1
|
Stewart CA, Finger EC. The supraoptic and paraventricular nuclei in healthy aging and neurodegeneration. HANDBOOK OF CLINICAL NEUROLOGY 2021; 180:105-123. [PMID: 34225924 DOI: 10.1016/b978-0-12-820107-7.00007-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
The supraoptic (SON) and paraventricular (PVN) nuclei of the hypothalamus undergo structural and functional changes over the course of healthy aging. These nuclei and their connections are also heterogeneously affected by several different neurodegenerative diseases. This chapter reviews the involvement of the SON and PVN, the hypothalamic-pituitary axes, and the peptide hormones produced in both nuclei in healthy aging and in neurodegeneration, with a focus on Alzheimer's disease (AD), frontotemporal dementia (FTD), amyotrophic lateral sclerosis, progressive supranuclear palsy, Parkinson's disease (PD), dementia with Lewy bodies (DLB), multiple system atrophy, and Huntington's disease. Although age-related changes occur in several regions of the hypothalamus, the SON and PVN are relatively preserved during aging and in many neurodegenerative disorders. With aging, these nuclei do undergo some sexually dimorphic changes including changes in size and levels of vasopressin and corticotropin-releasing hormone, likely due to age-related changes in sex hormones. In contrast, oxytocinergic cells and circulating levels of thyrotropin-releasing hormone remain stable. A relative resistance to many forms of neurodegenerative pathology is also observed, in comparison to other hypothalamic and brain regions. Mirroring the pattern observed in aging, pathologic hallmarks of AD, and some subtypes of FTD are observed in the PVN, though to a milder degree than are observed in other brain regions, while the SON is relatively spared. In contrast, the SON appears more vulnerable to alpha-synuclein pathology of DLB and PD. The consequences of these alterations may help to inform several of the physiologic changes observed in aging and neurodegenerative disease.
Collapse
Affiliation(s)
- Chloe A Stewart
- Department of Clinical Neurological Sciences, Lawson Health Research Institute, London, ON, Canada; Graduate Program in Neuroscience, Schulich School of Medicine and Dentistry, University of Western Ontario, London, ON, Canada
| | - Elizabeth C Finger
- Department of Clinical Neurological Sciences, Lawson Health Research Institute, London, ON, Canada; Department of Clinical Neurological Sciences, Schulich School of Medicine and Dentistry, University of Western Ontario, London, ON, Canada.
| |
Collapse
|
2
|
Vandael D, Gounko NV. Corticotropin releasing factor-binding protein (CRF-BP) as a potential new therapeutic target in Alzheimer's disease and stress disorders. Transl Psychiatry 2019; 9:272. [PMID: 31641098 PMCID: PMC6805916 DOI: 10.1038/s41398-019-0581-8] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/23/2019] [Accepted: 07/30/2019] [Indexed: 12/31/2022] Open
Abstract
Alzheimer's disease is the most common cause of dementia and one of the most complex human neurodegenerative diseases. Numerous studies have demonstrated a critical role of the environment in the pathogenesis and pathophysiology of the disease, where daily life stress plays an important role. A lot of epigenetic studies have led to the conclusion that chronic stress and stress-related disorders play an important part in the onset of neurodegenerative disorders, and an enormous amount of research yielded valuable discoveries but has so far not led to the development of effective treatment strategies for Alzheimer's disease. Corticotropin-releasing factor (CRF) is one of the major hormones and at the same time a neuropeptide acting in stress response. Deregulation of protein levels of CRF is involved in the pathogenesis of Alzheimer's disease, but little is known about the precise roles of CRF and its binding protein, CRF-BP, in neurodegenerative diseases. In this review, we summarize the key evidence for and against the involvement of stress-associated modulation of the CRF system in the pathogenesis of Alzheimer's disease and discuss how recent findings could lead to new potential treatment possibilities in Alzheimer's disease by using CRF-BP as a therapeutic target.
Collapse
Affiliation(s)
- Dorien Vandael
- VIB-KU Leuven Center for Brain and Disease Research, Electron Microscopy Platform, Herestraat 49, B-3000 Leuven, Belgium ,VIB Bioimaging Core Facility, Herestraat 49, B-3000 Leuven, Belgium ,KU Leuven Department of Neurosciences, Leuven Brain Institute, Herestraat 49, B-3000 Leuven, Belgium
| | - Natalia V. Gounko
- VIB-KU Leuven Center for Brain and Disease Research, Electron Microscopy Platform, Herestraat 49, B-3000 Leuven, Belgium ,VIB Bioimaging Core Facility, Herestraat 49, B-3000 Leuven, Belgium ,KU Leuven Department of Neurosciences, Leuven Brain Institute, Herestraat 49, B-3000 Leuven, Belgium
| |
Collapse
|
3
|
Petrella C, Di Certo MG, Barbato C, Gabanella F, Ralli M, Greco A, Possenti R, Severini C. Neuropeptides in Alzheimer’s Disease: An Update. Curr Alzheimer Res 2019; 16:544-558. [DOI: 10.2174/1567205016666190503152555] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2019] [Revised: 03/19/2019] [Accepted: 04/30/2019] [Indexed: 12/19/2022]
Abstract
Neuropeptides are small proteins broadly expressed throughout the central nervous system, which act as neurotransmitters, neuromodulators and neuroregulators. Growing evidence has demonstrated the involvement of many neuropeptides in both neurophysiological functions and neuropathological conditions, among which is Alzheimer’s disease (AD). The role exerted by neuropeptides in AD is endorsed by the evidence that they are mainly neuroprotective and widely distributed in brain areas responsible for learning and memory processes. Confirming this point, it has been demonstrated that numerous neuropeptide-containing neurons are pathologically altered in brain areas of both AD patients and AD animal models. Furthermore, the levels of various neuropeptides have been found altered in both Cerebrospinal Fluid (CSF) and blood of AD patients, getting insights into their potential role in the pathophysiology of AD and offering the possibility to identify novel additional biomarkers for this pathology. We summarized the available information about brain distribution, neuroprotective and cognitive functions of some neuropeptides involved in AD. The main focus of the current review was directed towards the description of clinical data reporting alterations in neuropeptides content in both AD patients and AD pre-clinical animal models. In particular, we explored the involvement in the AD of Thyrotropin-Releasing Hormone (TRH), Cocaine- and Amphetamine-Regulated Transcript (CART), Cholecystokinin (CCK), bradykinin and chromogranin/secretogranin family, discussing their potential role as a biomarker or therapeutic target, leaving the dissertation of other neuropeptides to previous reviews.
