1
|
Unraveling the therapeutic potential of carbamoyl phosphate synthetase 1 (CPS1) in human disease. Bioorg Chem 2022; 130:106253. [DOI: 10.1016/j.bioorg.2022.106253] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Revised: 10/23/2022] [Accepted: 11/01/2022] [Indexed: 11/07/2022]
|
2
|
Chandra A, Sharma A, Dehzangi A, Shigemizu D, Tsunoda T. Bigram-PGK: phosphoglycerylation prediction using the technique of bigram probabilities of position specific scoring matrix. BMC Mol Cell Biol 2019; 20:57. [PMID: 31856704 PMCID: PMC6923822 DOI: 10.1186/s12860-019-0240-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2019] [Accepted: 11/20/2019] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND The biological process known as post-translational modification (PTM) is a condition whereby proteomes are modified that affects normal cell biology, and hence the pathogenesis. A number of PTMs have been discovered in the recent years and lysine phosphoglycerylation is one of the fairly recent developments. Even with a large number of proteins being sequenced in the post-genomic era, the identification of phosphoglycerylation remains a big challenge due to factors such as cost, time consumption and inefficiency involved in the experimental efforts. To overcome this issue, computational techniques have emerged to accurately identify phosphoglycerylated lysine residues. However, the computational techniques proposed so far hold limitations to correctly predict this covalent modification. RESULTS We propose a new predictor in this paper called Bigram-PGK which uses evolutionary information of amino acids to try and predict phosphoglycerylated sites. The benchmark dataset which contains experimentally labelled sites is employed for this purpose and profile bigram occurrences is calculated from position specific scoring matrices of amino acids in the protein sequences. The statistical measures of this work, such as sensitivity, specificity, precision, accuracy, Mathews correlation coefficient and area under ROC curve have been reported to be 0.9642, 0.8973, 0.8253, 0.9193, 0.8330, 0.9306, respectively. CONCLUSIONS The proposed predictor, based on the feature of evolutionary information and support vector machine classifier, has shown great potential to effectively predict phosphoglycerylated and non-phosphoglycerylated lysine residues when compared against the existing predictors. The data and software of this work can be acquired from https://github.com/abelavit/Bigram-PGK.
Collapse
Affiliation(s)
- Abel Chandra
- School of Engineering and Physics, Faculty of Science Technology and Environment, University of the South Pacific, Suva, Fiji.
| | - Alok Sharma
- School of Engineering and Physics, Faculty of Science Technology and Environment, University of the South Pacific, Suva, Fiji. .,Institute for Integrated and Intelligent Systems, Griffith University, Brisbane, QLD, 4111, Australia. .,Department of Medical Science Mathematics, Medical Research Institute, Tokyo Medical and Dental University (TMDU), Tokyo, 113-8510, Japan. .,Laboratory for Medical Science Mathematics, RIKEN Center for Integrative Medical Sciences, Yokohama, Kanagawa, 230-0045, Japan. .,CREST, JST, Tokyo, 102-8666, Japan.
| | - Abdollah Dehzangi
- Department of Computer Science, Morgan State University, Baltimore, MD, USA
| | - Daichi Shigemizu
- Department of Medical Science Mathematics, Medical Research Institute, Tokyo Medical and Dental University (TMDU), Tokyo, 113-8510, Japan.,Laboratory for Medical Science Mathematics, RIKEN Center for Integrative Medical Sciences, Yokohama, Kanagawa, 230-0045, Japan.,CREST, JST, Tokyo, 102-8666, Japan.,Medical Genome Center, National Center for Geriatrics and Gerontology, Obu, Aichi, 474-8511, Japan
| | - Tatsuhiko Tsunoda
- Department of Medical Science Mathematics, Medical Research Institute, Tokyo Medical and Dental University (TMDU), Tokyo, 113-8510, Japan.,Laboratory for Medical Science Mathematics, RIKEN Center for Integrative Medical Sciences, Yokohama, Kanagawa, 230-0045, Japan.,CREST, JST, Tokyo, 102-8666, Japan.,Laboratory for Medical Science Mathematics, Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Tokyo, 108-8639, Japan
| |
Collapse
|
3
|
Ding Y, Tang J, You X, Zhang X, Wang G, Yao C, Lin M, Wang X, Cheng D. Study on the mechanism underlying Al-induced hepatotoxicity based on the identification of the Al-binding proteins in liver. Metallomics 2019; 11:1353-1362. [PMID: 31343013 DOI: 10.1039/c9mt00150f] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Aluminum (Al) is the most abundant metal element in the earth's crust, and is implicated in the pathogenesis of liver lesions. However, the mechanisms underlying Al3+-induced hepatotoxicity are still largely elusive. Based on analysis with native gel electrophoresis, Al3+ plus 8-hydroxyquinoline staining and LC-MS/MS, the proteins with high Al3+ affinity were identified to be carbamoyl-phosphate synthase, adenosylhomocysteinase, heat shock protein 90-alpha, carbonic anhydrase 3, serum albumin and calreticulin. These proteins are involved in physiological processes such as the urea cycle, redox reactions, apoptosis and so on. Then we established an Al3+-treated rat model for biochemical tests, morphology observation and Ca2+ homeostasis analysis, in order to evaluate the extent of oxidative damage, hepatic histopathology and specific indicators of Al3+-related proteins in liver. Our findings indicated the high-affinity interactions with Al3+ perturbed the normal function of the above proteins, which could account for the mechanism underlying Al3+-induced hepatotoxicity.
Collapse
Affiliation(s)
- Yixin Ding
- State Key Laboratory of Food Nutrition and Safety, Tianjin University of Science & Technology, No. 29, 13th Avenue, Tianjin Economy Technological Development Area, Tianjin, 300457, China.
| | - Jinlei Tang
- State Key Laboratory of Food Nutrition and Safety, Tianjin University of Science & Technology, No. 29, 13th Avenue, Tianjin Economy Technological Development Area, Tianjin, 300457, China.
| | - Xun You
- State Key Laboratory of Food Nutrition and Safety, Tianjin University of Science & Technology, No. 29, 13th Avenue, Tianjin Economy Technological Development Area, Tianjin, 300457, China.
| | - Xiongfeng Zhang
- Jiangxi Province Tobacco Science Research Institute, Nanchang, 330000, China
| | - Guangliang Wang
- State Key Laboratory of Food Nutrition and Safety, Tianjin University of Science & Technology, No. 29, 13th Avenue, Tianjin Economy Technological Development Area, Tianjin, 300457, China.
| | - Congying Yao
- State Key Laboratory of Food Nutrition and Safety, Tianjin University of Science & Technology, No. 29, 13th Avenue, Tianjin Economy Technological Development Area, Tianjin, 300457, China.
| | - Mibin Lin
- State Key Laboratory of Food Nutrition and Safety, Tianjin University of Science & Technology, No. 29, 13th Avenue, Tianjin Economy Technological Development Area, Tianjin, 300457, China.
| | - Xuerui Wang
- State Key Laboratory of Food Nutrition and Safety, Tianjin University of Science & Technology, No. 29, 13th Avenue, Tianjin Economy Technological Development Area, Tianjin, 300457, China.
| | - Dai Cheng
- State Key Laboratory of Food Nutrition and Safety, Tianjin University of Science & Technology, No. 29, 13th Avenue, Tianjin Economy Technological Development Area, Tianjin, 300457, China. and Tianjin Key Laboratory of Food Science and Health, School of Medicine, Nankai University, Tianjin 300071, China
| |
Collapse
|
4
|
Yaoita Y, Nakajima K. Developmental gene expression patterns in the brain and liver of Xenopus tropicalis during metamorphosis climax. Genes Cells 2018; 23:998-1008. [PMID: 30294949 DOI: 10.1111/gtc.12647] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2018] [Revised: 09/18/2018] [Accepted: 09/29/2018] [Indexed: 11/29/2022]
Abstract
Thyroid hormones (THs) induce metamorphosis in amphibians, causing dynamic changes, whereas mammalian newborns undergo environmental transition from placenta to open air at birth. The similarity between amphibian metamorphosis and the mammalian perinatal periods has been repeatedly discussed. However, a corresponding developmental gene expression analysis has not yet been reported. In this study, we examined the developmental gene expression profiles in the brain and liver of Xenopus tropicalis during metamorphosis climax and compared them to the respective gene expression profiles of newborn rodents. Many upregulated genes identified in the tadpole brain during metamorphosis are also upregulated in the rodent brain during the first three postnatal weeks when the TH surge occurs. The upregulation of some genes in the brain was inhibited in thyroid hormone receptor α (TRα) knockout tadpoles but not in TRβ-knockout tadpoles, implying that brain metamorphosis is mainly mediated by TRα. The expression of some genes was also increased in the liver during metamorphosis climax. Our data suggest that the rodent brain undergoes TH-dependent remodeling during the first three postnatal weeks as observed in X. tropicalis during the larva-to-adult metamorphosis.
