protein fusion gene. Transgenic mice with low levels of IL-3 expression developed from 5 mo of age, a progressive motor disorder characterized at onset by impaired rota-rod performance. In symptomatic transgenic mice, multi-focal, plaque-like white matter lesions were present in cerebellum and brain stem. Lesions showed extensive primary demyelination and remyelination in association with the accumulation of large numbers of proliferating and activated foamy macrophage/microglial cells. Many of these cells also contained intracisternal crystalline pole-like inclusions similar to those seen in human patients with multiple sclerosis. Mast cells were also identified while lymphocytes were rarely, if at all present. Thus, chronic CNS production of low levels of IL-3 promotes the recruitment, proliferation and activation of macrophage/microglial cells in white matter regions with consequent primary demyelination and motor disease. This transgenic model exhibits many of the features of human inflammatory demyelinating diseases including multiple sclerosis and HIV leukoencephalopathy.
Collapse
Affiliation(s)
- C S Chiang
- Department of Neuropharmacology, The Scripps Research Institute, La Jolla, California 92037, USA
| | | | | | | | | |
Collapse
|
34
|
|
35
|
Abstract
Microglial cells are brain macrophages which serve specific functions in the defense of the central nervous system (CNS) against microorganisms, the removal of tissue debris in neurodegenerative diseases or during normal development, and in autoimmune inflammatory disorders of the brain. In cultured microglial cells, several soluble inflammatory mediators such as cytokines and bacterial products like lipopolysaccharide (LPS) were demonstrated to induce a wide range of microglial activities, e.g. increased phagocytosis, chemotaxis, secretion of cytokines, activation of the respiratory burst and induction of nitric oxide synthase. Since heightened microglial activation was shown to play a role in the pathogenesis of experimental inflammatory CNS disorders, understanding the molecular mechanisms of microglial activation may lead to new treatment strategies for neurodegenerative disorders, multiple sclerosis and bacterial or viral infections of the nervous system.
Collapse
Affiliation(s)
- J Zielasek
- Department of Neurology, Julius-Maximilians-Universität, Würzburg, Germany
| | | |
Collapse
|
36
|
Htain WW, Leong SK, Ling EA. A qualitative and quantitative study of the glial cells in normal and athymic mice. Glia 1995; 15:11-21. [PMID: 8847097 DOI: 10.1002/glia.440150103] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
A qualitative and quantitative light and electron microscopic analysis of the glial cells in the supraventricular part of the corpus callosum of the neonatal and adult homozygous athymic nude (nu/nu) and normal BALB/c (+/+) mice was carried out to determine the possible contribution of nude gene mutation to glial cell development. Quantitative cell counts using toluidine blue stained serial callosal sections of 0.5 micron thickness showed that the overall glial cell population was significantly reduced in both neonatal and adult athymic mice. The number of glioblasts, astrocytes and microglia of 5-day-old athymic mouse was reduced by 10%, 27%, and 39%, respectively, when compared to the 5-day-old normal mouse. The frequency of necrotic cells in the neonatal athymic mouse increased by 70% when compared with the normal mouse. In the 13-week-old adult athymic mouse, the number of oligodendrocytes, astrocytes, and microglia decreased by 19%, 31%, and 33%, respectively, when compared to normal mouse. There was no significant difference in the area covered by the corpus callosum in 5-day-old and adult nude mice versus the normal ones of corresponding ages. Except for microglia and astrocytes, the ultrastructural features of the other glial cell types in both strains were comparable. Most of the microglial cells of the neonatal normal mouse were round and were selectively marked by Mac-1 monoclonal antibody at their plasma membrane. The immunoreactivity appeared to be more intense in the normal than the athymic mouse, suggesting a down regulation of CR3 receptors and reduced phagocytic activity of this cell type in the athymic mouse. It is proposed that the increased number of necrotic cells in the neonatal athymic mouse may be attributed to the delay in the removal of dead cells normally phagocytosed by microglia. The microglia in both strains of mouse showed comparable lectin staining intensity at the plasma membrane, indicating that their glycoprotein binding receptors to lectin remained unchanged. Some astrocytes in the adult athymic mice showed hypertrophy. The reduced number of glial cells may be the direct result of genetic mutation or consequential to the lack of certain trophic factors arising from the genetic mutation. Thus, the reduction of microglial cells in both neonatal and adult athymic mice may be due to the lack of thymic hormones which, together with lymphokines have been shown to affect the maturation of bone marrow-derived cells including monocytes, the putative precursor cells of microglia. The reduction in the number of glioblasts and astrocytes may be attributed to the diminution of T lymphocytes or consequential to the reduction of microglia which are known to secrete interleukin-1 that would influence gliogenesis and produce specific growth factors for promoting astrocyte proliferation. Last, as interaction exists between astrocytes and oligodendrocytes, the products of astrocytes may affect the development of oligodendrocytes and vice vasa. The present findings point to a relation between glial cell development and immune network system.