Collapse
Affiliation(s)
- Carla Petrella
- Department of Sense Organs, CNR, Institute of Cell Biology and Neurobiology, University Sapienza of Rome, Viale del Policlinico 155, 00161 Rome, Italy
| | - Maria Grazia Di Certo
- Department of Sense Organs, CNR, Institute of Cell Biology and Neurobiology, University Sapienza of Rome, Viale del Policlinico 155, 00161 Rome, Italy
| | - Christian Barbato
- Department of Sense Organs, CNR, Institute of Cell Biology and Neurobiology, University Sapienza of Rome, Viale del Policlinico 155, 00161 Rome, Italy
| | - Francesca Gabanella
- Department of Sense Organs, CNR, Institute of Cell Biology and Neurobiology, University Sapienza of Rome, Viale del Policlinico 155, 00161 Rome, Italy
| | - Massimo Ralli
- Department of Sense Organs, University Sapienza of Rome, Viale del Policlinico 155, 00161 Rome, Italy
| | - Antonio Greco
- Department of Sense Organs, University Sapienza of Rome, Viale del Policlinico 155, 00161 Rome, Italy
| | - Roberta Possenti
- Department of Systems Medicine, University of Rome Tor Vergata, Rome, Italy
| | - Cinzia Severini
- Department of Sense Organs, CNR, Institute of Cell Biology and Neurobiology, University Sapienza of Rome, Viale del Policlinico 155, 00161 Rome, Italy
| |
Collapse
|
4
|
Peineau S, Rabiant K, Pierrefiche O, Potier B. Synaptic plasticity modulation by circulating peptides and metaplasticity: Involvement in Alzheimer's disease. Pharmacol Res 2018; 130:385-401. [PMID: 29425728 DOI: 10.1016/j.phrs.2018.01.018] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/24/2017] [Revised: 01/23/2018] [Accepted: 01/26/2018] [Indexed: 10/18/2022]
Abstract
Synaptic plasticity is a cellular process involved in learning and memory whose alteration in its two main forms (Long Term Depression (LTD) and Long Term Potentiation (LTP)), is observed in most brain pathologies, including neurodegenerative disorders such as Alzheimer's disease (AD). In humans, AD is associated at the cellular level with neuropathological lesions composed of extracellular deposits of β-amyloid (Aβ) protein aggregates and intracellular neurofibrillary tangles, cellular loss, neuroinflammation and a general brain homeostasis dysregulation. Thus, a dramatic synaptic environment perturbation is observed in AD patients, involving changes in brain neuropeptides, cytokines, growth factors or chemokines concentration and diffusion. Studies performed in animal models demonstrate that these circulating peptides strongly affect synaptic functions and in particular synaptic plasticity. Besides this neuromodulatory action of circulating peptides, other synaptic plasticity regulation mechanisms such as metaplasticity are altered in AD animal models. Here, we will review new insights into the study of synaptic plasticity regulatory/modulatory mechanisms which could influence the process of synaptic plasticity in the context of AD with a particular attention to the role of metaplasticity and peptide dependent neuromodulation.
Collapse
Affiliation(s)
- Stéphane Peineau
- GRAP UMR1247, INSERM, Centre Universitaire de Recherche en Santé, Université de Picardie Jules Verne, Amiens, France; Centre for Synaptic Plasticity, School of Physiology, Pharmacology & Neuroscience, University of Bristol, Bristol, UK.
| | - Kevin Rabiant
- GRAP UMR1247, INSERM, Centre Universitaire de Recherche en Santé, Université de Picardie Jules Verne, Amiens, France
| | - Olivier Pierrefiche
- GRAP UMR1247, INSERM, Centre Universitaire de Recherche en Santé, Université de Picardie Jules Verne, Amiens, France.
| | - Brigitte Potier
- Laboratoire Aimé Cotton, CNRS-ENS UMR9188, Université Paris-Sud, Orsay, France.
| |
Collapse
|
5
|
The CRF System as a Therapeutic Target for Neuropsychiatric Disorders. Trends Pharmacol Sci 2016; 37:1045-1054. [PMID: 27717506 DOI: 10.1016/j.tips.2016.09.004] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2016] [Revised: 09/07/2016] [Accepted: 09/08/2016] [Indexed: 11/21/2022]
Abstract
The major neuropsychiatric disorders are devastating illnesses that are only modestly responsive to treatment. Improving the treatment of these conditions will require innovative new strategies that depart from previously focused-on pharmacological mechanisms. Considerable preclinical and clinical data indicate corticotropin-releasing factor (CRF) signaling as a target for new psychotropic drug development. Here we review alterations in the CRF system reported in several psychiatric conditions. We also examine the preclinical work that has dissected the distinctive roles of CRF receptors in specific circuits relevant to these disorders. We further describe the clinical trials of CRF1 receptor antagonists that have been conducted. Although these clinical trials have thus far met with limited therapeutic success, the unfolding complexity of the CRF system promises many future directions for studying its role in the etiology and treatment of neuropsychiatric conditions.
Collapse
|
6
|
Zhang C, Kuo CC, Moghadam SH, Monte L, Campbell SN, Rice KC, Sawchenko PE, Masliah E, Rissman RA. Corticotropin-releasing factor receptor-1 antagonism mitigates beta amyloid pathology and cognitive and synaptic deficits in a mouse model of Alzheimer's disease. Alzheimers Dement 2016; 12:527-37. [PMID: 26555315 PMCID: PMC4860182 DOI: 10.1016/j.jalz.2015.09.007] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2015] [Revised: 09/27/2015] [Accepted: 09/28/2015] [Indexed: 11/24/2022]
Abstract
INTRODUCTION Stress and corticotropin-releasing factor (CRF) have been implicated as mechanistically involved in Alzheimer's disease (AD), but agents that impact CRF signaling have not been carefully tested for therapeutic efficacy or long-term safety in animal models. METHODS To test whether antagonism of the type-1 corticotropin-releasing factor receptor (CRFR1) could be used as a disease-modifying treatment for AD, we used a preclinical prevention paradigm and treated 30-day-old AD transgenic mice with the small-molecule, CRFR1-selective antagonist, R121919, for 5 months, and examined AD pathologic and behavioral end points. RESULTS R121919 significantly prevented the onset of cognitive impairment in female mice and reduced cellular and synaptic deficits and beta amyloid and C-terminal fragment-β levels in both genders. We observed no tolerability or toxicity issues in mice treated with R121919. DISCUSSION CRFR1 antagonism presents a viable disease-modifying therapy for AD, recommending its advancement to early-phase human safety trials.
Collapse
Affiliation(s)
- Cheng Zhang
- Department of Neurosciences, University of California San Diego, La Jolla, CA, USA
| | - Ching-Chang Kuo
- NeuroInformatics Center, University of Oregon, Eugene, OR, USA
| | - Setareh H Moghadam
- Department of Neurosciences, University of California San Diego, La Jolla, CA, USA
| | - Louise Monte
- Department of Neurosciences, University of California San Diego, La Jolla, CA, USA
| | - Shannon N Campbell
- Department of Neurosciences, University of California San Diego, La Jolla, CA, USA
| | - Kenner C Rice
- Chemical Biology Research Branch, National Institute on Drug Abuse and Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, MD, USA
| | | | - Eliezer Masliah
- Department of Neurosciences, University of California San Diego, La Jolla, CA, USA; Department of Pathology, University of California San Diego, La Jolla, CA, USA
| | - Robert A Rissman
- Department of Neurosciences, University of California San Diego, La Jolla, CA, USA.
| |
Collapse
|
7
|
Campbell SN, Zhang C, Roe AD, Lee N, Lao KU, Monte L, Donohue MC, Rissman RA. Impact of CRFR1 Ablation on Amyloid-β Production and Accumulation in a Mouse Model of Alzheimer's Disease. J Alzheimers Dis 2016; 45:1175-84. [PMID: 25697705 DOI: 10.3233/jad-142844] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Stress exposure and the corticotropin-releasing factor (CRF) system have been implicated as mechanistically involved in both Alzheimer's disease (AD) and associated rodent models. In particular, the major stress receptor, CRF receptor type 1 (CRFR1), modulates cellular activity in many AD-relevant brain areas, and has been demonstrated to impact both tau phosphorylation and amyloid-β (Aβ) pathways. The overarching goal of our laboratory is to develop and characterize agents that impact the CRF signaling system as disease-modifying treatments for AD. In the present study, we developed a novel transgenic mouse to determine whether partial or complete ablation of CRFR1 was feasible in an AD transgenic model and whether this type of treatment could impact Aβ pathology. Double transgenic AD mice (PSAPP) were crossed to mice null for CRFR1; resultant CRFR1 heterozygous (PSAPP-R1(+/-)) and homozygous (PSAPP-R1(-/-)) female offspring were used at 12 months of age to examine the impact of CRFR1 disruption on the severity of AD Aβ levels and pathology. We found that both PSAPP-R1(+/-) and PSAPP-R1(-/-) had significantly reduced Aβ burden in the hippocampus, insular, rhinal, and retrosplenial cortices. Accordingly, we observed dramatic reductions in Aβ peptides and AβPP-CTFs, providing support for a direct relationship between CRFR1 and Aβ production pathways. In summary, our results suggest that interference of CRFR1 in an AD model is tolerable and is efficacious in impacting Aβ neuropathology.
