1
|
Caya-Bissonnette L, Béïque JC. Half a century legacy of long-term potentiation. Curr Biol 2024; 34:R640-R662. [PMID: 38981433 DOI: 10.1016/j.cub.2024.05.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/11/2024]
Abstract
In 1973, two papers from Bliss and Lømo and from Bliss and Gardner-Medwin reported that high-frequency synaptic stimulation in the dentate gyrus of rabbits resulted in a long-lasting increase in synaptic strength. This form of synaptic plasticity, commonly referred to as long-term potentiation (LTP), was immediately considered as an attractive mechanism accounting for the ability of the brain to store information. In this historical piece looking back over the past 50 years, we discuss how these two landmark contributions directly motivated a colossal research effort and detail some of the resulting milestones that have shaped our evolving understanding of the molecular and cellular underpinnings of LTP. We highlight the main features of LTP, cover key experiments that defined its induction and expression mechanisms, and outline the evidence supporting a potential role of LTP in learning and memory. We also briefly explore some ramifications of LTP on network stability, consider current limitations of LTP as a model of associative memory, and entertain future research orientations.
Collapse
Affiliation(s)
- Léa Caya-Bissonnette
- Graduate Program in Neuroscience, University of Ottawa, 451 ch. Smyth Road (3501N), Ottawa, ON K1H 8M5, Canada; Brain and Mind Research Institute's Centre for Neural Dynamics and Artificial Intelligence, 451 ch. Smyth Road (3501N), Ottawa, ON K1H 8M5, Canada; Department of Cellular and Molecular Medicine, Faculty of Medicine, University of Ottawa, 451 ch. Smyth Road (3501N), Ottawa, ON K1H 8M5, Canada
| | - Jean-Claude Béïque
- Brain and Mind Research Institute's Centre for Neural Dynamics and Artificial Intelligence, 451 ch. Smyth Road (3501N), Ottawa, ON K1H 8M5, Canada; Department of Cellular and Molecular Medicine, Faculty of Medicine, University of Ottawa, 451 ch. Smyth Road (3501N), Ottawa, ON K1H 8M5, Canada.
| |
Collapse
|
2
|
Zorrilla EP, Koob GF. Amygdalostriatal projections in the neurocircuitry for motivation: a neuroanatomical thread through the career of Ann Kelley. Neurosci Biobehav Rev 2013; 37:1932-45. [PMID: 23220696 PMCID: PMC3838492 DOI: 10.1016/j.neubiorev.2012.11.019] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2012] [Accepted: 11/28/2012] [Indexed: 01/25/2023]
Abstract
In MacLean's triune brain, the amygdala putatively subserves motivated behavior by modulating the "reptilian" basal ganglia. Accordingly, Ann Kelley, with Domesick and Nauta, influentially showed that amygdalostriatal projections are much more extensive than were appreciated. They highlighted that amygdalar projections to the rostral ventromedial striatum converged with projections from the ventral tegmental area and cingulate cortex, forming a "limbic striatum". Caudal of the anterior commissure, the entire striatum receives afferents from deep basal nuclei of the amygdala. Orthologous topographic projections subsequently were observed in fish, amphibians, and reptiles. Subsequent functional studies linked acquired value to action via this neuroanatomical substrate. From Dr. Kelley's work evolved insights into components of the distributed, interconnected network that subserves motivated behavior, including the nucleus accumbens shell and core and the striatal-like extended amygdala macrostructure. These heuristic frameworks provide a neuroanatomical basis for adaptively translating motivation into behavior. The ancient amygdala-to-striatum pathways remain a current functional thread not only for stimulus-response valuation, but also for the psychopathological plasticity that underlies addiction-related memory, craving and relapse.
Collapse
Affiliation(s)
- Eric P Zorrilla
- Committee on the Neurobiology of Addictive Disorders, The Scripps Research Institute, 10550 N. Torrey Pines Road, La Jolla, CA 92037, USA.
| | | |
Collapse
|
3
|
Fournier NM, Darnbrough AL, Wintink AJ, Kalynchuk LE. Altered synapsin I immunoreactivity and fear behavior in male and female rats subjected to long-term amygdala kindling. Behav Brain Res 2009; 196:106-15. [DOI: 10.1016/j.bbr.2008.07.022] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2008] [Revised: 06/26/2008] [Accepted: 07/18/2008] [Indexed: 10/21/2022]
|
4
|
Abstract
Expectation of reward motivates our behaviors and influences our decisions. Indeed, neuronal activity in many brain areas is modulated by expected reward. However, it is still unclear where and how the reward-dependent modulation of neuronal activity occurs and how the reward-modulated signal is transformed into motor outputs. Recent studies suggest an important role of the basal ganglia. Sensorimotor/cognitive activities of neurons in the basal ganglia are strongly modulated by expected reward. Through their abundant outputs to the brain stem motor areas and the thalamocortical circuits, the basal ganglia appear capable of producing body movements based on expected reward. A good behavioral measure to test this hypothesis is saccadic eye movement because its brain stem mechanism has been extensively studied. Studies from our laboratory suggest that the basal ganglia play a key role in guiding the gaze to the location where reward is available. Neurons in the caudate nucleus and the substantia nigra pars reticulata are extremely sensitive to the positional difference in expected reward, which leads to a bias in excitability between the superior colliculi such that the saccade to the to-be-rewarded position occurs more quickly. It is suggested that the reward modulation occurs in the caudate where cortical inputs carrying spatial signals and dopaminergic inputs carrying reward-related signals are integrated. These data support a specific form of reinforcement learning theories, but also suggest further refinement of the theory.