Collapse
Affiliation(s)
- Yoshio Yaoita
- Division of Embryology, Amphibian Research Center, Hiroshima University, Higashihiroshima, Japan
| | - Keisuke Nakajima
- Division of Embryology, Amphibian Research Center, Hiroshima University, Higashihiroshima, Japan
| |
Collapse
|
5
|
van Straten G, van Steenbeek FG, Grinwis GCM, Favier RP, Kummeling A, van Gils IH, Fieten H, Groot Koerkamp MJA, Holstege FCP, Rothuizen J, Spee B. Aberrant expression and distribution of enzymes of the urea cycle and other ammonia metabolizing pathways in dogs with congenital portosystemic shunts. PLoS One 2014; 9:e100077. [PMID: 24945279 PMCID: PMC4063766 DOI: 10.1371/journal.pone.0100077] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2014] [Accepted: 05/21/2014] [Indexed: 01/31/2023] Open
Abstract
The detoxification of ammonia occurs mainly through conversion of ammonia to urea in the liver via the urea cycle and glutamine synthesis. Congenital portosystemic shunts (CPSS) in dogs cause hyperammonemia eventually leading to hepatic encephalopathy. In this study, the gene expression of urea cycle enzymes (carbamoylphosphate synthetase (CPS1), ornithine carbamoyltransferase (OTC), argininosuccinate synthetase (ASS1), argininosuccinate lyase (ASL), and arginase (ARG1)), N-acetylglutamate synthase (NAGS), Glutamate dehydrogenase (GLUD1), and glutamate-ammonia ligase (GLUL) was evaluated in dogs with CPSS before and after surgical closure of the shunt. Additionally, immunohistochemistry was performed on urea cycle enzymes and GLUL on liver samples of healthy dogs and dogs with CPSS to investigate a possible zonal distribution of these enzymes within the liver lobule and to investigate possible differences in distribution in dogs with CPSS compared to healthy dogs. Furthermore, the effect of increasing ammonia concentrations on the expression of the urea cycle enzymes was investigated in primary hepatocytes in vitro. Gene-expression of CPS1, OTC, ASL, GLUD1 and NAGS was down regulated in dogs with CPSS and did not normalize after surgical closure of the shunt. In all dogs GLUL distribution was localized pericentrally. CPS1, OTC and ASS1 were localized periportally in healthy dogs, whereas in CPSS dogs, these enzymes lacked a clear zonal distribution. In primary hepatocytes higher ammonia concentrations induced mRNA levels of CPS1. We hypothesize that the reduction in expression of urea cycle enzymes, NAGS and GLUD1 as well as the alterations in zonal distribution in dogs with CPSS may be caused by a developmental arrest of these enzymes during the embryonic or early postnatal phase.
Collapse
Affiliation(s)
- Giora van Straten
- Department of Clinical Sciences of Companion Animals, Faculty of Veterinary Medicine, Utrecht University, Utrecht, the Netherlands
- * E-mail:
| | - Frank G. van Steenbeek
- Department of Clinical Sciences of Companion Animals, Faculty of Veterinary Medicine, Utrecht University, Utrecht, the Netherlands
| | - Guy C. M. Grinwis
- Department of Pathobiology, Faculty of Veterinary Medicine, Utrecht University, Utrecht, the Netherlands
| | - Robert P. Favier
- Department of Clinical Sciences of Companion Animals, Faculty of Veterinary Medicine, Utrecht University, Utrecht, the Netherlands
| | - Anne Kummeling
- Department of Clinical Sciences of Companion Animals, Faculty of Veterinary Medicine, Utrecht University, Utrecht, the Netherlands
| | - Ingrid H. van Gils
- Department of Clinical Sciences of Companion Animals, Faculty of Veterinary Medicine, Utrecht University, Utrecht, the Netherlands
| | - Hille Fieten
- Department of Clinical Sciences of Companion Animals, Faculty of Veterinary Medicine, Utrecht University, Utrecht, the Netherlands
| | | | - Frank C. P. Holstege
- Molecular Cancer Research, University Medical Centre Utrecht, Utrecht, the Netherlands
| | - Jan Rothuizen
- Department of Clinical Sciences of Companion Animals, Faculty of Veterinary Medicine, Utrecht University, Utrecht, the Netherlands
| | - Bart Spee
- Department of Clinical Sciences of Companion Animals, Faculty of Veterinary Medicine, Utrecht University, Utrecht, the Netherlands
| |
Collapse
|
6
|
Ruijter JM, Gieling RG, Markman MM, Hagoort J, Lamers WH. Stereological measurement of porto-central gradients in gene expression in mouse liver. Hepatology 2004; 39:343-52. [PMID: 14767987 DOI: 10.1002/hep.20068] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
The liver is thought to consist of lobules, numerous repeating, randomly oriented units. Within these lobules, genes are expressed in gradients along the porto-central axis, which spans the distance between portal and central veins. We have developed a robust stereological method to map all points in an image to their position on this porto-central axis. This approach is based on the distribution of well-characterized periportal and pericentral enzymes, which are visualized on sections preceding and following the section of interest. Because expression of the model genes phosphoenolpyruvate carboxykinase and ornithine aminotransferase declines gradually with increasing distance from the portal vein and central vein, respectively, these genes can be used to prepare images with topographical information without any assumption about the shape of the hepatic unit, or about the direction or shape of the gradient to be determined. The "relative distance" image is a 2-dimensional image that accurately maps the relative position of hepatocytes on the porto-central axis in 3-dimensional space. It is superimposed on the serial section under investigation to relate local staining density to position on the porto-central axis and obtain the gene expression gradient. The method was used to determine the expression gradient of 2 periportal and 2 pericentral enzymes and their response to fasting. The "total distance" image was used to measure the length of the porto-central axis, which was approximately 210 microm in mice and found to decrease 13% after 1 day of starvation. The method can be applied to any tissue component that can be stained quantitatively.
Collapse
Affiliation(s)
- Jan M Ruijter
- Department of Anatomy and Embryology and AMC Liver Center, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | | | | | | | | |
Collapse
|
7
|
Takahashi M, Stanton E, Moreno JI, Jackowski G. Immunoassay for Serum Glutamine Synthetase in Serum: Development, Reference Values, and Preliminary Study in Dementias. Clin Chem 2002. [DOI: 10.1093/clinchem/48.2.375] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Miyoko Takahashi
- Syn-X Pharma Inc., 6354 Viscount Rd., Mississauga, Ontario, L4V 1H3 Canada
| | - Eric Stanton
- Syn-X Pharma Inc., 6354 Viscount Rd., Mississauga, Ontario, L4V 1H3 Canada
| | - J Ignacio Moreno
- Syn-X Pharma Inc., 6354 Viscount Rd., Mississauga, Ontario, L4V 1H3 Canada
| | - George Jackowski
- Syn-X Pharma Inc., 6354 Viscount Rd., Mississauga, Ontario, L4V 1H3 Canada
| |
Collapse
|
8
|
Spijkers JA, van den Hoff MJ, Hakvoort TB, Vermeulen JL, Tesink-Taekema S, Lamers WH. Foetal rise in hepatic enzymes follows decline in c-met and hepatocyte growth factor expression. J Hepatol 2001; 34:699-710. [PMID: 11434616 DOI: 10.1016/s0168-8278(01)00012-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/04/2022]
Abstract
BACKGROUND/AIMS In the embryo, rapidly proliferating hepatocytes migrate from the liver primordium into the surrounding mesenchyme, whereas foetal hepatocytes are mitotically quiescent and accumulate hepatocyte-specific enzymes. We investigated the timing and topography of this behavioural switch. METHODS The expression of the c-met receptor and its ligand, hepatocyte growth factor (HGF), was investigated in prenatal rat liver by in situ hybridization, immunohistochemistry and western-blot analysis. RESULTS c-Met was expressed by hepatocytes and HGF by non-parenchymal liver cells. Their mRNA levels peaked during embryonic day (ED) 11-13. c-Met protein was weakly expressed in the entire liver during ED 11 and 12, but more abundantly at ED 13, when its expression withdrew to the hepatic periphery. Simultaneously, the periportal hepatocellular marker carbamoylphosphate synthetase began to accumulate in the centre of the liver. Although the definitive vascular architecture develops simultaneously, the downstream, pericentral hepatocytes began to express glutamine synthetase only 4 days later, suggesting a requirement for prior periportal hepatocyte maturation. Additionally, c-met protein appeared in the connective tissue surrounding the large veins. The c-met protein/mRNA ratio was substantially higher in non-epithelial cells (hepatic connective tissue, heart) than in endoderm-derived epithelia, including hepatocytes, indicating important post-transcriptional regulation. CONCLUSIONS The decline in c-met expression reflects the end of the embryonic phase and heralds the onset of the fetal, maturational phase of liver development.