Collapse
Affiliation(s)
- Shannon N Campbell
- Department of Neurosciences, University of California, San Diego, La Jolla, CA, USA
| | - Cheng Zhang
- Department of Neurosciences, University of California, San Diego, La Jolla, CA, USA
| | - Allyson D Roe
- Department of Neurosciences, University of California, San Diego, La Jolla, CA, USA
| | - Nickey Lee
- Department of Neurosciences, University of California, San Diego, La Jolla, CA, USA
| | - Kathleen U Lao
- Department of Neurosciences, University of California, San Diego, La Jolla, CA, USA
| | - Louise Monte
- Department of Neurosciences, University of California, San Diego, La Jolla, CA, USA
| | - Michael C Donohue
- Department of Neurosciences, University of California, San Diego, La Jolla, CA, USA Department of Family Preventive Medicine, University of California, San Diego, La Jolla, CA, USA
| | - Robert A Rissman
- Department of Neurosciences, University of California, San Diego, La Jolla, CA, USA
| |
Collapse
|
8
|
Ishii M, Iadecola C. Metabolic and Non-Cognitive Manifestations of Alzheimer's Disease: The Hypothalamus as Both Culprit and Target of Pathology. Cell Metab 2015; 22:761-76. [PMID: 26365177 PMCID: PMC4654127 DOI: 10.1016/j.cmet.2015.08.016] [Citation(s) in RCA: 161] [Impact Index Per Article: 16.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Alzheimer's disease (AD) is increasingly recognized as a complex neurodegenerative disease beginning decades prior to the cognitive decline. While cognitive deficits remain the cardinal manifestation of AD, metabolic and non-cognitive abnormalities, such as alterations in body weight and neuroendocrine functions, are also present, often preceding the cognitive decline. Furthermore, hypothalamic dysfunction can also be a driver of AD pathology. Here we offer a brief appraisal of hypothalamic dysfunction in AD and provide insight into an underappreciated dual role of the hypothalamus as both a culprit and target of AD pathology, as well as into new opportunities for therapeutic interventions and biomarker development.
Collapse
Affiliation(s)
- Makoto Ishii
- Feil Family Brain and Mind Research Institute, Joan and Sanford I. Weill Medical College of Cornell University, New York, NY 10065, USA.
| | - Costantino Iadecola
- Feil Family Brain and Mind Research Institute, Joan and Sanford I. Weill Medical College of Cornell University, New York, NY 10065, USA
| |
Collapse
|
9
|
Ádori C, Glück L, Barde S, Yoshitake T, Kovacs GG, Mulder J, Maglóczky Z, Havas L, Bölcskei K, Mitsios N, Uhlén M, Szolcsányi J, Kehr J, Rönnbäck A, Schwartz T, Rehfeld JF, Harkany T, Palkovits M, Schulz S, Hökfelt T. Critical role of somatostatin receptor 2 in the vulnerability of the central noradrenergic system: new aspects on Alzheimer's disease. Acta Neuropathol 2015; 129:541-63. [PMID: 25676386 DOI: 10.1007/s00401-015-1394-3] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2014] [Revised: 01/23/2015] [Accepted: 01/23/2015] [Indexed: 12/18/2022]
Abstract
Alzheimer's disease and other age-related neurodegenerative disorders are associated with deterioration of the noradrenergic locus coeruleus (LC), a probable trigger for mood and memory dysfunction. LC noradrenergic neurons exhibit particularly high levels of somatostatin binding sites. This is noteworthy since cortical and hypothalamic somatostatin content is reduced in neurodegenerative pathologies. Yet a possible role of a somatostatin signal deficit in the maintenance of noradrenergic projections remains unknown. Here, we deployed tissue microarrays, immunohistochemistry, quantitative morphometry and mRNA profiling in a cohort of Alzheimer's and age-matched control brains in combination with genetic models of somatostatin receptor deficiency to establish causality between defunct somatostatin signalling and noradrenergic neurodegeneration. In Alzheimer's disease, we found significantly reduced somatostatin protein expression in the temporal cortex, with aberrant clustering and bulging of tyrosine hydroxylase-immunoreactive afferents. As such, somatostatin receptor 2 (SSTR2) mRNA was highly expressed in the human LC, with its levels significantly decreasing from Braak stages III/IV and onwards, i.e., a process preceding advanced Alzheimer's pathology. The loss of SSTR2 transcripts in the LC neurons appeared selective, since tyrosine hydroxylase, dopamine β-hydroxylase, galanin or galanin receptor 3 mRNAs remained unchanged. We modeled these pathogenic changes in Sstr2(-/-) mice and, unlike in Sstr1(-/-) or Sstr4(-/-) genotypes, they showed selective, global and progressive degeneration of their central noradrenergic projections. However, neuronal perikarya in the LC were found intact until late adulthood (<8 months) in Sstr2(-/-) mice. In contrast, the noradrenergic neurons in the superior cervical ganglion lacked SSTR2 and, as expected, the sympathetic innervation of the head region did not show any signs of degeneration. Our results indicate that SSTR2-mediated signaling is integral to the maintenance of central noradrenergic projections at the system level, and that early loss of somatostatin receptor 2 function may be associated with the selective vulnerability of the noradrenergic system in Alzheimer's disease.
Collapse
Affiliation(s)
- Csaba Ádori
- Department of Neuroscience, Retzius Laboratory, Karolinska Institutet, Retzius väg 8, 17177, Stockholm, Sweden,
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
10
|
Capsoni S, Amato G, Vignone D, Criscuolo C, Nykjaer A, Cattaneo A. Dissecting the role of sortilin receptor signaling in neurodegeneration induced by NGF deprivation. Biochem Biophys Res Commun 2013; 431:579-85. [PMID: 23313508 PMCID: PMC3585961 DOI: 10.1016/j.bbrc.2013.01.007] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2012] [Accepted: 01/03/2013] [Indexed: 11/17/2022]
Abstract
Sortilin is a member of the family of vacuolar protein sorting 10 protein domain receptors which has emerged as a co-receptor in cell death and neurodegeneration processes mediated by proneurotrophins. Here we tested the possibility that sortilin deficiency interferes with behavioral and neuropathological endpoints in a chronic Nerve Growth factor (NGF)-deprivation model of Alzheimer’s disease (AD), the AD10 anti-NGF mouse. AD10 mice show cholinergic deficit, increased APP processing and tau hyper-phosphorylation, resulting in behavioral deficits in learning and memory paradigms assessed by novel object recognition and Morris water maze tests. Sort1−/− mice were crossed with AD10 anti-NGF mice and the neurodegenerative phenotype was studied. We found that the loss of sortilin partially protected AD10 anti-NGF mice from neurodegeneration. A protective effect was observed on non-spatial memory as assessed by novel object recognition, and histopathologically at the level of Aβ and BFCNs, while the phosphotau increase was unaltered by knocking out sortilin. We suggest that sortilin might be involved in different aspects of neurodegeneration in a complex way, supporting the view that sortilin functions in the CNS are broader than being a co-receptor in proneurotrophin and neurotrophin signaling.
