1
|
Glioblastoma mutations alter EGFR dimer structure to prevent ligand bias. Nature 2022; 602:518-522. [PMID: 35140400 DOI: 10.1038/s41586-021-04393-3] [Citation(s) in RCA: 50] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Accepted: 12/22/2021] [Indexed: 12/13/2022]
Abstract
The epidermal growth factor receptor (EGFR) is frequently mutated in human cancer1,2, and is an important therapeutic target. EGFR inhibitors have been successful in lung cancer, where mutations in the intracellular tyrosine kinase domain activate the receptor1, but not in glioblastoma multiforme (GBM)3, where mutations occur exclusively in the extracellular region. Here we show that common extracellular GBM mutations prevent EGFR from discriminating between its activating ligands4. Different growth factor ligands stabilize distinct EGFR dimer structures5 that signal with different kinetics to specify or bias outcome5,6. EGF itself induces strong symmetric dimers that signal transiently to promote proliferation. Epiregulin (EREG) induces much weaker asymmetric dimers that drive sustained signalling and differentiation5. GBM mutations reduce the ability of EGFR to distinguish EREG from EGF in cellular assays, and allow EGFR to form strong (EGF-like) dimers in response to EREG and other low-affinity ligands. Using X-ray crystallography, we further show that the R84K GBM mutation symmetrizes EREG-driven extracellular dimers so that they resemble dimers normally seen with EGF. By contrast, a second GBM mutation, A265V, remodels key dimerization contacts to strengthen asymmetric EREG-driven dimers. Our results argue for an important role of altered ligand discrimination by EGFR in GBM, with potential implications for therapeutic targeting.
Collapse
|
2
|
Singh SS, Chauhan SB, Kumar A, Kumar S, Engwerda CR, Sundar S, Kumar R. Amphiregulin in cellular physiology, health, and disease: Potential use as a biomarker and therapeutic target. J Cell Physiol 2021; 237:1143-1156. [PMID: 34698381 DOI: 10.1002/jcp.30615] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Revised: 10/02/2021] [Accepted: 10/06/2021] [Indexed: 12/18/2022]
Abstract
Amphiregulin (AREG), which acts as one of the ligands for epidermal receptor growth factor receptor (EGFR), plays a crucial role in tissue repair, inflammation, and immunity. AREG is synthesized as membrane-anchored pre-protein, and is excreted after proteolytic cleavage, and serves as an autocrine or paracrine factor. After engagement with the EGFR, AREG triggers a cascade of signaling events required for many cellular physiological processes including metabolism, cell cycle, and proliferation. Under different inflammatory and pathogenic conditions, AREG is expressed by various activated immune cells that orchestrate both tolerance and host resistance mechanisms. Several factors including xenobiotics, cytokines, and inflammatory lipids have been shown to trigger AREG gene expression and release. In this review, we discuss the structure, function, and regulation of AREG, its role in tissue repair, inflammation, and homeostasis as well as the potential of AREG as a biomarker and therapeutic target.
Collapse
Affiliation(s)
- Siddharth S Singh
- Department of Medicine, Institute of Medical Sciences, Banaras Hindu University, Varanasi, India
| | - Shashi B Chauhan
- Department of Medicine, Institute of Medical Sciences, Banaras Hindu University, Varanasi, India
| | - Awnish Kumar
- Centre of Experimental Medicine & Surgery, Institute of Medical Sciences, Banaras Hindu University, Varanasi, India
| | - Shashi Kumar
- Department of Medicine, Institute of Medical Sciences, Banaras Hindu University, Varanasi, India
| | - Christian R Engwerda
- Department of Immunology, QIMR Berghofer Medical Research Institute, Brisbane, Australia
| | - Shyam Sundar
- Department of Medicine, Institute of Medical Sciences, Banaras Hindu University, Varanasi, India
| | - Rajiv Kumar
- Centre of Experimental Medicine & Surgery, Institute of Medical Sciences, Banaras Hindu University, Varanasi, India
| |
Collapse
|
3
|
Vermillion MS, Ursin RL, Kuok DIT, Vom Steeg LG, Wohlgemuth N, Hall OJ, Fink AL, Sasse E, Nelson A, Ndeh R, McGrath-Morrow S, Mitzner W, Chan MCW, Pekosz A, Klein SL. Production of amphiregulin and recovery from influenza is greater in males than females. Biol Sex Differ 2018; 9:24. [PMID: 30012205 PMCID: PMC6048771 DOI: 10.1186/s13293-018-0184-8] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/08/2018] [Accepted: 05/30/2018] [Indexed: 01/07/2023] Open
Abstract
Background Amphiregulin (AREG) is an epidermal growth factor that is a significant mediator of tissue repair at mucosal sites, including in the lungs during influenza A virus (IAV) infection. Previous research illustrates that males of reproductive ages experience less severe disease and recover faster than females following infection with IAV. Methods Whether males and females differentially produce and utilize AREG for pulmonary repair after IAV infection was investigated using murine models on a C57BL/6 background and primary mouse and human epithelial cell culture systems. Results Following sublethal infection with 2009 H1N1 IAV, adult female mice experienced greater morbidity and pulmonary inflammation during the acute phase of infection as well as worse pulmonary function during the recovery phase of infection than males, despite having similar virus clearance kinetics. As compared with females, AREG expression was greater in the lungs of male mice as well as in primary respiratory epithelial cells derived from mouse and human male donors, in response to H1N1 IAVs. Internalization of the epidermal growth factor receptor (EGFR) was also greater in respiratory epithelial cells derived from male than female mice. IAV infection of Areg knock-out (Areg−/−) mice eliminated sex differences in IAV pathogenesis, with a more significant role for AREG in infection of male compared to female mice. Deletion of Areg had no effect on virus replication kinetics in either sex. Gonadectomy and treatment of either wild-type or Areg−/− males with testosterone improved the outcome of IAV as compared with their placebo-treated conspecifics. Conclusions Taken together, these data show that elevated levels of testosterone and AREG, either independently or in combination, improve resilience (i.e., repair and recovery of damaged tissue) and contribute to better influenza outcomes in males compared with females.