Collapse
Affiliation(s)
- J A Spijkers
- Department of Anatomy and Embryology, Academic Medical Center, University of Amsterdam, The Netherlands
| | | | | | | | | | | |
Collapse
|
9
|
Paulusma CC, Kothe MJ, Bakker CT, Bosma PJ, van Bokhoven I, van Marle J, Bolder U, Tytgat GN, Oude Elferink RP. Zonal down-regulation and redistribution of the multidrug resistance protein 2 during bile duct ligation in rat liver. Hepatology 2000; 31:684-93. [PMID: 10706559 DOI: 10.1002/hep.510310319] [Citation(s) in RCA: 108] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/07/2022]
Abstract
We have studied regulation of the multidrug resistance protein 2 (mrp2) during bile duct ligation (BDL) in the rat. In hepatocytes isolated after 16, 48, and 72 hours of BDL, mrp2-mediated dinitrophenyl-glutathione (DNP-GS) transport was decreased to 65%, 33%, and 33% of control values, respectively. The impaired mrp2-mediated transport coincided with strongly decreased mrp2 protein levels, without any significant changes in mrp2 RNA levels. Restoration of bile flow after a 48-hour BDL period resulted in a slow recovery of mrp2-mediated transport and protein levels. Immunohistochemical detection of the protein in livers of rats undergoing BDL showed strongly reduced mrp2 staining after 48 hours, which was initiated in the periportal areas of the liver lobule and progressed toward the pericentral areas after 96 hours. Immunofluorescent detection of mrp2 in livers of rats undergoing 48 hours of BDL revealed decreased staining accompanied by intracellular localization of the protein in pericanalicular vesicular structures. Within this intracellular compartment, mrp2 colocalized with the bile salt transporter (bsep) and was still active as shown by vesicular accumulation of the fluorescent organic anion glutathione-bimane (GS-B). We conclude that down-regulation of mrp2 during BDL-induced obstructive cholestasis is mainly posttranscriptionally regulated. We propose that this down-regulation is caused by endocytosis of apical transporters followed up by increased breakdown of mrp2, probably in lysosomes. This breakdown of mrp2 is more severe in the periportal areas of the liver lobule.
Collapse
Affiliation(s)
- C C Paulusma
- Department of Gastrointestinal and Liver Diseases, Center for Liver and Intestinal Research, Academic Medical Center, Amsterdam, The Netherlands
| | | | | | | | | | | | | | | | | |
Collapse
|
10
|
Lamers WH, Boon L, Van Hemert FJ, Labruyère WT, De Jong P, Ruijter JM, Moorman AF. Glutamine synthetase expression in perinatal spiny mouse liver. EUROPEAN JOURNAL OF BIOCHEMISTRY 1999; 262:803-9. [PMID: 10411642 DOI: 10.1046/j.1432-1327.1999.00436.x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The pronounced increase in the protein/mRNA ratio of ammonia-metabolising enzymes in rat liver in the last prenatal week represents a clear example of a post-transcriptional level of control of gene expression. Both the underlying mechanism, namely an increase in translational efficiency of the mRNA and/or enhanced stability of the protein, and its importance for perinatal adaptation are unknown. We investigated this process in spiny mouse liver, because the comparison of rat and spiny mouse can discriminate adaptively from developmentally regulated processes in the perinatal period. We focused on glutamine synthetase (GS) because of the conveniently small size of its mRNA. Prenatally, GS enzyme activity slowly accumulated to approximately 1.3 U x g-1 liver at birth and postnatally more rapidly to 5.5 U x g-1 at 2 weeks. Both phases of enzyme accumulation obeyed exponential functions. Western-blot analysis showed that changes in GS activity reflected changes in GS protein content. GS mRNA content of the liver was 45 fmol x g-1 at 2 weeks before birth and slowly declined to approximately 25 fmol x g-1 at 2 weeks after birth. The GS protein/mRNA ratio increased 2.5-fold prenatally and sixfold postnatally. Analysis of prenatal and postnatal polysome profiles revealed no evidence of GS mRNA-containing ribonucleoprotein particles. Instead, GS mRNAs were (fully) occupied by 12 ribosomes, indicating regulation at the level of elongation. The kinetics of GS protein accumulation, in conjunction with GS mRNA content, are consistent with an approximately sixfold increase in its rate of synthesis at birth as the result of a corresponding stimulation of the rate of elongation.
Collapse
Affiliation(s)
- W H Lamers
- Department of Anatomy and Embryology, Academic Medical Center, University of Amsterdam, The Netherlands.
| | | | | | | | | | | | | |
Collapse
|
11
|
Christoffels VM, Grange T, Kaestner KH, Cole TJ, Darlington GJ, Croniger CM, Lamers WH. Glucocorticoid receptor, C/EBP, HNF3, and protein kinase A coordinately activate the glucocorticoid response unit of the carbamoylphosphate synthetase I gene. Mol Cell Biol 1998; 18:6305-15. [PMID: 9774647 PMCID: PMC109217 DOI: 10.1128/mcb.18.11.6305] [Citation(s) in RCA: 71] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
A single far-upstream enhancer is sufficient to confer hepatocyte-specific, glucocorticoid- and cyclic AMP-inducible periportal expression to the carbamoylphosphate synthetase I (CPS) gene. To identify the mechanism of hormone-dependent activation, the composition and function of the enhancer have been analyzed. DNase I protection and gel mobility shift assays revealed the presence of a cyclic AMP response element, a glucocorticoid response element (GRE), and several sites for the liver-enriched transcription factor families HNF3 and C/EBP. The in vivo relevance of the transcription factors interacting with the enhancer in the regulation of CPS expression in the liver was assessed by the analysis of knockout mice. A strong reduction of CPS mRNA levels was observed in glucocorticoid receptor- and C/EBPalpha-deficient mice, whereas the CPS mRNA was normally expressed in C/EBPbeta knockout mice and in HNF3alpha and -gamma double-knockout mice. (The role of HNFbeta could not be assessed, because the corresponding knockout mice die at embryonic day 10). In hepatoma cells, most of the activity of the enhancer is contained within a 103-bp fragment, which depends for its activity on the simultaneous occupation of the GRE, HNF3, and C/EBP sites, thus meeting the requirement of a glucocorticoid response unit. In fibroblast-like CHO cells, on the other hand, the GRE in the CPS enhancer does not cooperate with the C/EBP and HNF3 elements in transactivation of the CPS promoter. In both hepatoma and CHO cells, stimulation of expression by cyclic AMP depends mainly on the integrity of the glucocorticoid pathway, demonstrating cross talk between this pathway and the cyclic AMP (protein kinase A) pathway.
Collapse
Affiliation(s)
- V M Christoffels
- Department of Anatomy and Embryology, University of Amsterdam, 1105 AZ Amsterdam, The Netherlands
| | | | | | | | | | | | | |
Collapse
|
12
|
Lie-Venema H, Hakvoort TB, van Hemert FJ, Moorman AF, Lamers WH. Regulation of the spatiotemporal pattern of expression of the glutamine synthetase gene. PROGRESS IN NUCLEIC ACID RESEARCH AND MOLECULAR BIOLOGY 1998; 61:243-308. [PMID: 9752723 DOI: 10.1016/s0079-6603(08)60829-6] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Glutamine synthetase, the enzyme that catalyzes the ATP-dependent conversion of glutamate and ammonia into glutamine, is expressed in a tissue-specific and developmentally controlled manner. The first part of this review focuses on its spatiotemporal pattern of expression, the factors that regulate its levels under (patho)physiological conditions, and its role in glutamine, glutamate, and ammonia metabolism in mammals. Glutamine synthetase protein stability is more than 10-fold reduced by its product glutamine and by covalent modifications. During late fetal development, translational efficiency increases more than 10-fold. Glutamine synthetase mRNA stability is negatively affected by cAMP, whereas glucocorticoids, growth hormone, insulin (all positive), and cAMP (negative) regulate its rate of transcription. The signal transduction pathways by which these factors may regulate the expression of glutamine synthetase are briefly discussed. The second part of the review focuses on the evolution, structure, and transcriptional regulation of the glutamine synthetase gene in rat and chicken. Two enhancers (at -6.5 and -2.5 kb) were identified in the upstream region and two enhancers (between +156 and +857 bp) in the first intron of the rat glutamine synthetase gene. In addition, sequence analysis suggests a regulatory role for regions in the 3' untranslated region of the gene. The immediate-upstream region of the chicken glutamine synthetase gene is responsible for its cell-specific expression, whereas the glucocorticoid-induced developmental appearance in the neural retina is governed by its far-upstream region.