Collapse
Affiliation(s)
- Simona Capsoni
- Laboratory of Neurobiology, Scuola Normale Superiore, Pisa, Italy
| | | | | | | | | | | |
Collapse
|
11
|
García-Horsman JA, Männistö PT, Venäläinen JI. On the role of prolyl oligopeptidase in health and disease. Neuropeptides 2007; 41:1-24. [PMID: 17196652 DOI: 10.1016/j.npep.2006.10.004] [Citation(s) in RCA: 168] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/15/2006] [Revised: 10/10/2006] [Accepted: 10/17/2006] [Indexed: 11/18/2022]
Abstract
Prolyl oligopeptidase (POP) is a serine peptidase which digests small peptide-like hormones, neuroactive peptides, and various cellular factors. Therefore, this peptidase has been implicated in many physiological processes as well as in some psychiatric disorders, most probably through interference in inositol cycle. Intense research has been performed to elucidate, on the one hand, the basic structure, ligand binding, and kinetic properties of POP, and on the other, the pharmacology of its inhibitors. There is fairly strong evidence of in vivo importance of POP on substance P, arginine vasopressin, thyroliberin and gonadoliberin metabolism. However, information about the biological relevance of POP is not yet conclusive. Evidence regarding the physiological role of POP is lacking, which is surprising considering that peptidase inhibitors have been exploited for drug development, some of which are currently in clinical trials as memory enhancers for the aged and in a variety of neurological disorders. Here we review the recent progress on POP research and evaluate the relevance of the peptidase in the metabolism of various neuropeptides. The recognition of novel forms and relatives of POP may improve our understanding of how this family of proteins functions in normal and in neuropathological conditions.
Collapse
Affiliation(s)
- J A García-Horsman
- Centro de Investigación Príncipe Felipe, Neurobiology, Av. Autopista del Saler 16, 46013 Valencia, Spain.
| | | | | |
Collapse
|
12
|
Rowe WB, Kar S, Meaney MJ, Quirion R. Neurotensin receptor levels as a function of brain aging and cognitive performance in the Morris water maze task in the rat. Peptides 2006; 27:2415-23. [PMID: 16872718 DOI: 10.1016/j.peptides.2006.03.036] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/06/2005] [Accepted: 03/01/2006] [Indexed: 10/24/2022]
Abstract
The present study evaluated whether neurotensin (NT) binding sites were altered in the aged rat brain and if these alterations were related to the cognitive status of the animal. Aged (24-25 months old) Long-Evans rats were behaviorally screened using the Morris water maze task and were classified as either aged, cognitively impaired (AI) or cognitively unimpaired (AU) based on their relative performances in the task compared to young control (Y) animals. Decreases in specific [125I]NT binding were observed in the hippocampal formation, namely the dentate gyrus (DG), as well as in the septum and hypothalamus. Both aged groups also showed significant reductions in specific [125I]NT binding levels compared to the Y animals in the hippocampal CA3 sub-field, with the AI animals exhibiting the lowest levels. In the Substantia Nigra Zona Compacta (SNc) and the ventral tegmental area (VTA), specific [125I]NT binding was decreased as a function of age while binding in the paraventricular nucleus of the hypothalamus (PVNh) was decreased as a function of age and cognitive status. These alterations in the level of specific [125I] NT binding in the aged animals suggest decreases in NT receptor signaling as a function of age and potential involvement of NT-ergic systems in the etiology of age-related cognitive deficits.
Collapse
Affiliation(s)
- W B Rowe
- Memory Pharmaceuticals, 100 Philips Parkway, Montvale, NJ 07645, USA
| | | | | | | |
Collapse
|
13
|
Mathé AA, Agren H, Wallin A, Blennow K. Calcitonin gene-related peptide and calcitonin in the CSF of patients with dementia and depression: possible disease markers. Prog Neuropsychopharmacol Biol Psychiatry 2002; 26:41-8. [PMID: 11853117 DOI: 10.1016/s0278-5846(01)00219-6] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Cerebrospinal fluid (CSF) was obtained from 32 patients with dementia, 19 healthy controls that were age-matched with the dementia patients, and 29 DSM-IV major depression patients and calcitonin gene-related peptide-like immunoreactivity (CGRP-LI) and calcitonin-like immunoreactivity (CT-LI) measured by RIA. CGRP-LI was lower in the dementia group compared to both the controls and depressed patients (P<.01) after covarying out sex and age. CT-LI was decreased in the dementia and depressed patients (P<.05) compared to the controls. A positive relationship between CGRP-LI and CT-LI was found in dementia. A logistic discriminant analysis with calcitonin gene-related peptide (CGRP) and log calcitonin (CT) predicting diagnosis (three classes) revealed a significant overall fit (chi2 = 18.08, P = .0011), with an effect test showing contributions of both independent variables: CGRP (chi2 = 10.03, P<.007), log CT (chi2 = 8.63, P = .013). In dementia, both CGRP-LI and CT-LI were decreased and their concentration ratio did not differ from that in controls, likely reflecting a general neuronal loss. Alternatively and more speculatively, but theoretically possible, expression of the alpha-CGRP/CT gene may be affected in dementia. In contrast, in depression, CT-LI but not CGRP-LI was decreased and the CGRP/CT concentration ratio was increased, which is consistent with a possibility of an altered splicing process favoring CGRP mRNA.
Collapse
Affiliation(s)
- Aleksander A Mathé
- Institution of Clinical Neuroscience, Karolinska Institutet, St Göran's Hospital, Stockholm, Sweden
| | | | | | | |
Collapse
|
14
|
Binder EB, Kinkead B, Owens MJ, Nemeroff CB. The role of neurotensin in the pathophysiology of schizophrenia and the mechanism of action of antipsychotic drugs. Biol Psychiatry 2001; 50:856-72. [PMID: 11743941 DOI: 10.1016/s0006-3223(01)01211-2] [Citation(s) in RCA: 59] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
It has become increasingly clear that schizophrenia does not result from the dysfunction of a single neurotransmitter system, but rather pathologic alterations of several interacting systems. Targeting of neuropeptide neuromodulator systems, capable of concomitantly regulating several transmitter systems, represents a promising approach for the development of increasingly effective and side effect-free antipsychotic drugs. Neurotensin (NT) is a neuropeptide implicated in the pathophysiology of schizophrenia that specifically modulates neurotransmitter systems previously demonstrated to be dysregulated in this disorder. Clinical studies in which cerebrospinal fluid (CSF) NT concentrations have been measured revealed a subset of schizophrenic patients with decreased CSF NT concentrations that are restored by effective antipsychotic drug treatment. Considerable evidence also exists concordant with the involvement of NT systems in the mechanism of action of antipsychotic drugs. The behavioral and biochemical effects of centrally administered NT remarkably resemble those of systemically administered antipsychotic drugs, and antipsychotic drugs increase NT neurotransmission. This concatenation of findings led to the hypothesis that NT functions as an endogenous antipsychotic. Moreover, typical and atypical antipsychotic drugs differentially alter NT neurotransmission in nigrostriatal and mesolimbic dopamine (DA) terminal regions, and these effects are predictive of side effect liability and efficacy, respectively. This review summarizes the evidence in support of a role for the NT system in both the pathophysiology of schizophrenia and the mechanism of action of antipsychotic drugs.
