1
|
Vendrely KM, Kumar S, Li X, Vaughan AM. Humanized Mice and the Rebirth of Malaria Genetic Crosses. Trends Parasitol 2020; 36:850-863. [PMID: 32891493 DOI: 10.1016/j.pt.2020.07.009] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2020] [Revised: 07/10/2020] [Accepted: 07/18/2020] [Indexed: 12/18/2022]
Abstract
The first experimental crosses carried out with the human malaria parasite Plasmodium falciparum played a key role in determining the genetic loci responsible for drug resistance, virulence, invasion, growth rate, and transmission. These crosses relied on splenectomized chimpanzees to complete the liver stage of the parasite's life cycle and the subsequent transition to asexual blood stage culture followed by cloning of recombinant progeny in vitro. Crosses can now be routinely carried out using human-liver-chimeric mice infused with human erythrocytes to generate hundreds of unique recombinant progeny for genetic linkage mapping, bulk segregant analysis, and high-throughput 'omics readouts. The high number of recombinant progeny should allow for unprecedented power and efficiency in the execution of a systems genetics approach to study P. falciparum biology.
Collapse
Affiliation(s)
- Katelyn M Vendrely
- Eck Institute for Global Health, Department of Biological Sciences, University of Notre Dame, Notre Dame, IN, USA
| | - Sudhir Kumar
- Center for Global Infectious Disease Research, Seattle Children's Research Institute, Seattle, WA, USA
| | - Xue Li
- Disease Intervention and Prevention Program, Texas Biomedical Research Institute, San Antonio, TX, USA
| | - Ashley M Vaughan
- Center for Global Infectious Disease Research, Seattle Children's Research Institute, Seattle, WA, USA; Department of Pediatrics, University of Washington, Seattle, WA, USA.
| |
Collapse
|
2
|
Plasmodium Genomics and Genetics: New Insights into Malaria Pathogenesis, Drug Resistance, Epidemiology, and Evolution. Clin Microbiol Rev 2019; 32:32/4/e00019-19. [PMID: 31366610 DOI: 10.1128/cmr.00019-19] [Citation(s) in RCA: 78] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Protozoan Plasmodium parasites are the causative agents of malaria, a deadly disease that continues to afflict hundreds of millions of people every year. Infections with malaria parasites can be asymptomatic, with mild or severe symptoms, or fatal, depending on many factors such as parasite virulence and host immune status. Malaria can be treated with various drugs, with artemisinin-based combination therapies (ACTs) being the first-line choice. Recent advances in genetics and genomics of malaria parasites have contributed greatly to our understanding of parasite population dynamics, transmission, drug responses, and pathogenesis. However, knowledge gaps in parasite biology and host-parasite interactions still remain. Parasites resistant to multiple antimalarial drugs have emerged, while advanced clinical trials have shown partial efficacy for one available vaccine. Here we discuss genetic and genomic studies of Plasmodium biology, host-parasite interactions, population structures, mosquito infectivity, antigenic variation, and targets for treatment and immunization. Knowledge from these studies will advance our understanding of malaria pathogenesis, epidemiology, and evolution and will support work to discover and develop new medicines and vaccines.
Collapse
|
3
|
Abkallo HM, Martinelli A, Inoue M, Ramaprasad A, Xangsayarath P, Gitaka J, Tang J, Yahata K, Zoungrana A, Mitaka H, Acharjee A, Datta PP, Hunt P, Carter R, Kaneko O, Mustonen V, Illingworth CJR, Pain A, Culleton R. Rapid identification of genes controlling virulence and immunity in malaria parasites. PLoS Pathog 2017; 13:e1006447. [PMID: 28704525 PMCID: PMC5507557 DOI: 10.1371/journal.ppat.1006447] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2017] [Accepted: 06/05/2017] [Indexed: 11/20/2022] Open
Abstract
Identifying the genetic determinants of phenotypes that impact disease severity is of fundamental importance for the design of new interventions against malaria. Here we present a rapid genome-wide approach capable of identifying multiple genetic drivers of medically relevant phenotypes within malaria parasites via a single experiment at single gene or allele resolution. In a proof of principle study, we found that a previously undescribed single nucleotide polymorphism in the binding domain of the erythrocyte binding like protein (EBL) conferred a dramatic change in red blood cell invasion in mutant rodent malaria parasites Plasmodium yoelii. In the same experiment, we implicated merozoite surface protein 1 (MSP1) and other polymorphic proteins, as the major targets of strain-specific immunity. Using allelic replacement, we provide functional validation of the substitution in the EBL gene controlling the growth rate in the blood stages of the parasites. Developing a greater understanding of malaria genetics is a key step in combating the threat posed by the disease. Here we use a novel approach to study two important properties of the parasite; the rate at which parasites grow within a single host, and the means by which parasites are affected by the host immune system. Two malaria strains with different biological properties were crossed in mosquitoes to produce a hybrid population, which was then grown in naïve and vaccinated mice. Parasites with genes conveying increased growth or immune evasion are favoured under natural selection, leaving a signature on the genetic composition of the cross population. We describe a novel mathematical approach to interpret this signature, identifying selected genes within the parasite population. We discover new genetic variants conveying increased within-host growth and resistance to host immunity in a mouse malaria strain. Experimental validation highlights the ability of this rapid experimental process for generating insights into malaria biology.
