1
|
Gutiérrez-Ibáñez C, Wylie DR, Altshuler DL. From the eye to the wing: neural circuits for transforming optic flow into motor output in avian flight. J Comp Physiol A Neuroethol Sens Neural Behav Physiol 2023; 209:839-854. [PMID: 37542566 DOI: 10.1007/s00359-023-01663-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Revised: 07/21/2023] [Accepted: 07/25/2023] [Indexed: 08/07/2023]
Abstract
Avian flight is guided by optic flow-the movement across the retina of images of surfaces and edges in the environment due to self-motion. In all vertebrates, there is a short pathway for optic flow information to reach pre-motor areas: retinal-recipient regions in the midbrain encode optic flow, which is then sent to the cerebellum. One well-known role for optic flow pathways to the cerebellum is the control of stabilizing eye movements (the optokinetic response). However, the role of this pathway in controlling locomotion is less well understood. Electrophysiological and tract tracing studies are revealing the functional connectivity of a more elaborate circuit through the avian cerebellum, which integrates optic flow with other sensory signals. Here we review the research supporting this framework and identify the cerebellar output centres, the lateral (CbL) and medial (CbM) cerebellar nuclei, as two key nodes with potentially distinct roles in flight control. The CbM receives bilateral optic flow information and projects to sites in the brainstem that suggest a primary role for flight control over time, such as during forward flight. The CbL receives monocular optic flow and other types of visual information. This site provides feedback to sensory areas throughout the brain and has a strong projection the nucleus ruber, which is known to have a dominant role in forelimb muscle control. This arrangement suggests primary roles for the CbL in the control of wing morphing and for rapid maneuvers.
Collapse
Affiliation(s)
| | - Douglas R Wylie
- Department of Biological Sciences, University of Alberta, Edmonton, AB, T6G 2E9, Canada.
| | - Douglas L Altshuler
- Department of Zoology, University of British Columbia, Vancouver, BC, V6T 1Z4, Canada.
| |
Collapse
|
2
|
Messa LV, Ginanneschi F, Momi D, Monti L, Battisti C, Cioncoloni D, Pucci B, Santarnecchi E, Rossi A. Functional and Brain Activation Changes Following Specialized Upper-Limb Exercise in Parkinson's Disease. Front Hum Neurosci 2019; 13:350. [PMID: 31749690 PMCID: PMC6843060 DOI: 10.3389/fnhum.2019.00350] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2019] [Accepted: 09/23/2019] [Indexed: 12/29/2022] Open
Abstract
For the management of Parkinson's disease (PD), the concept of forced exercise (FE) has drawn interest. In PD subjects, the FE executed with lower limbs has been shown to lessen symptoms and to promote brain adaptive changes. Our study is aimed to investigate the effect of an upper-limb exercise, conceptually comparable with the FE, in PD. Upper-limb exercise was achieved in a sitting position by using a specially designed device (Angel's Wings®). Clinical data, computerized dynamic posturography, magnetic resonance imaging (MRI) (resting-state MRI and arterial spin labeling), and neuropsychological tests were used before and after 2 months' exercise training. We found a significant long-lasting improvement in Unified Parkinson Disease Rating Scale (UPDRS)-III and cognitive scales, along with improvement in balance and postural control (better alignment of the gravity center and improvement in weight symmetry and in anticipatory motor strategies). Computerized dynamic posturography pointed out an enhanced central ability to integrate the vestibular signals with afferents from other sensory systems. Neuroimaging analyses after 2 months' exercise training showed, with respect to pretraining condition, many changes. An increase of the cerebral blood flow was evident in the left primary motor cortex (M1), left supplementary motor cortical area, and left cerebellar cortex. The bilateral globus pallidus showed an increased functional connectivity to the right central operculum, right posterior cingulate gyrus, and left sensorimotor cortex. Seed-to-voxel analysis demonstrated a functional connectivity between M1 and the left superior frontal gyrus. Left crus II showed strengthened connections with the left pre-rolandic area, left post-rolandic area, and left supramarginal area. These findings likely reflect compensatory mechanisms to the neuropathological hallmark of PD. Overall, our results show that this upper-limb exercise model, conceptually comparable with the FE already tested in the lower limbs, leads to a global improvement (involving non-exercised limbs) likely consistent with the functional changes observed in the central nervous system.
Collapse
Affiliation(s)
- Luca Valerio Messa
- Department of Medical, Surgical and Neurological Sciences, University of Siena, Siena, Italy
| | - Federica Ginanneschi
- Department of Medical, Surgical and Neurological Sciences, University of Siena, Siena, Italy
| | - Davide Momi
- Siena Brain Investigation and Neuromodulation Lab, Department of Medicine, Surgery and Neurological Sciences, University of Siena, Siena, Italy.,Department of Neuroscience, Imaging and Clinical Sciences, University of Chieti-Pescara, Chieti, Italy
| | - Lucia Monti
- Unit of Neuroimaging and Neurointervention, Department of Neurological and Neurosensorial Sciences, Azienda Ospedaliera Universitaria Senese, Siena, Italy
| | - Carla Battisti
- Department of Medical, Surgical and Neurological Sciences, University of Siena, Siena, Italy
| | - David Cioncoloni
- U.O.P. Professioni della Riabilitazione, Azienda Ospedaliera Universitaria Senese, Siena, Italy
| | - Barbara Pucci
- Department of Medical, Surgical and Neurological Sciences, University of Siena, Siena, Italy
| | - Emiliano Santarnecchi
- Department of Medical, Surgical and Neurological Sciences, University of Siena, Siena, Italy.,Berenson-Allen Center for Non-Invasive Brain Stimulation, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, United States.,The Center for Complex Network Research, Department of Physics, Northeastern University, Boston, MA, United States
| | - Alessandro Rossi
- Department of Medical, Surgical and Neurological Sciences, University of Siena, Siena, Italy
| |
Collapse
|
3
|
Nicholson DA, Roberts TF, Sober SJ. Thalamostriatal and cerebellothalamic pathways in a songbird, the Bengalese finch. J Comp Neurol 2018; 526:1550-1570. [PMID: 29520771 PMCID: PMC5899675 DOI: 10.1002/cne.24428] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2017] [Revised: 01/29/2018] [Accepted: 02/02/2018] [Indexed: 12/20/2022]
Abstract
The thalamostriatal system is a major network in the mammalian brain, originating principally from the intralaminar nuclei of thalamus. Its functions remain unclear, but a subset of these projections provides a pathway through which the cerebellum communicates with the basal ganglia. Both the cerebellum and basal ganglia play crucial roles in motor control. Although songbirds have yielded key insights into the neural basis of vocal learning, it is unknown whether a thalamostriatal system exists in the songbird brain. Thalamic nucleus DLM is an important part of the song system, the network of nuclei required for learning and producing song. DLM receives output from song system basal ganglia nucleus Area X and sits within dorsal thalamus, the proposed avian homolog of the mammalian intralaminar nuclei that also receives projections from the cerebellar nuclei. Using a viral vector that specifically labels presynaptic axon segments, we show in Bengalese finches that dorsal thalamus projects to Area X, the basal ganglia nucleus of the song system, and to surrounding medial striatum. To identify the sources of thalamic input to Area X, we map DLM and cerebellar-recipient dorsal thalamus (DTCbN ). Surprisingly, we find both DLM and dorsal anterior DTCbN adjacent to DLM project to Area X. In contrast, the ventral medial subregion of DTCbN projects to medial striatum outside Area X. Our results suggest the basal ganglia in the song system, like the mammalian basal ganglia, integrate feedback from the thalamic region to which they project as well as thalamic regions that receive cerebellar output.
