1
|
Ji JN, Chen SL. μ3-Oxo stabilized by three metal cations is a sufficient nucleophile for enzymatic hydrolysis of phosphate monoesters. Dalton Trans 2016; 45:2517-22. [PMID: 26699843 DOI: 10.1039/c5dt03899e] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Diverse species have previously been proposed to be effective nucleophiles in the enzymatic hydrolysis of phosphate esters. A novel penta-metal cluster (two Fe(3+) and three Ca(2+)) was recently discovered in the active site of PhoX alkaline phosphatase, with the revelation of the architecture of μ3-oxo bridging one Ca(2+) and two antiferromagnetically coupled Fe(3+). In this work, using density functional theory calculations, the μ3-oxo stabilized by three cations has been demonstrated to be a new type of effective nucleophile. The calculations give strong support to the "ping-pong" mechanism involving the nucleophilic attack of the μ3-oxo on the substrate phosphor and the subsequent hydrolysis of the covalent phospho-enzyme intermediate. A base mechanism with the μ3-oxo acting as a general base to activate an additional water molecule has further been demonstrated to be inaccessible. The results advance the understanding of the enzymatic hydrolysis of phosphate esters and may give important inspiration for the exploration of multinuclear biomimetic catalysts.
Collapse
Affiliation(s)
- Jian-Nan Ji
- Key Laboratory of Cluster Science of Ministry of Education, Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, School of Chemistry, Beijing Institute of Technology, Beijing 100081, China.
| | | |
Collapse
|
2
|
Heroes E, Rip J, Beullens M, Van Meervelt L, De Gendt S, Bollen M. Metals in the active site of native protein phosphatase-1. J Inorg Biochem 2015; 149:1-5. [PMID: 25890482 DOI: 10.1016/j.jinorgbio.2015.03.012] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2014] [Revised: 03/23/2015] [Accepted: 03/24/2015] [Indexed: 11/26/2022]
Abstract
Protein phosphatase-1 (PP1) is a major protein Ser/Thr phosphatase in eukaryotic cells. Its activity depends on two metal ions in the catalytic site, which were identified as manganese in the bacterially expressed phosphatase. However, the identity of the metal ions in native PP1 is unknown. In this study, total reflection X-ray fluorescence (TXRF) was used to detect iron and zinc in PP1 that was purified from rabbit skeletal muscle. Metal exchange experiments confirmed that the distinct substrate specificity of recombinant and native PP1 is determined by the nature of their associated metals. We also found that the iron level associated with native PP1 is decreased by incubation with inhibitor-2, consistent with a function of inhibitor-2 as a PP1 chaperone.
Collapse
Affiliation(s)
- Ewald Heroes
- Laboratory of Biosignaling and Therapeutics, Department of Cellular and Molecular Medicine, KU Leuven, Belgium; Department of Chemistry, KU Leuven, Belgium
| | - Jens Rip
- Interuniversity Micro Electronics Center (IMEC), Leuven, Belgium
| | - Monique Beullens
- Laboratory of Biosignaling and Therapeutics, Department of Cellular and Molecular Medicine, KU Leuven, Belgium
| | | | - Stefan De Gendt
- Department of Chemistry, KU Leuven, Belgium; Interuniversity Micro Electronics Center (IMEC), Leuven, Belgium
| | - Mathieu Bollen
- Laboratory of Biosignaling and Therapeutics, Department of Cellular and Molecular Medicine, KU Leuven, Belgium.
| |
Collapse
|
3
|
Ren Y, Wang ZX, Wei Q. Mechanism of activation of Saccharomyces cerevisiae calcineurin by Mn2+. Biol Chem 2009; 390:1155-62. [PMID: 19558332 DOI: 10.1515/bc.2009.108] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Saccharomyces cerevisiae calcineurin (CN) consists of a catalytic subunit CNA1 or CNA2 and a regulatory subunit CNB1. The kinetics of activation of yeast CN holoenzymes and their catalytic domains by Mn2+ were investigated. We report that the in vitro phosphatase reaction activated by Mn2+ typically has a pronounced initial lag phase caused by slow conformational rearrangement of the holoenzyme-Mn2+. A similar lag phase was detected using just the catalytic domain of yeast CN, indicating that the slowness of Mn2+-induced conformational change of CN results from a rearrangement within the catalytic domain. The Mn2+-activation of CN was reversible. The dissociation constant of the CN heterodimer containing the CNA2 subunit in the presence of Mn2+ was 3-fold higher than that of CN containing the CNA1 subunit and that of the catalytic domains of CNA1 and CNA2, pointing to differences between the residues surrounding the Mn2+-binding sites of CNA1 and CNA2.