Collapse
Affiliation(s)
- H Lie-Venema
- Department of Anatomy and Embryology, University of Amsterdam, The Netherlands
| | | | | | | | | |
Collapse
|
13
|
De Jonge WJ, Dingemanse MA, de Boer PA, Lamers WH, Moorman AF. Arginine-metabolizing enzymes in the developing rat small intestine. Pediatr Res 1998; 43:442-51. [PMID: 9544996 DOI: 10.1203/00006450-199804000-00002] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Before weaning, arginine biosynthesis from citrulline most likely takes place in the small intestine rather than in the kidney. We studied the expression of ornithine cycle enzymes in the rat small intestine during perinatal development. The spatiotemporal patterns of expression of ornithine aminotransferase, carbamoylphosphate synthetase, ornithine transcarbamoylase, argininosuccinate synthetase, argininosuccinate lyase, and arginase mRNAs were studied by Northern blot analysis and in situ hybridization. In addition, the expression of carbamoylphosphate synthetase and argininosuccinate synthetase protein was studied by immunohistochemistry. Before birth, the developmentally more mature proximal loops of the intestine expressed the mRNAs at higher concentrations than the more distal loops. After birth, this difference was no longer obvious. The mRNAs of argininosuccinate synthetase and argininosuccinate lyase, the enzymes that metabolize citrulline to arginine, were detectable only in the upper part of the villi, whereas the other mRNAs were concentrated in the crypts. The distribution of argininosuccinate synthetase protein corresponded with that of the mRNA, whereas carbamoylphosphate synthetase protein was present in all enterocytes of the crypts and villi. Hepatic arginase mRNA could not be detected in the enterocytes. The spatial distribution of the respective mRNAs and proteins along the villus axis of the suckling small intestine indicates that the basal enterocytes synthesize citrulline, whereas the enterocytes in the upper half of the villus synthesize arginine.
Collapse
Affiliation(s)
- W J De Jonge
- Department of Anatomy and Embryology, Academical Medical Center, University of Amsterdam, The Netherlands
| | | | | | | | | |
Collapse
|
14
|
Abstract
To resolve an apparent discrepancy in the developmental appearance of glutamine synthetase (GS) protein in rat [Gaasbeek Janzen et al. (1987) J. Histochem, Cytochem., 35:49-54] and mouse [Bennett et al. (1987) J. Cell Biol., 105:1073-1085] liver, we have investigated its expression during liver development in the mouse and compared it with that of carbamoylphosphate synthetase I (CPS). The expression of glutamate dehydrogenase was used as a marker to identify all hepatocytes in these strongly hematopoietic livers. GS protein accumulation starts in mouse hepatocytes at embryonic day (ED) 15. The first hepatocytes in which the enzyme accumulates were found around the major hepatic veins. CPS protein was found to accumulate in mouse hepatocytes from ED 13 onward: first, at the center of the median and lateral lobes, but temporarily not at the periphery of these lobes and not at the caudate lobe. The initial phase of accumulation of GS and CPS protein was characterized by a heterogeneity in enzyme content between hepatocytes. By ED 17, both enzymes were detectable in all hepatocytes at the center of the median and lateral lobes. This event marked the onset of the development of the complementary distribution of the enzymes typical of zonal heterogeneity in the adult mammalian liver. However, during the perinatal period, the pericentral hepatocytes temporarily accumulated CPS protein. We also observed heterochrony between species in the appearance of CPS protein in the small intestine.
Collapse
Affiliation(s)
- R G Notenboom
- Department of Anatomy and Embryology, University of Amsterdam, Academic Medical Centre, The Netherlands
| | | | | |
Collapse
|
15
|
Bourgeois P, Harlin JC, Renouf S, Goutal I, Fairand A, Husson A. Regulation of argininosuccinate synthetase mRNA level in rat foetal hepatocytes. EUROPEAN JOURNAL OF BIOCHEMISTRY 1997; 249:669-74. [PMID: 9395312 DOI: 10.1111/j.1432-1033.1997.t01-1-00669.x] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Expression of the hepatic gene for argininosuccinate synthase (ASS), one of the key enzymes of the urea cycle, was analysed during the perinatal period in the rat. To this end, the amount of specific mRNA was measured in the liver at various stages of development and in cultured foetal hepatocytes maintained in different hormonal conditions. The ASS mRNA was first detected in 15.5-day foetuses and its level increased concomitantly with a rise in the enzyme activity, suggesting that the appearance of the ASS activity reflects the turning on of specific gene transcription. This was demonstrated by run-on assay which showed an enhanced rate of transcription of the ASS gene during the perinatal period. When foetal hepatocytes were cultured with dexamethasone, a dose-dependent increase in ASS mRNA was measured, which was completely abolished by actinomycin D addition. The transcription rate of the gene was increased about twofold in the presence of the steroid, as measured by nuclear run-on assay. This transcriptional action could additionally require a protein factor since it could be inhibited by the simultaneous addition of puromycin. Insulin or glucagon respectively repressed or enhanced the dexamethasone-induced accumulation of ASS mRNA when added simultaneously with the steroid for 24 h. This developmental regulation of the ASS mRNA by glucocorticoids, insulin and glucagon could account for the modulation of the enzyme activity previously observed in vivo and in vitro in the foetal liver.
Collapse
Affiliation(s)
- P Bourgeois
- Groupe de Biochimie Physiopathologie Digestive et Nutritionelle, Institut Fédératif de Recherches Multidisciplinaires sur les Peptides no. 23, St-Etienne-du-Rouvray, France
| | | | | | | | | | | |
Collapse
|
16
|
Helou K, Das AT, Lamers WH, Hoovers JM, Szpirer C, Szpirer J, Klinga-Levan K, Levan G. FISH mapping of three ammonia metabolism genes (Glul, Cps1, Glud1) in rat, and the chromosomal localization of GLUL in human and Cps1 in mouse. Mamm Genome 1997; 8:362-4. [PMID: 9107685 DOI: 10.1007/s003359900442] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Affiliation(s)
- K Helou
- Department of Genetics, Göteborg University Medicinareg. 9C, S-413 90 Göteborg, Sweden
| | | | | | | | | | | | | | | |
Collapse
|
17
|
Jonker A, de Boer PA, van den Hoff MJ, Lamers WH, Moorman AF. Towards quantitative in situ hybridization. J Histochem Cytochem 1997; 45:413-23. [PMID: 9071323 DOI: 10.1177/002215549704500309] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
In situ hybridization analysis of tissue mRNA concentrations remains to be accepted as a quantitative technique, even though exposure of tissue sections to photographic emulsion is equivalent to Northern blot analysis. Because of the biological importance of in situ quantification of RNA sequences within a morphological context, we evaluated the quantitative aspects of this technique. In calibrated microscopic samples, autoradiographic signal (density of silver grains) was proportionate to the radioactivity present, to the exposure time, and to time of development of the photographic emulsion. Similar results were obtained with tissue sections, showing that all steps of the in situ hybridization protocol, before and including the detection of the signal, can be reproducibly performed. Furthermore, the integrated density of silver grains produced in liver and intestinal sections by the in situ hybridization procedure using 35S-labeled riboprobes is directly proportionate to the signal obtained by quantitative Northern blot analysis. The significance of this finding is that in situ quantification of RNA can be realized with high sensitivity and with the additional advantage of the possibility of localizing mRNA within the cells of interest. Application of this procedure on fetal and adult intestinal tissue showed that the carbamoylphosphate synthetase (CPS)-expressing epithelial cells of both tissues accumulated CPS mRNA to the same level but that whole-organ CPS mRNA levels decreased four-to fivefold in the same period, owing to a comparable decrease in the number of CPS-expressing cells in total intestinal tissue.
Collapse
Affiliation(s)
- A Jonker
- Department of Anatomy and Embryology, Academical Medical Centre, University of Amsterdam, The Netherlands
| | | | | | | | | |
Collapse
|
18
|
Christoffels VM, van den Hoff MJ, Lamers MC, van Roon MA, de Boer PA, Moorman AF, Lamers WH. The upstream regulatory region of the carbamoyl-phosphate synthetase I gene controls its tissue-specific, developmental, and hormonal regulation in vivo. J Biol Chem 1996; 271:31243-50. [PMID: 8940127 DOI: 10.1074/jbc.271.49.31243] [Citation(s) in RCA: 25] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
The carbamoyl-phosphate synthetase I gene is expressed in the periportal region of the liver, where it is activated by glucocorticosteroids and glucagon (via cyclic AMP), and in the crypts of the intestinal mucosa. The enhancer of the gene is located 6.3 kilobase pairs upstream of the transcription start site and has been shown to direct the hormone-dependent hepatocyte-specific expression in vitro. To analyze the function of the upstream region in vivo, three groups of transgenic mice were generated. In the first group the promoter drives expression of the reporter gene, whereas the promoter and upstream region including the far upstream enhancer drive expression of the reporter gene in the second group. In the third group the far upstream enhancer was directly coupled to a minimized promoter fragment. Reporter-gene expression was virtually undetectable in the first group. In the second group spatial, temporal, and hormonal regulation of expression of the reporter gene and the endogenous carbamoyl-phosphate synthetase gene were identical. The third group showed liver-specific periportal reporter gene expression, but failed to activate expression in the intestine. These results show that the upstream region of the carbamoyl-phosphate synthetase gene controls four characteristics of its expression: tissue specificity, spatial pattern of expression within the liver and intestine, hormone sensitivity, and developmental regulation. Within the upstream region, the far upstream enhancer at -6.3 kilobase pairs is the determinant of the characteristic hepatocyte-specific periportal expression pattern of carbamoyl-phosphate synthetase.