Collapse
Affiliation(s)
- E B Binder
- Max Planck Institute for Psychiatry, Munich, Germany
| | | | | | | |
Collapse
|
15
|
Kaufmann WA, Barnas U, Humpel C, Nowakowski K, DeCol C, Gurka P, Ransmayr G, Hinterhuber H, Winkler H, Marksteiner J. Synaptic loss reflected by secretoneurin-like immunoreactivity in the human hippocampus in Alzheimer's disease. Eur J Neurosci 1998; 10:1084-94. [PMID: 9753176 DOI: 10.1046/j.1460-9568.1998.00121.x] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Secretoneurin is a recently described peptide derived by endoproteolytic processing from secretogranin II, previously named chromogranin C. In this study, we have investigated the distribution of secretoneurin-like immunoreactivity in the human hippocampus in controls and in Alzheimer's disease patients, and compared the staining pattern to that of calretinin. Secretoneurin-like immunoreactivity is present throughout the hippocampal formation. At the border of the dentate molecular layer and the granule cell layer, a band of dense secretoneurin immunostaining appeared. In this part, as in the area of the CA2 sector, the high density of secretoneurin-immunoreactivity coincided with calretinin-like immunoreactivity. The mossy fibre system displayed a moderate density of secretoneurin-immunoreactivity. In the entorhinal cortex, a particularly high density of secretoneurin-immunoreactivity was observed. The density of secretoneurin-like immunoreactivity was significantly reduced in the innermost part of the molecular layer and in the outer molecular layer of the dentate gyrus in Alzheimer's disease. For calretinin-like immunoreactivity, a less pronounced decrease was found in the innermost part of the molecular layer. About 40-60% of neuritic plaques were secretoneurin-immunopositive. This study shows that secretoneurin is distinctly distributed in the human hippocampus and that significant changes of secretoneurin-like immunoreactivity occur in Alzheimer's disease, reflecting synaptic loss.
Collapse
|
16
|
Affiliation(s)
- G Bissette
- Department of Psychiatry and Human Behavior, University of Mississippi Medical Center, Jackson 39216-4505, USA.
| |
Collapse
|
17
|
Strittmatter M, Hamann GF, Strubel D, Cramer H, Schimrigk K. Somatostatin-like immunoreactivity, its molecular forms and monoaminergic metabolites in aged and demented patients with Parkinson's disease--effect of L-Dopa. J Neural Transm (Vienna) 1996; 103:591-602. [PMID: 8811504 DOI: 10.1007/bf01273156] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
There is some evidence that Parkinson's disease (PD) seems to be a heterogenous and generalized brain disorder reflecting a degeneration of multiple neuronal networks, including somatostatinergic neurons. Somatostatin-like immunoreactivity (SLI) and its molecular forms, high molecular weight form (HMV-SST), somatostatin-14 (SST-14), somatostatin-25/28 (SST-25/28) and Des-ala-somatostatin (Des-ala-SST), as well as homovanillic acid (HVA) and 5-hydroxyindoleacetic acid (5-HIAA) were estimated using HPLC and radioimmunoassay in the cerebrospinal fluid (CSF) of 35 aged parkinsonian patients with different stages of intellectual deterioration. The influence of L-dopa-treatment on these neurochemical parameters was evaluated. Without a correlation with dementia scores (p = 0.11), SLI was significantly reduced in PD in comparison to the control group (p < 0.05). The reduction was related to the progression of the disease. Correlations between SLI, HVA and 5-HIAA indicate a heterogenous brain disorder in PD with alterations of several transmitter systems and functions. Complex qualitative and quantitative changes in the molecular pattern of SLI are compatible with a dysregulated synthesis and/or posttranslational processing. L-dopa-treatment was associated with a significant increase of HVA (p < 0.05) and HMV-SST (p < 0.05) and a slight, but insignificant increase of SLI (p = 0.11).
Collapse
Affiliation(s)
- M Strittmatter
- Department of Neurology, University of the Saarland, Homburg, Federal Republic of Germany
| | | | | | | | | |
Collapse
|
18
|
Gsell W, Strein I, Riederer P. The neurochemistry of Alzheimer type, vascular type and mixed type dementias compared. JOURNAL OF NEURAL TRANSMISSION. SUPPLEMENTUM 1996; 47:73-101. [PMID: 8841958 DOI: 10.1007/978-3-7091-6892-9_5] [Citation(s) in RCA: 24] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
We present the results of a meta-analysis of neurochemical changes in human post mortem brains of Alzheimer type (AD), vascular type (VD) and mixed type (MF) dementias, and matched controls based on 275 articles published between January 1980 and February 1994. Severity of degeneration between the different neurochemical systems is as follows, although ranking is difficult with regard to limited numbers of investigations in some neurochemical systems: Cholinergic system > serotonergic system > excitatory amino acids > GABAergic system > energy metabolism > NA > oxidative stress parameters > neuropeptides > DA. But, within a neurochemical system, degeneration is not evenly distributed. Spared parameters, e.g. muscarinic receptors and MAO-B, allow to make some suggestions for future therapeutic strategies.
Collapse
Affiliation(s)
- W Gsell
- Department of Psychiatry, University of Würzburg, Federal Republic of Germany
| | | | | |
Collapse
|
19
|
Lu YF, Moriwaki A, Hayashi Y, Tomizawa K, Itano T, Matsui H. Effects of neurotensin on neurons in the rat central amygdaloid nucleus in vitro. Brain Res Bull 1996; 40:135-41. [PMID: 8724432 DOI: 10.1016/0361-9230(96)00044-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
The effects of neurotensin (NT) on neurons in the central amygdaloid nucleus (ACe) were investigated in rat brain slice preparations by adding the peptide to the perfusing medium. Of 115 ACe neurons, 69 cells (60%) showed excitatory responses and 10 cells (9%) showed inhibitory responses to application of NT. The excitatory response to NT was observed in a dose-dependent manner and the threshold concentration was approximately 3 x 10(-9) M. The excitatory effects of NT persisted under blockade of synaptic transmission. The NT fragment neurotensin 8-13 and the NT analogue neuromedin N showed effects similar to those of NT, whereas the NT fragment neurotensin 1-8 had no effect on ACe neurons. Of 43 neurons in the septal nucleus, 8 cells (19%) and 3 cells (7%) showed excitatory and inhibitory responses, respectively, to NT. The results suggest that NT exerts a potent excitatory effect on ACe neurons through a direct action on specific receptors, in which NT may play a role in amygdala-relevant functions.
Collapse
Affiliation(s)
- Y F Lu
- First Department of Physiology, Okayama University Medical School, Japan
| | | | | | | | | | | |
Collapse
|
20
|
Abstract
The alteration of certain neuropeptide levels is a dramatic and consistent finding in the brains of AD patients. Levels of SS, which is normally present in high concentrations in cerebral cortex /75/, are consistently decreased in the neocortex, hippocampus and CSF of AD patients. In addition, decreased levels of SS correlate regionally with the distribution of neurofibrillary tangles in AD /47/. Most available evidence suggests that the subset of SS-containing neurons which lack NADPH diaphorase may be relatively vulnerable to degeneration in AD. CRF is another neuropeptide with frequently observed changes in AD. Levels of CRF, which is normally present in low concentrations in cortical structures /75/, are decreased in the neocortex and hippocampus of AD patients. However, levels of CRF in the CSF of AD patients are not consistently reduced, but this is likely a reflection of the relatively low levels of CRF normally present in cerebral cortex. Studies of deep gray structures in AD brains reveal elevated levels of GAL in the nucleus basalis. The ability of GAL to inhibit cholinergic neurotransmission has generated considerable interest, since degeneration of cholinergic neurons in the basal forebrain consistently occurs in AD. In addition, the presence of NADPH diaphorase in GAL-containing neurons may underlie the relative resistance of these neurons to degeneration. From the aforementioned studies, it appears that the neurons which are relatively resistant to neurodegeneration in AD contain NADPH diaphorase. It is hypothesized that the presence of NADPH diaphorase protects these neurons from neurotoxicity mediated by glutamate or nitric oxide. Although one recent study /147/ has reported an elevation of the microtubule-associated protein tau in the CSF of AD patients (and this could become a useful antemortem diagnostic tool for AD), no similar CSF abnormality has been found for any of the neuropeptides. Thus, the measurement of CSF neuropeptide levels presently remains unhelpful in the diagnosis and treatment of AD. Future research on neuropeptides and their potential roles in the pathogenesis, diagnosis, and treatment of AD will likely involve further development of pharmacological modulators of neuropeptide systems, together with the further study of brain neuropeptidases.