Collapse
Affiliation(s)
- Meghan S Vermillion
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, The Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA.,Molecular and Comparative Pathobiology, Johns Hopkins School of Medicine, Baltimore, MD, USA
| | - Rebecca L Ursin
- Department of Biochemistry and Molecular Biology, The Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
| | - Denise I T Kuok
- School of Public Health, LKS Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong SAR, China
| | - Landon G Vom Steeg
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, The Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
| | - Nicholas Wohlgemuth
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, The Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
| | - Olivia J Hall
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, The Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
| | - Ashley L Fink
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, The Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
| | - Eric Sasse
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, The Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
| | - Andrew Nelson
- Department of Environmental Health and Engineering, The Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
| | - Roland Ndeh
- Department of Pediatrics, The Johns Hopkins School of Medicine, Baltimore, MD, USA
| | - Sharon McGrath-Morrow
- Department of Environmental Health and Engineering, The Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA.,Department of Pediatrics, The Johns Hopkins School of Medicine, Baltimore, MD, USA
| | - Wayne Mitzner
- Department of Environmental Health and Engineering, The Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
| | - Michael C W Chan
- School of Public Health, LKS Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong SAR, China
| | - Andrew Pekosz
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, The Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA.,Department of Environmental Health and Engineering, The Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
| | - Sabra L Klein
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, The Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA. .,Department of Biochemistry and Molecular Biology, The Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA.
| |
Collapse
|
4
|
Zuo WL, Yang J, Gomi K, Chao I, Crystal RG, Shaykhiev R. EGF-Amphiregulin Interplay in Airway Stem/Progenitor Cells Links the Pathogenesis of Smoking-Induced Lesions in the Human Airway Epithelium. Stem Cells 2017; 35:824-837. [PMID: 27709733 PMCID: PMC5330845 DOI: 10.1002/stem.2512] [Citation(s) in RCA: 52] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2016] [Revised: 08/16/2016] [Accepted: 09/08/2016] [Indexed: 12/31/2022]
Abstract
The airway epithelium of cigarette smokers undergoes dramatic remodeling with hyperplasia of basal cells (BC) and mucus-producing cells, squamous metaplasia, altered ciliated cell differentiation and decreased junctional barrier integrity, relevant to chronic obstructive pulmonary disease and lung cancer. In this study, we show that epidermal growth factor receptor (EGFR) ligand amphiregulin (AREG) is induced by smoking in human airway epithelium as a result of epidermal growth factor (EGF)-driven squamous differentiation of airway BC stem/progenitor cells. In turn, AREG induced a unique EGFR activation pattern in human airway BC, distinct from that evoked by EGF, leading to BC- and mucous hyperplasia, altered ciliated cell differentiation and impaired barrier integrity. Further, AREG promoted its own expression and suppressed expression of EGF, establishing an autonomous self-amplifying signaling loop in airway BC relevant for promotion of EGF-independent hyperplastic phenotypes. Thus, EGF-AREG interplay in airway BC stem/progenitor cells is one of the mechanisms that mediates the interconnected pathogenesis of all major smoking-induced lesions in the human airway epithelium. Stem Cells 2017;35:824-837.
Collapse
Affiliation(s)
- Wu-Lin Zuo
- Department of Genetic Medicine, Weill Cornell Medical College, New York, New York, USA
| | - Jing Yang
- Department of Genetic Medicine, Weill Cornell Medical College, New York, New York, USA
| | - Kazunori Gomi
- Department of Genetic Medicine, Weill Cornell Medical College, New York, New York, USA
| | - IonWa Chao
- Department of Genetic Medicine, Weill Cornell Medical College, New York, New York, USA
| | - Ronald G Crystal
- Department of Genetic Medicine, Weill Cornell Medical College, New York, New York, USA
| | - Renat Shaykhiev
- Department of Genetic Medicine, Weill Cornell Medical College, New York, New York, USA
| |
Collapse
|
5
|
Zaiss DMW, Gause WC, Osborne LC, Artis D. Emerging functions of amphiregulin in orchestrating immunity, inflammation, and tissue repair. Immunity 2015; 42:216-226. [PMID: 25692699 DOI: 10.1016/j.immuni.2015.01.020] [Citation(s) in RCA: 457] [Impact Index Per Article: 45.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2014] [Indexed: 01/14/2023]
Abstract
Type 2 inflammatory responses can be elicited by diverse stimuli, including toxins, venoms, allergens, and infectious agents, and play critical roles in resistance and tolerance associated with infection, wound healing, tissue repair, and tumor development. Emerging data suggest that in addition to characteristic type 2-associated cytokines, the epidermal growth factor (EGF)-like molecule Amphiregulin (AREG) might be a critical component of type 2-mediated resistance and tolerance. Notably, numerous studies demonstrate that in addition to the established role of epithelial- and mesenchymal-derived AREG, multiple leukocyte populations including mast cells, basophils, group 2 innate lymphoid cells (ILC2s), and a subset of tissue-resident regulatory CD4(+) T cells can express AREG. In this review, we discuss recent advances in our understanding of the AREG-EGF receptor pathway and its involvement in infection and inflammation and propose a model for the function of this pathway in the context of resistance and tissue tolerance.
Collapse
Affiliation(s)
- Dietmar M W Zaiss
- Ashworth Laboratories, Institute of Immunology and Infection Research, University of Edinburgh, Edinburgh, EH9 3FL, UK.
| | - William C Gause
- Department of Medicine, Center for Immunity and Inflammation, Rutgers, The State University of New Jersey, New Jersey Medical School, Newark, NJ 07101, USA.
| | - Lisa C Osborne
- Jill Roberts Institute for Research in IBD, Joan and Sanford I. Weill Department of Medicine, Department of Microbiology and Immunology, Weill Cornell Medical College, Cornell University, New York, NY 10021, USA
| | - David Artis
- Jill Roberts Institute for Research in IBD, Joan and Sanford I. Weill Department of Medicine, Department of Microbiology and Immunology, Weill Cornell Medical College, Cornell University, New York, NY 10021, USA.
| |
Collapse
|
6
|
Identifying Determinants of EGFR-Targeted Therapeutic Biochemical Efficacy Using Computational Modeling. CPT-PHARMACOMETRICS & SYSTEMS PHARMACOLOGY 2014; 3:e141. [PMID: 25317724 PMCID: PMC4474171 DOI: 10.1038/psp.2014.39] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/28/2013] [Accepted: 07/29/2014] [Indexed: 02/07/2023]
Abstract
We modeled cellular epidermal growth factor receptor (EGFR) tyrosine phosphorylation dynamics in
the presence of receptor-targeting kinase inhibitors (e.g., gefitinib) or antibodies (e.g.,
cetuximab) to identify systematically the factors that contribute most to the ability of the
therapeutics to antagonize EGFR phosphorylation, an effect we define here as biochemical efficacy.
Our model identifies distinct processes as controlling gefitinib or cetuximab biochemical efficacy,
suggests biochemical efficacy is favored in the presence of certain EGFR ligands, and suggests new
drug design principles. For example, the model predicts that gefitinib biochemical efficacy is
preferentially sensitive to perturbations in the activity of tyrosine phosphatases regulating EGFR,
but that cetuximab biochemical efficacy is preferentially sensitive to perturbations in ligand
binding. Our results highlight numerous other considerations that determine biochemical efficacy
beyond those reflected by equilibrium affinities. By integrating these considerations, our model
also predicts minimum therapeutic combination concentrations to maximally reduce receptor
phosphorylation.