Collapse
Affiliation(s)
- V M Christoffels
- University of Amsterdam, Department of Anatomy and Embryology, Meibergdreef 15, 1105 AZ Amsterdam, The Netherlands
| | | | | | | | | | | | | |
Collapse
|
19
|
Niessen RW, Lamping RJ, Peters M, Lamers WH, Sturk A. Fetal and neonatal development of antithrombin III plasma activity and liver messenger RNA levels in sheep. Pediatr Res 1996; 39:685-91. [PMID: 8848346 DOI: 10.1203/00006450-199604000-00021] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
In healthy term human newborns a unique hemostatic balance exists with reduced plasma concentrations of several coagulant and anticoagulant proteins, including antithrombin III (AT III). In preterm newborns even lower AT III concentrations are observed, with an associated thromboembolic risk. As part of our study program on the gene regulation of AT III, we investigated whether the increase in plasma AT III activity during fetal and neonatal development is particularly controlled at the transcriptional level. Plasma AT III activity and liver AT III mRNA content between the 8th wk of gestation and the 4th wk after birth were determined in sheep. AT III activity gradually increased from 34% of the mean adult level at 8-10 wk of gestation to 86% (2.5-fold) at term (21 wk), and remained in the adult range after birth. The mean body weight, and thus plasma volume, increased 57-fold. Therefore, the total plasma AT III activity increased 140-fold. The total liver AT III mRNA content increased only 14-fold between these fetal stages, mainly due to increased liver weight. Therefore, the total plasma AT III activity increased 10-fold more than the liver AT III mRNA content. In the neonatal period between d 1-3 and 28, the total plasma AT III activity increased only 2-fold more than the liver AT III mRNA content. We conclude that the increase in plasma AT III activity during the fetal period, and similarly the neonatal period, is not regulated at the transcriptional level. Furthermore, a unique fetal isoform of AT III was detected in sheep. This isoform had a 2500-D higher molecular mass compared with the other fetal, neonatal, and adult AT III isoform, and disappeared from the circulation between d 2 and 7 after birth. These AT III isoforms differ in their carbohydrate moiety.
Collapse
Affiliation(s)
- R W Niessen
- EKZ/Children's AMC, Amsterdam, The Netherlands
| | | | | | | | | |
Collapse
|
20
|
Das AT, Salvadó J, Boon L, Biharie G, Moorman AF, Lamers WH. Regulation of glutamate dehydrogenase expression in the developing rat liver: control at different levels in the prenatal period. EUROPEAN JOURNAL OF BIOCHEMISTRY 1996; 235:677-82. [PMID: 8654417 DOI: 10.1111/j.1432-1033.1996.00677.x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
To study the regulation of the expression of glutamate dehydrogenase (Glu-DH) in rat liver during development, the Glu-DH mRNA concentration in the liver of rats ranging in age from 14 days prenatal development to 3 months after birth was determined. This concentration increased up to two days before birth, decreased rapidly between two days before and one day after birth and increased again in the second and third postnatal week. The ratio of Glu-DH mRNA/protein decreased more than 10-fold in the prenatal period, whereas it did not change significantly after birth. Thus, whereas the ratio between the Glu-DH monomer protein molecules and Glu-DH mRNA molecules is found to be approximately 1400 at 14 days of prenatal development, it is approximately 1700 four weeks after birth. We argue than an increase in the translational efficiency after birth is the most likely cause of the observed developmental changes in Glu-DH mRNA/protein ratio. Our results suggest that the expression after birth is predominantly regulated at the pretranslational level, whereas the prenatal Glu-DH expression is regulated both at the translational level and at the pretranslational level.
Collapse
Affiliation(s)
- A T Das
- Department of Anatomy and Embryology, University of Amsterdam, Academic Medical Center, The Netherlands
| | | | | | | | | | | |
Collapse
|
21
|
Notenboom RG, de Boer PA, Moorman AF, Lamers WH. The establishment of the hepatic architecture is a prerequisite for the development of a lobular pattern of gene expression. Development 1996; 122:321-32. [PMID: 8565845 DOI: 10.1242/dev.122.1.321] [Citation(s) in RCA: 23] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
We have studied the expression patterns of ammonia-metabolising enzymes and serum proteins in intrasplenically transplanted embryonic rat hepatocytes by in situ hybridisation and immunohistochemical analysis. The enzymic phenotype of individually settled hepatocytes was compared with that of hepatocytes being organised into a three-dimensional hepatic structure. Our results demonstrate that development towards the terminally differentiated state with zonal differences in enzyme content requires the incorporation of hepatocytes into lobular structures. Outside such an architectural context, phenotypic maturation becomes arrested and hepatocytes linger in the protodifferentiated state. These features identify the foetal period as a crucial time for normal liver development and show that the establishment of the terminally differentiated hepatocellular phenotype, beginning with the differentiation of hepatocytes from the embryonic foregut, is realised via a multistep process.
Collapse
Affiliation(s)
- R G Notenboom
- Department of Anatomy and Embryology, University of Amsterdam, The Netherlands
| | | | | | | |
Collapse
|
22
|
Takiguchi M, Mori M. Transcriptional regulation of genes for ornithine cycle enzymes. Biochem J 1995; 312 ( Pt 3):649-59. [PMID: 8554501 PMCID: PMC1136163 DOI: 10.1042/bj3120649] [Citation(s) in RCA: 92] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Affiliation(s)
- M Takiguchi
- Department of Molecular Genetics, Kumamoto University School of Medicine, Japan
| | | |
Collapse
|
23
|
Christoffels VM, van den Hoff MJ, Moorman AF, Lamers WH. The far-upstream enhancer of the carbamoyl-phosphate synthetase I gene is responsible for the tissue specificity and hormone inducibility of its expression. J Biol Chem 1995; 270:24932-40. [PMID: 7559619 DOI: 10.1074/jbc.270.42.24932] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
The role of the proximal promoter and the far-upstream enhancer in the hepatocyte-specific and hormonal regulation of the carbamoyl-phosphate synthetase I (CPS) gene was investigated in transient transfection assays using primary rat hepatocytes, hepatoma cells, and fibroblasts. These experiments revealed that the activity of the promoter is comparable in all cells tested and is, therefore, not responsible for tissue-specific expression. The 5'-untranslated region of the mRNA is a major, non-tissue specific stimulator of expression in FTO-2B hepatoma cells, acting at the post-transcriptional level. A 469-base pair DNA fragment, 6 kilobase pairs upstream of the transcription start-site in the CPS gene, confers strong hormone-dependent tissue specific expression, both in combination with the CPS promoter and a minimized viral thymidine kinase promoter. Sequences similar to a cyclic AMP-responsive element and a glucocorticosteroid-responsive element were found in the isolated enhancer. Substitutional mutations in these sites strongly affected hormone-induced expression. Analysis of the interaction between the enhancer and parts of the CPS promoter revealed that, in addition to the TATA box, the GAG box, a motif similar to the GC box near the TATA motif, is instrumental in conferring the enhancer activity.