Collapse
Affiliation(s)
- David A Nicholson
- Graduate Program in Neuroscience, Emory University, Atlanta, 30322, Georgia
- Department of Biology, Emory University, Atlanta, 30322, Georgia
| | - Todd F Roberts
- Department of Neuroscience, UT Southwestern Medical Center, Dallas, Texas, 75390-9111
| | - Samuel J Sober
- Department of Biology, Emory University, Atlanta, 30322, Georgia
| |
Collapse
|
4
|
Kawai Y, Nagai Y, Asada M. Prediction Error in the PMd As a Criterion for Biological Motion Discrimination: A Computational Account. IEEE Trans Cogn Dev Syst 2018. [DOI: 10.1109/tcds.2017.2668446] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
5
|
A distributed cerebellar-inspired learning model for robotic arm control. ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. ANNUAL INTERNATIONAL CONFERENCE 2017; 2017:929-932. [PMID: 29060025 DOI: 10.1109/embc.2017.8036977] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The cerebellum plays a big role in motor control and motor coordination in mammals, especially for limbs control. Therefore, many cerebellar models were proposed to be applied in the field of robotic arm control. However, some problems exist in the current cerebellar modeling approach, such as lack of the expression of bio-characteristics, limited learning ability et al. Therefore, a distributed cerebellar-inspired learning model was proposed to mimic the physiology and anatomy features of the cerebellum. Meanwhile, this model could learn to adjust the motor command according to the error information provided by the inferior olive to achieve control goal. To test the performance of the cerebellar model, a robotic arm control system was implemented. The results showed that our model was able to complete the robotic arm control tasks successfully.
Collapse
|
6
|
Rubrocerebellar Feedback Loop Isolates the Interposed Nucleus as an Independent Processor of Corollary Discharge Information in Mice. J Neurosci 2017; 37:10085-10096. [PMID: 28916520 DOI: 10.1523/jneurosci.1093-17.2017] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2017] [Revised: 09/01/2017] [Indexed: 11/21/2022] Open
Abstract
Understanding cerebellar contributions to motor coordination requires deeper insight into how the output structures of the cerebellum, the cerebellar nuclei, integrate their inputs and influence downstream motor pathways. The magnocellular red nucleus (RNm), a brainstem premotor structure, is a major target of the interposed nucleus (IN), and has also been described in previous studies to send feedback collaterals to the cerebellum. Because such a pathway is in a key position to provide motor efferent information to the cerebellum, satisfying predictions about the use of corollary discharge in cerebellar computations, we studied it in mice of both sexes. Using anterograde viral tracing, we show that innervation of cerebellum by rubrospinal neuron collaterals is remarkably selective for the IN compared with the cerebellar cortex. Optogenetic activation of the pathway in acute mouse brain slices drove IN activity despite small amplitude synaptic currents, suggesting an active role in IN information processing. Monosynaptic transsynaptic rabies tracing indicated the pathway contacts multiple cell types within the IN. By contrast, IN inputs to the RNm targeted a region that lacked inhibitory neurons. Optogenetic drive of IN inputs to the RNm revealed strong, direct excitation but no inhibition of RNm neurons. Together, these data indicate that the cerebellar nuclei are under afferent control independent of the cerebellar cortex, potentially diversifying its roles in motor control.SIGNIFICANCE STATEMENT The common assumption that all cerebellar mossy fibers uniformly collateralize to the cerebellar nuclei and cortex underlies classic models of convergent Purkinje influence on cerebellar output. Specifically, mossy fibers are thought to both directly excite nuclear neurons and drive polysynaptic feedforward inhibition via Purkinje neurons, setting up a fundamental computational unit. Here we present data that challenge this rule. A dedicated cerebellar nuclear afferent comprised of feedback collaterals from premotor rubrospinal neurons can directly modulate IN output independent of Purkinje cell modulation. In contrast to the IN-RNm pathway, the RNm-IN feedback pathway targets multiple cell types, potentially influencing both motor output pathways and nucleo-olivary feedback.
Collapse
|
7
|
McLachlan NM, Wilson SJ. The Contribution of Brainstem and Cerebellar Pathways to Auditory Recognition. Front Psychol 2017; 8:265. [PMID: 28373850 PMCID: PMC5357638 DOI: 10.3389/fpsyg.2017.00265] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2016] [Accepted: 02/10/2017] [Indexed: 12/02/2022] Open
Abstract
The cerebellum has been known to play an important role in motor functions for many years. More recently its role has been expanded to include a range of cognitive and sensory-motor processes, and substantial neuroimaging and clinical evidence now points to cerebellar involvement in most auditory processing tasks. In particular, an increase in the size of the cerebellum over recent human evolution has been attributed in part to the development of speech. Despite this, the auditory cognition literature has largely overlooked afferent auditory connections to the cerebellum that have been implicated in acoustically conditioned reflexes in animals, and could subserve speech and other auditory processing in humans. This review expands our understanding of auditory processing by incorporating cerebellar pathways into the anatomy and functions of the human auditory system. We reason that plasticity in the cerebellar pathways underpins implicit learning of spectrotemporal information necessary for sound and speech recognition. Once learnt, this information automatically recognizes incoming auditory signals and predicts likely subsequent information based on previous experience. Since sound recognition processes involving the brainstem and cerebellum initiate early in auditory processing, learnt information stored in cerebellar memory templates could then support a range of auditory processing functions such as streaming, habituation, the integration of auditory feature information such as pitch, and the recognition of vocal communications.
Collapse
Affiliation(s)
- Neil M. McLachlan
- Melbourne School of Psychological Sciences, University of MelbourneMelbourne, VIC, Australia
| | | |
Collapse
|
8
|
D'Angelo E, Mapelli L, Casellato C, Garrido JA, Luque N, Monaco J, Prestori F, Pedrocchi A, Ros E. Distributed Circuit Plasticity: New Clues for the Cerebellar Mechanisms of Learning. THE CEREBELLUM 2016; 15:139-51. [PMID: 26304953 DOI: 10.1007/s12311-015-0711-7] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
The cerebellum is involved in learning and memory of sensory motor skills. However, the way this process takes place in local microcircuits is still unclear. The initial proposal, casted into the Motor Learning Theory, suggested that learning had to occur at the parallel fiber-Purkinje cell synapse under supervision of climbing fibers. However, the uniqueness of this mechanism has been questioned, and multiple forms of long-term plasticity have been revealed at various locations in the cerebellar circuit, including synapses and neurons in the granular layer, molecular layer and deep-cerebellar nuclei. At present, more than 15 forms of plasticity have been reported. There has been a long debate on which plasticity is more relevant to specific aspects of learning, but this question turned out to be hard to answer using physiological analysis alone. Recent experiments and models making use of closed-loop robotic simulations are revealing a radically new view: one single form of plasticity is insufficient, while altogether, the different forms of plasticity can explain the multiplicity of properties characterizing cerebellar learning. These include multi-rate acquisition and extinction, reversibility, self-scalability, and generalization. Moreover, when the circuit embeds multiple forms of plasticity, it can easily cope with multiple behaviors endowing therefore the cerebellum with the properties needed to operate as an effective generalized forward controller.
Collapse
Affiliation(s)
- Egidio D'Angelo
- Department of Brain and Behavioral Sciences, University of Pavia, Pavia, Italy. .,Brain Connectivity Center, C. Mondino National Neurological Institute, Pavia, Italy.