Collapse
Affiliation(s)
- Okihide Hikosaka
- Laboratory of Sensorimotor Research, National Eye Institute, National Institutes of Health, Bethesda, MD 20892, USA.
| | | | | |
Collapse
|
5
|
Dopamine D1 and NMDA receptors mediate potentiation of basolateral amygdala-evoked firing of nucleus accumbens neurons. J Neurosci 2001. [PMID: 11487660 DOI: 10.1523/jneurosci.21-16-06370.2001] [Citation(s) in RCA: 101] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Interactions between the basolateral amygdala (BLA) and the nucleus accumbens (NAc) mediate reward-related processes that are modulated by mesoaccumbens dopamine (DA) transmission. The present in vivo electrophysiological study assessed: (1) changes in the firing probability of submaximal BLA-evoked single neuronal firing activity in the NAc after tetanic stimulation of the BLA, and (2) the functional roles of DA and NMDA receptors in these processes. Tetanic stimulation of the BLA potentiated BLA-evoked firing activity of NAc neurons for a short duration ( approximately 25 min). This short-term potentiation was associated with an increase in DA oxidation currents that was monitored with chronoamperometry. Systemic or iontophoretic application before BLA tetanus of the D(1) receptor antagonist SCH23390, but not the D(2) receptor antagonist sulpiride, abolished the potentiation of BLA-evoked NAc activity, whereas administration of SCH23390 3 min after tetanus had no effect. However, systemic administration of the NMDA antagonist 3-(2-carboxypiperazin-4-yl)-propyl-1-phosphonic acid (CPP), either before or after BLA tetanus, abolished the potentiation of BLA-evoked firing of NAc neurons. These data suggest that higher-frequency activity in BLA efferents can autoregulate their excitatory influence over neural activity of NAc neurons by facilitating the release of DA and activating both DA D(1) and NMDA receptors. This may represent a cellular mechanism that facilitates approach behaviors directed toward reward-related stimuli that are mediated by BLA-NAc circuitries.
Collapse
|
6
|
Abstract
The nucleus accumbens and its associated circuitry subserve behaviors linked to natural or biological rewards, such as feeding, drinking, sex, exploration, and appetitive learning. We have investigated the functional role of neurotransmitter and intracellular transduction mechanisms in behaviors subserved by the core and shell subsystems within the accumbens. Local infusion of the selective NMDA antagonist, AP-5, into the accumbens core, but not the shell, completely blocked acquisition of a bar-press response for food in hungry rats. This effect was apparent only when infused during the early stages of learning. We have also recently shown that infusion of certain protein kinase inhibitors into the core also impairs learning in the same paradigm. These results suggest that plasticity-related mechanisms within the accumbens core, involving glutamate-linked intracellular second messengers, are important for response-reinforcement learning. In contrast to the core, which primarily connects to somatic motor output systems, the shell is more intimately linked to viscero-endocrine effector systems. We have shown that both AMPA and GABA receptors within the medial shell (but not the core) are critically involved in controlling the brain's feeding pathways, via activation of the lateral hypothalamus (LH). This effect is blocked by local inhibition of the LH in double-cannulae experiments and also strongly and selectively activates Fos expression in the LH. These results provide a newly emerging picture of the differentiated functions of this forebrain region and suggest an integrated role in the elaboration of adaptive motor actions.
Collapse
Affiliation(s)
- A E Kelley
- Department of Psychiatry, University of Wisconsin-Madison Medical School, Madison 53719, USA.