Collapse
Affiliation(s)
- V M Christoffels
- University of Amsterdam, Department of Anatomy and Embryology, The Netherlands
| | | | | | | |
Collapse
|
24
|
Hoff MJB, Zande LPWGM, Dingemanse MA, Das AT, Labruyere W, Moorman AFM, Charles R, Lamers WH. Isolation and Characterization of the Rat Gene for Carbamoylphosphate Synthetase I. ACTA ACUST UNITED AC 1995. [DOI: 10.1111/j.1432-1033.1995.tb20271.x] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
25
|
Moorman AF, de Boer PA, Watford M, Dingemanse MA, Lamers WH. Hepatic glutaminase mRNA is confined to part of the urea cycle domain in the adult rodent liver lobule. FEBS Lett 1994; 356:76-80. [PMID: 7988725 DOI: 10.1016/0014-5793(94)01230-x] [Citation(s) in RCA: 29] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
This in situ hybridization study describes the developmental appearance of the lobular distribution of the mRNA encoding hepatic glutaminase in normal rat liver. Glutaminase has been proposed to provide the urea cycle with ammonia [Häussinger and Gerok (1983) Eur. J. Biochem. 133, 269-275]. Hence, the (developmental) pattern of expression of the mRNA would be expected to be closely linked to that of the urea cycle enzymes. From embryonic day 20 onward, hepatic glutaminase mRNA can be detected along the entire porto-central axis, with predominant expression in the portal area. In the adult phenotype, which is acquired at the end of the first postnatal week, glutaminase mRNA is no longer present along the entire porto-central distance but has become confined to a relatively small periportal domain in which the expression decreases in a porto-central direction. Thus, in contrast to the large periportal domain, in which the urea cycle enzymes are expressed, the glutaminase mRNA-expressing domain is much smaller and not contiguous with the glutamine synthase mRNA-expressing pericentral domain, leaving a midlobular area that is devoid of glutaminase mRNA. A similar pattern of distribution was found in adult mouse liver. The significance of these observations is that, within the liver lobules, there is an area in which glutaminase is not expressed and, hence, glutamine can not be the substrate for urea synthesis.
Collapse
Affiliation(s)
- A F Moorman
- University of Amsterdam, Department of Anatomy and Embryology, The Netherlands
| | | | | | | | | |
Collapse
|
26
|
Wagenaar GT, Moorman AF, Chamuleau RA, Deutz NE, De Gier C, De Boer PA, Verbeek FJ, Lamers WH. Vascular branching pattern and zonation of gene expression in the mammalian liver. A comparative study in rat, mouse, cynomolgus monkey, and pig. Anat Rec (Hoboken) 1994; 239:441-52. [PMID: 7978367 DOI: 10.1002/ar.1092390410] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
BACKGROUND A significant part of the liver volume consists of regions in which hepatocytes are in close contact with large branches of the afferent (portal vein) or efferent (hepatic vein) vessels. As most studies have addressed zonation of gene expression around the parenchymal branches of the portal and hepatic vein only, the patterns of gene expression in hepatocytes surrounding larger vessels are largely unknown. METHODS For that reason, we studied the patterns of expression of the mRNAs and proteins of the pericentral marker enzymes glutamine synthase, ornithine aminotransferase, and glutamate dehydrogenase and the periportal marker enzymes phosphoenolpyruvate carboxykinase and carbamoylphosphate synthase in the rat liver, in relation to the branching pattern of the afferent and efferent hepatic veins with immuno and hybridocytochemical techniques. These patterns of expression were compared with those seen in mouse, monkey, and pig liver. RESULTS The distribution patterns of the genes studied appear to reflect the "intensity" of the pericentral and periportal environment, glutamine synthase and phosphoenolypyruvate carboxykinase requiring the most pronounced environment, respectively. The patterns of gene expression around the large branches of the portal and hepatic vein were found to be related to the parenchymal branches in the neighbourhood of these large blood vessels. Only the cells of the limiting plate retain their periportal and pericentral phenotype for those marker enzymes that do not require a pronounced periportal or pericentral environment to be expressed. GS-negative areas in the pericentral limiting plate appear to correlate with a local absence of draining central veins, and become more frequent and extensive around the larger branches of the hepatic vein. CONCLUSIONS The similarity of the observed patterns of gene expression of the genes studied in mouse, rat, monkey, pig, and man suggests that they reflect a general feature of gene expression in the mammalian liver. A comparison of mouse, rat, pig, and human liver suggests that the presence of glutamine synthase-negative areas reflects the branching order of the efferent hepatic blood vessel.
Collapse
Affiliation(s)
- G T Wagenaar
- Department of Anatomy and Embryology, University of Amsterdam, The Netherlands
| | | | | | | | | | | | | | | |
Collapse
|
27
|
Dingemanse MA, de Boer PA, Moorman AF, Charles R, Lamers WH. The expression of liver-specific genes within rat embryonic hepatocytes is a discontinuous process. Differentiation 1994; 56:153-62. [PMID: 7518403 DOI: 10.1046/j.1432-0436.1994.5630153.x] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
The onset of transcription and mRNA accumulation of two liver-specific genes, carbamoylphosphate synthase (CPS) and phosphoenolpyruvate carboxykinase (PEPCK) in individual embryonic rat hepatocytes was investigated with in situ hybridization. In vitro CPS and PEPCK mRNAs can be induced prematurely in monolayer cultures of embryonic rat hepatocytes by glucocorticosteroids and cyclic AMP, i.e. the hormones that also regulate the expression of these genes in vivo. Upon exposure to hormones the cultures showed an interhepatocyte heterogeneity in CPS and PEPCK mRNA content. The pattern of accumulation of nuclear CPS mRNA-precursors indicates that this heterogeneity is generated by intercellular differences in the timing of the onset of transcription. However, under induced steady-state conditions the heterogeneity in the hepatocyte population persisted. The degree of heterogeneity is inversely related to the half life of the gene product (i.e. higher for PEPCK than for CPS and higher for mRNAs than for the respective proteins) and to the concentrations of inducing hormones. Accordingly, the interhepatocyte heterogeneity was most pronounced for the nuclear CPS mRNA-precursor. In contrast, no intercellular differences in the rate of degradation of the mRNAs were seen. These observations reveal that although all hepatocytes can and do express the genes, transcription of a gene in a particular cell is a discontinuous process.
Collapse
Affiliation(s)
- M A Dingemanse
- Department of Anatomy and Embryology, University of Amsterdam, The Netherlands
| | | | | | | | | |
Collapse
|
28
|
Developmental changes in the expression of the liver-enriched transcription factors LF-B1, C/EBP, DBP and LAP/LIP in relation to the expression of albumin, α-fetoprotein, carbamoylphosphate synthase and lactase mRNA. ACTA ACUST UNITED AC 1994. [DOI: 10.1007/bf00209246] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
29
|
Horiuchi M, Kobayashi K, Tomomura M, Kuwajima M, Imamura Y, Koizumi T, Nikaido H, Hayakawa J, Saheki T. Carnitine administration to juvenile visceral steatosis mice corrects the suppressed expression of urea cycle enzymes by normalizing their transcription. J Biol Chem 1992. [DOI: 10.1016/s0021-9258(18)42723-8] [Citation(s) in RCA: 46] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
|
30
|
Abstract
Liver parenchyma shows a remarkable heterogeneity of the hepatocytes along the porto-central axis with respect to ultrastructure and enzyme activities resulting in different cellular functions within different zones of the liver lobuli. According to the concept of metabolic zonation, the spatial organization of the various metabolic pathways and functions forms the basis for the efficient adaptation of liver metabolism to the different nutritional requirements of the whole organism in different metabolic states. The present review summarizes current knowledge about this heterogeneity, its development and determination, as well as about its significance for the understanding of all aspects of liver function and pathology, especially of intermediary metabolism, biotransformation of drugs and zonal toxicity of hepatotoxins.
Collapse
Affiliation(s)
- R Gebhardt
- Physiologisch-Chemisches Institut, University of Tübingen, Germany
| |
Collapse
|
31
|
Moorman AF, de Boer PA, Charles R, Lamers WH. Pericentral expression pattern of glucokinase mRNA in the rat liver lobulus. FEBS Lett 1991; 287:47-52. [PMID: 1879536 DOI: 10.1016/0014-5793(91)80013-s] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
The spatial distribution of glucokinase mRNA (GK mRNA) in rat liver was studied by in situ hybridization under normal and inducing conditions. GK mRNA was first detectable in the liver parenchyma of neonatal rats of 1.5 days. The density of grains decreases in a central-portal direction. This pattern remains essentially unchanged up to 15 days, after which the adult type of distribution gradually starts to develop, i.e. low density of grains indicating low levels of GK mRNA, in which no gradient of expression could be visualized. Within 2 h after an oral glucose load to starved animals, the GK mRNA expression pattern changed from hardly detectable to a clear gradient with the highest grain density around the terminal central venules. Within 6 h relatively high levels of grains, almost homogeneously distributed across the liver lobule, were observed. Glucocorticosteroid treatment also induced GK mRNA in the pericentral area. It is concluded that the observed induction pattern qualifies GK mRNA as a pericentral mRNA suggesting that the pericentral expression pattern of the protein is primarily regulated at the pretranslational level.