| | - Lisa Mapelli
- Department of Brain and Behavioral Sciences, University of Pavia, Pavia, Italy.,Museo Storico della Fisica e Centro Studi e Ricerche Enrico Fermi, Rome, Italy
| | | | - Jesus A Garrido
- Department of Brain and Behavioral Sciences, University of Pavia, Pavia, Italy.,Department of Computer Architecture and Technology, University of Granada, Granada, Spain
| | - Niceto Luque
- Department of Computer Architecture and Technology, University of Granada, Granada, Spain
| | - Jessica Monaco
- Brain Connectivity Center, C. Mondino National Neurological Institute, Pavia, Italy
| | - Francesca Prestori
- Department of Brain and Behavioral Sciences, University of Pavia, Pavia, Italy
| | | | - Eduardo Ros
- Department of Computer Architecture and Technology, University of Granada, Granada, Spain
| |
Collapse
|
9
|
Conditional Sox9 ablation improves locomotor recovery after spinal cord injury by increasing reactive sprouting. Exp Neurol 2016; 283:1-15. [DOI: 10.1016/j.expneurol.2016.05.028] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2016] [Revised: 05/18/2016] [Accepted: 05/21/2016] [Indexed: 12/23/2022]
|
10
|
Kirkpatrick M, Benoit J, Everett W, Gibson J, Rist M, Fredette N. The effects of methylmercury exposure on behavior and biomarkers of oxidative stress in adult mice. Neurotoxicology 2015; 50:170-8. [PMID: 26151194 DOI: 10.1016/j.neuro.2015.07.001] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2015] [Revised: 07/01/2015] [Accepted: 07/02/2015] [Indexed: 01/26/2023]
Abstract
Methylmercury (MeHg) is a widely distributed environmental neurotoxin with established effects on locomotor behaviors and cognition in both human populations and animal models. Despite well-described neurobehavioral effects, the mechanisms of MeHg toxicity are not completely understood. Previous research supports a role for oxidative stress in the toxic effects of MeHg. However, comparing findings across studies has been challenging due to differences in species, methodologies (in vivo or in vitro studies), dosing regimens (acute vs. long-term) and developmental life stage. The current studies assess the behavioral effects of MeHg in adult mice in conjunction with biochemical and cellular indicators of oxidative stress using a consistent dosing regimen. In Experiment 1, adult male C57/BL6 mice were orally administered 5 mg/kg/day MeHg or the vehicle for 28 days. Impact of MeHg exposure was assessed on inverted screen and Rotor-Rod behaviors as well as on biomarkers of oxidative stress (thioredoxin reductase (TrxR), glutathione reductase (GR) and glutathione peroxidase (GPx)) in brain and liver. In Experiment 2, brain tissue was immunohistochemically labeled for 8-hydroxy-2'-deoxyguanosine (8-OHdG), a biomarker of DNA oxidation and an indicator of oxidative stress, following the same dosing regimen. 8-OHdG immunoreactivity was measured in the motor cortex, the magnocellular red nucleus (RMC) and the accessory oculomotor nucleus (MA3). Significant impairments were observed in MeHg-treated animals on locomotor behaviors. TrxR and GPx was significantly inhibited in brain and liver, whereas GR activity decreased in liver and increased in brain tissue of MeHg-treated animals. Significant MeHg-induced alterations in DNA oxidation were observed in the motor cortex, the RMC and the MA3.
Collapse
Affiliation(s)
- Meg Kirkpatrick
- Psychology Department and Neuroscience Program, Wheaton College, 26 East Main Street, Norton, MA 02766, United States.
| | - Janina Benoit
- Chemistry Department, Wheaton College, United States
| | - Wyll Everett
- Psychology Department and Neuroscience Program, Wheaton College, 26 East Main Street, Norton, MA 02766, United States
| | - Jennifer Gibson
- Psychology Department and Neuroscience Program, Wheaton College, 26 East Main Street, Norton, MA 02766, United States
| | - Michael Rist
- Chemistry Department, Wheaton College, United States
| | | |
Collapse
|
11
|
Herter TM, Takei T, Munoz DP, Scott SH. Neurons in red nucleus and primary motor cortex exhibit similar responses to mechanical perturbations applied to the upper-limb during posture. Front Integr Neurosci 2015; 9:29. [PMID: 25964747 PMCID: PMC4408851 DOI: 10.3389/fnint.2015.00029] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2014] [Accepted: 03/29/2015] [Indexed: 11/29/2022] Open
Abstract
Primary motor cortex (M1) and red nucleus (RN) are brain regions involved in limb motor control. Both structures are highly interconnected with the cerebellum and project directly to the spinal cord, although the contribution of RN is smaller than M1. It remains uncertain whether RN and M1 serve similar or distinct roles during posture and movement. Many neurons in M1 respond rapidly to mechanical disturbances of the limb, but it remains unclear whether RN neurons also respond to such limb perturbations. We have compared discharges of single neurons in RN (n = 49) and M1 (n = 109) of one monkey during a postural perturbation task. Neural responses to whole-limb perturbations were examined by transiently applying (300 ms) flexor or extensor torques to the shoulder and/or elbow while the monkeys attempted to maintain a static hand posture. Relative to baseline discharges before perturbation onset, perturbations evoked rapid (<100 ms) changes of neural discharges in many RN (28 of 49, 57%) and M1 (43 of 109, 39%) neurons. In addition to exhibiting a greater proportion of perturbation-related neurons, RN neurons also tended to exhibit higher peak discharge frequencies in response to perturbations than M1 neurons. Importantly, neurons in both structures exhibited similar response latencies and tuning properties (preferred torque directions and tuning widths) in joint-torque space. Proximal arm muscles also displayed similar tuning properties in joint-torque space. These results suggest that RN is more sensitive than M1 to mechanical perturbations applied during postural control but both structures may play a similar role in feedback control of posture.
Collapse
Affiliation(s)
- Troy M Herter
- Centre for Neuroscience Studies, Queen's University Kingston, ON, Canada ; Department of Exercise Science, University of South Carolina Columbia, SC, USA
| | - Tomohiko Takei
- Centre for Neuroscience Studies, Queen's University Kingston, ON, Canada
| | - Douglas P Munoz
- Centre for Neuroscience Studies, Queen's University Kingston, ON, Canada ; Department of Biomedical and Molecular Sciences, Queen's University Kingston, ON, Canada
| | - Stephen H Scott
- Centre for Neuroscience Studies, Queen's University Kingston, ON, Canada ; Department of Biomedical and Molecular Sciences, Queen's University Kingston, ON, Canada ; Department of Medicine, Queen's University Kingston, ON, Canada
| |
Collapse
|
12
|
Luan H, Gdowski MJ, Newlands SD, Gdowski GT. Convergence of vestibular and neck proprioceptive sensory signals in the cerebellar interpositus. J Neurosci 2013; 33:1198-210a. [PMID: 23325256 PMCID: PMC3711745 DOI: 10.1523/jneurosci.3460-12.2013] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2012] [Revised: 11/17/2012] [Accepted: 11/25/2012] [Indexed: 11/21/2022] Open
Abstract
The cerebellar interpositus nucleus (IN) contributes to controlling voluntary limb movements. We hypothesized that the vestibular signals within the IN might be transformed into coordinates describing the body's movement, appropriate for controlling limb movement. We tested this hypothesis by recording from IN neurons in alert squirrel monkeys during vestibular and proprioceptive stimulation produced during (1) yaw head-on-trunk rotation about the C1-C2 axis while in an orthograde posture and (2) lateral side-to-side flexion about the C6-T3 axis while in a pronograde posture. Neurons (44/67) were sensitive to vestibular stimulation (23/44 to rotation and translation, 14/44 to rotation only, 7/44 to translation only). Most neurons responded during contralateral movement. Neurons (29/44) had proprioceptive responses; the majority (21/29) were activated during neck rotation and lateral flexion. In all 29 neurons with convergent vestibular and neck proprioceptive input those inputs functionally canceled each other during all combined sensory stimulation, whether in the orthograde or pronograde posture. These results suggest that two distinct populations of IN neurons exist, each of which has vestibular sensitivity. One population carries vestibular signals that describe the head's movement in space as is traditional for vestibular signals without proprioceptive signals. A second population of neurons demonstrated precise matching of vestibular and proprioceptive signals, even for complicated stimuli, which activated the semicircular canals and otolith organs and involved both rotation and flexion in the spine. Such neurons code body (not head) motion in space, which may be the appropriate platform for controlling limb movements.
Collapse
Affiliation(s)
- Hongge Luan
- Departments of Neurobiology and Anatomy
- Otolaryngology, University of Rochester, Rochester, New York 14642
| | | | - Shawn D. Newlands
- Departments of Neurobiology and Anatomy
- Otolaryngology, University of Rochester, Rochester, New York 14642
| | - Greg T. Gdowski
- Departments of Neurobiology and Anatomy
- Biomedical Engineering, and
| |
Collapse
|
13
|
Abstract
Experimental and theoretical research into cerebellar function has begun to converge toward understanding the cerebellum as a "controller" in the engineering sense. The purpose of a controller is to convert high-level intent commands and information describing the current state of a system into low-level control signals suitable for maintaining or changing system behavior. The cerebellar subsystem appears to play this role for parts of the body and other parts of the brain. As with engineering controllers, fundamental functions include stabilization at a fixed posture or state, adjustment of movement or transition amplitude, facilitation of movement/transition speed and crispness of launch and braking, improvement of resistance to disturbances, coordination of control across multiple degrees of freedom, and assistance with estimation and/or prediction of current and future system states. As with adaptive engineering controllers, the cerebellar subsystem also readily tunes itself over time. At a more detailed level, many of the specific actions of cerebellar circuits can be understood in terms of proportional (P), integrator-like (I), and differentiator-like (D) signal processing which are fundamental components of many engineering control systems. This chapter presents an integrated, mechanistic view of ataxia, tremor, and several cerebellar oculomotor signs in terms of PID control and the neural centers that appear to subserve these functions. It also suggests the manner in which impairments in motor learning, perception, and cognition that are associated with cerebellar dysfunction may be viewed from a similar perspective.