Collapse
Affiliation(s)
- Hussein M. Abkallo
- Malaria Unit, Department of Pathology, Institute of Tropical Medicine, Nagasaki University, Nagasaki, Japan
- Institute of Immunology and Infection Research, School of Biological Sciences, University of Edinburgh, Edinburgh, United Kingdom
| | - Axel Martinelli
- Global Station for Zoonosis Control, Global Institution for Collaborative Research and Education (GI-CoRE), Hokkaido University, Sapporo, Japan
- Biological and Environmental Sciences and Engineering (BESE) Division, King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia
| | - Megumi Inoue
- Malaria Unit, Department of Pathology, Institute of Tropical Medicine, Nagasaki University, Nagasaki, Japan
- Graduate School of Biomedical Sciences, Nagasaki University, Nagasaki, Japan
| | - Abhinay Ramaprasad
- Biological and Environmental Sciences and Engineering (BESE) Division, King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia
| | - Phonepadith Xangsayarath
- Graduate School of Biomedical Sciences, Nagasaki University, Nagasaki, Japan
- Department of Protozooolgy, Institute of Tropical Medicine, Nagasaki University, Nagasaki, Japan
| | - Jesse Gitaka
- Graduate School of Biomedical Sciences, Nagasaki University, Nagasaki, Japan
- Department of Protozooolgy, Institute of Tropical Medicine, Nagasaki University, Nagasaki, Japan
- Centre for Malaria Elimination, School of Medicine, Mount Kenya University, Thika, Kenya
| | - Jianxia Tang
- Key Laboratory of National Health and Family Planning Commission on Parasitic Disease Control and Prevention, Jiangsu Provincial Key Laboratory on Parasite and Vector Control Technology, Jiangsu Institute of Parasitic Diseases, Jiangsu, China
| | - Kazuhide Yahata
- Graduate School of Biomedical Sciences, Nagasaki University, Nagasaki, Japan
- Department of Protozooolgy, Institute of Tropical Medicine, Nagasaki University, Nagasaki, Japan
| | - Augustin Zoungrana
- Malaria Unit, Department of Pathology, Institute of Tropical Medicine, Nagasaki University, Nagasaki, Japan
| | - Hayato Mitaka
- Malaria Unit, Department of Pathology, Institute of Tropical Medicine, Nagasaki University, Nagasaki, Japan
| | - Arita Acharjee
- Indian Institute of Science Education and Research Kolkata, Mohanpur - 741 246, West Bengal, India
| | - Partha P. Datta
- Indian Institute of Science Education and Research Kolkata, Mohanpur - 741 246, West Bengal, India
| | - Paul Hunt
- Institute of Immunology and Infection Research, School of Biological Sciences, University of Edinburgh, Edinburgh, United Kingdom
| | - Richard Carter
- Institute of Immunology and Infection Research, School of Biological Sciences, University of Edinburgh, Edinburgh, United Kingdom
| | - Osamu Kaneko
- Graduate School of Biomedical Sciences, Nagasaki University, Nagasaki, Japan
- Department of Protozooolgy, Institute of Tropical Medicine, Nagasaki University, Nagasaki, Japan
| | - Ville Mustonen
- Wellcome Trust Sanger Institute, Hinxton, United Kingdom
| | - Christopher J. R. Illingworth
- Department of Genetics, University of Cambridge, Cambridge, United Kingdom
- Department of Applied Mathematics and Theoretical Physics, University of Cambridge, Cambridge, United Kingdom
- * E-mail: (CJRI); (AP); (RC)
| | - Arnab Pain
- Global Station for Zoonosis Control, Global Institution for Collaborative Research and Education (GI-CoRE), Hokkaido University, Sapporo, Japan
- Biological and Environmental Sciences and Engineering (BESE) Division, King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia
- * E-mail: (CJRI); (AP); (RC)
| | - Richard Culleton
- Malaria Unit, Department of Pathology, Institute of Tropical Medicine, Nagasaki University, Nagasaki, Japan
- * E-mail: (CJRI); (AP); (RC)
| |
Collapse
|
4
|
Sander AF, Lavstsen T, Rask TS, Lisby M, Salanti A, Fordyce SL, Jespersen JS, Carter R, Deitsch KW, Theander TG, Pedersen AG, Arnot DE. DNA secondary structures are associated with recombination in major Plasmodium falciparum variable surface antigen gene families. Nucleic Acids Res 2013; 42:2270-81. [PMID: 24253306 PMCID: PMC3936766 DOI: 10.1093/nar/gkt1174] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Many bacterial, viral and parasitic pathogens undergo antigenic variation to counter host immune defense mechanisms. In Plasmodium falciparum, the most lethal of human malaria parasites, switching of var gene expression results in alternating expression of the adhesion proteins of the Plasmodium falciparum-erythrocyte membrane protein 1 class on the infected erythrocyte surface. Recombination clearly generates var diversity, but the nature and control of the genetic exchanges involved remain unclear. By experimental and bioinformatic identification of recombination events and genome-wide recombination hotspots in var genes, we show that during the parasite’s sexual stages, ectopic recombination between isogenous var paralogs occurs near low folding free energy DNA 50-mers and that these sequences are heavily concentrated at the boundaries of regions encoding individual Plasmodium falciparum-erythrocyte membrane protein 1 structural domains. The recombinogenic potential of these 50-mers is not parasite-specific because these sequences also induce recombination when transferred to the yeast Saccharomyces cerevisiae. Genetic cross data suggest that DNA secondary structures (DSS) act as inducers of recombination during DNA replication in P. falciparum sexual stages, and that these DSS-regulated genetic exchanges generate functional and diverse P. falciparum adhesion antigens. DSS-induced recombination may represent a common mechanism for optimizing the evolvability of virulence gene families in pathogens.
Collapse
Affiliation(s)
- Adam F Sander
- Centre for Medical Parasitology, Department of International Health, Immunology and Microbiology, Faculty of Health and Medical Sciences, University of Copenhagen, Øster Farimagsgade 5, Building 22 & 23, PO Box 2099, 1014 Copenhagen K, Denmark, Centre for Medical Parasitology, Department of Infectious Diseases, Copenhagen University Hospital (Rigshospitalet), Copenhagen K, Denmark, Department of Systems Biology, Center for Biological Sequence Analysis, Technical University of Denmark, 2800 Lyngby, Denmark, Department of Biology, University of Copenhagen, Ole Maaloees Vej 5, DK-2200 Copenhagen N, Denmark, Centre for GeoGenetics, Natural History Museum of Denmark, University of Copenhagen, Øster Voldgade 5-7, 1350 Copenhagen, Denmark, Institute of Infection and Immunology Research, School of Biological Sciences, University of Edinburgh, West Mains Road, Edinburgh EH9 3JT, Scotland, UK and Department of Microbiology and Immunology, Weill Cornell Medical College, New York, NY 10065, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
5
|
Qi Y, Zhu F, Li J, Fu Y, Pattaradilokrat S, Hong L, Liu S, Huang F, Xu W, Su XZ. Optimized protocols for improving the likelihood of cloning recombinant progeny from Plasmodium yoelii genetic crosses. Exp Parasitol 2012; 133:44-50. [PMID: 23116600 DOI: 10.1016/j.exppara.2012.10.011] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2012] [Revised: 10/16/2012] [Accepted: 10/19/2012] [Indexed: 11/29/2022]
Abstract
Genetic cross is a powerful tool for studying malaria genes contributing to drug resistance, parasite development, and pathogenesis. Cloning and identification of recombinant progeny (RP) is laborious and expensive, especially when a large proportion of progeny derived from self-fertilization are present in the uncloned progeny of a genetic cross. Since the frequency of cross-fertilization affects the number of recombinant progeny in a genetic cross, it is important to optimize the procedure of a genetic cross to maximize the cross-fertilization. Here we investigated the factors that might influence the chances of obtaining RP from a genetic cross and showed that different Plasmodium yoelii strains/subspecies/clones had unique abilities in producing oocysts in a mosquito midgut. When a genetic cross is performed between two parents producing different numbers of functional gametocytes, the ratio of parental parasites must be adjusted to improve the chance of obtaining RP. An optimized parental ratio could be established based on oocyst counts from single infection of each parent before crossing experiments, which may reflect the efficiency of gametocyte production and/or fertilization. The timing of progeny cloning is also important; cloning of genetic cross progeny from mice directly infected with sporozoites (vs. frozen blood after needle passage) at a time when parasitemia is low (usually <1%) could improve the chance of obtaining RP. This study provides an optimized protocol for efficiently cloning RPs from a genetic cross of malaria parasites.