Collapse
Affiliation(s)
- Yan Ren
- Department of Biochemistry and Molecular Biology, Beijing Normal University, Beijing Key Laboratory, Beijing 100875, P.R. China
| | | | | |
Collapse
|
4
|
|
5
|
Mitić N, Smith SJ, Neves A, Guddat LW, Gahan LR, Schenk G. The catalytic mechanisms of binuclear metallohydrolases. Chem Rev 2007; 106:3338-63. [PMID: 16895331 DOI: 10.1021/cr050318f] [Citation(s) in RCA: 358] [Impact Index Per Article: 19.9] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Natasa Mitić
- School of Molecular and Microbial Sciences, The University of Queensland, Brisbane, QLD 4072, Australia
| | | | | | | | | | | |
Collapse
|
6
|
Affiliation(s)
- W Wallace Cleland
- Institute for Enzyme Research and Department of Biochemistry, University of Wisconsin-Madison, Madison, Wisconsin 53726, USA.
| | | |
Collapse
|
7
|
Funhoff EG, de Jongh TE, Averill BA. Direct observation of multiple protonation states in recombinant human purple acid phosphatase. J Biol Inorg Chem 2005; 10:550-63. [PMID: 16096803 DOI: 10.1007/s00775-005-0001-9] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2004] [Accepted: 05/25/2005] [Indexed: 11/28/2022]
Abstract
To date, most spectroscopic studies on mammalian purple acid phosphatases (PAPs) have been performed at a single pH, typically pH 5. The catalytic activity of these enzymes is, however, pH dependent, with optimal pH values of 5.5-6.2 (depending on the form). For example, the pH optimum of PAPs isolated as single polypeptides is around pH 5.5, which is substantially lower that of proteolytically cleaved PAPs (ca. pH 6.2). In addition, the catalytic activity of single polypeptide PAPs at their optimal pH values is four to fivefold lower than that of the proteolytically cleaved enzymes. In order to elucidate the chemical basis for the pH dependence of these enzymes, the spectroscopic properties of both the single polypeptide and proteolytically cleaved forms of recombinant human PAP (recHPAP) and their complexes with inhibitory anions have been examined over the pH range 4 to 8. The EPR spectra of both forms of recHPAP are pH dependent and show the presence of three species: an inactive low pH form (pH<pK( a,1)), an active form (pK( a,1)<pH<pK( a,2)), and an inactive high pH form (pH>pK( a,2)). The pK( a,1) values observed by EPR for the single polypeptide and proteolytically cleaved forms are similar to those previously observed in kinetics studies. The spectroscopic properties of the enzyme-phosphate complex (which should mimic the enzyme-substrate complex), the enzyme-fluoride complex, and the enzyme-fluoride-phosphate complex (which should mimic the ternary enzyme-substrate-hydroxide complex) were also examined. EPR spectra show that phosphate binds to the diiron center of the proteolytically cleaved form of the enzyme, but not to that of the single polypeptide form. EPR spectra also show that fluoride binds only to the low pH form of the enzymes, in which it presumably replaces a coordinated water molecule. The binding of fluoride and phosphate to form a ternary complex appears to be cooperative.
Collapse
Affiliation(s)
- Enrico G Funhoff
- Swammerdam Institute for Life Sciences, University of Amsterdam, Plantage Muidergracht 12, 1018 Amsterdam, The Netherlands
| | | | | |
Collapse
|
8
|
|
9
|
Hengge AC. Mechanistic studies on enzyme-catalyzed phosphoryl transfer. ADVANCES IN PHYSICAL ORGANIC CHEMISTRY 2005. [DOI: 10.1016/s0065-3160(05)40002-7] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
10
|
Schenk G, Gahan LR, Carrington LE, Mitic N, Valizadeh M, Hamilton SE, de Jersey J, Guddat LW. Phosphate forms an unusual tripodal complex with the Fe-Mn center of sweet potato purple acid phosphatase. Proc Natl Acad Sci U S A 2004; 102:273-8. [PMID: 15625111 PMCID: PMC544300 DOI: 10.1073/pnas.0407239102] [Citation(s) in RCA: 110] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Purple acid phosphatases (PAPs) are a family of binuclear metalloenzymes that catalyze the hydrolysis of phosphoric acid esters and anhydrides. A PAP in sweet potato has a unique, strongly antiferromagnetically coupled Fe(III)-Mn(II) center and is distinguished from other PAPs by its increased catalytic efficiency for a range of activated and unactivated phosphate esters, its strict requirement for Mn(II), and the presence of a mu-oxo bridge at pH 4.90. This enzyme displays maximum catalytic efficiency (k(cat)/K(m)) at pH 4.5, whereas its catalytic rate constant (k(cat)) is maximal at near-neutral pH, and, in contrast to other PAPs, its catalytic parameters are not dependent on the pK(a) of the leaving group. The crystal structure of the phosphate-bound Fe(III)-Mn(II) PAP has been determined to 2.5-A resolution (final R(free) value of 0.256). Structural comparisons of the active site of sweet potato, red kidney bean, and mammalian PAPs show several amino acid substitutions in the sweet potato enzyme that can account for its increased catalytic efficiency. The phosphate molecule binds in an unusual tripodal mode to the two metal ions, with two of the phosphate oxygen atoms binding to Fe(III) and Mn(II), a third oxygen atom bridging the two metal ions, and the fourth oxygen pointing toward the substrate binding pocket. This binding mode is unique among the known structures in this family but is reminiscent of phosphate binding to urease and of sulfate binding to lambda protein phosphatase. The structure and kinetics support the hypothesis that the bridging oxygen atom initiates hydrolysis.