Collapse
Affiliation(s)
- L C Roeske
- Department of Neurology, Emory University, Atlanta, GA, USA
| | | |
Collapse
|
21
|
Cusack B, McCormick DJ, Pang YP, Souder T, Garcia R, Fauq A, Richelson E. Pharmacological and biochemical profiles of unique neurotensin 8-13 analogs exhibiting species selectivity, stereoselectivity, and superagonism. J Biol Chem 1995; 270:18359-66. [PMID: 7629159 DOI: 10.1074/jbc.270.31.18359] [Citation(s) in RCA: 44] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
Recently, the rat neurotensin receptor and the two human neurotensin receptor clones (differing by one amino acid residue) have been isolated. We present results with 33 newly synthesized neurotensin analogs. We have evaluated their binding potency at the three neurotensin receptor clones by determining equilibrium dissociation constants and coupling to phosphatidylinositol turnover. Our work focused on position 8 and 9 substitutions as well as position 11 of the neurotensin hexamer NT8-13. The results presented include: 1) the development of a compound that is species selective, with a binding potency at the rat receptor that is 20-fold more potent than at the human receptor; 2) the development of a pair of stereoselective compounds with the L-isomer exhibiting 190-700-fold more potency than the D-isomer; and 3) the development of an agonist that has a Kd of 0.3 and 0.2 nM at the human and rat neurotensin receptor, respectively, ranking it as among the most potent tested. Also, we present the first evidence that 1) the effect of pi electrons at position 11 (L-Tyr) are important for binding to the neurotensin receptor, and 2) the length of the side chain on position 9 (L-Arg) changes binding potency.
Collapse
Affiliation(s)
- B Cusack
- Mayo Foundation for Medical Education and Research, Jacksonville, Florida 32224, USA
| | | | | | | | | | | | | |
Collapse
|
22
|
Kaneda H, Maeda K. Alteration in regional brain neuropeptides following intracerebroventricular infusion of excitotoxins in rats. Biol Psychiatry 1994; 36:103-9. [PMID: 7948442 DOI: 10.1016/0006-3223(94)91190-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
We determined regional brain concentrations of somatostatin (SS), neuropeptide Y (NPY) and arginine-vasopressin (AVP) in 3- and 13-month-old rats. We also examined the effects of the excitotoxins, ibotenic acid (IA), kainic acid (KA), and quinolinic acid (QA) on regional levels of brain neuropeptides in rats. Excitotoxins were infused continuously into the lateral ventricle for 14 days using an osmotic minipump. Our results indicate that; (1) NPY in the brain is especially vulnerable to aging, compared to AVP. (2) IA induces a decrease in brain regional concentrations of neuropeptides and the effects are different from those of other excitotoxins, for example, KA and QA. (3) These effects of IA on neuropeptides may be dependent on the age of the animals when exposed and on the dose of IA.
Collapse
Affiliation(s)
- H Kaneda
- Department of Psychiatry, Kobe University School of Medicine, Japan
| | | |
Collapse
|
23
|
Abstract
Given the clinical features of AD, the severe atrophy of cerebral cortex that accompanies the disease, and the predominant cortical location of plaques and tangles, it is not surprising to find the most consistent changes in neuropeptides in this disease occurring in the cerebral cortex. The neuropeptide changes that have been reproducibly demonstrated in AD are reduced hippocampal and neocortical SS and CRF concentrations and a reduced CSF level of SS. In cerebral cortex, SS and CRF are found in GABAergic local circuit neurons in layers II, III, and VI. The function of these neurons is not well established, although these cells may act to integrate the flow of incoming and outgoing information in cerebral cortex. If this is true, then dysfunction of this integration could produce widespread failure of cerebrocortical function, resulting in the various neurobehavioral deficits seen in AD. The interpretation of neuropeptide changes in subcortical brain regions, either those that project to cortex, or those that are the efferent targets of cortical projections, is also uncertain. The observed neuropeptide abnormalities in these brain regions in AD are less consistent than are those seen in cerebral cortex. Perhaps the most intriguing result in these regions is the increases in galanin-immunoreactive terminals seen in the nucleus basalis of AD brains. Galanin has been shown to inhibit acetylcholine release and to impair memory function in rats (46,113).(ABSTRACT TRUNCATED AT 250 WORDS)
Collapse
Affiliation(s)
- A P Auchus
- Department of Neurology, Wesley Woods Center, Atlanta, GA 30322
| | | | | |
Collapse
|
24
|
Robinson JK, Crawley JN. The role of galanin in cholinergically-mediated memory processes. Prog Neuropsychopharmacol Biol Psychiatry 1993; 17:71-85. [PMID: 7677976 DOI: 10.1016/0278-5846(93)90033-o] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
1. Galanin, a 29 amino-acid neuroactive peptide, has been shown to affect diverse processes throughout the nervous system and to coexist with several "classical" neurotransmitters, including norepinephrine, serotonin, and acetylcholine. 2. Galanin coexists with acetylcholine in neurons of the medial septum, diagonal band, and nucleus basalis of Meynert, cells which degenerate during the course of Alzheimer's disease. 3. In the ventral hippocampus, galanin inhibits the release of acetylcholine and inhibits carbachol stimulated phosphatidyl inositol hydrolysis. 4. Galanin impairs choice accuracy in learning and memory paradigms in rats, and is therefore hypothesized to be a contributory factor in the memory and cognitive disabilities found in Alzheimer's patients. 5. Newly developed galanin antagonists, by eliminating putative inhibitory effects of endogenous galanin on cholinergic function, may serve as useful therapies for memory disorders.
Collapse
Affiliation(s)
- J K Robinson
- Unit on Behavioral Neuropharmacology, National Institute of Mental Health, Bethesda, MD
| | | |
Collapse
|
25
|
Mengod G, Rigo M, Savasta M, Probst A, Palacios JM. Regional distribution of neuropeptide somatostatin gene expression in the human brain. Synapse 1992; 12:62-74. [PMID: 1357764 DOI: 10.1002/syn.890120108] [Citation(s) in RCA: 28] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
The regional distribution of mRNA coding for the neuropeptide somatostatin has been studied in the human brain by in situ hybridization histochemistry using 32P-labeled oligonucleotides. We show that somatostatin mRNA-containing neurons are widely distributed in a number of nuclei and grey areas of the human brain, including neocortex, putamen, nucleus caudatus, nucleus accumbens, amygdala, midbrain, medulla oblongata, hippocampal formation, reticular nucleus of the thalamus, and posterior nucleus of the hypothalamus. No significant hybridization signal was observed in the substantia nigra, claustrum, globus pallidus, thalamus, and cerebellum. The topographic localization of neurons containing SOM mRNA in the human brain is in agreement with previous studies using immunocytochemical or radioimmunoassay techniques. These results show that in situ hybridization histochemistry with oligonucleotide probes can be used to map the distribution of neurons expressing SOM mRNA in human postmortem materials.