Collapse
Affiliation(s)
- Steve G Massaquoi
- Harvard Medical School and Department of Neurology, Massachusetts General Hospital, Boston, MA 02114, USA.
| |
Collapse
|
14
|
Li X, Luo F, Shi L, Woodward DJ, Chang J. Ensemble neural activity of the frontal cortical basal ganglia system predicts reaction time task performance in rats. Neurosci Res 2011; 71:149-60. [PMID: 21781993 DOI: 10.1016/j.neures.2011.06.010] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2011] [Revised: 06/13/2011] [Accepted: 06/30/2011] [Indexed: 01/08/2023]
Abstract
The question pursued in this study was when neural activity appears in the cortico-basal ganglia system that could predict alternate behavioral responses in a reaction time (RT) task. In this protocol, rats first performed a nose poke to initiate a trial, depressed a lever when presented, and then released the lever after a tone cue. Multiple-channel, single-unit recordings (up to 62 units) were obtained simultaneously from the prefrontal cortex, the dorsal medial striatum, the globus pallidus, and the substantia nigra pars reticulata in a single rat during a session. Results indicated that (1) global alterations of neural activity appeared in clusters, which was associated with different behavioral components and observed in each of the targeted areas; (2) small independent subsets of neurons responded differently between error (lever was released before tone presentation) and correct trials (lever was released within 0.5s after tone onset) during these behavioral episodes; (3) significant correlations between RTs and single units activities were found in the early preparation phases of the task. The results reveal that complex early preparatory activity exists several seconds before the final movements in a RT task, which may determine executive functions leading to rapid decoding of alternate behavioral performances.
Collapse
Affiliation(s)
- Xianghong Li
- Neuroscience Research Institute, Peking University, 38 Xueyuan Road, Beijing, China
| | | | | | | | | |
Collapse
|
15
|
Keifer J, Houk JC. Modeling signal transduction in classical conditioning with network motifs. Front Mol Neurosci 2011; 4:9. [PMID: 21779235 PMCID: PMC3133684 DOI: 10.3389/fnmol.2011.00009] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2010] [Accepted: 06/22/2011] [Indexed: 11/29/2022] Open
Abstract
Biological networks are constructed of repeated simplified patterns, or modules, called network motifs. Network motifs can be found in a variety of organisms including bacteria, plants, and animals, as well as intracellular transcription networks for gene expression and signal transduction processes in neuronal circuits. Standard models of signal transduction events for synaptic plasticity and learning often fail to capture the complexity and cooperativity of the molecular interactions underlying these processes. Here, we apply network motifs to a model for signal transduction during an in vitro form of eyeblink classical conditioning that reveals an underlying organization of these molecular pathways. Experimental evidence suggests there are two stages of synaptic AMPA receptor (AMPAR) trafficking during conditioning. Synaptic incorporation of GluR1-containing AMPARs occurs early to activate silent synapses conveying the auditory conditioned stimulus and this initial step is followed by delivery of GluR4 subunits that supports acquisition of learned conditioned responses (CRs). Overall, the network design of the two stages of synaptic AMPAR delivery during conditioning describes a coherent feed-forward loop (C1-FFL) with AND logic. The combined inputs of GluR1 synaptic delivery AND the sustained activation of 3-phosphoinositide-dependent protein-kinase-1 (PDK-1) results in synaptic incorporation of GluR4-containing AMPARs and the gradual acquisition of CRs. The network architecture described here for conditioning is postulated to act generally as a sign-sensitive delay element that is consistent with the non-linearity of the conditioning process. Interestingly, this FFL structure also performs coincidence detection. A motif-based approach to modeling signal transduction can be used as a new tool for understanding molecular mechanisms underlying synaptic plasticity and learning and for comparing findings across forms of learning and model systems.
Collapse
Affiliation(s)
- Joyce Keifer
- Neuroscience Group, Division of Basic Biomedical Sciences, University of South Dakota Sanford School of Medicine Vermillion, SD, USA
| | | |
Collapse
|
16
|
Limitations of PET and lesion studies in defining the role of the human cerebellum in motor learning. Behav Brain Sci 2011. [DOI: 10.1017/s0140525x00081899] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
17
|
|
18
|
|
19
|
Eyeblink conditioning, motor control, and the analysis of limbic-cerebellar interactions. Behav Brain Sci 2011. [DOI: 10.1017/s0140525x00081929] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
20
|
|
21
|
Grasping cerebellar function depends on our understanding the principles of sensorimotor integration: The frame of reference hypothesis. Behav Brain Sci 2011. [DOI: 10.1017/s0140525x00081607] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
|
22
|
Dysmetria of thought: Correlations and conundrums in the relationship between the cerebellum, learning, and cognitive processing. Behav Brain Sci 2011. [DOI: 10.1017/s0140525x00081851] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
23
|
|
24
|
|
25
|
Q: Is the cerebellum an adaptive combiner of motor and mental/motor activities? A: Yes, maybe, certainly not, who can say? Behav Brain Sci 2011. [DOI: 10.1017/s0140525x00082017] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
26
|
|
27
|
What behavioral benefit does stiffness control have? An elaboration of Smith's proposal. Behav Brain Sci 2011. [DOI: 10.1017/s0140525x00081917] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
28
|
|
29
|
Valle MS, Bosco G, Casabona A, Garifoli A, Perciavalle V, Coco M, Perciavalle V. Representation of movement velocity in the rat's interpositus nucleus during passive forelimb movements. THE CEREBELLUM 2010; 9:249-58. [PMID: 20169431 DOI: 10.1007/s12311-010-0160-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
The interpositus nucleus (IN) receives a large amount of sensory information from the limbs and, in turn, elaborates signals for movement control. In this paper, we tried to gather evidence on the possibility that neurons in the IN may elaborate sensory representations of the forelimb kinematics and, particularly, of the movement velocity vector. For this purpose, the forepaw of anesthetized rats was attached to a computer-controlled robot arm displaced passively along two types of trajectories (circular and figure eight), with the limb joints unconstrained. The firing activity of single cells was recorded and related to limb position and the two components of the movement velocity vector, namely, movement speed and direction. By using multiple regression analysis, we found that 12 out of 85 (14%) neurons were modulated by position, 18 out of 85 (21%) neurons were modulated by direction, 24 out of 85 (28%) neurons were modulated by movement speed, and 31 out of 85 (37%) neurons were sensitive to the full movement velocity vector. Most of the neurons modulated only by the speed component of the velocity vector (19 out of 24) were located in the posterior portion of the IN, whereas neurons in the anterior portion were mostly related to both components of the velocity vector. These results suggest that sensory information related to whole-limb movement velocity may be encoded by the IN, indicating also that the posterior interpositus may preferentially represent movement speed.
Collapse
|
30
|
Holdefer RN, Miller LE. Dynamic correspondence between Purkinje cell discharge and forelimb muscle activity during reaching. Brain Res 2009; 1295:67-75. [PMID: 19647722 DOI: 10.1016/j.brainres.2009.07.085] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2009] [Revised: 07/21/2009] [Accepted: 07/24/2009] [Indexed: 11/13/2022]
Abstract
There remain conflicting models of the cerebellar control of limb movement, ranging from the suggestion that the inhibitory output from Purkinje cells (PCs) is meant to suppress unwanted muscle activity, to the hypothesis that the cerebellar cortex embodies complex internal models of limb dynamics. To test these ideas, we undertook a quantitative comparison of PC simple spike dynamics to those of muscle activity. We recorded simultaneously from Purkinje cells in the paravermal anterior lobe and from muscles of the hand and arm in the behaving monkey during a simple, sequential button pressing task. The task-related discharge of each neuron was determined from peri-event histograms aligned to the onset of the behavior. Bursts of discharge were more than twice as common as pauses, but there was no difference in their timing relative to movement. From the same recordings, the similarity between discharge and muscle activity was evaluated by calculating the cross correlation between firing rate and rectified EMG. Surprisingly, given the inhibitory projection of PCs, most of the bursts of PC discharge were positively correlated with muscle activity. Although our results do not support a simple correspondence of pauses and bursts with limb acceleration and deceleration respectively, they are consistent with a more complex PC regulation of cerebellar nuclear activity from task-related, corticopontine drive.