Collapse
Affiliation(s)
- Gerhard Schenk
- Department of Biochemistry and Molecular Biology, School of Molecular and Microbial Sciences, University of Queensland, Brisbane 4072, Australia.
| | | | | | | | | | | | | | | |
Collapse
|
11
|
Swingle MR, Honkanen RE, Ciszak EM. Structural Basis for the Catalytic Activity of Human Serine/Threonine Protein Phosphatase-5. J Biol Chem 2004; 279:33992-9. [PMID: 15155720 DOI: 10.1074/jbc.m402855200] [Citation(s) in RCA: 90] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
Serine/threonine protein phosphatase-5 (PP5) affects many signaling networks that regulate cell growth and cellular responses to stress. Here we report the crystal structure of the PP5 catalytic domain (PP5c) at a resolution of 1.6 A. From this structure we propose a mechanism for PP5-mediated hydrolysis of phosphoprotein substrates, which requires the precise positioning of two metal ions within a conserved Asp271-M1:M2-W1-His427-His304-Asp274 catalytic motif (where M1 and M2 are metals and W1 is a water molecule). The structure of PP5c provides a structural basis for explaining the exceptional catalytic proficiency of protein phosphatases, which are among the most powerful known catalysts. Resolution of the entire C terminus revealed a novel subdomain, and the structure of the PP5c should also aid development of type-specific inhibitors.
Collapse
Affiliation(s)
- Mark R Swingle
- Department of Biochemistry and Molecular Biology, College of Medicine, University of South Alabama, Mobile, Alabama 36688, USA
| | | | | |
Collapse
|
12
|
Garrity JD, Carenbauer AL, Herron LR, Crowder MW. Metal binding Asp-120 in metallo-beta-lactamase L1 from Stenotrophomonas maltophilia plays a crucial role in catalysis. J Biol Chem 2003; 279:920-7. [PMID: 14573595 DOI: 10.1074/jbc.m309852200] [Citation(s) in RCA: 55] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Metallo-beta-lactamase L1 from Stenotrophomonas maltophilia is a dinuclear Zn(II) enzyme that contains a metal-binding aspartic acid in a position to potentially play an important role in catalysis. The presence of this metal-binding aspartic acid appears to be common to most dinuclear, metal-containing, hydrolytic enzymes; particularly those with a beta-lactamase fold. In an effort to probe the catalytic and metal-binding role of Asp-120 in L1, three site-directed mutants (D120C, D120N, and D120S) were prepared and characterized using metal analyses, circular dichroism spectroscopy, and presteady-state and steady-state kinetics. The D120C, D120N, and D120S mutants were shown to bind 1.6 +/- 0.2, 1.8 +/- 0.2, and 1.1 +/- 0.2 mol of Zn(II) per monomer, respectively. The mutants exhibited 10- to 1000-fold drops in kcat values as compared with wild-type L1, and a general trend of activity, wild-type > D120N > D120C and D120S, was observed for all substrates tested. Solvent isotope and pH dependence studies indicate one or more protons in flight, with pKa values outside the range of pH 5-10 (except D120N), during a rate-limiting step for all the enzymes. These data demonstrate that Asp-120 is crucial for L1 to bind its full complement of Zn(II) and subsequently for proper substrate binding to the enzyme. This work also confirms that Asp-120 plays a significant role in catalysis, presumably via hydrogen bonding with water, assisting in formation of the bridging hydroxide/water, and a rate-limiting proton transfer in the hydrolysis reaction.
Collapse
Affiliation(s)
- James D Garrity
- Department of Chemistry and Biochemistry, Miami University, Oxford, Ohio 45056, USA
| | | | | | | |
Collapse
|
13
|
Jackson MD, Denu JM. Molecular reactions of protein phosphatases--insights from structure and chemistry. Chem Rev 2001; 101:2313-40. [PMID: 11749375 DOI: 10.1021/cr000247e] [Citation(s) in RCA: 171] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- M D Jackson
- Department of Biochemistry and Molecular Biology, Oregon Health Sciences University, 3181 SW Sam Jackson Park Road, Portland, Oregon 97201, USA
| | | |
Collapse
|
14
|
Abstract
Protein-tyrosine phosphatases and serine/threonine protein phosphatases utilize very different catalytic machinery to catalyze phosphoryl transfer reactions. Tyrosine is a better leaving group than serine or threonine, having a pK(a) more than three units lower. Has the difference in the catalytic machinery used by these enzyme families evolved as a result of the difference in the lability of their substrates? Are the transition states for phosphoryl transfer similar for the two classes of enzymes? This review summarizes what has been learned from kinetic isotope effects about the nature of enzymatic phosphoryl transfer, and how the enzymatic mechanisms compare to uncatalyzed phosphoryl transfer reactions.