Collapse
|
7
|
Nickerson NK, Mill CP, Wu HJ, Riese DJ, Foley J. Autocrine-derived epidermal growth factor receptor ligands contribute to recruitment of tumor-associated macrophage and growth of basal breast cancer cells in vivo. Oncol Res 2013; 20:303-17. [PMID: 23879171 DOI: 10.3727/096504013x13639794277761] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Epidermal growth factor receptor (EGFR) expression has been linked to progression of basal breast cancers. Many breast cancer cells harbor the EGFR and produce its family of ligands, suggesting they may participate in autocrine and paracrine signaling with cells of the tumor microenvironment. EGFR ligand expression was profiled in the basal breast cancer cell line MDA-231 where AREG, TGF-alpha, and HBEGF were the three ligands most highly expressed. Autocrine signaling was modulated through silencing or overexpression of these three ligands using lentiviral constructs and the impact measured using motility, proliferation, and cytokine expression assays. Changes in receptor phosphorylation and receptor turnover were examined. Knockdown of AREG or TGF-alpha in vitro resulted in decreased motility (p < 0.05) and decreased expression of macrophage chemoattractants. Overexpression of TGF-alpha increased motility and chemoattractant expression, whereas AREG did not. HBEGF modulation had no effect on any cellular behaviors. All the cells with altered ligand production were inoculated into female athymic nude mice to form mammary fat pad tumors, followed by immunohistochemical analysis for necrosis, angiogenesis, and macrophage recruitment. In vivo, knockdown of AREG or TGF-alpha increased survival (p < 0.001) while decreasing angiogenesis (p < 0.001), tumor growth (p < 0.001), and macrophage attraction (p < 0.001). Overexpression of AREG appeared to elicit a greater effect than TGF-alpha on mammary fat pad tumor growth by increasing angiogenesis (p < 0.001) and macrophage attraction to the tumor (p < 0.01). We propose these changes in mammary tumor growth were the result of increased recruitment of macrophages to the tumor by cells with altered autocrine EGFR signaling. We conclude that AREG and TGF-alpha were somewhat interchangeable in their effects on EGFR signaling; however, TGF-alpha had a greater effect in vitro and AREG had a greater effect in vivo.
Collapse
Affiliation(s)
- Nicole K Nickerson
- Medical Sciences Program, Indiana University School of Medicine, Bloomington, IN 47405, USA
| | | | | | | | | |
Collapse
|
8
|
Levano KS, Kenny PA. Clarification of the C-terminal proteolytic processing site of human Amphiregulin. FEBS Lett 2012; 586:3500-2. [DOI: 10.1016/j.febslet.2012.07.078] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2012] [Accepted: 07/31/2012] [Indexed: 10/28/2022]
|
9
|
At the crossroads: EGFR and PTHrP signaling in cancer-mediated diseases of bone. Odontology 2012; 100:109-29. [PMID: 22684584 DOI: 10.1007/s10266-012-0070-5] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2012] [Accepted: 05/21/2012] [Indexed: 01/01/2023]
Abstract
The epidermal growth factor receptor is a well-established cancer therapeutic target due to its stimulation of proliferation, motility, and resistance to apoptosis. Recently, additional roles for the receptor have been identified in growth of metastases. Similar to development, metastatic spread requires signaling interactions between epithelial-derived tumor cells and mesenchymal derivatives of the microenvironment. This necessitates reactivation of developmental signaling molecules, including the hypercalcemia factor parathyroid hormone-related protein. This review covers the variations of epidermal growth factor receptor signaling in cancers that produce bone metastases, regulation of parathyroid hormone-related protein, and evidence that the two molecules drive cancer-mediated diseases of bone.
Collapse
|
10
|
Stoll SW, Johnson JL, Li Y, Rittié L, Elder JT. Amphiregulin carboxy-terminal domain is required for autocrine keratinocyte growth. J Invest Dermatol 2010; 130:2031-40. [PMID: 20428186 PMCID: PMC3072808 DOI: 10.1038/jid.2010.98] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
The EGFR ligand amphiregulin (AREG) has been implicated as an important autocrine growth factor in several epithelial malignancies and in psoriasis, a hyperproliferative skin disorder. To characterize the mechanisms by which AREG regulates autocrine epithelial cell growth, we transduced human keratinocytes (KCs) with lentiviral constructs expressing tetracycline (TET)-inducible small hairpin RNA (shRNA). TET-induced expression of AREG shRNA markedly reduced autocrine extracellular signal-regulated kinase phosphorylation, strongly inhibited autocrine KC growth with an efficiency similar to metalloproteinase and EGFR inhibitors, and induced several markers of KC differentiation, including keratins 1 and 10. Addition of various concentrations of exogenous EGFR ligands to KC cultures reversed the growth inhibition in response to AREG-blocking antibodies but not to shRNA-mediated AREG knockdown. Lentivirus-mediated expression of the full-length AREG transmembrane (TM) precursor, but not of the AREG extracellular domain, markedly reversed the shRNA-mediated growth inhibition and morphological changes, and strongly reduced the induction of multiple markers of KC differentiation. Taken together, our data show that autocrine human KC growth is highly dependent on the AREG TM precursor protein and strongly suggest a previously unreported function of the metalloproteinase-processed carboxy (C)-terminal domain of AREG.
Collapse
Affiliation(s)
- Stefan W Stoll
- Department of Dermatology, University of Michigan, Ann Arbor, Michigan 48109, USA.
| | | | | | | | | |
Collapse
|
11
|
Stoll SW, Johnson JL, Bhasin A, Johnston A, Gudjonsson JE, Rittié L, Elder JT. Metalloproteinase-mediated, context-dependent function of amphiregulin and HB-EGF in human keratinocytes and skin. J Invest Dermatol 2010; 130:295-304. [PMID: 19609315 PMCID: PMC2795126 DOI: 10.1038/jid.2009.211] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Human keratinocytes (KCs) express multiple EGF receptor (EGFR) ligands; however, their functions in specific cellular contexts remain largely undefined. To address this issue, first we measured mRNA and protein levels for multiple EGFR ligands in KCs and skin. Amphiregulin (AREG) was by far the most abundant EGFR ligand in cultured KCs, with >19 times more mRNA and >7.5 times more shed protein than any other family member. EGFR ligand expression in normal skin was low (<8 per thousand of RPLP0/36B4); however, HB-EGF and AREG mRNAs were strongly induced in human skin organ culture. KC migration in scratch wound assays was highly metalloproteinase (MP)- and EGFR dependent, and was markedly inhibited by EGFR ligand antibodies. However, lentivirus-mediated expression of soluble HB-EGF, but not soluble AREG, strongly enhanced KC migration, even in the presence of MP inhibitors. Lysophosphatidic acid (LPA)-induced ERK phosphorylation was also strongly EGFR and MP dependent and markedly inhibited by neutralization of HB-EGF. In contrast, autocrine KC proliferation and ERK phosphorylation were selectively blocked by neutralization of AREG. These data show that distinct EGFR ligands stimulate KC behavior in different cellular contexts, and in an MP-dependent fashion.