Collapse
Affiliation(s)
- G Mengod
- Department of Neurochemistry, Centro de Investigación y Desarrollo, CSIC, Barcelona, Spain
| | | | | | | | | |
Collapse
|
26
|
Abstract
The hypothalamic peptide hormones, TRH, LHRH (GnRH), CRH, GHRH, and GHIRH (somatostatin), influence the release of the anterior pituitary hormones, which in turn promote the release of target endocrine gland hormones and other metabolites. These latter compounds feed back to the brain to help control the secretion of the hypothalamic hormones. This is a dynamic interaction that is influenced by the aging process: Most of these hormones systems become less responsive with advancing age, due to decreased function of peptide-containing secretory neurons, a loss of hormone receptor sensitivity, and/or a reduction in the output of the target endocrine glands. That the hypothalamic peptides themselves can influence brain function is supported by the fact that most are found in areas of the brain other than the hypothalamus and that receptors for them exist in these other areas. For example, CRH is contained in a number of central neural systems that can influence behavior, including limbic areas, the hypothalamus, locus coeruleus, median raphé nuclei, and cortical interneurons. CRH has been shown to be anxiogenic in animal models, and its effect can be blocked by CRH receptor antagonists. CRH content in the locus coeruleus is particularly increased by stress and may influence norepinephrine neurotransmitter function in this structure. In aging there is a gradual reduction of the sensitivity of the brain to the negative feedback of corticosteroids, such that CRH secretion becomes somewhat increased under basal conditions. The behavioral effects of this change are unclear, however, as is the influence of stress-related activation of CRH, ACTH, and glucocorticoid secretion on behavior in the elderly. Other hypothalamic peptides have different patterns of change with aging, and some are markedly altered in pathological conditions; for example, in Alzheimer's disease the content of CRH and somatostatin in certain brain areas is decreased. However, whether the changes in hypothalamic peptides precede or follow the pathological behavioral changes, and how they participate in the changes, is still unclear.
Collapse
Affiliation(s)
- T F Sadow
- Department of Psychiatry, Harbor-U.C.L.A. Medical Center, Torrance
| | | |
Collapse
|
27
|
Unger JW, Lange W. NADPH-diaphorase-positive cell populations in the human amygdala and temporal cortex: neuroanatomy, peptidergic characteristics and aspects of aging and Alzheimer's disease. Acta Neuropathol 1992; 83:636-46. [PMID: 1378987 DOI: 10.1007/bf00299414] [Citation(s) in RCA: 52] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Previous studies have shown that nerve cells containing NADPH-diaphorase (NADPH-d) are relatively resistant to various damaging processes. NADPH-d has been found to be colocalized with somatostatin (SOM) and neuropeptide Y (NPY) in neuronal populations of several forebrain regions. We have investigated the anatomical distribution, morphology and cell sizes of NADPH-d neurons in amygdala and temporal cortex in Alzheimer's disease (AD) compared to controls of different age. NADPH-d cells and fibers were present in layers II-VI of the cortex and in the white matter below the cortical mantle. In the amygdaloid complex, NADPH-d cells and processes were observed in almost all subnuclei. In the amygdala of aged controls, only insignificant atrophic alterations of NADPH-d neurons and fibers were seen. In AD, a moderate, but significant shift towards an increased number of medium-to small-sized neurons was measured in amygdala and cortex, indicating cell shrinkage during the course of the disease. However, there were no differences when comparing NADPH-d staining in amygdaloid subregions in AD cases that contained numerous neuritic plaques (i.e., accessory basal nucleus) with areas that were relatively free of lesions (i.e., lateral nucleus). Analysis of cell size of SOM- and NPY-immunoreactive cells revealed only slight atrophic changes during aging. In AD, however, a significant atrophy of somatostatin neurons in temporal cortex was found, whereas no further cell shrinkage was noted for NPY as compared to aged controls. Colocalization tests demonstrated a large overlap between NPY, SOM and NADPH-d in the amygdala, whereas a subpopulation of cortical SOM neurons, predominantly localized in upper layers, showed a lack of NADPH-d. Our findings of a relative stability of a selective subclass of neurons during aging and AD support the hypothesis that cellular pathology may affect only specific neuronal populations while others might be spared.
Collapse
Affiliation(s)
- J W Unger
- Department of Anatomy, University of Munich, Federal Republic of Germany
| | | |
Collapse
|
28
|
Benzing WC, Mufson EJ, Jennes L, Stopa EG, Armstrong DM. Distribution of neurotensin immunoreactivity within the human amygdaloid complex: a comparison with acetylcholinesterase- and Nissl-stained tissue sections. J Comp Neurol 1992; 317:283-97. [PMID: 1374440 DOI: 10.1002/cne.903170306] [Citation(s) in RCA: 26] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
In a previous study, we reported marked depletion of neurotensin-immunoreactivity (NT-IR) within selected regions of the amygdala of patients with Alzheimer's disease. The significance of these observations was partly obscured largely because we lacked a thorough understanding of the innervation pattern of neurotensin in the normal human amygdala. Accordingly, in the present study, we used a polyclonal antibody against neurotensin to characterize the distribution and morphology of neurotensin-immunoreactive neuronal elements within the human amygdaloid complex. NT-IR occurred in a topographic manner that respected the cytoarchitectural boundaries of the amygdaloid subregions as defined by Nissl staining and acetylcholinesterase histochemistry. Most NT-IR in the amygdala was contained within beaded fibers and dot-like puncta. Within the subnuclei of the amygdala, immunoreactive neuritic elements were most dense within the central nucleus followed by the medial nucleus and intercalated nuclei. The anterior amygdaloid area, basal complex, paralaminar nucleus, cortical nucleus, cortical-amygdaloid transition area, and amygdalohippocampal area contained moderate densities of immunoreactivity. The accessory basal and lateral nuclei exhibited scant NT-IR. Immunoreactive neurons were found only within the anterior amygdaloid area and the central, medial, intercalated, and lateral capsular nuclei. The distribution of NT-immunoreactive processes and cell bodies within selected regions of the amygdala provides an anatomical substrate that may explain, in part, the neuromodulatory actions of neurotensin upon autonomic, endocrine, and memory systems.
Collapse
Affiliation(s)
- W C Benzing
- Department of Neurosciences, University of California, San Diego, La Jolla 92093
| | | | | | | | | |
Collapse
|
29
|
Abstract
Somatostatin (somatotropin release-inhibiting factor, SRIF) was originally discovered (1) during the purification of growth hormone-releasing factor from rat hypothalamus and was subsequently isolated and characterized (2) in 1972 from ovine hypothalamus. Since its initial characterization, SRIF has been shown to fulfill criteria for a neurotransmitter and to directly modulate neuronal activity as well as acting as an inhibitory factor regulating endocrine and exocrine secretion. Alterations in cerebrospinal fluid (CSF) concentrations of SRIF have been reported in several diseases exhibiting prominent cognitive dysfunction, including Alzheimer's disease (AD), major depression, Huntington's chorea, multiple sclerosis, schizophrenia and Parkinson's disease, while evidence for regional brain tissue concentration deficits in SRIF are more specific for AD. This mini-review will focus on the studies reporting alterations in CSF and postmortem tissue concentrations of SRIF in AD and depression.