Collapse
Affiliation(s)
- A C Hengge
- Department of Chemistry and Biochemistry, Utah State University, Logan, UT 84322, USA.
| |
Collapse
|
15
|
Sanvoisin J, Gani D. Protein phosphatase 1 catalyses the direct hydrolytic cleavage of phosphate monoester in a ternary complex mechanism. Bioorg Med Chem Lett 2001; 11:471-4. [PMID: 11229750 DOI: 10.1016/s0960-894x(00)00694-6] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The catalytic subunit of the Ser/Thr protein phosphatase 1 (PP1cat) hydrolyses N-acetyl Arg-Arg-Ala-phosphoThr-Val-Ala (K(M) = 3.7 mM) in a reaction that is inhibited competitively by inorganic phosphate (Pi, Ki = 1.6 mM) but unaffected by the product peptide alcohol at concentrations up to 3 mM. The enzyme does not catalyse the incorporation of 18O-label from 18O-labelled water into Pi whether, or not, the product alcohol is present. The dephosphorylated product alcohol of phosphorylated histone. an alternative substrate for the enzyme, serves as a competitive inhibitor for phosphopeptide hydrolysis (Ki = 60 microM) and co-mediates 18O-label exchange into Pi in a concentration-dependent manner (K(M) = 64 microM). These results indicate that hydrolysis occurs through the direct attack of an activated water molecule on the phosphate ester moiety of the substrate in a ternary complex mechanism.
Collapse
Affiliation(s)
- J Sanvoisin
- School of Chemistry, The University of Birmingham, Edgbaston, UK
| | | |
Collapse
|
16
|
Voegtli WC, White DJ, Reiter NJ, Rusnak F, Rosenzweig AC. Structure of the bacteriophage lambda Ser/Thr protein phosphatase with sulfate ion bound in two coordination modes. Biochemistry 2000; 39:15365-74. [PMID: 11112522 DOI: 10.1021/bi0021030] [Citation(s) in RCA: 79] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The protein phosphatase encoded by bacteriophage lambda (lambda PP) belongs to a family of Ser/Thr phosphatases (Ser/Thr PPases) that includes the eukaryotic protein phosphatases 1 (PP1), 2A (PP2A), and 2B (calcineurin). These Ser/Thr PPases and the related purple acid phosphatases (PAPs) contain a conserved phosphoesterase sequence motif that binds a dinuclear metal center. The mechanisms of phosphoester hydrolysis by these enzymes are beginning to be unraveled. To utilize lambda PP more effectively as a model for probing the catalytic mechanism of the Ser/Thr PPases, we have determined its crystal structure to 2.15 A resolution. The overall fold resembles that of PP1 and calcineurin, including a conserved beta alpha beta alpha beta structure that comprises the phosphoesterase motif. Substrates and inhibitors probably bind in a narrow surface groove that houses the active site dinuclear Mn(II) center. The arrangement of metal ligands is similar to that in PP1, calcineurin, and PAP, and a bound sulfate ion is present in two novel coordination modes. In two of the three molecules in the crystallographic asymmetric unit, sulfate is coordinated to Mn2 in a monodentate, terminal fashion, and the two Mn(II) ions are bridged by a solvent molecule. Two additional solvent molecules are coordinated to Mn1. In the third molecule, the sulfate ion is triply coordinated to the metal center with one oxygen coordinated to both Mn(II) ions, one oxygen coordinated to Mn1, and one oxygen coordinated to Mn2. The sulfate in this coordination mode displaces the bridging ligand and one of the terminal solvent ligands. In both sulfate coordination modes, the sulfate ion is stabilized by hydrogen bonding interactions with conserved arginine residues, Arg 53 and Arg 162. The two different active site structures provide models for intermediates in phosphoester hydrolysis and suggest specific mechanistic roles for conserved residues.
Collapse
Affiliation(s)
- W C Voegtli
- Department of Biochemistry, Northwestern University, Evanston, Illinois 60208, USA
| | | | | | | | | |
Collapse
|
17
|
Abstract
Calcineurin is a eukaryotic Ca(2+)- and calmodulin-dependent serine/threonine protein phosphatase. It is a heterodimeric protein consisting of a catalytic subunit calcineurin A, which contains an active site dinuclear metal center, and a tightly associated, myristoylated, Ca(2+)-binding subunit, calcineurin B. The primary sequence of both subunits and heterodimeric quaternary structure is highly conserved from yeast to mammals. As a serine/threonine protein phosphatase, calcineurin participates in a number of cellular processes and Ca(2+)-dependent signal transduction pathways. Calcineurin is potently inhibited by immunosuppressant drugs, cyclosporin A and FK506, in the presence of their respective cytoplasmic immunophilin proteins, cyclophilin and FK506-binding protein. Many studies have used these immunosuppressant drugs and/or modern genetic techniques to disrupt calcineurin in model organisms such as yeast, filamentous fungi, plants, vertebrates, and mammals to explore its biological function. Recent advances regarding calcineurin structure include the determination of its three-dimensional structure. In addition, biochemical and spectroscopic studies are beginning to unravel aspects of the mechanism of phosphate ester hydrolysis including the importance of the dinuclear metal ion cofactor and metal ion redox chemistry, studies which may lead to new calcineurin inhibitors. This review provides a comprehensive examination of the biological roles of calcineurin and reviews aspects related to its structure and catalytic mechanism.