Collapse
Affiliation(s)
- Stefan W Stoll
- Department of Dermatology, University of Michigan Medical School, Ann Arbor, MI, USA.
| | | | | | | | | | | | | |
Collapse
|
12
|
Enomoto Y, Orihara K, Takamasu T, Matsuda A, Gon Y, Saito H, Ra C, Okayama Y. Tissue remodeling induced by hypersecreted epidermal growth factor and amphiregulin in the airway after an acute asthma attack. J Allergy Clin Immunol 2009; 124:913-20.e1-7. [PMID: 19895983 DOI: 10.1016/j.jaci.2009.08.044] [Citation(s) in RCA: 103] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2009] [Revised: 07/23/2009] [Accepted: 08/20/2009] [Indexed: 12/19/2022]
Abstract
BACKGROUND Epidermal growth factor receptor ligands, such as epidermal growth factor (EGF) and amphiregulin, may play key roles in tissue remodeling in asthma. However, the kinetics of EGF and amphiregulin secretion in the airway after an acute asthma attack and the effect of prolonged airway exposure to these ligands on airway remodeling are unknown. OBJECTIVE To measure the EGF and amphiregulin concentrations in sputa obtained from patients with asthma under various conditions, and to examine the effects of EGF and amphiregulin on the proliferation or differentiation of airway structural cells. METHODS Epidermal growth factor and amphiregulin levels were measured by ELISA in sputum specimens collected from 14 hospitalized children with asthma during an acute asthma attack, 13 stable outpatients with asthma, 8 healthy control children, and 7 children with respiratory tract infections. The effects of EGF and amphiregulin on the proliferation and/or differentiation of normal human bronchial epithelial cells (NHBE), bronchial smooth muscle cells (BSMC), and normal human lung fibroblasts (NHLF) were examined. RESULTS The sputum levels of EGF were significantly higher for about a week after an acute asthma attack compared with the levels in stable subjects with asthma and control subjects. In contrast, upregulation of amphiregulin in the sputa of patients with asthma was observed only during the acute attack. EGF caused proliferation of NHBE, BSMC, and NHLF, whereas amphiregulin induced proliferation of only NHBE. Prolonged exposure of NHBE to EGF and amphiregulin induced mucous cell metaplasia in an IL-13-independent manner. CONCLUSION Acute asthma attacks are associated with hypersecretion of EGF and amphiregulin in the airway. Recurrent acute attacks may aggravate airway remodeling.
Collapse
Affiliation(s)
- Yukinori Enomoto
- Division of Molecular Cell Immunology and Allergology, Advanced Medical Research Center, Nihon University Graduate School of Medical Science, Tokyo, Japan
| | | | | | | | | | | | | | | |
Collapse
|
13
|
EGF and amphiregulin differentially regulate Cbl recruitment to endosomes and EGF receptor fate. Biochem J 2008; 410:585-94. [PMID: 18045238 DOI: 10.1042/bj20071505] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
EGF-R [EGF (epidermal growth factor) receptor] ligands can promote or inhibit cell growth. The biological outcome of receptor activation is dictated, at least in part, by ligand-specified patterns of endocytic trafficking. EGF-R trafficking downstream of the ligands EGF and TGF-alpha (transforming growth factor-alpha) has been investigated extensively. However, less is known about EGF-R fates induced by the ligands BTC (betacellulin) and AR (amphiregulin). We undertook comparative analyses to identify ligand-specific molecular events that regulate EGF-R trafficking and degradation. EGF (17 nM) and BTC (8.5 nM) induced significant EGF-R degradation, with or without ectopic expression of the ubiquitin ligase Cbl. Human recombinant AR (17 nM) failed to affect receptor degradation in either case. Notably, levels of ligand-induced EGF-R ubiquitination did not correlate strictly with receptor degradation. Dose-response experiments revealed that AR at a saturating concentration was a partial agonist at the EGF-R, with approx. 40% efficacy (relative to EGF) at inducing receptor tyrosine phosphorylation, ubiquitination and association with Cbl. EGF-R down-regulation and degradation also were compromised upon cell stimulation with AR (136 nM). These outcomes correlated with decreased degradation of the Cbl substrate and internalization inhibitor hSprouty2. Downstream of the hSprouty2 checkpoint in AR-stimulated cells, Cbl-free EGF-R was incorporated into endosomes from which Cbl-EGF-R complexes were excluded. Our results suggest that the AR-specific EGF-R fate results from decreased hSprouty2 degradation and reduced Cbl recruitment to underphosphorylated EGF-R, two effects that impair EGF-R trafficking to lysosomes.
Collapse
|
14
|
YOKOMAKU D, JOURDI H, KAKITA A, NAGANO T, TAKAHASHI H, TAKEI N, NAWA H. ErbB1 receptor ligands attenuate the expression of synaptic scaffolding proteins, GRIP1 and SAP97, in developing neocortex. Neuroscience 2005; 136:1037-47. [PMID: 16226841 PMCID: PMC3659789 DOI: 10.1016/j.neuroscience.2005.08.014] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2005] [Revised: 07/23/2005] [Accepted: 08/04/2005] [Indexed: 01/01/2023]
Abstract
Scaffolding proteins containing postsynaptic density-95/discs large/zone occludens-1 (PDZ) domains interact with synaptic receptors and cytoskeletal components and are therefore implicated in synaptic development and plasticity. Little is known, however, about what regulates the expression of PDZ proteins and how the levels of these proteins influence synaptic development. Here, we show that ligands for epidermal growth factor receptors (ErbB1) decrease a particular set of PDZ proteins and negatively influence synaptic formation or maturation. In short-term neocortical cultures, concentrations of epidermal growth factor and amphiregulin (2-9 pM) decreased the expression of glutamate receptor interacting protein 1 (GRIP1) and synapse-associated protein 97 kDa (SAP97) without affecting postsynaptic density-95 (PSD-95) levels and glial proliferation. In long-term cultures, epidermal growth factor treatment resulted in a decrease in the frequency of pan-PDZ-immunoreactive aggregates on dendritic processes. A similar activity on the same PDZ proteins was observed in the developing neocortex following epidermal growth factor administration to rat neonates. Immunoblotting revealed that administered epidermal growth factor from the periphery activated brain ErbB1 receptors and decreased GRIP1 and SAP97 protein levels in the neocortex. Laser-confocal imaging indicated that epidermal growth factor administration suppressed the formation of pan-PDZ-immunoreactive puncta and dispersed those structures in vivo as well. These findings revealed a novel negative activity of ErbB1 receptor ligands that attenuates the expression of the PDZ proteins and inhibits postsynaptic maturation in developing neocortex.