Collapse
Affiliation(s)
- Robert N Holdefer
- Department of Rehabilitation Medicine, University of Washington School of Medicine, Seattle, WA 98195, USA
| | | |
Collapse
|
31
|
The cerebellum, cerebellar disorders, and cerebellar research--two centuries of discoveries. THE CEREBELLUM 2009; 7:505-16. [PMID: 18855093 DOI: 10.1007/s12311-008-0063-7] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Research on the cerebellum is evolving rapidly. The exquisiteness of the cerebellar circuitry with a unique geometric arrangement has fascinated researchers from numerous disciplines. The painstaking works of pioneers of these last two centuries, such as Rolando, Flourens, Luciani, Babinski, Holmes, Cajal, Larsell, or Eccles, still exert a strong influence in the way we approach cerebellar functions. Advances in genetic studies, detailed molecular and cellular analyses, profusion of brain imaging techniques, emergence of behavioral assessments, and reshaping of models of cerebellar function are generating an immense amount of knowledge. Simultaneously, a better definition of cerebellar disorders encountered in the clinic is emerging. The essentials of a trans-disciplinary blending are expanding. The analysis of the literature published these last two decades indicates that the gaps between domains of research are vanishing. The launch of the society for research on the cerebellum (SRC) illustrates how cerebellar research is burgeoning. This special issue gathers the contributions of the inaugural conference of the SRC dedicated to the mechanisms of cerebellar function. Contributions were brought together around five themes: (1) cerebellar development, death, and regeneration; (2) cerebellar circuitry: processing and function; (3) mechanisms of cerebellar plasticity and learning; (4) cerebellar function: timing, prediction, and/or coordination?; (5) anatomical and disease perspectives on cerebellar function.
Collapse
|
32
|
Abstract
Although theoretical models often assume that the basic organization of the nervous system involves separate systems for perception, cognition, and action, neural data often does not fit into any of these conceptual categories. Here, an alternative framework is described, which focuses on interactive behavior and treats it as a continuous competition between representations of currently available potential actions. This suggests a neural organization consisting of two parallel systems: a system for action specification, which uses sensory information to represent currently available potential actions, and a system for action selection, which involves attentional and decisional mechanisms which determine the action that will be performed. It is proposed that neural processing occurs through two waves of activation: an early wave which specifies several potential actions and a later wave of biasing influences which selects one action for execution. A computational model of decision making is described within the context of this proposal, and simulations of neural and behavioral phenomena are presented.
Collapse
Affiliation(s)
- Paul Cisek
- Groupe de Recherche sur le Système Nerveux Central, Départment de Physiologie, Université de Montréal, Montréal, QC H3C 3J7, Canada.
| |
Collapse
|
33
|
Cisek P. Cortical mechanisms of action selection: the affordance competition hypothesis. Philos Trans R Soc Lond B Biol Sci 2007; 362:1585-99. [PMID: 17428779 PMCID: PMC2440773 DOI: 10.1098/rstb.2007.2054] [Citation(s) in RCA: 630] [Impact Index Per Article: 35.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
At every moment, the natural world presents animals with two fundamental pragmatic problems: selection between actions that are currently possible and specification of the parameters or metrics of those actions. It is commonly suggested that the brain addresses these by first constructing representations of the world on which to build knowledge and make a decision, and then by computing and executing an action plan. However, neurophysiological data argue against this serial viewpoint. In contrast, it is proposed here that the brain processes sensory information to specify, in parallel, several potential actions that are currently available. These potential actions compete against each other for further processing, while information is collected to bias this competition until a single response is selected. The hypothesis suggests that the dorsal visual system specifies actions which compete against each other within the fronto-parietal cortex, while a variety of biasing influences are provided by prefrontal regions and the basal ganglia. A computational model is described, which illustrates how this competition may take place in the cerebral cortex. Simulations of the model capture qualitative features of neurophysiological data and reproduce various behavioural phenomena.
Collapse
Affiliation(s)
- Paul Cisek
- Department of physiology, University of Montréal, C.P. 6128 Succursale Centre-ville, Montréal, Quebec, H3C 3J7 Canada.
| |
Collapse
|
34
|
Butler AJ, Page SJ. Mental practice with motor imagery: evidence for motor recovery and cortical reorganization after stroke. Arch Phys Med Rehabil 2007; 87:S2-11. [PMID: 17140874 PMCID: PMC2561070 DOI: 10.1016/j.apmr.2006.08.326] [Citation(s) in RCA: 105] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2006] [Revised: 07/25/2006] [Accepted: 08/25/2006] [Indexed: 11/19/2022]
Abstract
OBJECTIVES To measure the efficacy of a program combining mental and physical practice with the efficacy of a program composed of only constraint-induced movement therapy (CIMT) or only mental practice on stroke patients' levels of upper-extremity impairment and upper-extremity functional outcomes and to establish the relationship between changes in blood-oxygen-level dependent (BOLD) functional magnetic resonance imaging response during a specific motor or imagery task and improvement in motor function between intervention groups. DESIGN Case series. SETTING Licensed, 56-bed, freestanding, university-affiliated rehabilitation hospital. PARTICIPANTS Three men and 1 woman with moderate upper-limb hemiparesis after stroke were randomized. INTERVENTIONS Two patients received mental practice and CIMT, 1 patient received only mental practice, and 1 received only CIMT. MAIN OUTCOME MEASURES Wolf Motor Function Test (WMFT), Motor Activity Log (MAL), Sirigu break test, Movement Imagery Questionnaire-Revised, and Vividness of Movement Imagery Questionnaire. RESULTS The mental practice intervention alone led to slight improvement in certain functional and mental imagery measures (Sirigu, MAL, WMFT) but did not result in a clinically meaningful improvement with notable right cerebellar hemisphere activation that was not present before intervention. After CIMT, only the single patient showed clinically meaningful improvement of his affected hand as exhibited by decreased times on the MAL and WMFT. The patient showed increased bilateral cortical activation in both the motor and premotor areas during execution of a finger flexion and extension task. In contrast, during a second task, which was an imagined flexion and extension task, motor, occipital, and inferior parietal activation mainly in the contralateral hemisphere were observed. After 2 weeks of CIMT plus mental practice a patient with a lesion restricted to the parietal cortex showed little improvement in upper-extremity function and mental imagery in comparison with the patient with damage to nonparietal areas, who showed clinically meaningful improvement. The pattern of activation after 2 weeks of CIMT plus mental practice in the patient with nonparietal damage led to more focal contralateral activation in primary motor cortex when executing a voluntary flexion and extension task. CONCLUSIONS The case series indicates that for these patients with chronic, moderate upper-extremity impairment after stroke, a 2-week regimen of CIMT or CIMT plus mental practice only (in 1 case) resulted in modest changes occurring as a decrease in impairment, with functional improvement. Mental practice alone did not result in a clinically meaningful improvement in upper-limb impairment. We describe how these interventions may elicit "plastic" changes in the brain. Further investigations to determine the appropriate delivery and dosing of both physical and mental practice, as well as to determine whether mental practice-induced changes positively correlate with distinct patterns of cortical activation, should be undertaken before the efficacy of their use can be ascertained among patients with limitations comparable with these participants.