Collapse
Affiliation(s)
- W W Htain
- Department of Anatomy, Faculty of Medicine, National University of Singapore
| | | | | |
Collapse
|
37
|
McGeer PL, McGeer EG. The inflammatory response system of brain: implications for therapy of Alzheimer and other neurodegenerative diseases. BRAIN RESEARCH. BRAIN RESEARCH REVIEWS 1995; 21:195-218. [PMID: 8866675 DOI: 10.1016/0165-0173(95)00011-9] [Citation(s) in RCA: 952] [Impact Index Per Article: 31.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Cultured brain cells are capable of generating many molecules associated with inflammatory and immune functions. They constitute the endogenous immune response system of brain. They include complement proteins and their regulators, inflammatory cytokines, acute phase reactants and many proteases and protease inhibitors. Most of the proteins are made by microglia and astrocytes, but even neurons are producers. Many appear in association with Alzheimer disease lesions, indicating a state of chronic inflammation in Alzheimer disease brain. Such a state can apparently exist without stimulation by peripheral inflammatory mediators or the peripheral immune system. A strong inflammatory response may be autotoxic to neurons, exacerbating the fundamental pathology in Alzheimer disease and perhaps other neurological disorders. Autotoxic processes may contribute to cellular death in chronic inflammatory diseases affecting other parts of the body, suggesting the general therapeutic value of anti-inflammatory agents. With respect to Alzheimer disease, multiple epidemiological studies indicate that patients taking anti-inflammatory drugs or suffering from conditions in which such drugs are routinely used, have a decreased risk of developing Alzheimer disease. In one very preliminary clinical trial, the anti-inflammatory drug indomethacin arrested progress of the disease. New agents directed against the inflammatory processes revealed in studies of Alzheimer disease lesions may have broad therapeutic applications.
Collapse
Affiliation(s)
- P L McGeer
- Kinsmen Laboratory of Neurological Research, University of British Columbia, Vancouver, Canada
| | | |
Collapse
|
38
|
Agnati LF, Cortelli P, Pettersson R, Fuxe K. The concept of trophic units in the central nervous system. Prog Neurobiol 1995; 46:561-74. [PMID: 8545544 DOI: 10.1016/0301-0082(95)00017-p] [Citation(s) in RCA: 23] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
The present paper proposes that trophic interplay among cells may represent the final common pathway for both genetic and environmental influences, and hence new criteria for the understanding of central nervous system (CNS) connectivity can be suggested. In particular, trophic signals may make up the common "language" through which genetic and epigenetic influences mold the CNS during development and the adult life. Furthermore, it will put forward the hypothesis that the developmental trophic interplay among cells leads to the formation of trophic units in the adult brain. A trophic unit is defined as the smallest set of cells, within the CNS, which act in a complementary way to support each other's trophism. The trophic units consist of neurons, glial cells, blood vessels, extracellular matrix (ECM). In particular, ECM gives support to the thin elongated cell processes and gives rise to selective chemical bridges between cell surfaces or between cell surfaces and the extracellular milieu. The trophic unit is a plastic device that not only assures neuronal survival, but also operates to adapt neuronal networks to new tasks by controlling extension of neuronal processes, synapse turnover and ECM characteristics. These plastic responses depend on the interplay of all the elements that constitute the trophic units. The concept of trophic unit may help to understand some features of neurodegenerative diseases, for example, the clustering of tangles in the neocortex and in the entorhinal cortex of Alzheimer's patients [corrected].
Collapse
Affiliation(s)
- L F Agnati
- Department of Neuroscience, Karolinska Institutet, Stockholm, Sweden
| | | | | | | |
Collapse
|
39
|
Appel K, Honegger P, Gebicke-Haerter PJ. Expression of interleukin-3 and tumor necrosis factor-beta mRNAs in cultured microglia. J Neuroimmunol 1995; 60:83-91. [PMID: 7642751 DOI: 10.1016/0165-5728(95)00057-9] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
The function of interleukin-3 (or multi-CSF) in the hemopoietic system has been studied in great detail. Although its growth promoting activity on brain microglial cells has been confirmed both in vitro and in vivo, its presence in the brain and even in cultured brain cells has repeatedly been questioned. We have shown recently that isolated rat microglia express mRNA(IL-3) and synthesize IL-3 polypeptide. It is shown here by use of the PCR method, that mRNA(IL-3) is found also in C6 glioblastoma, in rat aggregate cultures, and in newborn and adult rat brain. Quantitation of amplified cDNA(IL-3) was achieved by non-competitive RT-PCR using an elongated internal standard. IL-3 messenger RNA was almost undetectable in vivo and low in (serum-free) aggregate cultures. In isolated microglia, mRNA(IL-3) was increased upon treatment with LPS, PHA, with the cytokines IL-1 or TNF-alpha, with retinoic acid, dbcAMP or the phorbol ester TPA. Effects of LPS were inhibited by dexamethasone, while the glucocorticoid by itself had no effect on basal IL-3 expression. LPS increased mRNA(IL-3) in a concentration-dependent manner beginning with 10 pg/ml and reaching plateau levels at 10 ng/ml. LPS also increased mRNAs of TNF-alpha and TNF-beta. TNF-alpha mRNA was already detectable in untreated microglia and LPS-increased levels were sustained for a few days. In contrast, TNF-beta mRNA was observed only between 4 and 16 h of LPS incubation. It was absent in LPS-free microglia, and after 24 h of LPS-treatment or later.(ABSTRACT TRUNCATED AT 250 WORDS)
Collapse
Affiliation(s)
- K Appel
- Department of Psychiatry, University of Freiburg Medical School, Psychiatr. Universitätsklinik, Germany
| | | | | |
Collapse
|
40
|
Affiliation(s)
- A Lindemann
- Department Medicine I, University of Freiburg, Germany
| | | |
Collapse
|