Collapse
Affiliation(s)
- D. YOKOMAKU
- Department of Molecular Neurobiology, Brain Research Institute, Niigata University, Asahimachi-dori 1-757, Niigata 951-8585, Japan
| | - H. JOURDI
- Department of Molecular Neurobiology, Brain Research Institute, Niigata University, Asahimachi-dori 1-757, Niigata 951-8585, Japan
| | - A. KAKITA
- Brain Resource Center, Brain Research Institute, Niigata University, Niigata 951-8585, Japan
| | - T. NAGANO
- Department of Molecular Neurobiology, Brain Research Institute, Niigata University, Asahimachi-dori 1-757, Niigata 951-8585, Japan
| | - H. TAKAHASHI
- Department of Pathology, Brain Research Institute, Niigata University, Niigata 951-8585, Japan
| | - N. TAKEI
- Department of Molecular Neurobiology, Brain Research Institute, Niigata University, Asahimachi-dori 1-757, Niigata 951-8585, Japan
| | - H. NAWA
- Department of Molecular Neurobiology, Brain Research Institute, Niigata University, Asahimachi-dori 1-757, Niigata 951-8585, Japan
- Corresponding author. Fax: +81-25-227-0815. (H. Nawa)
| |
Collapse
|
15
|
Hinkle CL, Sunnarborg SW, Loiselle D, Parker CE, Stevenson M, Russell WE, Lee DC. Selective roles for tumor necrosis factor alpha-converting enzyme/ADAM17 in the shedding of the epidermal growth factor receptor ligand family: the juxtamembrane stalk determines cleavage efficiency. J Biol Chem 2004; 279:24179-88. [PMID: 15066986 DOI: 10.1074/jbc.m312141200] [Citation(s) in RCA: 118] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
Epidermal growth factor (EGF) family ligands are derived by proteolytic cleavage of the ectodomains of integral membrane precursors. Previously, we established that tumor necrosis factor alpha-converting enzyme (TACE/ADAM17) is a physiologic transforming growth factor-alpha (TGF-alpha) sheddase, and we also demonstrated enhanced shedding of amphiregulin (AR) and heparin-binding (HB)-EGF upon restoration of TACE activity in TACE-deficient EC-2 fibroblasts. Here we extended these results by showing that purified soluble TACE cleaved single sites in the juxtamembrane stalks of mouse pro-HB-EGF and pro-AR ectodomains in vitro. For pro-HB-EGF, this site matched the C terminus of the purified human growth factor, and we speculate that the AR cleavage site is also physiologically relevant. In contrast, ADAM9 and -10, both implicated in HB-EGF shedding, failed to cleave the ectodomain or cleaved at a nonphysiologic site, respectively. Cotransfection of TACE in EC-2 cells enhanced phorbol myristate acetate-induced but not constitutive shedding of epiregulin and had no effect on betacellulin (BTC) processing. Additionally, soluble TACE did not cleave the juxtamembrane stalks of either pro-BTC or pro-epiregulin ectodomains in vitro. Substitution of the shorter pro-BTC juxtamembrane stalk or truncation of the pro-TGF-alpha stalk to match the pro-BTC length reduced TGF-alpha shedding from transfected cells to background levels, whereas substitution of the pro-BTC P2-P2' sequence reduced TGF-alpha shedding less dramatically. Conversely, substitution of the pro-TGF-alpha stalk or lengthening of the pro-BTC stalk, especially when combined with substitution of the pro-TGF-alpha P2-P2' sequence, markedly increased BTC shedding. These results indicate that efficient TACE cleavage is determined by a combination of stalk length and scissile bond sequence.
Collapse
Affiliation(s)
- C Leann Hinkle
- Department of Biochemistry and Biophysics, University of North Carolina School of Medicine, Chapel Hill, North Carolina 27599, USA
| | | | | | | | | | | | | |
Collapse
|
16
|
|
17
|
Richter A, O'Donnell RA, Powell RM, Sanders MW, Holgate ST, Djukanović R, Davies DE. Autocrine ligands for the epidermal growth factor receptor mediate interleukin-8 release from bronchial epithelial cells in response to cigarette smoke. Am J Respir Cell Mol Biol 2002; 27:85-90. [PMID: 12091250 DOI: 10.1165/ajrcmb.27.1.4789] [Citation(s) in RCA: 124] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Airway neutrophilia is a prominent feature of chronic obstructive pulmonary disease. As cigarette smoke (CS) and epidermal growth factor (EGF) both cause release of interleukin-8 (IL-8) from epithelial cells in vitro, we investigated whether autocrine ligands for the EGF receptor (EGFR) are involved in this proinflammatory response to CS. NCI-H292 or primary bronchial epithelial cells were cultured with or without cigarette smoke extract (CSE) or EGF for 6-48 h. We then tested culture supernatants for lactate dehydrogenase activity to assess cell viability, and for IL-8 and EGFR ligands by ELISA; quantitative RT-PCR was used to measure IL-8 and EGFR ligand mRNA. EGF and low concentrations of CSE both promoted cell survival and caused enhanced transcription and release of IL-8. Similarly, levels of mRNA encoding transforming growth factor alpha (TGF-alpha), heparin-binding EGF-like growth factor, and amphiregulin (AR) were increased, as was shedding of TGF-alpha and AR protein into the culture medium. With the exception of AR gene transcription, the CS-induced responses were blocked by the EGFR-selective kinase inhibitor AG1478. Furthermore, ~ 45% of CS-induced IL-8 release was inhibited by a neutralising anti-EGFR. Our data indicate that secretion of IL-8 in response to CSE is dependent on EGFR activation and that autocrine production of TGF-alpha makes a substantial contribution to this response.
Collapse
Affiliation(s)
- Audrey Richter
- Respiratory Cell and Molecular Biology Division, School of Medicine, Southampton General Hospital, United Kingdom.
| | | | | | | | | | | | | |
Collapse
|
18
|
Strachan L, Murison JG, Prestidge RL, Sleeman MA, Watson JD, Kumble KD. Cloning and biological activity of epigen, a novel member of the epidermal growth factor superfamily. J Biol Chem 2001; 276:18265-71. [PMID: 11278323 DOI: 10.1074/jbc.m006935200] [Citation(s) in RCA: 110] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
High throughput sequencing of a mouse keratinocyte library was used to identify an expressed sequence tag with homology to the epidermal growth factor (EGF) family of growth factors. We have named the protein encoded by this expressed sequence tag Epigen, for epithelial mitogen. Epigen encodes a protein of 152 amino acids that contains features characteristic of the EGF superfamily. Two hydrophobic regions, corresponding to a putative signal sequence and transmembrane domain, flank a core of amino acids encompassing six cysteine residues and two putative N-linked glycosylation sites. Epigen shows 24-37% identity to members of the EGF superfamily including EGF, transforming growth factor alpha, and Epiregulin. Northern blotting of several adult mouse tissues indicated that Epigen was present in testis, heart, and liver. Recombinant Epigen was synthesized in Escherichia coli and refolded, and its biological activity was compared with that of EGF and transforming growth factor alpha in several assays. In epithelial cells, Epigen stimulated the phosphorylation of c-erbB-1 and mitogen-activated protein kinases and also activated a reporter gene containing enhancer sequences present in the c-fos promoter. Epigen also stimulated the proliferation of HaCaT cells, and this proliferation was blocked by an antibody to the extracellular domain of the receptor tyrosine kinase c-erbB-1. Thus, Epigen is the newest member of the EGF superfamily and, with its ability to promote the growth of epithelial cells, may constitute a novel molecular target for wound-healing therapy.