Collapse
Affiliation(s)
- F Rusnak
- Section of Hematology Research and Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, Minnesota 55905, USA.
| | | |
Collapse
|
18
|
Aramburu J, Rao A, Klee CB. Calcineurin: from structure to function. CURRENT TOPICS IN CELLULAR REGULATION 2000; 36:237-95. [PMID: 10842755 DOI: 10.1016/s0070-2137(01)80011-x] [Citation(s) in RCA: 232] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- J Aramburu
- Department of Pathology, Harvard Medical School, Boston, Massachusetts, USA
| | | | | |
Collapse
|
19
|
Martin BL, Li B, Liao C, Rhode DJ. Differences between Mg(2+) and transition metal ions in the activation of calcineurin. Arch Biochem Biophys 2000; 380:71-7. [PMID: 10900134 DOI: 10.1006/abbi.2000.1898] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Exogenous metal ion activation of calcineurin catalyzed hydrolysis of para-nitrophenyl phosphate was kinetically characterized at 20, 25, 30, and 37 degrees C. Analysis yielded estimates for thermodynamic parameters for the activation of calcineurin by each of the metal ions. Values for DeltaG(Me)( degrees ) were varied with the best activators resulting in more stable enzyme-metal ion complexes and with DeltaG(Me)( degrees ) dominated by the entropic component. Mg(2+) was the only nontransition metal ion which supported significant activity and showed some distinct characteristics including a negative DeltaS(Me)( degrees ), suggesting that activation by Mg(2+) may have resulted in a unique enzyme-metal ion form. Circular dichroism showed that metal ions increased the alpha-helical content of calcineurin, but little significant differences in the spectra were identified between using activating and nonactivating metal ions. Activating Mg(2+), but not nonactivating Ca(2+), did cause changes in the Fourier transform infrared photoacoustic spectrum of calcineurin compared to the spectrum of calcineurin with Mn(2+). Other metal ions, Co(2+) and Ni(2+), also caused no changes in the infrared spectrum. Possible explanations for these differences between Mg(2+) and transition metal ions in the activation of calcineurin are discussed.
Collapse
Affiliation(s)
- B L Martin
- Department of Biochemistry, University of Tennessee, 858 Madison Avenue, Memphis, Tennessee 38163, USA.
| | | | | | | |
Collapse
|
20
|
A novel dinuclear zinc complex containing both imidazole and carboxylate groups as a possible model for serine/threonine protein phosphatase-1. INORG CHEM COMMUN 2000. [DOI: 10.1016/s1387-7003(00)00012-5] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
21
|
Evidence for a Structure-Function Relationship in the Activation of Calcineurin by Metal Ions. Bioorg Chem 2000. [DOI: 10.1006/bioo.1999.1154] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
22
|
Hoff RH, Mertz P, Rusnak F, Hengge AC. The Transition State of the Phosphoryl-Transfer Reaction Catalyzed by the Lambda Ser/Thr Protein Phosphatase. J Am Chem Soc 1999. [DOI: 10.1021/ja990667p] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Richard H. Hoff
- Department of Chemistry and Biochemistry, Utah State University, Logan, Utah, 84322-0300, Section of Hematology Research and the Department of Biochemistry and Molecular Biology, Mayo Clinic and Foundation, Rochester, Minnesota 55905
| | - Pamela Mertz
- Department of Chemistry and Biochemistry, Utah State University, Logan, Utah, 84322-0300, Section of Hematology Research and the Department of Biochemistry and Molecular Biology, Mayo Clinic and Foundation, Rochester, Minnesota 55905
| | - Frank Rusnak
- Department of Chemistry and Biochemistry, Utah State University, Logan, Utah, 84322-0300, Section of Hematology Research and the Department of Biochemistry and Molecular Biology, Mayo Clinic and Foundation, Rochester, Minnesota 55905
| | - Alvan C. Hengge
- Department of Chemistry and Biochemistry, Utah State University, Logan, Utah, 84322-0300, Section of Hematology Research and the Department of Biochemistry and Molecular Biology, Mayo Clinic and Foundation, Rochester, Minnesota 55905
| |
Collapse
|
23
|
Abstract