Collapse
Affiliation(s)
- Yanwei Qi
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen, Fujian 361005, PR China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
6
|
Ranford-Cartwright LC, Mwangi JM. Analysis of malaria parasite phenotypes using experimental genetic crosses of Plasmodium falciparum. Int J Parasitol 2012; 42:529-34. [PMID: 22475816 PMCID: PMC4039998 DOI: 10.1016/j.ijpara.2012.03.004] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2011] [Revised: 03/08/2012] [Accepted: 03/10/2012] [Indexed: 11/29/2022]
Abstract
We review the principles of linkage analysis of experimental genetic crosses and their application to Plasmodium falciparum. Three experimental genetic crosses have been performed using the human malaria parasite P. falciparum. Linkage analysis of the progeny of these crosses has been used to identify parasite genes important in phenotypes such as drug resistance, parasite growth and virulence, and transmission to mosquitoes. The construction and analysis of genetic maps has been used to characterise recombination rates across the parasite genome and to identify hotspots of recombination.
Collapse
Affiliation(s)
- Lisa C Ranford-Cartwright
- Institute of Infection, Immunity and Inflammation, College of Medical, Veterinary and Life Sciences, University of Glasgow, Sir Graeme Davies Building, 120 University Place, Glasgow G12 8TA, Scotland, UK.
| | | |
Collapse
|
7
|
Abstract
Malaria is an important human disease and is the target of a global eradication campaign. New technological and informatics advancements in population genomics are being leveraged to identify genetic loci under selection in the malaria parasite and to find variants that are associated with key clinical phenotypes, such as drug resistance. This article provides a timely Review of how population-genetics-based strategies are being applied to Plasmodium falciparum both to identify genetic loci as key targets of interventions and to develop monitoring and surveillance tools that are crucial for the successful elimination and eradication of malaria.
Collapse
|
8
|
Application of genomics to field investigations of malaria by the international centers of excellence for malaria research. Acta Trop 2012; 121:324-32. [PMID: 22182668 DOI: 10.1016/j.actatropica.2011.12.002] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2011] [Revised: 11/28/2011] [Accepted: 12/02/2011] [Indexed: 12/15/2022]
Abstract
Success of the global research agenda toward eradication of malaria will depend on development of new tools, including drugs, vaccines, insecticides and diagnostics. Genomic information, now available for the malaria parasites, their mosquito vectors, and human host, can be leveraged to both develop these tools and monitor their effectiveness. Although knowledge of genomic sequences for the malaria parasites, Plasmodium falciparum and Plasmodium vivax, have helped advance our understanding of malaria biology, simply knowing this sequence information has not yielded a plethora of new interventions to reduce the burden of malaria. Here we review and provide specific examples of how genomic information has increased our knowledge of parasite biology, focusing on P. falciparum malaria. We then discuss how population genetics can be applied toward the epidemiological and transmission-related goals outlined by the International Centers of Excellence for Malaria Research groups recently established by the National Institutes of Health. Finally, we propose genomics is a research area that can promote coordination and collaboration between various ICEMR groups, and that working together as a community can significantly advance the value of this information toward reduction of the global malaria burden.
Collapse
|
9
|
Samarakoon U, Gonzales JM, Patel JJ, Tan A, Checkley L, Ferdig MT. The landscape of inherited and de novo copy number variants in a Plasmodium falciparum genetic cross. BMC Genomics 2011; 12:457. [PMID: 21936954 PMCID: PMC3191341 DOI: 10.1186/1471-2164-12-457] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2011] [Accepted: 09/22/2011] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Copy number is a major source of genome variation with important evolutionary implications. Consequently, it is essential to determine copy number variant (CNV) behavior, distributions and frequencies across genomes to understand their origins in both evolutionary and generational time frames. We use comparative genomic hybridization (CGH) microarray and the resolution provided by a segregating population of cloned progeny lines of the malaria parasite, Plasmodium falciparum, to identify and analyze the inheritance of 170 genome-wide CNVs. RESULTS We describe CNVs in progeny clones derived from both Mendelian (i.e. inherited) and non-Mendelian mechanisms. Forty-five CNVs were present in the parent lines and segregated in the progeny population. Furthermore, extensive variation that did not conform to strict Mendelian inheritance patterns was observed. 124 CNVs were called in one or more progeny but in neither parent: we observed CNVs in more than one progeny clone that were not identified in either parent, located more frequently in the telomeric-subtelomeric regions of chromosomes and singleton de novo CNVs distributed evenly throughout the genome. Linkage analysis of CNVs revealed dynamic copy number fluctuations and suggested mechanisms that could have generated them. Five of 12 previously identified expression quantitative trait loci (eQTL) hotspots coincide with CNVs, demonstrating the potential for broad influence of CNV on the transcriptional program and phenotypic variation. CONCLUSIONS CNVs are a significant source of segregating and de novo genome variation involving hundreds of genes. Examination of progeny genome segments provides a framework to assess the extent and possible origins of CNVs. This segregating genetic system reveals the breadth, distribution and dynamics of CNVs in a surprisingly plastic parasite genome, providing a new perspective on the sources of diversity in parasite populations.