Collapse
Affiliation(s)
- L Strachan
- Genesis Research and Development Corporation Limited, Auckland 1015, New Zealand
| | | | | | | | | | | |
Collapse
|
19
|
Polosa R, Prosperini G, Tomaselli V, Howarth PH, Holgate ST, Davies DE. Expression of c-erbB receptors and ligands in human nasal epithelium. J Allergy Clin Immunol 2000; 106:1124-31. [PMID: 11112896 DOI: 10.1067/mai.2000.110931] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
BACKGROUND The epidermal growth factor (EGF) family of growth factors plays an important role in maintenance and repair in a variety of epithelial tissues. However, very little is known about coexpression of these factors and their receptors, the c-erbB family of receptor tyrosine kinases, in human nasal epithelium. OBJECTIVE We sought to investigate the expression of these molecules in cultured nasal epithelial cells and nasal mucosa from healthy individuals. METHODS Identification of c-erbB receptors and their ligands was sought by using reverse transcription PCR, Western blotting, and immunohistochemistry. RESULTS Messenger RNA encoding the EGF receptors (EGFR) c-erbB2 and c-erbB3, but not c-erbB4, was detected in primary cultures of human nasal epithelial cells. Transcripts encoding EGF, heparin-binding EGF, transforming growth factor (TGF) alpha, and amphiregulin were also detected. Receptor and ligand expression was confirmed by using immunocytochemical staining of the cells and Western blotting of the cell lysates. Immunohistochemical analysis of tissue sections obtained from biopsy specimens of nasal mucosa revealed intense membrane staining for the EGFR within the respiratory nasal epithelium, which was predominantly localized at the level of the columnar epithelial layers. Similar staining patterns were observed for c-erbB2 and c-erbB3 in the respiratory nasal epithelium. Evidence for EGF, transforming growth factor alpha, heparin-binding EGF, amphiregulin, and betacellulin immunostaining in the nasal epithelium was also obtained; their staining patterns paralleled that of EGFR immunostaining. CONCLUSION Colocalization of c-erbB receptors and ligands establishes a basis on which to investigate c-erbB receptor- mediated effects in human nasal epithelium.
Collapse
Affiliation(s)
- R Polosa
- Division of Respiratory, Cell & Molecular Biology, Faculty of Medicine, University of Southampton, Southampton General Hospital, Southampton, United Kingdom
| | | | | | | | | | | |
Collapse
|
20
|
Dong J, Opresko LK, Dempsey PJ, Lauffenburger DA, Coffey RJ, Wiley HS. Metalloprotease-mediated ligand release regulates autocrine signaling through the epidermal growth factor receptor. Proc Natl Acad Sci U S A 1999; 96:6235-40. [PMID: 10339571 PMCID: PMC26865 DOI: 10.1073/pnas.96.11.6235] [Citation(s) in RCA: 182] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/01/1999] [Indexed: 11/18/2022] Open
Abstract
Ligands that activate the epidermal growth factor receptor (EGFR) are synthesized as membrane-anchored precursors that appear to be proteolytically released by members of the ADAM family of metalloproteases. Because membrane-anchored EGFR ligands are thought to be biologically active, the role of ligand release in the regulation of EGFR signaling is unclear. To investigate this question, we used metalloprotease inhibitors to block EGFR ligand release from human mammary epithelial cells. These cells express both transforming growth factor alpha and amphiregulin and require autocrine signaling through the EGFR for proliferation and migration. We found that metalloprotease inhibitors reduced cell proliferation in direct proportion to their effect on transforming growth factor alpha release. Metalloprotease inhibitors also reduced growth of EGF-responsive tumorigenic cell lines and were synergistic with the inhibitory effects of antagonistic EGFR antibodies. Blocking release of EGFR ligands also strongly inhibited autocrine activation of the EGFR and reduced both the rate and persistence of cell migration. The effects of metalloprotease inhibitors could be reversed by either adding exogenous EGF or by expressing an artificial gene for EGF that lacked a membrane-anchoring domain. Our results indicate that soluble rather than membrane-anchored forms of the ligands mediate most of the biological effects of EGFR ligands. Metalloprotease inhibitors have shown promise in preventing spread of metastatic disease. Many of their antimetastatic effects could be the result of their ability to inhibit autocrine signaling through the EGFR.
Collapse
Affiliation(s)
- J Dong
- Department of Pathology, University of Utah, Salt Lake City, UT 84132, USA
| | | | | | | | | | | |
Collapse
|
21
|
Polosa R, Prosperini G, Leir SH, Holgate ST, Lackie PM, Davies DE. Expression of c-erbB receptors and ligands in human bronchial mucosa. Am J Respir Cell Mol Biol 1999; 20:914-23. [PMID: 10226061 DOI: 10.1165/ajrcmb.20.5.3308] [Citation(s) in RCA: 95] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
The epidermal growth factor receptor (EGFR, c-erbB1) plays a pivotal role in maintenance and repair of epithelial tissues; however, little is known about coexpression of c-erbB receptors and their ligands in human bronchial epithelium. We therefore analyzed the expression of these molecules in cultured bronchial epithelial cells and normal bronchial mucosa, using reverse transcription-polymerase chain reaction (RT- PCR), flow cytometry, and immunohistochemistry. Messenger RNA (mRNA) encoding EGFR, c-erbB2, and c-erbB3, but not c-erbB4, was detected in primary cultures of human bronchial epithelial cells, as well as in the human bronchial epithelial-derived cell lines H292 and 16HBE 14o-. Transcripts encoding epidermal growth factor (EGF), heparin binding epidermal growth factor (HB-EGF), transforming growth factor-alpha (TGF-alpha), and amphiregulin (AR) were also detected, and expression of the three receptors and four ligands was confirmed by immunocytochemical staining of the cultured cells. Immunohistochemical analysis of resin- or paraffin-embedded sections from surgical specimens of bronchial mucosa revealed strong membrane staining for EGFR within the bronchial epithelium; this was particularly evident between basal cells and the basal aspect of columnar cells. The patterns of staining for c-erbB2 and c-erbB3 in the bronchial epithelium were similar to those for EGFR. Immunostaining for EGF, TGF-alpha, AR, HB- EGF, and betacellulin (BTC) was intense in the submucosal glands; with the exception of BTC, EGFR ligand immunoreactivity was also observed in the bronchial epithelium, where it paralleled EGFR staining. Colocalization of c-erbB receptors and ligands demonstrates the potential for productive c-erbB receptor interactions in bronchial epithelium. Further study of these interactions may help to define their role in maintenance and repair of the bronchial epithelium.