Collapse
Affiliation(s)
- Andrew J Butler
- Department of Rehabilitation Medicine, Emory University School of Medicine, Atlanta, GA 30322, USA.
| | | |
Collapse
|
35
|
Buch ER, Brasted PJ, Wise SP. Comparison of population activity in the dorsal premotor cortex and putamen during the learning of arbitrary visuomotor mappings. Exp Brain Res 2005; 169:69-84. [PMID: 16284756 PMCID: PMC1413509 DOI: 10.1007/s00221-005-0130-y] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2005] [Accepted: 07/08/2005] [Indexed: 10/25/2022]
Abstract
A previous study found that as monkeys learned novel mappings between visual cues and responses, neuronal activity patterns evolved at approximately the same time in both the dorsal premotor cortex (PMd) and the putamen. Here we report that, in both regions, the population activity for novel mappings came to resemble that for familiar ones as learning progressed. Both regions showed activity differences on trials with correct responses versus those with incorrect ones. In addition to these common features, we observed two noteworthy differences between PMd and putamen activity during learning. After a response choice had been made, but prior to feedback about the correctness of that choice (reward or nonreward), the putamen showed a sustained activity increase in activity, whereas PMd did not. Also in the putamen, this prereward activity was highly selective for the specific visuomotor mapping that had just been performed, and this selectivity was maintained until the time of the reward. After performance reached an asymptote, the degree of this selectivity decreased markedly to the level typical for familiar visuomotor mappings. These findings support the hypothesis that neurons in the striatum play a pivotal role in associative learning.
Collapse
Affiliation(s)
| | | | - Steven P. Wise
- Address correspondence to: Steven P. Wise, Laboratory of Systems Neuroscience, N.I.M.H., N.I.H., 49 Convent Drive, MSC 4401, Building 49/Room B1EE17, Bethesda, MD 20892-4401, email address:
, Voice: 301-402-5481, FAX: 301-402-5441
| |
Collapse
|
36
|
Maier MA, Shupe LE, Fetz EE. Dynamic neural network models of the premotoneuronal circuitry controlling wrist movements in primates. J Comput Neurosci 2005; 19:125-46. [PMID: 16133816 DOI: 10.1007/s10827-005-0899-5] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2004] [Revised: 11/15/2004] [Accepted: 03/11/2005] [Indexed: 12/01/2022]
Abstract
Dynamic recurrent neural networks were derived to simulate neuronal populations generating bidirectional wrist movements in the monkey. The models incorporate anatomical connections of cortical and rubral neurons, muscle afferents, segmental interneurons and motoneurons; they also incorporate the response profiles of four populations of neurons observed in behaving monkeys. The networks were derived by gradient descent algorithms to generate the eight characteristic patterns of motor unit activations observed during alternating flexion-extension wrist movements. The resulting model generated the appropriate input-output transforms and developed connection strengths resembling those in physiological pathways. We found that this network could be further trained to simulate additional tasks, such as experimentally observed reflex responses to limb perturbations that stretched or shortened the active muscles, and scaling of response amplitudes in proportion to inputs. In the final comprehensive network, motor units are driven by the combined activity of cortical, rubral, spinal and afferent units during step tracking and perturbations. The model displayed many emergent properties corresponding to physiological characteristics. The resulting neural network provides a working model of premotoneuronal circuitry and elucidates the neural mechanisms controlling motoneuron activity. It also predicts several features to be experimentally tested, for example the consequences of eliminating inhibitory connections in cortex and red nucleus. It also reveals that co-contraction can be achieved by simultaneous activation of the flexor and extensor circuits without invoking features specific to co-contraction.
Collapse
Affiliation(s)
- M A Maier
- University Paris-6 and Paris-7 and INSERM U. 742, Université Paris-6 Pierre et Marie Curie, 9 Quai St-Bernard, 75005, Paris, France
| | | | | |
Collapse
|
37
|
|
38
|
Abstract
The higher order circuitry of the brain is comprised of a large-scale network of cerebral cortical areas that are individually regulated by loops through subcortical structures, particularly through the basal ganglia and cerebellum. These subcortical loops have powerful computational architectures. Using, as an example, the relatively well-understood processing that occurs in the cortical/basal ganglionic/cerebellar distributed processing module that generates voluntary motor commands, I postulate that a network of analogous agents is an appropriate framework for exploring the dynamics of the mind.
Collapse
Affiliation(s)
- James C Houk
- Feinberg School of Medicine, Northwestern University, 303 E. Chicago Ave., M211, Chicago, IL 60611, USA.
| |
Collapse
|
39
|
Perfiliev S. Bilateral Processing of Motor Commands in the Motor Cortex of the Cat During Target-Reaching. J Neurophysiol 2005; 93:2489-506. [PMID: 15601740 DOI: 10.1152/jn.00720.2003] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Single-unit activity of the motor cortex (area 4γ) was studied in cats performing reaching with the contra- versus ipsilateral forelimb. Reaching was initiated by a tone burst (Go cue), different limbs were used in separate blocks of trials. During reaching performed with the contralateral limb, three types of neurons were observed. The first type had biphasic pattern with an initial component locked to the Go cue followed by a component locked to the onset of reaching. The second type of neurons had monophasic discharges correlated both with the onset of the stimulus and with the movement. The third type showed responses related to the movement. Activity of the same cells investigated during reaching performed with the ipsilateral limb revealed that the cue-locked responses of the cells of the first type were effector independent, i.e., similar discharges locked to the Go cue were generated. The movement-related component of these cells was drastically reduced. The activity of some cells of the second type was suppressed during reaching with the ipsilateral limb. When performance was switched between limbs, a significant change of background discharge frequency was observed in 31% of the cells. The present results suggest that the sensory cue triggers elaboration of motor commands for reaching in both motor cortices, but further sensorimotor transformation is completed in only one hemisphere but is aborted actively in the other. It is also suggested that a certain pattern of background activity may serve a tuning function for elaboration of the command in the proper hemisphere.
Collapse
Affiliation(s)
- S Perfiliev
- Department of Physiology, Sahlgrenska Academy at Göteborg University, P.O. Box 432, SE 40530 Göteborg, Sweden.
| |
Collapse
|
40
|
Guízar-Sahagún G, Ibarra A, Espitia A, Martínez A, Madrazo I, Franco-Bourland RE. Glutathione monoethyl ester improves functional recovery, enhances neuron survival, and stabilizes spinal cord blood flow after spinal cord injury in rats. Neuroscience 2005; 130:639-49. [PMID: 15590148 DOI: 10.1016/j.neuroscience.2004.09.056] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/25/2004] [Indexed: 12/25/2022]
Abstract
Secondary damage after spinal cord (SC) injury remains without a clinically effective drug treatment. To explore the neuroprotective effects of cell-permeable reduced glutathione monoethyl ester (GSHE), rats subjected to SC contusion using the New York University impactor were randomly assigned to receive intraperitoneally GSHE (total dose of 12 mg/kg), methylprednisolone sodium succinate (total dose of 120 mg/kg), or saline solution as vehicle. Motor function, assessed using the Basso-Beattie-Bresnahan scale for 8 weeks, was significantly better in GSHE (11.2+/-0.6, mean+/-S.E.M., n=8, at 8 weeks) than methylprednisolone (9.3+/-0.6) and vehicle (9.4+/-0.7) groups. The number of neurons in the red nuclei labeled with FluoroRuby placed caudally to the injury site was significantly higher in GSHE (158+/-9.3 mean+/-S.E.M., n=4) compared with methylprednisolone (53+/-14.7) and vehicle (46+/-16.4) groups. Differences in the amount of spared SC tissue at the epicenter and neighboring areas were not significant among experimental groups. In a second series of experiments, using similar treatment groups (n=6), regional changes in microvascular SC blood flow were evaluated for 100 min by laser-Doppler flowmetry after clip compression injury. SC blood flow fell in vehicle-treated rats 20% below baseline and increased significantly with methylprednisolone approximately 12% above baseline; changes were not greater than 5% in rats given GSHE. In conclusion, GSHE given to rats early after moderate SC contusion/compression improves functional outcome and red nuclei neuron survival significantly better than methylprednisolone and vehicle, and stabilizes SC blood flow. These results support further investigation of reduced glutathione supplementation after acute SC injury for future clinical application.