Collapse
Affiliation(s)
- Upeka Samarakoon
- Department of Biological Sciences, Eck Institute for Global Health, University of Notre Dame, Notre Dame, IN 46556, USA
| | | | | | | | | | | |
Collapse
|
10
|
Abstract
The protozoan parasites belonging to the genus Plasmodium have a complex life cycle in which the asexual multiplication of parasites in the vertebrate host alternates with an obligate sexual reproduction in the mosquito. Gametocytes (male and female) produced in the vertebrate host are responsible for transmitting parasites to mosquitoes. Although our understanding of the biology and genetics of sexual differentiation in Plasmodium is expanding, the most basic questions concerning molecular mechanisms of sexual differentiation and sex determination still remain unanswered. Recently, insight into the control of this complex process in P. falciparum and P. berghei has come from studying parasite mutants with aberrant capacities for gametocyte production. Here, Cheryl-Ann Lobo and Nirbhay Kumar review these analyses in P. falciparum.
Collapse
|
11
|
Linkage maps from multiple genetic crosses and loci linked to growth-related virulent phenotype in Plasmodium yoelii. Proc Natl Acad Sci U S A 2011; 108:E374-82. [PMID: 21690382 DOI: 10.1073/pnas.1102261108] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Plasmodium yoelii is an excellent model for studying malaria pathogenesis that is often intractable to investigate using human parasites; however, genetic studies of the parasite have been hindered by lack of genome-wide linkage resources. Here, we performed 14 genetic crosses between three pairs of P. yoelii clones/subspecies, isolated 75 independent recombinant progeny from the crosses, and constructed a high-resolution linkage map for this parasite. Microsatellite genotypes from the progeny formed 14 linkage groups belonging to the 14 parasite chromosomes, allowing assignment of sequence contigs to chromosomes. Growth-related virulent phenotypes from 25 progeny of one of the crosses were significantly associated with a major locus on chromosome 13 and with two secondary loci on chromosomes 7 and 10. The chromosome 10 and 13 loci are both linked to day 5 parasitemia, and their effects on parasite growth rate are independent but additive. The locus on chromosome 7 is associated with day 10 parasitemia. The chromosome 13 locus spans ~220 kb of DNA containing 51 predicted genes, including the P. yoelii erythrocyte binding ligand, in which a C741Y substitution in the R6 domain is implicated in the change of growth rate. Similarly, the chromosome 10 locus spans ~234 kb with 71 candidate genes, containing a member of the 235-kDa rhoptry proteins (Py235) that can bind to the erythrocyte surface membrane. Atypical virulent phenotypes among the progeny were also observed. This study provides critical tools and information for genetic investigations of virulence and biology of P. yoelii.
Collapse
|
12
|
Abstract
Sexual reproduction enables eukaryotic organisms to reassort genetic diversity and purge deleterious mutations, producing better-fit progeny. Sex arose early and pervades eukaryotes. Fungal and parasite pathogens once thought asexual have maintained cryptic sexual cycles, including unisexual or parasexual reproduction. As pathogens become niche and host adapted, sex appears to specialize to promote inbreeding and clonality yet maintain outcrossing potential. During self-fertile sexual modes, sex itself may generate genetic diversity de novo. Mating-type loci govern fungal sexual identity; how parasites establish sexual identity is unknown. Comparing and contrasting fungal and parasite sex promises to reveal how microbial pathogens evolved and are evolving.
Collapse
Affiliation(s)
- Joseph Heitman
- Department of Molecular Genetics and Microbiology, Center for Microbial Pathogenesis, Duke University Medical Center, Durham, NC 27710, USA.
| |
Collapse
|
13
|
Miao J, Li J, Fan Q, Li X, Li X, Cui L. The Puf-family RNA-binding protein PfPuf2 regulates sexual development and sex differentiation in the malaria parasite Plasmodium falciparum. J Cell Sci 2010; 123:1039-49. [PMID: 20197405 DOI: 10.1242/jcs.059824] [Citation(s) in RCA: 72] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
Translation regulation plays an important role during gametocytogenesis in the malaria parasite, a process that is obligatory for the transmission of the parasite through mosquito vectors. In this study we determined the function of PfPuf2, a member of the Puf family of translational repressors, in gametocytogenesis of Plasmodium falciparum. Tagging of the endogenous PfPuf2 protein with green fluorescent protein showed that PfPuf2 was expressed in both male and female gametocytes, and the protein was localized in the cytoplasm of the parasite. Targeted disruption of the PfPuf2 gene did not affect asexual growth of the parasite, but promoted the formation of gametocytes and differentiation of male gametocytes. Complementation studies were performed to confirm that the resultant phenotypic changes were due to disruption of the PfPuf2 gene. Episomal expression of PfPuf2 under its cognate promoter almost restored the gametocytogenesis rate in a PfPuf2 disruptant to the level of the wild-type parasite. It also partially restored the effect of PfPuf2 disruption on male-female sex ratio. In addition, episomal overexpression of PfPuf2 under its cognate promoter but with a higher concentration of the selection drug or under the constitutive hsp86 promoter in both the PfPuf2-disruptant and wild-type 3D7 lines, further dramatically reduced gametocytogenesis rates and sex ratios. These findings suggest that in this early branch of eukaryotes the function of PfPuf2 is consistent with the ancestral function of suppressing differentiation proposed for Puf-family proteins.
Collapse
Affiliation(s)
- Jun Miao
- Department of Entomology, The Pennsylvania State University, University Park, PA 16802, USA
| | | | | | | | | | | |
Collapse
|
14
|
Su XZ, Jiang H, Yi M, Mu J, Stephens RM. Large-scale genotyping and genetic mapping in Plasmodium parasites. THE KOREAN JOURNAL OF PARASITOLOGY 2009; 47:83-91. [PMID: 19488413 PMCID: PMC2688805 DOI: 10.3347/kjp.2009.47.2.83] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 12/05/2008] [Accepted: 04/03/2009] [Indexed: 11/23/2022]
Abstract
The completion of many malaria parasite genomes provides great opportunities for genomewide characterization of gene expression and high-throughput genotyping. Substantial progress in malaria genomics and genotyping has been made recently, particularly the development of various microarray platforms for large-scale characterization of the Plasmodium falciparum genome. Microarray has been used for gene expression analysis, detection of single nucleotide polymorphism (SNP) and copy number variation (CNV), characterization of chromatin modifications, and other applications. Here we discuss some recent advances in genetic mapping and genomic studies of malaria parasites, focusing on the use of high-throughput arrays for the detection of SNP and CNV in the P. falciparum genome. Strategies for genetic mapping of malaria traits are also discussed.