Collapse
Affiliation(s)
- R Polosa
- University Medicine, Southampton General Hospital, Southampton, United Kingdom
| | | | | | | | | | | |
Collapse
|
22
|
Piepkorn M, Pittelkow MR, Cook PW. Autocrine regulation of keratinocytes: the emerging role of heparin-binding, epidermal growth factor-related growth factors. J Invest Dermatol 1998; 111:715-21. [PMID: 9804327 DOI: 10.1046/j.1523-1747.1998.00390.x] [Citation(s) in RCA: 115] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Although originally conceived as a basis for malignant cell growth, autocrine signaling networks are currently known to be activated during tissue repair and with in vitro cultivation. In human epidermal keratinocytes, activation of the epidermal growth factor receptor by cognate ligands mediates the majority of the autonomous replicative capacity of these cells and is necessary to inhibit differentiation and apoptosis. The importance of heparin-binding growth factors in activation of this receptor was first suggested by the strong anti-proliferative effects of soluble heparin-like molecules on keratinocyte growth. This and related evidence led to the identification of amphiregulin as a major autocrine factor for keratinocytes. The binding of amphiregulin and its homolog, heparin-binding epidermal growth factor-like growth factor, to the receptor is potentially amplified by autoinduction and cross-signaling through epidermal growth factor-related polypeptides and by transmodulation of other ErbB-family receptors (HER-2, -3, -4) in cells expressing these receptors. Heparan sulfate proteoglycans and the tetraspanin family of membrane-associated proteins appear to act as cofactors in amphiregulin-driven mitogenesis mediated by the epidermal growth factor receptor, but amphiregulin's immunolocalization to keratinocyte nuclei and to filopodia may indicate other potentially novel effects. Following from the observation that amphiregulin is overexpressed in lesional psoriatic epidermis, the importance of amphiregulin in hyperproliferative skin diseases has been further supported by recent studies of the targeted expression of a transgene encoding keratin 14 promoter-driven human amphiregulin to the basal epidermis of mice. Founder transgenic mice displayed a morphologic and microscopic cutaneous phenotype that shares characteristics with psoriasis. Pharmacologic regulation of amphiregulin's expression and receptor signaling may eventually prove to be an effective strategy in the treatment of hyperproliferative skin diseases.
Collapse
Affiliation(s)
- M Piepkorn
- Department of Medicine, University of Washington School of Medicine, Seattle, USA
| | | | | |
Collapse
|
23
|
Brown CL, Meise KS, Plowman GD, Coffey RJ, Dempsey PJ. Cell surface ectodomain cleavage of human amphiregulin precursor is sensitive to a metalloprotease inhibitor. Release of a predominant N-glycosylated 43-kDa soluble form. J Biol Chem 1998; 273:17258-68. [PMID: 9642297 DOI: 10.1074/jbc.273.27.17258] [Citation(s) in RCA: 95] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Biosynthesis and processing of amphiregulin (AR) have been investigated in human colorectal (HCA-7, Caco-2) and mammary (MCF-7) cancer cell lines, as well as in Madin-Darby canine kidney cells stably expressing various human AR precursor (pro-AR) forms. Both cells expressing endogenous and transfected AR produce multiple cellular and soluble forms of AR with an N-glycosylated 50-kDa pro-AR form being predominant. Our results demonstrate that sequential proteolytic cleavage within the ectodomain of the 50-kDa pro-AR form leads to release of a predominant N-glycosylated 43-kDa soluble AR, as well as the appearance of other cellular and soluble AR forms. Cell surface biotinylation studies using a C-terminal epitope-tagged pro-AR indicate that all cell surface forms are membrane-anchored and support that AR is released by ectodomain cleavage of pro-AR at the plasma membrane. We also show that pro-AR ectodomain cleavage is a regulated process, which can be stimulated by phorbol 12-myristate 13-acetate and inhibited by the metalloprotease inhibitor, batimastat. In addition, we provide evidence that high molecular mass AR forms may retain the full-length N-terminal pro-region, which may influence the biological activities of these forms.
Collapse
Affiliation(s)
- C L Brown
- Department of Cell Biology, Vanderbilt University School of Medicine, Nashville, Tennessee 37232-2279, USA
| | | | | | | | | |
Collapse
|
24
|
Affiliation(s)
- E D Adamson
- Burnham Institute, La Jolla Cancer Research Center, California 92037, USA
| | | |
Collapse
|
25
|
Solic N, Davies DE. Differential effects of EGF and amphiregulin on adhesion molecule expression and migration of colon carcinoma cells. Exp Cell Res 1997; 234:465-76. [PMID: 9260917 DOI: 10.1006/excr.1997.3635] [Citation(s) in RCA: 43] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Epidermal growth factor (EGF) is a potent morphogen affecting cell shape and motility through regulation of adhesive interactions. We have characterized the morphological effects of EGF on GP2d and GP5d colon carcinoma cell lines and have compared the ability of the heparin-binding EGF receptor ligand amphiregulin (AR) to elicit the same effects. EGF induced a marked epithelial-mesenchymal transition in both cell lines. This effect was evident at 7 pM EGF and was associated with a reduction in cellular adherens junctions and diminished cell-cell contact; it was also associated with an increase in expression of alpha2-integrin as well as enhanced adhesion to the substratum and cell spreading. These changes in adhesion molecule expression were accompanied by enhanced migration on collagen. Blockade of cell growth with mitomycin C did not prevent the EGF-induced morphological change, showing that the mitogenic and morphogenic responses of the GP cells were separable. The phosphatidyl inositol (PI) 3-kinase inhibitor wortmannin inhibited basal proliferation but had no effect on the EGF-induced morphological change, further suggesting that the PI 3-kinase pathway was not involved in the morphogenic response of these cells. Amphiregulin stimulated proliferation of both cell lines, but could only elicit a modest morphological change if used at considerably higher doses or if growth was blocked with mitomycin C. In cells treated with 55 nM AR, alpha2-integrin expression was slightly increased; however, unlike the EGF case, adherens junctions remained intact. These differences in the ability of EGF and amphiregulin to affect cellular adhesion and migration may be significant factors influencing normal and tumor cell behavior.
Collapse
Affiliation(s)
- N Solic
- CRC Wessex Medical Oncology Unit, CF99 Southampton General Hospital, United Kingdom
| | | |
Collapse
|
26
|
Thompson SA, Harris A, Hoang D, Ferrer M, Johnson GR. COOH-terminal extended recombinant amphiregulin with bioactivity comparable with naturally derived growth factor. J Biol Chem 1996; 271:17927-31. [PMID: 8663535 DOI: 10.1074/jbc.271.30.17927] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
The mature secreted form of the epidermal growth factor (EGF) receptor ligand amphiregulin (AR) is reported to be an 84-amino acid residue polypeptide, which is generated by proteolytic processing of a 252-amino acid precursor. This form of recombinant AR (rAR84) and two forms with COOH-terminal extensions corresponding to sequences from the AR precursor (rAR87 and rAR92) were expressed at high levels in Escherichia coli, oxidized to the correct disulfide arrangement, and purified to homogeneity. rAR84 competed poorly for binding of radiolabeled EGF to the EGF receptor and had little ability to stimulate growth of Balb/c/3T3 cells. In striking contrast, rAR87 and rAR92 possessed 42- and 20-fold greater receptor binding activity and 55- and 14-fold greater bioactivity, respectively. Furthermore, addition of the COOH-terminal four amino acids from transforming growth factor alpha to the COOH terminus of rAR84 improved the activity of rAR84 by 100- and 1000-fold, respectively, in these assays. rAR87 was found to have approximately 32% of the specific activity of natural AR from MCF-7 cells when compared in two different bioassays. These findings strongly suggest that the 84-amino acid sequence is not the correct structure of the naturally occurring secreted form of AR and that natural AR contains additional amino acid residues at the COOH-terminal end.