As a substitute for M(H2O)2+6, Co(NH3)3+6 was found to activate calcineurin with para-nitrophenyl phosphate as substrate. Kinetics for calcineurin catalyzed hydrolysis of para-nitrophenyl phosphate at pH 7.0 with Mn2+, Mg2+, Co2+, and Co(NH3)3+6 were compared. Although kcat and Km were different with the metals, values of kcat/Km were nearly identical for Mn2+ and Mg2+, but lower for Co2+ and Co(NH3)3+6. The concentration of each metal providing half-maximal activation, designated Kact, was evaluated as 15.9 mM for Co(NH3)3+6, compared to Kact = 0.17 mM for Mn2+ and Co2+ and 6.3 mM for Mg2+, respectively. Comparing kcat/Kcat showed that Co(NH3)3+6 was a 170-fold poorer activator of calcineurin than was Mn2+, but only 1.5-fold poorer than Mg2+. Activation by Co(NH3)3+6 indicated that activation of calcineurin by exogenous metal ions can proceed via an outer coordination sphere reaction mechanism with no requirement for the direct coordination of substrate by metal. Because Co(NH3)3+6 was found to support calcineurin activity, the related compound [Co-(ethylenediamine)3]3+ (or Co(en)3+3) was tested as a possible activator. Co(en)3+3 did not support calcineurin activity but did inhibit calcineurin. Co(en)3+3 showed competitive inhibition kinetics with either Mn2+ or pNPP as the varied ligand and the other at a fixed, subsaturating concentration. Inorganic phosphate was used as a known competitive inhibitor to pNPP (B. L. Martin and D. J. Graves, J. Biol. Chem. 261, 14545-14550, 1986) and showed uncompetitive inhibition with Mn2+ as the varied ligand. These patterns are consistent with the mechanism of ligand binding to calcineurin being ordered with metal preceding substrate. Prior formation of a metal-substrate complex was not required for association with calcineurin.
Collapse
Affiliation(s)
- B L Martin
- Department of Biochemistry, University of Tennessee, 858 Madison Avenue, Memphis, Tennessee, 38163, USA.
| | | |
Collapse
|
24
|
Williams NH, Lebuis AM, Chin J. A Structural and Functional Model of Dinuclear Metallophosphatases. J Am Chem Soc 1999. [DOI: 10.1021/ja9827797] [Citation(s) in RCA: 67] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Nicholas H. Williams
- Contribution from the Departments of Chemistry, Sheffield University, Sheffield, U.K. S3 7HF, and McGill University, Montréal, Canada H3A 2K6
| | - Anne-Marie Lebuis
- Contribution from the Departments of Chemistry, Sheffield University, Sheffield, U.K. S3 7HF, and McGill University, Montréal, Canada H3A 2K6
| | - Jik Chin
- Contribution from the Departments of Chemistry, Sheffield University, Sheffield, U.K. S3 7HF, and McGill University, Montréal, Canada H3A 2K6
| |
Collapse
|
25
|
Barford D, Das AK, Egloff MP. The structure and mechanism of protein phosphatases: insights into catalysis and regulation. ANNUAL REVIEW OF BIOPHYSICS AND BIOMOLECULAR STRUCTURE 1998; 27:133-64. [PMID: 9646865 DOI: 10.1146/annurev.biophys.27.1.133] [Citation(s) in RCA: 507] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Eukaryotic protein phosphatases are structurally and functionally diverse enzymes that are represented by three distinct gene families. Two of these, the PPP and PPM families, dephosphorylate phosphoserine and phosphothreonine residues, whereas the protein tyrosine phosphatases (PTPs) dephosphorylate phosphotyrosine amino acids. A subfamily of the PTPs, the dual-specificity phosphatases, dephosphorylate all three phosphoamino acids. Within each family, the catalytic domains are highly conserved, with functional diversity endowed by regulatory domains and subunits. The protein Ser/Thr phosphatases are metalloenzymes and dephosphorylate their substrates in a single reaction step using a metal-activated nucleophilic water molecule. In contrast, the PTPs catalyze dephosphorylation by use of a cysteinyl-phosphate enzyme intermediate. The crystal structures of a number of protein phosphatases have been determined, enabling us to understand their catalytic mechanisms and the basis for substrate recognition and to begin to provide insights into molecular mechanisms of protein phosphatase regulation.
Collapse
Affiliation(s)
- D Barford
- Laboratory of Molecular Biophysics, University of Oxford, United Kingdom.
| | | | | |
Collapse
|
26
|
Klee CB, Ren H, Wang X. Regulation of the calmodulin-stimulated protein phosphatase, calcineurin. J Biol Chem 1998; 273:13367-70. [PMID: 9593662 DOI: 10.1074/jbc.273.22.13367] [Citation(s) in RCA: 713] [Impact Index Per Article: 26.4] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Affiliation(s)
- C B Klee
- Laboratory of Biochemistry, NCI, National Institutes of Health, Bethesda, Maryland 20892, USA.