Collapse
Affiliation(s)
- Xin-Zhuan Su
- Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, MD, USA.
| | | | | | | | | |
Collapse
|
15
|
Hayton K, Su XZ. Drug resistance and genetic mapping in Plasmodium falciparum. Curr Genet 2008; 54:223-39. [PMID: 18802698 DOI: 10.1007/s00294-008-0214-x] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2008] [Revised: 08/27/2008] [Accepted: 08/28/2008] [Indexed: 11/30/2022]
Abstract
Drug resistance in malaria parasites is a serious public health burden, and resistance to most of the antimalarial drugs currently in use has been reported. A better understanding of the molecular mechanisms of drug resistance is urgently needed to slow or circumvent the spread of resistance, to allow local treatments to be deployed more effectively to prolong the life span of the current drugs, and to develop new drugs. Although mutations in genes determining resistance to drugs such as chloroquine and the antifolates have been identified, we still do not have a full understanding of the resistance mechanisms, and genes that contribute to resistance to many other drugs remain to be discovered. Genetic mapping is a powerful tool for the identification of mutations conferring drug resistance in malaria parasites because most drug-resistant phenotypes were selected within the past 60 years. High-throughput methods for genotyping large numbers of single nucleotide polymorphisms (SNPs) and microsatellites (MSs) are now available or are being developed, and genome-wide association studies for malaria traits will soon become a reality. Here we discuss strategies and issues related to mapping genes contributing to drug resistance in the human malaria parasite Plasmodium falciparum.
Collapse
Affiliation(s)
- Karen Hayton
- Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, 9000 Rockville Pike, Bethesda, MD 20892, USA.
| | | |
Collapse
|
16
|
Su X, Hayton K, Wellems TE. Genetic linkage and association analyses for trait mapping in Plasmodium falciparum. Nat Rev Genet 2007; 8:497-506. [PMID: 17572690 DOI: 10.1038/nrg2126] [Citation(s) in RCA: 65] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Genetic studies of Plasmodium falciparum laboratory crosses and field isolates have produced valuable insights into determinants of drug responses, antigenic variation, disease virulence, cellular development and population structures of these virulent human malaria parasites. Full-genome sequences and high-resolution haplotype maps of SNPs and microsatellites are now available for all 14 parasite chromosomes. Rapidly increasing genetic and genomic information on Plasmodium parasites, mosquitoes and humans will combine as a rich resource for new advances in our understanding of malaria, its transmission and its manifestations of disease.
Collapse
Affiliation(s)
- Xinzhuan Su
- Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, 9000 Rockville Pike Bethesda, Maryland 20892-8132, USA
| | | | | |
Collapse
|
17
|
Carter R, Hunt P, Cheesman S. Linkage Group Selection--a fast approach to the genetic analysis of malaria parasites. Int J Parasitol 2007; 37:285-93. [PMID: 17222845 DOI: 10.1016/j.ijpara.2006.11.013] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2006] [Revised: 11/06/2006] [Accepted: 11/09/2006] [Indexed: 11/16/2022]
Abstract
Genetic analysis of malaria parasites has shown that the mechanisms of inheritance in these organisms are classically Mendelian. In other words, alleles of genes at different loci recombine, and alleles at the same gene locus segregate, in the progeny of a genetic cross between two genetically distinct lines of malaria parasite. Importantly, such progeny are haploid in the first filial generation following genetic crossing. Consequently, genetic analysis, including linkage analysis, can be done directly upon the cloned cross progeny. Linkage analysis conducted upon the progeny of genetic crosses between malaria parasites can lead to the location of a single gene controlling a specific phenotype, as has been achieved to identify the gene for chloroquine resistance in Plasmodium falciparum. The work involved, however, is extremely labour intensive. It involves the generation of many hundreds, to a thousand or so, of independent recombinant clones from the cross progeny and the biological characterisation, and genetic typing for hundreds of molecular genetic markers of each such clone. We discuss here a fast-track method for identifying genes controlling specific phenotypes, e.g. drug resistance/sensitivity. It involves the mass screening with quantitative molecular genetic markers of the uncloned progeny of a genetic cross following its growth under a selection pressure representing the phenotype of interest. We have called the method Linkage Group Selection.
Collapse
Affiliation(s)
- Richard Carter
- University of Edinburgh, Institute of Immunology and Infection Research, School of Biological Sciences, West Mains Road, Edinburgh EH9 3JT, UK.
| | | | | |
Collapse
|
18
|
Mu J, Awadalla P, Duan J, McGee KM, Keebler J, Seydel K, McVean GAT, Su XZ. Genome-wide variation and identification of vaccine targets in the Plasmodium falciparum genome. Nat Genet 2006; 39:126-30. [PMID: 17159981 DOI: 10.1038/ng1924] [Citation(s) in RCA: 160] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2006] [Accepted: 11/02/2006] [Indexed: 11/09/2022]
Abstract
One goal in sequencing the Plasmodium falciparum genome, the agent of the most lethal form of malaria, is to discover vaccine and drug targets. However, identifying those targets in a genome in which approximately 60% of genes have unknown functions is an enormous challenge. Because the majority of known malaria antigens and drug-resistant genes are highly polymorphic and under various selective pressures, genome-wide analysis for signatures of selection may lead to discovery of new vaccine and drug candidates. Here we surveyed 3,539 P. falciparum genes ( approximately 65% of the predicted genes) for polymorphisms and identified various highly polymorphic loci and genes, some of which encode new antigens that we confirmed using human immune sera. Our collections of genome-wide SNPs ( approximately 65% nonsynonymous) and polymorphic microsatellites and indels provide a high-resolution map (one marker per approximately 4 kb) for mapping parasite traits and studying parasite populations. In addition, we report new antigens, providing urgently needed vaccine candidates for disease control.
Collapse
Affiliation(s)
- Jianbing Mu
- Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland 20892, USA
| | | | | | | | | | | | | | | |
Collapse
|
19
|
Furuya T, Mu J, Hayton K, Liu A, Duan J, Nkrumah L, Joy DA, Fidock DA, Fujioka H, Vaidya AB, Wellems TE, Su XZ. Disruption of a Plasmodium falciparum gene linked to male sexual development causes early arrest in gametocytogenesis. Proc Natl Acad Sci U S A 2005; 102:16813-8. [PMID: 16275909 PMCID: PMC1277966 DOI: 10.1073/pnas.0501858102] [Citation(s) in RCA: 61] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
A male gametocyte defect in the Plasmodium falciparum Dd2 parasite was previously discovered through the observation that all progeny clones in a Dd2 x HB3 genetic cross were the result of fertilization events between Dd2 female and HB3 male gametes. A determinant linked to the defect in Dd2 was subsequently mapped to an 800-kb segment on chromosome 12. Here, we report further mapping of the determinant to an 82-kb region and the identification of a candidate gene, P. falciparum male development gene 1 (pfmdv-1), that is expressed at a lower level in Dd2 compared with the wild-type normal male gametocyte-producing ancestor W2. Pfmdv-1 protein is sexual-stage specific and is located on the gametocyte plasma membrane, parasitophorous vacuole membrane, and the membranes of cleft-like structures within the erythrocyte. Disruption of pfmdv-1 results in a dramatic reduction in mature gametocytes, especially functional male gametocytes, with the majority of sexually committed parasites developmentally arrested at stage I. The pfmdv-1-knockout parasites show disturbed membrane structures, particularly multimembrane vesicles/tubes that likely derive from deformed cleft-like structures. Mosquito infectivity of the knockout parasites was also greatly reduced but not completely lost. The results suggest that pfmdv-1 plays a key role in gametocyte membrane formation and integrity.