Collapse
Affiliation(s)
- S A Thompson
- Department of Protein Chemistry and Biophysics, Berlex Biosciences, Richmond, California 94804, USA
| | | | | | | | | |
Collapse
|
27
|
Puddicombe SM, Chamberlin SG, MacGarvie J, Richter A, Drummond DR, Collins J, Wood L, Davies DE. The significance of valine 33 as a ligand-specific epitope of transforming growth factor alpha. J Biol Chem 1996; 271:15367-72. [PMID: 8663070 DOI: 10.1074/jbc.271.26.15367] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
Although binding of epidermal growth factor (EGF) and transforming growth factor alpha (TGFalpha) to the EGF receptor (EGFR) is mutually competitive, their binding is not identical, and their biological activities are not always equivalent. To probe for ligand-specific interactions, we have synthesized analogues of TGFalpha with modifications to the residue lying between the fourth and fifth cysteines (the "hinge"). Although this residue lies in a structurally conserved region of the protein, it is not conserved within the EGFR ligand family. Our results show that in TGFalpha there is a preference for a bulky hydrophobic hinge residue; this contrasts with EGF, for which a hydrogen bond donor functionality is preferred. Sequence analysis of the human EGFR ligands revealed that the nature of the hinge residue correlated with the sequence in the B-loop beta-sheet. As this region is an important determinant in recognition of TGFalpha by the chicken EGFR, we assessed the mitogenicity of the TGFalpha hinge mutants, as well as the other EGFR ligands, using chicken embryo fibroblasts. The preference of the chicken EGFR for TGFalpha hinge mutants with hydrophobic side chains paralleled that of the human EGFR. Betacellulin and heparin-binding EGF-like growth factor also possess an hydrophobic hinge; both were at least as potent as TGFalpha for chicken embryo fibroblasts. EGF and amphiregulin, both with hydrogen bond donor functionalities at their hinge, displayed markedly decreased in potency by comparison with TGFalpha. We propose that EGFR ligands can be subclassified into TGFalpha-like and EGF-like and that this is of functional significance, identifying a potential mechanism whereby EGFR can discriminate between its ligands.
Collapse
Affiliation(s)
- S M Puddicombe
- Cancer Research Campaign Medical Oncology Unit, Southampton General Hospital, Tremona Road, Southampton SO16 6YD, United Kingdom
| | | | | | | | | | | | | | | |
Collapse
|
28
|
Davies DE, Chamberlin SG. Targeting the epidermal growth factor receptor for therapy of carcinomas. Biochem Pharmacol 1996; 51:1101-10. [PMID: 8645330 DOI: 10.1016/0006-2952(95)02232-5] [Citation(s) in RCA: 42] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
As a group, the carcinomas represent a substantial proportion of all human malignancies, but, with relatively few exceptions, current treatments are ineffective. Modification of existing chemotherapeutic agents has not led to significant improvements in the survival of carcinoma patients, and development of new therapeutic strategies is imperative. It is now becoming apparent that activation of the epidermal growth factor receptor (EGF-R) has much wider implications than a straightforward stimulation of cell division. The pleiotropic effects of EGF-R signalling may influence tumour behaviour and the response of carcinomas to treatment; these are important considerations for the development of new therapies that aim to exploit the expression or modulate the function of the EGF-R in these tumours.
Collapse
Affiliation(s)
- D E Davies
- CRC Medical Oncology Unit, Southampton General Hospital, UK
| | | |
Collapse
|
29
|
Beerli RR, Hynes NE. Epidermal growth factor-related peptides activate distinct subsets of ErbB receptors and differ in their biological activities. J Biol Chem 1996; 271:6071-6. [PMID: 8626392 DOI: 10.1074/jbc.271.11.6071] [Citation(s) in RCA: 216] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
Numerous epidermal growth factor (EGF)-related peptide binding members of the ErbB family of receptor tyrosine kinases have been described. While several EGF agonists bind and activate ErbB-1/EGF receptor, neu differentiation factor (NDF) functions as a ligand for ErbB-3 and ErbB-4. However, it is currently unknown which specific subsets of ErbB receptors become activated in response to each of these ligands. The present study addresses this issue using the T47D breast tumor cell line, which expresses moderate levels of all the presently known ErbB receptors. We show that all the EGF agonists, but not NDF, stimulated tyrosine phosphorylation of ErbB-1. In contrast, all the EGF-related factors except amphiregulin were able to induce tyrosine phosphorylation of ErbB-2. The ability to induce tyrosine phosphorylation of ErbB-3 varied dramatically among the different EGF-related peptides. While EGF, transforming growth factor (TGF)-alpha, and amphiregulin only had a moderate effect, NDF dramatically increased the ErbB-3 phosphotyrosine content. Most notably, heparin binding EGF-related growth factor (HB-EGF) and betacellulin (BTC) were more effective than other EGF agonists. Consequently, only NDF, HB-EGF, and BTC significantly stimulated association of phosphatidylinositol kinase activity with ErbB-3. Among the EGF agonists, HB-EGF induced a low level of ErbB-4 tyrosine phosphorylation, while BTC was as efficient as NDF in activating ErbB-4. The BTC activation of ErbB-4 appears to be independent of ErbB-1, as shown by pretreatment of cells with an antibody that inhibits binding of EGF agonists to ErbB-1. As a result of the differential activation of ErbB receptors, most of the EGF-related growth factors had distinguishable biological activities on cultured mammary epithelial cell lines.
Collapse
Affiliation(s)
- R R Beerli
- Friedrich Miescher-Institut, Basel, Switzerland
| | | |
Collapse
|
30
|
Abstract
We have previously shown that the epidermal growth factor receptor (EGFR) ligand, amphiregulin (AR) exhibits low potency as a result of its C-terminal truncation. This led us to investigate whether its inability to promote anchorage-independent growth (AIG) of normal cells arose because of its compromised interaction with EGFR. Wild type AR(1-84) was tested in AIG and mitogenesis assays using NRK-49F or NR6/HER fibroblasts. In contrast to NR6/HER cells, the response of NRK-49F fibroblasts to AR was much lower than expected. As the effect of AR was heparin-insensitive, contributions from heparan sulphate proteoglycan interactions could not explain the differing sensitivities of the cells. Comparison of the effects of AR on two additional cell lines indicated that low EGFR number correlated with AR insensitivity: this suggested that the low potency of AR precluded activation of sufficient receptors to elicit a response. Consistent with this proposal, a modified form of AR (AR[1-90(leu86)]) with enhanced potency was able to induce AIG of NRK-49F fibroblasts. Thus, the ability of AR to promote AIG is determined both by ligand potency and the EGFR complement of cells.
Collapse
|