| | | | | |
Collapse
|
27
|
Christianson DW. Structural chemistry and biology of manganese metalloenzymes. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 1998; 67:217-52. [PMID: 9446936 DOI: 10.1016/s0079-6107(97)88477-5] [Citation(s) in RCA: 130] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Affiliation(s)
- D W Christianson
- Department of Chemistry, University of Pennsylvania 19104-6323, USA
| |
Collapse
|
28
|
Abstract
Calcineurin was activated at 30 degrees C by incubation with dipicolinic acid, a metal chelator, in the absence of activating, exogenous Mn2+. The activation reached a plateau after 90 min with 8- to 12-fold higher activity. Inclusion of the activating metal Mn2+ (1.0 mM) in the incubation mixture slightly lessened the activation induced by dipicolinic acid. The chelator 1,10-phenanthroline had no effect on the activity of calcineurin in concurrent experiments. Activation by dipicolinic acid was reversed by the addition of Zn2+ or Fe3+. The reversal occurred within 30 min after the addition of either metal and returned the activity of calcineurin to its initial level. Atomic absorption spectrometry analysis showed no loss of iron or zinc from calcineurin after activation (2 h) by dipicolinic acid. Because there seemed to be no interaction between dipicolinic acid and exogenous metal, the effect of dipicolinic acid was concluded to result from masking of at least one intrinsic metal. Calcineurin incubated with 1.0 mM Mn2+ (saturating levels) also did not show any loss of intrinsic metal by atomic absorption analysis. The consequences of these data concerning the role(s) of intrinsic metals in calcineurin catalysis are discussed.
Collapse
Affiliation(s)
- B L Martin
- Department of Biochemistry, University of Tennessee, Memphis 38163, USA.
| |
Collapse
|
29
|
Hengge AC, Martin BL. Isotope effect studies on the calcineurin phosphoryl-transfer reaction: transition state structure and effect of calmodulin and Mn2+. Biochemistry 1997; 36:10185-91. [PMID: 9254616 DOI: 10.1021/bi9706374] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
The hydrolysis of p-nitrophenyl phosphate (pNPP) catalyzed by calcineurin has been studied by measurement of heavy-atom isotope effects in the substrate. The isotope effects were measured at the nonbridging oxygen atoms [18(V/K)nonbridge], at the position of bond cleavage in the bridging oxygen atom [18(V/K)bridge], and at the nitrogen atom in the nitrophenol leaving group [15(V/K)]. The isotope effects increased in magnitude upon moving from the pH optimum of 7.0 to 8.5; 18(V/K)bridge increased from 1.0072 to 1.0115, and 15(V/K) from 1.0006 to 1.0014. The value for 18(V/K)nonbridge is 0.9942 at pH 8.5. These data are consistent with P-O bond cleavage being partially rate-limiting at the pH optimum and more so at the higher pH. The 18(V/K)nonbridge isotope effect indicates that the dianion is the substrate for catalysis, and a dissociative transition state is operative for phosphoryl transfer. Increasing the concentration of the activating metal ion Mn2+ at pH 7.0 from 1 mM to 5 mM increases the magnitude of the isotope effects by an amount similar to that observed with the shift in pH from 7.0 to 8.5, indicative of a change in the commitment factor in the kinetic mechanism so as to make the chemical step more rate-limiting.
Collapse
Affiliation(s)
- A C Hengge
- Institute for Enzyme Research, University of Wisconsin, 1710 University Avenue, Madison, Wisconsin 53705, USA
| | | |
Collapse
|
30
|
|
31
|
Abstract
The dephosphorylation of proteins on their serine, threonine and tyrosine residues is catalysed by three families of protein phosphatases that regulate numerous intracellular processes. Diversity of structure within a family is generated by targeting and regulatory subunits and domains. Structural studies of these enzymes have revealed that although the two families of protein Ser/Thr phosphatases are unrelated in sequence, the architecture of their catalytic domains is remarkably similar and distinct from the protein tyrosine phosphatases. Insights into the molecular mechanisms of catalysis and regulation of these enzymes have been obtained.
Collapse
Affiliation(s)
- D Barford
- Laboratory of Molecular Biophysics, University of Oxford, UK.
| |
Collapse
|
32
|
Ansai T, Dupuy LC, Barik S. Interactions between a minimal protein serine/threonine phosphatase and its phosphopeptide substrate sequence. J Biol Chem 1996; 271:24401-7. [PMID: 8798696 DOI: 10.1074/jbc.271.40.24401] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
The protein phosphatase encoded by coliphage lambda (PPlambda) was found to be the equivalent of the minimal catalytic core of serine/threonine protein phosphatases (PP) by biochemical and mutational criteria. Bacterially expressed truncated versions of PP1 and PP5 phosphatases, representing the catalytic cores homologous to PPlambda, exhibited potent phosphatase activity. Unlike full-length PP1, but like PPlambda, the recombinant cores could use casein, p-nitrophenyl phosphate, and a wide variety of peptides as substrates and were resistant to okadaic acid, microcystin-LR, and trypsin. Mutations of His173, Asp208, or Arg221 had little effect on the activity of the PP1 core protein, indicating its closer identity with PPlambda than with full-length PP1. Terminal deletions of a few amino acids of the cores destroyed their activity, supporting their minimal nature. Analysis of PPlambda mutants suggested an influence of the substrate on metal ion binding. The minimal length of a phosphopeptide substrate of PPlambda appeared to be a phosphorylated serine/threonine flanked by 1 or 2 amino acid residues on either side, the N-terminal ones being more effective.