Collapse
Affiliation(s)
- Tetsuya Furuya
- Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892-8132, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Abstract
The Plasmodium falciparum genome sequence has boosted hopes for a new era of malaria research and for the application of comprehensive molecular knowledge to disease control, but formidable obstacles remain: approximately 60% of the predicted P. falciparum proteins have no known functions or homologues, and most life cycle stages of this haploid eukaryotic parasite are relatively intractable to cultivation and biochemical manipulation. Genetic mapping based on high-resolution maps saturated with single-nucleotide polymorphisms or microsatellites is now providing effective strategies for discovering candidate genes determining important parasite phenotypes. Here we review classical linkage studies using laboratory crosses and population associations that are now amenable to genome-wide approaches and are revealing multiple candidate genes involved in complex drug responses. Moreover, mapping by linkage disequilibrium is practicable in cases where chromosomal segments flanking drug-selected genes have been preserved in populations during relatively recent P. falciparum evolution. We discuss the advantages and limitations of these various genetic mapping strategies, results from which offer complementary insights to those emerging from gene knockout experiments and/or high-throughput genomic technologies.
Collapse
Affiliation(s)
- Xin-zhuan Su
- Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Room 3E-24B, 12735 Twinbrook Parkway, Rockville, MD 20850, USA.
| | | |
Collapse
|
21
|
Bell AS, Ranford-Cartwright LC. A real-time PCR assay for quantifying Plasmodium falciparum infections in the mosquito vector. Int J Parasitol 2004; 34:795-802. [PMID: 15157762 DOI: 10.1016/j.ijpara.2004.03.008] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2004] [Revised: 03/15/2004] [Accepted: 03/18/2004] [Indexed: 11/27/2022]
Abstract
Transmission-blocking vaccines prevent the development of Plasmodium parasite within the mosquito vector, thereby thwarting the spread of malaria through a community. The gold standard for determining the efficacy of a transmission-blocking vaccine is the standard membrane feeding assay. This assay requires the dissection of mosquitoes and microscopic counting of oocysts present on the mosquito mid-gut, typically at 7-10 days p.i. Here we describe a real-time quantitative PCR assay that is rapid, target-specific and robust, with a sensitive detection threshold and which may be employed earlier p.i. than the standard membrane feeding assay and is applicable to preserved material. The real-time PCR assay utilises the LightCycler platform and SYBR Green I detection system to amplify 180 bp of the asexual form of the Plasmodium falciparum rRNA gene. It has a quantitative range of greater than four orders of magnitude and a detection threshold of 10 parasites. Validation experiments using a monoclonal antibody of known blocking activity revealed the real-time PCR assay to give equivalent results to the standard membrane feeding assay. In addition, the PCR assay can establish the effect of such a monoclonal antibody on the parasites' development within the oocyst and on the sporozoite (the transmissible stage) yield, providing a more pertinent assessment of transmission blocking activity than is possible by the standard membrane feeding assay. This assay may also be employed to monitor the sporogonic development of P. falciparum parasites within the mosquito vector.
Collapse
Affiliation(s)
- A S Bell
- Division of Infection and Immunity, Institute of Biomedical and Life Sciences, University of Glasgow, Glasgow, Scotland G12 8QQ, UK.
| | | |
Collapse
|
22
|
Cui L, Fan Q, Li J. The malaria parasite Plasmodium falciparum encodes members of the Puf RNA-binding protein family with conserved RNA binding activity. Nucleic Acids Res 2002; 30:4607-17. [PMID: 12409450 PMCID: PMC135818 DOI: 10.1093/nar/gkf600] [Citation(s) in RCA: 65] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
A novel class of RNA-binding proteins, Puf, regulates translation and RNA stability by binding to specific sequences in the 3'-untranslated region of target mRNAs. Members of this protein family share a conserved Puf domain consisting of eight 36 amino acid imperfect repeats. Here we report two Puf family member genes, PfPuf1 and PfPuf2, from the human malaria parasite Plasmodium falciparum. Both genes are spliced with four and three introns clustered within or near the Puf domains, respectively. Northern and RT-PCR analysis indicated that both genes were differentially expressed in gametocytes during erythrocytic development of the parasite. Except for similarities in the Puf domain and expression profile, the deduced PfPuf1 and PfPuf2 proteins differ considerably in size and structure. PfPuf1 has 1894 amino acids and a central Puf domain, whereas PfPuf2 is much smaller with a C-terminal Puf domain. The presence of at least two Puf members in other Plasmodium species suggests that these proteins play evolutionarily similar roles during parasite development. Both in vivo studies using the yeast three-hybrid system and in vitro binding assays using the recombinant Puf domain of PfPuf1 expressed in bacteria demonstrated intrinsic binding activity of the PfPuf1 Puf domain to the NRE sequences in the hunchback RNA, the target sequence for Drosophila Pumilio protein. Altogether, these results suggest that PfPufs might function during sexual differentiation and development in Plasmodium through a conserved mechanism of translational regulation of their target mRNAs.