Collapse
Affiliation(s)
- A F Moorman
- Department of Anatomy and Embryology, University of Amsterdam, The Netherlands
| | | | | | | |
Collapse
|
32
|
Diet- and hormone-induced reversal of the carbamoylphosphate synthetase mRNA gradient in the rat liver lobulus. FEBS Lett 1990; 276:9-13. [PMID: 1979948 DOI: 10.1016/0014-5793(90)80494-4] [Citation(s) in RCA: 32] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
A hybridocytochemical analysis of adult liver from normal control and from hormonally and dietary-treated rats was carried out, using radioactively-labelled probes for the mRNAs of glutamine synthetase (GS), carbamoylphosphate synthetase (CPS) and phosphoenolpyruvate carboxykinase (PEPCK). In line with previous findings, GS mRNA is exclusively expressed in a small pericentral compartment, CPS mRNA exclusively in a contiguous large periportal compartment and PEPCK mRNA across the entire porto-central distance. The density of labelling in CPS and PEPCK mRNA-positive hepatocytes decreases in a porto-central direction. Starvation resulted in a reversal of the gradient of CPS mRNA within its periportal compartment; glucose refeeding counteracted this effect. Livers of glucocorticosteroid-treated, starved or diabetic rats also revealed a reversal of the normal gradient of CPS mRNA, but now across the entire porto-central distance. The patterns of expression of GS and PEPCK mRNA remained essentially unchanged, notwithstanding substantial changes in the levels of expression. It is concluded that blood-borne factors constitute the major determinants for the expression patterns of CPS mRNA within the context of the architecture of the liver lobulus.
Collapse
|
33
|
Lamers WH, Been W, Charles R, Moorman AF. Hepatocytes explanted in the spleen preferentially express carbamoylphosphate synthetase rather than glutamine synthetase. Hepatology 1990; 12:701-9. [PMID: 1976588 DOI: 10.1002/hep.1840120414] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Urea cycle enzymes and glutamine synthetase are essential for NH3 detoxification and systemic pH homeostasis in mammals. Carbamoylphosphate synthetase, the first and flux-determining enzyme of the cycle, is found only in a large periportal compartment, and glutamine synthetase is found only in a small, complementary pericentral compartment. Because it is not possible to manipulate experimentally the intrahepatic distribution of carbamoylphosphate synthetase and glutamine synthetase, we looked for conditions in which explanted hepatocytes would exhibit either the carbamoylphosphate synthetase phenotype or glutamine synthetase phenotype. In the spleen hepatocytes either settle as individual cells or in small agglomerates. The dispersed cells only express the carbamoylphosphate synthetase phenotype. Within the agglomerates, sinusoids that drain on venules develop. Hepatocytes surrounding the venules stain only weakly for carbamoylphosphate synthetase but are strongly positive for glutamine synthetase. These observations were made for explanted embryonic hepatocytes (no prior expression of either carbamoylphosphate synthetase or glutamine synthetase), neonatal hepatocytes (compartments of gene expression not yet established) and adult periportal and pericentral hepatocytes.
Collapse
Affiliation(s)
- W H Lamers
- Department of Anatomy and Embryology, University of Amsterdam, The Netherlands
| | | | | | | |
Collapse
|
34
|
Husson A, Renouf S, Fairand A, Buquet C, Benamar M, Vaillant R. Expression of argininosuccinate lyase mRNA in foetal hepatocytes. Regulation by glucocorticoids and insulin. EUROPEAN JOURNAL OF BIOCHEMISTRY 1990; 192:677-81. [PMID: 2209616 DOI: 10.1111/j.1432-1033.1990.tb19275.x] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Argininosuccinate lyase (ASL), the fourth enzyme of the urea cycle, belongs to a group of liver enzymes appearing in the late foetal period in the rat. Several hormones, including glucocorticosteroids and insulin have been implicated in the control of the development of this enzyme activity. In this study, the cloned cDNA was used to measure the relative abundance of ASL mRNA in the livers of rats at various stages of perinatal development and in cultured foetal hepatocytes during hormonal manipulations. The ASL mRNA was first detectable on day 15.5 of gestation and increased in amount concomitantly with the rise in the enzyme activity, suggesting that the appearance of enzyme activity reflects the turning on of specific gene transcription. When foetal hepatocytes were exposed to dexamethasone, an increase in ASL mRNA was detected, which was completely abolished by addition of actinomycin D, suggesting a transcriptional effect of the steroid. In contrast, administration of cortisol to foetuses in utero had no effect on the mRNA level, suggesting that the steroid action is inhibited in the intra-uterine environment. Insulin might be the inhibiting factor since it completely repressed the dexamethasone-induced accumulation of ASL mRNA in foetal hepatocytes. These data were confirmed in vivo by experiments using streptozotocin, which produces insulin-depleted foetuses and causes the accumulation of ASL mRNA. This regulation of ASL mRNA by glucocorticoids and insulin could account for the modulation of the enzyme activity observed in vivo and in vitro.
Collapse
Affiliation(s)
- A Husson
- Laboratoire d'Endocrinologie, Unité de Recherche Associée 650, Centre National de la Recherche Scientifique, Faculté des Sciences et Techniques, Mont-Saint-Aignan, France
| | | | | | | | | | | |
Collapse
|
35
|
Moorman AF, De Boer PA, Das AT, Labruyère WT, Charles R, Lamers WH. Expression patterns of mRNAs for ammonia-metabolizing enzymes in the developing rat: the ontogenesis of hepatocyte heterogeneity. THE HISTOCHEMICAL JOURNAL 1990; 22:457-68. [PMID: 1979781 DOI: 10.1007/bf01007229] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
The expression patterns of the mRNAs for the ammonia-metabolizing enzymes carbamoylphosphate synthetase (CPS), glutamine synthetase (GS) and glutamate dehydrogenase (GDH) were studied in developing pre- and neonatal rat liver by in situ hybridization. In the period of 11 to 14 embryonic days (ED) the concentrations of GS and GDH mRNA increases rapidly in the liver, whereas a substantial rise of CPS mRNA in the liver does not occur until ED 18. Hepatocyte heterogeneity related to the vascular architecture can first be observed at ED 18 for GS mRNA, at ED 20 for GDH mRNA and three days after birth for CPS mRNA. The adult phenotype is gradually established during the second neonatal week, i.e. GS mRNA becomes confined to a pericentral compartment of one to two hepatocytes thickness, CPS mRNA to a large periportal compartment being no longer expressed in the pericentral compartment and GDH mRNA is expressed over the entire porto-central distance, decreasing in concentration going from central to portal. Comparison of the observed mRNA distribution patterns in the perinatal liver, with published data on the distribution of the respective proteins, points to the occurrence of posttranslational, in addition to pretranslational control mechanisms in the period of ontogenesis of hepatocyte heterogeneity. Interestingly, during development all three mRNAS are expressed outside the liver to a considerable extent and in a highly specific way, indicating that several organs are involved in the developmentally regulated expression of the mRNAs for the ammonia-metabolizing enzymes, that were hitherto not recognized as such.
Collapse
Affiliation(s)
- A F Moorman
- Department of Anatomy and Embryology, Academic Medical Centre, Amsterdam, The Netherlands
| | | | | | | | | | | |
Collapse
|
36
|
Haüssinger D. Nitrogen metabolism in liver: structural and functional organization and physiological relevance. Biochem J 1990; 267:281-90. [PMID: 2185740 PMCID: PMC1131284 DOI: 10.1042/bj2670281] [Citation(s) in RCA: 227] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Affiliation(s)
- D Haüssinger
- Medizinische Universitätsklinik, Freiburg, Federal Republic of Germany
| |
Collapse
|
37
|
van de Zande L, Labruyère WT, Arnberg AC, Wilson RH, van den Bogaert AJ, Das AT, van Oorschot DA, Frijters C, Charles R, Moorman AF. Isolation and characterization of the rat glutamine synthetase-encoding gene. Gene 1990; 87:225-32. [PMID: 1970548 DOI: 10.1016/0378-1119(90)90306-c] [Citation(s) in RCA: 50] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
From a rat genomic library in phage lambda Charon4A, a complete glutamine synthetase-encoding gene was isolated. The gene is 9.5-10 kb long, consists of seven exons, and codes for two mRNA species of 1375 nucleotides (nt) and 2787 nt, respectively. For both mRNAs, full-length cDNAs containing a short poly(A) tract were identified. The sequences of the entire mRNA and of the exon-intron transitions were determined. The smaller mRNA is identical to the 5' 1375 nt of the long mRNA and contains the entire protein-coding region. The position of the transcription start point was mapped. Within the first 118 bp of promoter sequence, a (T)ATAA-box, a CCAAT-box and an SP1-binding site were identified.