Collapse
Affiliation(s)
- T Ansai
- Department of Biochemistry and Molecular Biology, MSB2140, University of South Alabama College of Medicine, Mobile, Alabama 36688-0002, USA
| | | | | |
Collapse
|
33
|
Sträter N, Lipscomb WN, Klabunde T, Krebs B. Enzymatische Acyl- und Phosphoryltransferreaktionen unter Beteiligung von zwei Metallionen. Angew Chem Int Ed Engl 1996. [DOI: 10.1002/ange.19961081804] [Citation(s) in RCA: 84] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
34
|
Abstract
In the past year, the three-dimensional structures of two serine/threonine phosphatases, protein phosphatase-1 and protein phosphatase-2b (calcineurin), have been determined. The new information puts previous sequence comparisons and mutagenesis studies into a detailed structural perspective. The active-site structure and catalytic mechanism appear to be common to a variety of phosphoesterase enzymes.
Collapse
|
35
|
Zhang J, Zhang Z, Brew K, Lee EY. Mutational analysis of the catalytic subunit of muscle protein phosphatase-1. Biochemistry 1996; 35:6276-82. [PMID: 8639569 DOI: 10.1021/bi952954l] [Citation(s) in RCA: 89] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
A mutational analysis of rabbit skeletal muscle protein phosphatase-1 was performed by site-directed mutagenesis of the recombinant protein expressed in Escherichia coli. The selection of the sites to be mutated was based on sequence alignments which showed the existence of a number of invariant residues when eukaroytic Ser/Thr protein phosphatases were compared with bacteriophage phosphatases and adenosinetetraphosphatase [Barton et al. (1995) Eur. J. Biochem. 220, 225-237]. In other studies, it had been shown that PP1 is a metalloprotein [Chu et al. (1996) J. Biol. Chem. 271, 2574-2577], and in this study, we have largely focused on invariant histidine and aspartate residues which may be involved in metal binding. The residues which were mutated were H66, H125, H173, H248, D64, D71, D92, D95, N124, and R96E. The results showed that mutation of H66, H248, D64, and D92 resulted in severe loss of catalytic function. Mutation of D95, N124, and R96 also led to loss of function, while attempts to mutate H125 and H173 led to production of insoluble, inactive proteins. The results of the mutational analysis are consistent with the involvement of conserved His and Asp residues in metal binding, and are discussed in the context of the recently described crystal structure of PP1 [Goldberg et al. (1995) Nature, 376, 745-753], which reveals that PP1 possesses a bimetallic center at the active site. The behavior of the D95, R96, and N124 mutants supports a catalytic mechanism involving nucleophilic attack by a hydroxide ion with H125 functioning as a proton donor to the leaving alcohol group.
Collapse
Affiliation(s)
- J Zhang
- Department of Biochemistry and Molecular Biology, University of Miami School of Medicine, Florida 33101, USA
| | | | | | | |
Collapse
|
36
|
Kissinger CR, Parge HE, Knighton DR, Lewis CT, Pelletier LA, Tempczyk A, Kalish VJ, Tucker KD, Showalter RE, Moomaw EW. Crystal structures of human calcineurin and the human FKBP12-FK506-calcineurin complex. Nature 1995; 378:641-4. [PMID: 8524402 DOI: 10.1038/378641a0] [Citation(s) in RCA: 570] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Calcineurin (CaN) is a calcium- and calmodulin-dependent protein serine/threonine phosphate which is critical for several important cellular processes, including T-cell activation. CaN is the target of the immunosuppressive drugs cyclosporin A and FK506, which inhibit CaN after forming complexes with cytoplasmic binding proteins (cyclophilin and FKBP12, respectively). We report here the crystal structures of full-length human CaN at 2.1 A resolution and of the complex of human CaN with FKBP12-FK506 at 3.5 A resolution. In the native CaN structure, an auto-inhibitory element binds at the Zn/Fe-containing active site. The metal-site geometry and active-site water structure suggest a catalytic mechanism involving nucleophilic attack on the substrate phosphate by a metal-activated water molecule. In the FKBP12-FK506-CaN complex, the auto-inhibitory element is displaced from the active site. The site of binding of FKBP12-FK506 appears to be shared by other non-competitive inhibitors of calcineurin, including a natural anchoring protein.
Collapse
Affiliation(s)
- C R Kissinger
- Agouron Pharmaceuticals Inc., San Diego, California 92121-1121, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
37
|
|