Collapse
Affiliation(s)
- Liwang Cui
- Department of Entomology, The Pennsylvania State University, 501 ASI Building, University Park, PA 16802, USA.
| | | | | |
Collapse
|
23
|
Eksi S, Williamson KC. Male-specific expression of the paralog of malaria transmission-blocking target antigen Pfs230, PfB0400w. Mol Biochem Parasitol 2002; 122:127-30. [PMID: 12106866 DOI: 10.1016/s0166-6851(02)00091-9] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Malaria transmission requires that Plasmodium parasites circulating in the vertebrate host develop into male and female gametocytes, which are then taken up by a mosquito to undergo fertilization and further development into infectious sporozoites. To understand the malaria specific events involved in this process, the gene products involved require identification and characterization. This work demonstrates that antibodies generated against the paralog of malaria transmission-blocking antigen Pfs230, PfB0400w, react only with stage V male gametocytes, not gametes or asexual parasites. In contrast, Pfs230 is expressed on the surface of all gametocytes and remains associated with emerged gametes as one of the primary surface antigens for several hours. Consistent with the localization findings, a high molecular weight band is recognized by anti-PfB0400w antibodies on western blots of extracts of late stage gametocytes, not asexual parasites, early (stage II/III) gametocytes, or gametes. PfB0400w mRNA is also not observed in asexual parasites. The transcript levels peak in stage III/IV gametocytes, then sharply decline in gametes. This work identifies a novel male-specific protein with an expression pattern that is distinctly different than its paralog.
Collapse
Affiliation(s)
- Saliha Eksi
- Department of Biology, Loyola University, 6525 North Sheridan Road, Chicago, IL 60626, USA
| | | |
Collapse
|
24
|
van Dijk MR, Janse CJ, Thompson J, Waters AP, Braks JA, Dodemont HJ, Stunnenberg HG, van Gemert GJ, Sauerwein RW, Eling W. A central role for P48/45 in malaria parasite male gamete fertility. Cell 2001; 104:153-64. [PMID: 11163248 DOI: 10.1016/s0092-8674(01)00199-4] [Citation(s) in RCA: 315] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Fertilization and zygote development are obligate features of the malaria parasite life cycle and occur during parasite transmission to mosquitoes. The surface protein PFS48/45 is expressed by male and female gametes of Plasmodium falciparum and PFS48/45 antibodies prevent zygote development and transmission. Here, gene disruption was used to show that Pfs48/45 and the ortholog Pbs48/45 from a rodent malaria parasite P. berghei play a conserved and important role in fertilization. p48/45- parasites had a reduced capacity to produce oocysts in mosquitoes due to greatly reduced zygote formation. Unexpectedly, only male gamete fertility of p48/45- parasites was affected, failing to penetrate otherwise fertile female gametes. P48/45 is shown to be a surface protein of malaria parasites with a demonstrable role in fertilization.
Collapse
Affiliation(s)
- M R van Dijk
- Laboratory for Parasitology, Leiden University Medical Center, P.O. Box 9600, 2300 RC Leiden, The Netherlands
| | | | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Shirley MW, Harvey DA. A genetic linkage map of the apicomplexan protozoan parasite Eimeria tenella. Genome Res 2000; 10:1587-93. [PMID: 11042156 PMCID: PMC310971 DOI: 10.1101/gr.149200] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Apicomplexan protozoan parasites have complex life cycles that involve phases of asexual and sexual reproduction. Some genera have intermediate insect hosts, for example, Plasmodium spp. (the cause of malaria), but related genera such as Eimeria spp. (causative agents of coccidiosis in poultry) have a direct life cycle occurring in only a single host. Mechanisms that regulate the life cycles of apicomplexan parasites are unknown, but the intracellular growth of avian Eimeria spp. is easily shortened by serial selection for the first parasites to complete the transition from asexual to sexual reproduction (to yield so-called precocious lines). To investigate the genetic basis of such an abbreviated life cycle, we have used the species E. tenella and analyzed the inheritance of 443 polymorphic DNA markers in 22 recombinant cloned progeny derived from a cross between parents that had selectable phenotypes of precocious development or resistance to an anticoccidial drug. The markers were placed in 16 linkage groups (which defined 12 chromosomes) and a further 57 unlinked groups. Two linkage groups showed an association (P =.0105) with the traits of precocious development or drug-resistance and were mapped to chromosome 2 (ca 1.2 Mbp) and chromosome 1 (ca 1.0 Mbp), respectively. The map provides a framework for further studies on the identification of genetic loci implicated in the regulation of the life cycle of an important protozoan parasite and a representative of a major taxonomic group. [A table with the segregation data is available as an online supplement at http://www.genome.org.]
Collapse
Affiliation(s)
- M W Shirley
- Institute for Animal Health, Compton Laboratory, Compton, Near Newbury, Berkshire, RG20 7NN UK.
| | | |
Collapse
|
26
|
Ferdig MT, Su XZ. Microsatellite markers and genetic mapping in Plasmodium falciparum. PARASITOLOGY TODAY (PERSONAL ED.) 2000; 16:307-12. [PMID: 10858651 DOI: 10.1016/s0169-4758(00)01676-8] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Whole-genome methods are changing the scope of biological questions that can be addressed in malaria research. In the rich context provided by Plasmodium falciparum genome sequencing, genetic mapping is a powerful tool for identifying genes involved in parasite development, invasion, transmission and drug resistance. The recent development of a high-resolution P. falciparum linkage map consisting of hundreds of microsatellite markers will facilitate an integrated genomic approach to understanding the relationship between genetic variations and biological phenotypes. Here, Michael Ferdig and Xin-zhuan Su provide an overview for applying microsatellite markers and genetic maps to gene mapping, parasite typing and studies of parasite population changes.
Collapse
Affiliation(s)
- M T Ferdig
- Laboratory of Parasitic Diseases, National Institutes of Health, 4 Center Drive 0425, Bethesda, MD 20892-0425, USA
| | | |
Collapse
|
27
|
Hayward RE, Derisi JL, Alfadhli S, Kaslow DC, Brown PO, Rathod PK. Shotgun DNA microarrays and stage-specific gene expression in Plasmodium falciparum malaria. Mol Microbiol 2000; 35:6-14. [PMID: 10632873 DOI: 10.1046/j.1365-2958.2000.01730.x] [Citation(s) in RCA: 172] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Malaria infects over 200 million individuals and kills 2 million young children every year. Understanding the biology of malarial parasites will be facilitated by DNA microarray technology, which can track global changes in gene expression under different physiological conditions. However, genomes of Plasmodium sp. (and many other important pathogenic organisms) remain to be fully sequenced so, currently, it is not possible to construct gene-specific microarrays representing complete malarial genomes. In this study, 3648 random inserts from a Plasmodium falciparum mung bean nuclease genomic library were used to construct a shotgun DNA microarray. Through differential hybridization and sequencing of relevant clones, large differences in gene expression were identified between the blood stage trophozoite form of the malarial parasite and the sexual stage gametocyte form. The present study lengthens our list of stage-specific transcripts in malaria by at least an order of magnitude above all previous studies combined. The results offer an unprecedented number of leads for developing transmission blocking agents and for developing vaccines directed at blood stage antigens. A significant fraction of the stage-selective transcripts had no sequence homologues in the current genome data bases, thereby underscoring the importance of the shotgun approach. The malarial shotgun microarray will be useful for unravelling additional important aspects of malaria biology and the general approach may be applied to any organism, regardless of how much of its genome is sequenced.