Collapse
Affiliation(s)
- G Bissette
- Department of Psychiatry, Duke University Medical Center, Durham, North Carolina 27710
| | | |
Collapse
|
30
|
|
31
|
Leroux P, Gonzalez BJ, Bodenant C, Bucharles C, Vaudry H. Chapter 15 Somatostatin: a putative neurotrophic factor with pleiotropic activity in the rat central nervous system. PROGRESS IN BRAIN RESEARCH 1992; 92:175-85. [PMID: 1363846 DOI: 10.1016/s0079-6123(08)61174-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/25/2023]
Affiliation(s)
- P Leroux
- European Institute for Peptide Research, Laboratory of Molecular Endocrinology, CNRS URA 650, UA INSERM, University of Rouen, Mont-Saint-Aignan, France
| | | | | | | | | |
Collapse
|
32
|
Nemeroff CB, Bissette G, Slotkin TA, Seidler FJ, Miller BE, Ghanbari H. Recent advances in the neurochemical pathology of Alzheimer's disease. Studies of neuropeptides, cholinergic function and Alzheimer's disease-associated protein. Ann N Y Acad Sci 1991; 640:193-6. [PMID: 1685644 DOI: 10.1111/j.1749-6632.1991.tb00216.x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Our findings from three postmortem tissue studies in Alzheimer's disease (AD) are presented. We investigated (1) alterations in somatostatin (SRIF) and corticotropin-releasing factor (CRF) in AD; (2) regulatory changes in presynaptic cholinergic function in AD; and (3) use of Alzheimer's disease-associated protein (ADAP) as a diagnostic test for AD in postmortem tissue. Taken together, these findings reveal marked reductions in SRIF and CRF concentrations in many cerebrocortical areas in AD, a marked up-regulation of cholinergic neuronal activity in surviving cholinergic neurons in AD, and excellent specificity and sensitivity for the use of the ADAP assay as a diagnostic test for AD in postmortem tissue.
Collapse
Affiliation(s)
- C B Nemeroff
- Department of Psychiatry, Duke University Medical Center, Durham, North Carolina 27710
| | | | | | | | | | | |
Collapse
|
33
|
Molchan SE, Lawlor BA, Hill JL, Mellow AM, Davis CL, Martinez R, Sunderland T. The TRH stimulation test in Alzheimer's disease and major depression: relationship to clinical and CSF measures. Biol Psychiatry 1991; 30:567-76. [PMID: 1932406 DOI: 10.1016/0006-3223(91)90026-i] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
A blunted thyroid-stimulating hormone (TSH) response to exogenous thyrotropin-releasing hormone (TRH) has been reported to occur consistently in patients with major depression and less consistently in patients with Alzheimer's disease (AD). In this study we compared the TSH response to TRH in a large group (n = 40) of AD patients, elderly patients with major depression (n = 17), and age-matched controls (n = 14) to further characterize how it may relate to clinical variables, baseline thyroid function tests, and cerebrospinal fluid measures. Comparisons of TRH stimulation test response across all three groups revealed that patients with major depression had lower stimulated TSH levels (delta maxTSH) (p less than 0.02) and higher (though still within normal limits) mean thyroxine (T4) levels (p less than 0.05) than the AD patients or controls. AD patients with a blunted TSH response had a significantly higher mean free T4 (FT4) level (p less than 0.03) and tended to be more severely demented (p less than 0.01) than those with a nonblunted response.
Collapse
Affiliation(s)
- S E Molchan
- Unit on Geriatric Psychopharmacology, National Institute of Mental Health, Bethesda, MD 20892
| | | | | | | | | | | | | |
Collapse
|
34
|
Jellinger KA. Pathology of Parkinson's disease. Changes other than the nigrostriatal pathway. MOLECULAR AND CHEMICAL NEUROPATHOLOGY 1991; 14:153-97. [PMID: 1958262 DOI: 10.1007/bf03159935] [Citation(s) in RCA: 379] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
In Parkinson's disease (PD), in addition to degeneration of the nigrostriatal dopaminergic pathway, a variety of neuronal systems are involved, causing multiple neuromediator dysfunctions that account for the complex patterns of functional deficits. Degeneration affects the dopaminergic mesocorticolimbic system, the noradrenergic locus ceruleus (oral parts) and motor vagal nucleus, the serotonergic raphe nuclei, the cholinergic nucleus basalis of Meynert, pedunculopontine nucleus pars compacta, Westphal-Edinger nucleus, and many peptidergic brainstem nuclei. Cell losses in subcortical projection nuclei range from 30 to 90% of controls; they are more severe in depressed and demented PD patients. Most of the lesions are region-specific, affecting not all neurons containing a specific transmitter or harboring Lewy bodies. In contrast to Alzheimer's disease (AD), subcortical system lesions in Parkinson's disease appear not to be related to cortical pathology, suggesting independent or concomitant degeneration. The pathogenesis of multiple-system changes contributing to chemical pathology and clinical course of Parkinson's disease are unknown.
Collapse
Affiliation(s)
- K A Jellinger
- L. Boltzmann Institute of Clinical Neurobiology, Lainz-Hospital, Vienna, Austria
| |
Collapse
|
35
|
Abstract
Critical evaluation of biological theories of psychiatric disorder requires an understanding of current concepts of higher mental function and its related biology. Both the nature of the topic and the rapidity of advances in the field make it difficult to obtain an updated synthesis. Part I of this paper attempts to provide that by reviewing current concepts of the mind/body relationship, emotion, arousal, attention, consciousness and motivation. Part II considers those concepts in relation to recent work on the structure and function of the reticular, limbic and anterior cerebral systems. It is concluded that the model of the limbic system as subserving emotional life could now perhaps be set aside in favour of the model of a core set of chemically identified neurons in the reticular system being necessary but not sufficient to subserve higher mental function whilst also subserving other integrating functions for which no mental terminology is required. The problem of developing an eclectic theory of higher mental function that will embrace these concepts is discussed.
Collapse
Affiliation(s)
- G C Smith
- Monash University Department of Psychological Medicine, Monash Medical Centre Prince Henry's Hospital, Melbourne, Victoria
| |
Collapse
|
36
|
Doraiswamy PM, Krishnan KR, Nemeroff CB. Neuropeptides and neurotransmitters in Alzheimer's disease: focus on corticotrophin releasing factor. BAILLIERE'S CLINICAL ENDOCRINOLOGY AND METABOLISM 1991; 5:59-77. [PMID: 1674857 DOI: 10.1016/s0950-351x(05)80097-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|
37
|
Benzing WC, Mufson EJ, Jennes L, Armstrong DM. Reduction of neurotensin immunoreactivity in the amygdala in Alzheimer's disease. Brain Res 1990; 537:298-302. [PMID: 1707731 DOI: 10.1016/0006-8993(90)90372-i] [Citation(s) in RCA: 28] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
The density of neurotensin immunoreactivity (NT-IR) was dramatically decreased in 6 of 12 amygdaloid nuclear subregions in patients with Alzheimer's disease (AD) compared to age-matched normals. Diminution of NT-IR was most pronounced in amygdaloid regions containing the greatest number of senile plaques. This contrasts to our previous findings of little, if any, loss of substance P or somatostatin immunoreactivity within these same regions. The present findings corroborate biochemical reports of a decrease in NT-IR in the AD amygdala and suggest that this peptide may be selectively affected relative to other neuropeptides.
Collapse
Affiliation(s)
- W C Benzing
- Department of Neurosciences, University of California, San Diego, La Jolla 92093
| | | | | | | |
Collapse
|
38
|
Chapter 23. Role of Corticotropin-Releasing Factor in Neuropsychiatric Disorders and Neurodegenerative Diseases. ANNUAL REPORTS IN MEDICINAL CHEMISTRY 1990. [DOI: 10.1016/s0065-7743(08)61599-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register]
|