Collapse
Affiliation(s)
- L van de Zande
- Department of Anatomy and Embryology, University of Amsterdam, The Netherlands
| | | | | | | | | | | | | | | | | | | |
Collapse
|
38
|
Morris SM, Kepka DM, Sweeney WE, Avner ED. Abundance of mRNAs encoding urea cycle enzymes in fetal and neonatal mouse liver. Arch Biochem Biophys 1989; 269:175-80. [PMID: 2464968 DOI: 10.1016/0003-9861(89)90097-0] [Citation(s) in RCA: 29] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
The relative abundances of mRNAs encoding the five urea cycle enzymes during development of mouse liver have been determined and compared with those of mRNAs encoding four other liver-specific proteins (phosphoenolpyruvate carboxykinase, tyrosine aminotransferase, alpha-fetoprotein, and albumin). Urea cycle enzyme mRNAs in fetal liver are expressed at 2-14% of the abundance in adult liver as early as 6 days before birth. Expression of the urea cycle enzyme mRNAs is not coordinate during the fetal and neonatal period. However, profiles of three urea cycle enzyme mRNAs are quite similar to that of alpha-fetoprotein mRNA, suggesting the possibility of a common response to regulatory signals during fetal development. With the exception of ornithine transcarbamylase mRNA, the urea cycle enzyme mRNAs have been shown previously to be inducible by cAMP and glucocorticoids. However, only argininosuccinate lyase mRNA exhibits any significant change in abundance at birth, resembling postnatal expression of tyrosine aminotransferase mRNA. The results indicate that the urea cycle enzyme mRNAs are potentially useful markers for elucidating various features of hepatocyte differentiation in mammals.
Collapse
Affiliation(s)
- S M Morris
- Department of Microbiology, University of Pittsburgh, Pennsylvania 15261
| | | | | | | |
Collapse
|
39
|
van Roon MA, Zonneveld D, Charles R, Lamers WH. Accumulation of carbamoylphosphate-synthetase and phosphoenolpyruvate-carboxykinase mRNA in embryonic rat hepatocytes. Evidence for translational control during the initial phases of hepatocyte-specific gene expression in vitro. EUROPEAN JOURNAL OF BIOCHEMISTRY 1988; 178:191-6. [PMID: 3203688 DOI: 10.1111/j.1432-1033.1988.tb14443.x] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
The aim of this study was to establish whether the initial accumulation of hepatocyte-specific proteins after hormone induction is regulated at the pretranslational and/or the translational level. To this end, mRNA molar concentrations were determined and compared with rates of protein synthesis from previous studies [van Roon, M.A., Charles, R. & Lamers, W.H. (1987) Eur. J. Biochem. 165, 229-234]. In vivo, carbamoylphosphate-synthetase mRNA starts to accumulate at day 17 of pregnancy. Phosphoenolpyruvate-carboxykinase mRNA starts to accumulate only just prior to birth. Embryonic day 14 (i.e. 8 days before the expected day of birth), livers were chosen to study the regulation of the initiation of hepatocyte-specific mRNA accumulation in vitro. Accumulation of carbamoylphosphate-synthetase and phosphoenolpyruvate-carboxykinase mRNA is regulated by the same hormones as accumulation of the respective proteins. The rate at which carbamoylphosphate-synthetase and phosphoenolpyruvate-carboxykinase mRNA molecules accumulate in cultured embryonic hepatocytes is relatively low, compared to that of postnatal hepatocytes. However, the increase of the rate of synthesis of carbamoylphosphate-synthetase and phosphoenolpyruvate-carboxykinase protein is even 3-6-fold slower than that of mRNA. This shows that initially mRNAs accumulate intracellularly to a relatively high concentration without being efficiently translated or translatable. Only after the mRNA concentration reaches a plateau of 72 h and 48 h respectively, the cellular capacity to synthesize the respective proteins increases. Therefore, the translational efficiency is certainly one of the major rate-limiting factors of the initial phases of expression of the hepatocyte-specific genes for carbamoylphosphate synthetase and phosphoenolpyruvate carboxykinase.
Collapse
Affiliation(s)
- M A van Roon
- Department of Anatomy and Embryology, University of Amsterdam, The Netherlands
| | | | | | | |
Collapse
|
40
|
Lamers WH, Høynes KE, Zonneveld D, Moorman AF, Charles R. Noradrenergic innervation of developing rat and spiny mouse liver. Its relation to the development of the liver architecture and enzymic zonation. ANATOMY AND EMBRYOLOGY 1988; 178:175-81. [PMID: 3394957 DOI: 10.1007/bf02463651] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
The development of noradrenergic innervation of rat liver was studied with a polyclonal antiserum against noradrenaline. Nerves are first seen in the larger portal vessels at day 1 after birth and reach their final distribution at 5 days after birth i.e. at the same time as the establishment of the acinar architecture and the heterogeneous distribution of NH3-metabolizing enzymes. The latter distribution of nerves is already seen at birth in the liver of the closely related but precocial spiny mouse. This shows that the onset of extrinsic sympathetic innervation is regulated by the developmental stage of the animal rather than by adaptation to extrauterine life. Chemical sympathectomy at birth with 6-hydroxydopamine did not eliminate the developmental appearance of heterogeneous distributions of NH3-metabolizing enzymes.
Collapse
Affiliation(s)
- W H Lamers
- Department of Anatomy and Embryology, University of Amsterdam, The Netherlands
| | | | | | | | | |
Collapse
|
41
|
Morris SM, Moncman CL, Rand KD, Dizikes GJ, Cederbaum SD, O'Brien WE. Regulation of mRNA levels for five urea cycle enzymes in rat liver by diet, cyclic AMP, and glucocorticoids. Arch Biochem Biophys 1987; 256:343-53. [PMID: 3038025 DOI: 10.1016/0003-9861(87)90455-3] [Citation(s) in RCA: 100] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Adaptive changes in levels of urea cycle enzymes are largely coordinate in both direction and magnitude. In order to determine the extent to which these adaptive responses reflect coordinate regulatory events at the pretranslational level, measurements of hybridizable mRNA levels for all five urea cycle enzymes were carried out for rats subjected to various dietary regimens and hormone treatments. Changes in relative abundance of the mRNAs in rats with varying dietary protein intakes are comparable to reported changes in enzyme activities, indicating that the major response to diet occurs at the pretranslational level for all five enzymes and that this response is largely coordinate. In contrast to the dietary changes, variable responses of mRNA levels were observed following intraperitoneal injections of dibutyryl cAMP and dexamethasone. mRNAs for only three urea cycle enzymes increased in response to dexamethasone. Levels of all five mRNAs increased severalfold in response to dibutyryl cAMP at both 1 and 5 h after injection, except for ornithine transcarbamylase mRNA which showed a response at 1 h but no response at 5 h. Combined effects of dexamethasone and dibutyryl cAMP were additive for only two urea cycle enzyme mRNAs, suggesting independent regulatory pathways for these two hormones. Transcription run-on assays revealed that transcription of at least two of the urea cycle enzyme genes--carbamylphosphate synthetase I and argininosuccinate synthetase--is stimulated approximately four- to fivefold by dibutyryl cAMP within 30 min. The varied hormonal responses indicate that regulatory mechanisms for modulating enzyme concentration are not identical for each of the enzymes in the pathway.
Collapse
|
42
|
de Groot CJ, ten Voorde GH, van Andel RE, te Kortschot A, Gaasbeek Janzen JW, Wilson RH, Moorman AF, Charles R, Lamers WH. Reciprocal regulation of glutamine synthetase and carbamoylphosphate synthetase levels in rat liver. BIOCHIMICA ET BIOPHYSICA ACTA 1987; 908:231-40. [PMID: 2882780 DOI: 10.1016/0167-4781(87)90103-5] [Citation(s) in RCA: 50] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
In glucocorticosteroid-treated diabetic rats, glutamine synthetase enzyme levels in the liver are decreased 3-fold, whereas carbamoylphosphate synthetase enzyme levels are increased 2.3-fold. In addition, immunohistochemistry shows that under these conditions the distribution of carbamoylphosphate synthetase is expanded over the entire liver acinus, whereas that of glutamine synthetase is reduced to very few cells bordering the central (terminal hepatic) veins. Using a newly isolated cDNA complementary to rat liver glutamine synthetase mRNA, we show that this regulation is primarily effected at a pretranslational level. (For data on carbamoylphosphate synthetase mRNA levels, see De Groot et al. (1986) Biochim. Biophys. Acta 866, 61-67). Furthermore, hybridization studies show stimulatory effects of both glucocorticosteroids and thyroid hormone on the glutamine synthetase mRNA level. Attempts to localize glutamine synthetase mRNA within the liver acinus by selective destruction of the pericentral zone failed because of generally low levels of liver mRNAs after CCl4 poisoning. In contrast to the situation after birth, significantly higher glutamine synthetase mRNA/enzyme activity ratios in fetal rat liver point to the presence of additional post-transcriptional control mechanisms before birth. These findings complement similar observations on carbamoylphosphate synthetase gene expression (De Groot et al. (1986) Biochim. Biophys. Acta 866, 61-67).
Collapse
|