Collapse
Affiliation(s)
- R E Hayward
- Laboratory of Parasitic Diseases, NIAID, NIH, Bethesda, MD 20892, USA
| | | | | | | | | | | |
Collapse
|
28
|
Lobo CA, Fujioka H, Aikawa M, Kumar N. Disruption of the Pfg27 locus by homologous recombination leads to loss of the sexual phenotype in P. falciparum. Mol Cell 1999; 3:793-8. [PMID: 10394367 DOI: 10.1016/s1097-2765(01)80011-3] [Citation(s) in RCA: 57] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Abstract
Transmission of malaria depends upon the differentiation and development of the sexual stages of the parasite. In Plasmodium falciparum, it is a complex, multistage process, involving the expression of a large number of sexual stage-specific proteins. Pfg27 is one such protein, abundantly expressed at the onset of gametocytogenesis. We report successful disruption of the Pfg27 locus using homologous recombination and show that it is essential for the maintenance of the sexual phenotype. Transfectants lacking Pfg27 abort early in sexual development, resulting in vacuolated, highly disarranged, and disintegrating parasites. This suggests a critical role for Pfg27 in the sexual development of the parasite.
Collapse
Affiliation(s)
- C A Lobo
- Department of Molecular Microbiology and Immunology, School of Public Health, Johns Hopkins University, Baltimore, Maryland 21205, USA
| | | | | | | |
Collapse
|
29
|
Guinet F, Wellems TE. Physical mapping of a defect in Plasmodium falciparum male gametocytogenesis to an 800 kb segment of chromosome 12. Mol Biochem Parasitol 1997; 90:343-6. [PMID: 9497058 DOI: 10.1016/s0166-6851(97)00144-8] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- F Guinet
- National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892-0425, USA
| | | |
Collapse
|
30
|
A long range restriction map of chromosome 5 of Plasmodium berghei demonstrates a chromosome specific symmetrical subtelomeric organisation1Note: Nucleotide sequence data reported in this paper are available in the GenBank at the accession numbers: U75907; U75908; U75909; U75910; U75911.1. Mol Biochem Parasitol 1997. [DOI: 10.1016/s0166-6851(97)02842-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
31
|
Guinet F, Dvorak JA, Fujioka H, Keister DB, Muratova O, Kaslow DC, Aikawa M, Vaidya AB, Wellems TE. A developmental defect in Plasmodium falciparum male gametogenesis. J Biophys Biochem Cytol 1996; 135:269-78. [PMID: 8858179 PMCID: PMC2121010 DOI: 10.1083/jcb.135.1.269] [Citation(s) in RCA: 43] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
Asexually replicating populations of Plasmodium parasites, including those from cloned lines, generate both male and female gametes to complete the malaria life cycle through the mosquito. The generation of these sexual forms begins with the induction of gametocytes from haploid asexual stage parasites in the blood of the vertebrate host. The molecular processes that govern the differentiation and development of the sexual forms are largely unknown. Here we describe a defect that affects the development of competent male gametocytes from a mutant clone of P. falciparum (Dd2). Comparison of the Dd2 clone to the predecessor clone from which it was derived (W2'82) shows that the defect is a mutation that arose during the long-term cultivation of asexual stages in vitro. Light and electron microscopic images, and indirect immunofluorescence assays with male-specific anti-alpha-tubulin II antibodies, indicate a global disruption of male development at the gametocyte level with at least a 70-90% reduction in the proportion of mature male gametocytes by the Dd2 clone relative to W2'82. A high prevalence of abnormal gametocyte forms, frequently containing multiple and unusually large vacuoles, is associated with the defect. The reduced production of mature male gametocytes may reflect a problem in processes that commit a gametocyte to male development or a progressive attrition of viable male gametocytes during maturation. The defect is genetically linked to an almost complete absence of male gamete production and of infectivity to mosquitoes. This is the first sex-specific developmental mutation identified and characterized in Plasmodium.
Collapse
Affiliation(s)
- F Guinet
- Laboratory of Parasitic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland 20892-0425, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
32
|
Abstract
There are seven processes that require a cytoskeleton in protozoan parasites: nuclear division, cytokinesis, cell shape determination, motility, invasion, flagellar movement of sperm, and intracellular transport.
Collapse
Affiliation(s)
- L G Tilney
- Department of Biology, University of Pennsylvania, Philadelphia 19104-6018, USA
| | | |
Collapse
|
33
|
Sinden RE, Butcher GA, Billker O, Fleck SL. Regulation of infectivity of Plasmodium to the mosquito vector. ADVANCES IN PARASITOLOGY 1996; 38:53-117. [PMID: 8701799 DOI: 10.1016/s0065-308x(08)60033-0] [Citation(s) in RCA: 111] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Affiliation(s)
- R E Sinden
- Department of Biology, Imperial College of Science, Technology and Medicine, South Kensington, London, UK
| | | | | | | |
Collapse
|
34
|
Baker DA, Thompson J, Daramola OO, Carlton JM, Targett GA. Sexual-stage-specific RNA expression of a new Plasmodium falciparum gene detected by in situ hybridisation. Mol Biochem Parasitol 1995; 72:193-201. [PMID: 8538689 DOI: 10.1016/0166-6851(95)00073-a] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
A gene, Pf77, transcribed in the sexual stages of Plasmodium falciparum was isolated from a genomic expression library with a polyclonal antibody raised to gametocyte proteins. The entire coding region was obtained from a series of overlapping genomic and cDNA clones (from gametocyte RNA). A single open reading frame is present with no introns and no tandem repeat sequences. A Pf77 probe hybridised to a single transcript present in RNA prepared from purified gametocytes and could not be detected in RNA prepared from asexual blood stages. In situ hybridisation studies confirmed that the expression of Pf77 mRNA is sexual-stage-specific and in addition, showed that Pf77 mRNA is present only in female gametocytes during the vertebrate stages of the parasite's development.
Collapse
Affiliation(s)
- D A Baker
- Department of Medical Parasitology, London School of Hygiene and Tropical Medicine, UK
| | | | | | | | | |
Collapse
|