Collapse
Affiliation(s)
- G Guízar-Sahagún
- Research Unit for Neurological Diseases, Instituto Mexicano del Seguro Social, Mexico City, Mexico.
| | | | | | | | | | | |
Collapse
|
41
|
Holdefer RN, Houk JC, Miller LE. Movement-related discharge in the cerebellar nuclei persists after local injections of GABA(A) antagonists. J Neurophysiol 2004; 93:35-43. [PMID: 15331620 PMCID: PMC2590627 DOI: 10.1152/jn.00603.2004] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Limb movement-related neurons in the cerebellar nuclei (CN) typically produce bursts of discharge in association with movement. Consequently, given the inhibitory nature of the Purkinje cell (PC) projection to CN, it is puzzling that only a minority of movement-related PCs pause; the majority burst. Some of the movement-related CN activity may be the result of excitation from collaterals of mossy and climbing fiber projections to the cerebellar cortex. The only other input to CN is diffuse and neuromodulatory, from locus ceruleus and raphe nuclei. To investigate the role of the excitatory mossy fiber input, single units in CN were recorded in macaque monkeys during the performance of reaching and manipulation tasks, before and after blocking the PC input with local microinjections of GABA(A) antagonists (bicuculline or SR95531). After these injections, the movement-related modulation of CN discharge was greater and began earlier, compared with the modulation in the preinjection group of neurons. These observations indicate that an important excitatory drive is provided by extracerebellar inputs to CN, most likely from collaterals of mossy fibers. PCs may serve primarily to regulate this activity, by either pausing or bursting as necessary.
Collapse
Affiliation(s)
- R N Holdefer
- Physiology Department, Northwestern University Medical School, 303 East Chicago Ave., Chicago, IL 60611, USA
| | | | | |
Collapse
|
42
|
Hua SE, Lenz FA. Posture-related oscillations in human cerebellar thalamus in essential tremor are enabled by voluntary motor circuits. J Neurophysiol 2004; 93:117-27. [PMID: 15317839 DOI: 10.1152/jn.00527.2004] [Citation(s) in RCA: 89] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The mechanism of essential tremor (ET) is unclear. Animal models of tremor and functional imaging studies in ET predict that the cerebellum and a cerebellar recipient thalamic nucleus (ventral intermediate, Vim) should exhibit oscillatory activity during rest and during tremor due to abnormal olivo-cerebellar activity. Physiologic responses of 152 single neurons were recorded during awake mapping of the ventral thalamus in seven patients with ET prior to thalamotomy. During postural tremor, spectral cross-correlation analysis demonstrated that 51% of the neurons studied exhibited a concentration of power at tremor frequency that was correlated with electromyography, i.e., tremor neurons. During rest, thalamic neurons did not exhibit tremor-frequency activity. Among the three thalamic nuclei surveyed, Vim had a significantly higher proportion of tremor neurons than did the principal somatic sensory nucleus (ventral caudal, Vc) or a pallidal recipient thalamic nucleus (ventral oral posterior, Vop). Neurons related to active movement (voluntary neurons) had significantly greater tremor-related activity than did nonvoluntary neurons. These findings are not consistent with a model of continuous olivo-cerebellar driving of the motor cortex through thalamic connections. Instead ET may be facilitated by motor circuits that enable tremor-related thalamic activity during voluntary movement. Additionally, a subgroup of tremor neurons with proprioceptive inputs were identified that may allow sensory feedback to access the central tremor network.
Collapse
Affiliation(s)
- Sherwin E Hua
- Department of Neurosurgery, Meyer Bldg. 8-161, Johns Hopkins Hospital, 600 N. Wolfe St., Baltimore, MD 21287, USA.
| | | |
Collapse
|
43
|
Scott SH. Optimal feedback control and the neural basis of volitional motor control. Nat Rev Neurosci 2004; 5:532-46. [PMID: 15208695 DOI: 10.1038/nrn1427] [Citation(s) in RCA: 637] [Impact Index Per Article: 30.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Stephen H Scott
- Department of Anatomy and Cell Biology, Centre for Neuroscience Studies, Queen's University, Kingston, Ontario K7L 3N6, Canada.
| |
Collapse
|
44
|
Abstract
This short review deals with observations on the gross morphology and internal structure of the human cerebellum, and with studies of cerebellar fiber connections in non-human primates. Attention is focussed on its gross anatomy, the zonal organization of the primate cerebellum, the brain stem, thalamic and cortical connections of the cerebellar nuclei and on the cortico-ponto-cerebellar pathway. The presence of important reciprocal nucleo-mesencephalo-olivary loops as part of the circuitry of the dentate and globose (posterior interposed) nuclei and their absence among the connections of other cerebellar nuclei is emphasized.
Collapse
Affiliation(s)
- Jan Voogd
- Department of Neuroscience, Erasmus MC, Box 1738, 3000 DR, Rotterdam, The Netherlands.
| |
Collapse
|
45
|
Hermer-Vazquez L, Hermer-Vazquez R, Moxon KA, Kuo KH, Viau V, Zhan Y, Chapin JK. Distinct temporal activity patterns in the rat M1 and red nucleus during skilled versus unskilled limb movement. Behav Brain Res 2004; 150:93-107. [PMID: 15033283 DOI: 10.1016/s0166-4328(03)00226-2] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2003] [Revised: 06/30/2003] [Accepted: 07/01/2003] [Indexed: 01/16/2023]
Abstract
The mammalian motor system contains multiple interconnected supraspinal networks, but little is known about their relative roles in producing different movements and behaviors, particularly given their apparently fused activity in primates. We tested whether the task context, as well as using a phylogenetically older mammal, rats, could distinguish the separate contributions of these networks. We obtained simultaneous multi-single neuron recordings from the forelimb motor cortex and magnocellular red nucleus as rats performed two contextually different, but kinematically similar, forelimb reach-like tasks: highly learned, skilled reaching for food through a narrow slot, a task requiring extensive training, versus the swing phases of treadmill locomotion. In both the M1 and the mRN, large subpopulations of neurons peaked in their spike firing rates near the onset and the end of the swing phase during treadmill locomotion. In contrast, neural subgroups in the two areas displayed different temporal sequences of activity during the skilled reaching task. In the mRN, the majority of task-modulated neurons peaked in their firing rate in the middle of the reach when the rat was preparing to project the arm through the slot, whereas large subgroups of M1 neurons displayed elevated firing rates during the initial and terminal phases of the reach. These results suggest that motor-behavioral context can alter the degree of overlapping activity in different supraspinal sensorimotor networks. Moreover, results for the skilled reaching task in rats may have highlighted a distinct processing role of the rubral complex: adapting natural muscle synergies across joints and limbs to novel task demands, in concert with cortically based learning.
Collapse
Affiliation(s)
- L Hermer-Vazquez
- Department of Physiology and Pharmacology, SUNY Health Science Center, Room 5-5, 450 Clarkson Avenue, Brooklyn, NY 11203, USA.
| | | | | | | | | | | | | |
Collapse
|
46
|
Abstract
In executing a voluntary movement, one is faced with the problem of translating a specification of the movement in task space (e.g., a visual goal) into a muscle-recruitment pattern. Among many brain regions, the primary motor cortex (MI) plays a prominent role in the specification of movements. In what coordinate frame MI represents movement has been a topic of considerable debate. In a two-dimensional wrist step-tracking experiment, Kakei et al. described some MI cells as encoding movement in a muscle-coordinate frame and other cells as encoding movement in an extrinsic-coordinate frame. This result was interpreted as evidence for a cascade of transformations within MI from an extrinsic representation of movement to a muscle-like representation. However, we present a model that demonstrates that, given a realistic extrinsic-like representation of movement, a simple linear network is capable of representing the transformation from an extrinsic space to the muscle-recruitment patterns implementing the movements on which Kakei et al. focused. This suggests that cells exhibiting extrinsic-like qualities can be involved in the direct recruitment of spinal motor neurons. These results call into question models that presume a serial cascade of transformations terminating with MI pyramidal tract neurons that vary their activation exclusively with muscle activity. Further analysis of the model shows that the correlation between the activity of an MI neuron and a muscle does not predict the strength of the connection between the MI neuron and muscle. This result cautions against the use of correlation methods as a measure of cellular connectivity.
Collapse
Affiliation(s)
- Ashvin Shah
- Neuroscience and Behavior Program, University of Massachusetts, Amherst, MA 01003, USA.
| | | | | |
Collapse
|
47
|
Keifer J. In vitro classical conditioning of the turtle eyeblink reflex: approaching cellular mechanisms of acquisition. CEREBELLUM (LONDON, ENGLAND) 2003; 2:55-61. [PMID: 12882235 DOI: 10.1080/14734220310015610] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
The classically conditioned eyeblink reflex is the best studied model for understanding the neural mechanisms that underlie learning and memory. Here, data from an in vitro model of the conditioned eyeblink reflex are summarized with the aim of shedding some light on potential cellular mechanisms that may underlie eyeblink classical conditioning. An isolated brainstem-cerebellum preparation from turtles was developed in which to study the synaptic circuitry of pathways involving the cerebellum, red nucleus and brainstem nuclei. A neural correlate of an eyeblink response recorded in the abducens nerve can be conditioned entirely in vitro by pairing trigeminal and auditory nerve stimulation. Conditioned abducens nerve responses (CRs) are not generated or sustained by unpaired stimuli and their long latencies, on the order of hundreds of milliseconds, support the interpretation that the CRs are not unconditioned responses. Ablation experiments show that CRs can be generated in brainstem preparations lacking a cerebellum or the medulla. However, the timing of the CRs are disrupted by removal of the cerebellar circuitry. Thus, a highly reduced in vitro brainstem preparation demonstrates acquisition of CRs but poor timing features. Recent experiments have focused on elucidating cellular mechanisms for CR acquisition in the brainstem blink circuitry. These studies show that NMDA-mediated synaptic mechanisms are required to generate CRs and that the level of conditioning is associated with the upregulation of GluR4-containing AMPA receptors in the abducens motor nuclei. Data from immunocytochemistry and physiological experiments using the calcium/calmodulin-dependent protein kinase II (CaMKII) inhibitor KN-93 suggest that CaMKII does not have a key role in mediating the induction or expression of abducens nerve CRs. It is hypothesized that GluR4-containing AMPA receptors in the abducens motor nuclei are targeted to auditory nerve synapses by an NMDA receptor-dependent process to strengthen the CS input during conditioning which results in the generation of CRs. Future studies will examine the synaptic localization of GluR4 and potential signal transduction pathways involved in in vitro conditioning. Moreover, the role feedback loops through the cerebellum and their role in CR timing will be a key issue to address using this preparation.
Collapse
Affiliation(s)
- Joyce Keifer
- Neuroscience Group, Division of Basic Biomedical Sciences, University of South Dakota School of Medicine, Vermillion, SD 57010, USA.
| |
Collapse
|
48
|
Manto MU, Bosse P. Directional tuning of speed-related activation for reaching in the vertical plane in cerebellar ataxia. Neurol Res 2003; 25:434-44. [PMID: 12866189 DOI: 10.1179/016164103101201715] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022]
Abstract
The role of the cerebellum in the spatial tuning of goal-directed multi-joint movements in human is unknown. We analyzed the directional tuning of phasic EMG activities associated with upper limb reaching movements (12 targets) in the vertical plane in healthy subjects and in patients exhibiting cerebellar ataxia. Tuning of phasic EMG activities was investigated in seven muscles (brachioradialis, biceps, medial and long head of triceps, anterior and posterior deltoid, latissimus dorsi). We digitally compressed the EMG activities corresponding to slow reaches to the same targets into the time frame of the fast EMG traces. Estimates of gravity-related components were subtracted. Peaks of EMG activities in the resulting phasic traces were identified for each muscle and each target. Aberrant privileged directions of M Peak EMG (directions associated with the maximal peak of EMG amongst the 12 peaks of EMG activity in the sagittal plane) were found in all ataxic patients. Directional dominance, defined as the ratio of the M Peak EMG divided by the peak EMG in the opposite direction, was significantly higher in controls than in ataxic patients for one distal muscle (brachioradialis) and one proximal muscle (anterior deltoid). The spreading of EMG activities assessed by the global areas of the polar plots of phasic traces was broader in patients for the biceps and medial head of triceps. The distribution of densities of EMG activities (DDEMG) amongst the four quarters of the vertical plane, an index of the contrast in the intensities between quarters in polar plots, revealed increased values in control subjects for the brachioradialis, the biceps and the anterior deltoid as compared to ataxic patients. Representation of Net Vectors obtained from polar plots of peaks of EMG activities demonstrated an abnormal directional tuning in ataxic patients. In the majority of the cases, the Net Vector was outside the normal range for the following muscles: brachioradialis, biceps, anterior deltoid, posterior deltoid. This study reveals that cerebellar ataxia is associated with defective spatial properties of EMG activity during multiple joint movements. Privileged directions associated with M Peak EMG and Net Vectors are erroneous. We demonstrate that the cerebellum plays a determinant and unsuspected role in the spatial modulation of activation during speed-related action for reaching.
Collapse
Affiliation(s)
- M U Manto
- Fonds National de la Recherche Scientifique, Université Libre de Bruxelles, Hôpital Erasme Neurologie, 808, Route de Lennik, 1070 Bruxelles, Belgium.
| | | |
Collapse
|
49
|
Abstract
A theoretical framework for understanding movement preparation is proposed. Movement parameters are represented by activation fields, distributions of activation defined over metric spaces. The fields evolve under the influence of various sources of localized input, representing information about upcoming movements. Localized patterns of activation self-stabilize through cooperative and competitive interactions within the fields. The task environment is represented by a 2nd class of fields, which preshape the movement parameter representation. The model accounts for a sizable body of empirical findings on movement initiation (continuous and graded nature of movement preparation, dependence on the metrics of the task, stimulus uncertainty effect, stimulus-response compatibility effects, Simon effect, precuing paradigm, and others) and suggests new ways of exploring the structure of motor representations.
Collapse
|
50
|
Jiang MC, Alheid GF, Nunzi MG, Houk JC. Cerebellar input to magnocellular neurons in the red nucleus of the mouse: synaptic analysis in horizontal brain slices incorporating cerebello-rubral pathways. Neuroscience 2002; 110:105-21. [PMID: 11882376 DOI: 10.1016/s0306-4522(01)00544-9] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
We studied the synaptic input from the nucleus interpositus of the cerebellum to the magnocellular division of the red nucleus (RNm) in the mouse using combined electrophysiological and neuroanatomical methods. Whole-cell patch-clamp recordings were made from brain slices (125-150 microm) cut in a horizontal plane oriented to pass through both red nucleus and nucleus interpositus. Large cells that were visually selected and patched were injected with Lucifer Yellow and identified as RNm neurons. Using anterograde tracing from nucleus interpositus in vitro, we examined the course of interposito-rubral axons which are dispersed in the superior cerebellar peduncle. In vitro monosynaptic responses in RNm were elicited by an electrode array placed contralaterally in this pathway but near the midline. Mixed excitatory post-synaptic potentials (EPSPs)/inhibitory post-synaptic potentials (IPSPs) were observed in 48 RNm neurons. Excitatory components of the evoked potentials were studied after blocking inhibitory components with picrotoxin (100 microM) and strychnine (5 microM). All RNm neurons examined continued to show monosynaptic EPSPs after non-N-methyl-D-aspartate (NMDA) glutamate receptor components were blocked with 10 microM 6,7-dinitroquinoxaline-2,3-dione or 5 microM 2,3-dihydro-6-nitro-7-sulfamoyl-benzo(f)-quinoxaline (NBQX; n=12). The residual potentials were identified as NMDA receptor components since they (i) were blocked by the addition of the NMDA receptor antagonist, D,L-2-amino-5-phosphonovaleric acid (APV), (ii) were voltage-dependent, and (iii) were enhanced by Mg(2+) removal. Inhibitory components of the evoked potentials were studied after blocking excitatory components with NBQX and APV. Under these conditions, all RNm neurons studied continued to show IPSPs. Blockade of GABA(A) receptors reduced but did not eliminate the IPSPs. These were eliminated when GABA(A) receptor blockade was combined with strychnine to eliminate glycine components of the IPSPs. Thus, IPSPs evoked by midline stimulation of the superior cerebellar peduncle, while blocking alpha-amino-3-hydroxy-5-methylisoxazole-4-propionic acid (AMPA) and NMDA receptors, raise the possibility of direct inhibitory inputs to RNm from the cerebellum. In summary we propose that the special properties of the NMDA receptor components are considered important for the generation of RNm motor commands: their slow time course will contribute a steady driving force for sustained discharge and their voltage dependency will facilitate abrupt transitions from a resting state of quiescence to an active state of intense motor command generation.
Collapse
|