| |
Collapse
|
7
|
Kelley AE, Smith-Roe SL, Holahan MR. Response-reinforcement learning is dependent on N-methyl-D-aspartate receptor activation in the nucleus accumbens core. Proc Natl Acad Sci U S A 1997; 94:12174-9. [PMID: 9342382 PMCID: PMC23741 DOI: 10.1073/pnas.94.22.12174] [Citation(s) in RCA: 227] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
The nucleus accumbens, a site within the ventral striatum, is best known for its prominent role in mediating the reinforcing effects of drugs of abuse such as cocaine, alcohol, and nicotine. Indeed, it is generally believed that this structure subserves motivated behaviors, such as feeding, drinking, sexual behavior, and exploratory locomotion, which are elicited by natural rewards or incentive stimuli. A basic rule of positive reinforcement is that motor responses will increase in magnitude and vigor if followed by a rewarding event. It is likely, therefore, that the nucleus accumbens may serve as a substrate for reinforcement learning. However, there is surprisingly little information concerning the neural mechanisms by which appetitive responses are learned. In the present study, we report that treatment of the nucleus accumbens core with the selective competitive N-methyl-D-aspartate (NMDA) antagonist 2-amino-5-phosphonopentanoic acid (AP-5; 5 nmol/0.5 microl bilaterally) impairs response-reinforcement learning in the acquisition of a simple lever-press task to obtain food. Once the rats learned the task, AP-5 had no effect, demonstrating the requirement of NMDA receptor-dependent plasticity in the early stages of learning. Infusion of AP-5 into the accumbens shell produced a much smaller impairment of learning. Additional experiments showed that AP-5 core-treated rats had normal feeding and locomotor responses and were capable of acquiring stimulus-reward associations. We hypothesize that stimulation of NMDA receptors within the accumbens core is a key process through which motor responses become established in response to reinforcing stimuli. Further, this mechanism, may also play a critical role in the motivational and addictive properties of drugs of abuse.
Collapse
Affiliation(s)
- A E Kelley
- Department of Psychiatry, University of Wisconsin Medical School, 6001 Research Park Boulevard, Madison, WI 53719, USA.
| | | | | |
Collapse
|
8
|
Feasey-Truger KJ, ten Bruggencate G. The NMDA receptor antagonist CPP suppresses long-term potentiation in the rat hippocampal-accumbens pathway in vivo. Eur J Neurosci 1994; 6:1247-54. [PMID: 7981867 DOI: 10.1111/j.1460-9568.1994.tb00314.x] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Excitation of afferent fibres originating in the ventral subiculum of the hippocampus through stimulation of the fimbria elicits field potentials in the nucleus accumbens. When recorded in the dorsomedial aspect of the nucleus accumbens, the evoked field responses consisted of an early, negative-going component (N1) with a peak latency of 8-10 ms, followed by a second negative-going peak (N2) with a latency of 22-24 ms. The N1 response reflects monosynaptic activation of nucleus accumbens neurons; the N2 component appears to be polysynaptic in origin. In control rats, high-frequency stimulation of the fimbria (three trains at 250 Hz, 250 ms, delivered at 50 min intervals) resulted in a long-lasting potentiation of both the N1 and N2 components. The magnitude of potentiation exhibited by the polysynaptic N2 response was typically greater than that of the monosynaptically evoked N1 response. Following delivery of the first train, the amplitude of the N1 and N2 components was increased by approximately 20 and 50% respectively. Administration of the competitive N-methyl-D-aspartate (NMDA) receptor antagonist 3-[(+-)-2-carboxypiperazin-4-yl]-propyl-1-phosphonic acid (CPP, 10 mg/kg i.p.) had no significant effects on the evoked nucleus accumbens responses. High-frequency stimulation failed to produce a significant increase in the amplitude of either the N1 or the N2 response when delivered 45-60 min after CPP administration. To test whether the suppressant effects of CPP were time-dependent, two further high-frequency trains were applied 90 and 180 min after administration of the drug.(ABSTRACT TRUNCATED AT 250 WORDS)
Collapse
|
9
|
Cepeda C, Walsh JP, Peacock W, Buchwald NA, Levine MS. Neurophysiological, pharmacological and morphological properties of human caudate neurons recorded in vitro. Neuroscience 1994; 59:89-103. [PMID: 8190275 DOI: 10.1016/0306-4522(94)90101-5] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Tissue samples from the caudate nucleus were obtained from eight children (eight to 172 months of age) who underwent hemispherectomies for the relief of intractable seizures. Neurophysiological, pharmacological and morphological properties of caudate neurons were characterized by intracellular recordings in an in vitro slice preparation. These properties were compared with those of tissue obtained from animal studies. Electrophysiological properties of human caudate neurons that were similar to those of cat caudate and rat neostriatal cells included resting membrane potential, input resistance, action potential rise time, fall time, duration and action potential afterhyperpolarization amplitude, as well as the general characteristics of locally evoked synaptic responses. Properties that were different included action potential amplitudes and time-constants. Human caudate neurons also displayed responses similar to those of cat caudate or rat neostriatal cells to manipulation of excitatory amino acid receptor systems and to dopamine application. Kynurenic acid, a broad-spectrum excitatory amino acid receptor antagonist, decreased the amplitude of evoked synaptic responses, indicating that they were partially mediated by excitatory amino acids. In Mg2+ free Ringer's solution, the amplitudes and durations of postsynaptic responses were increased and bursts of action potentials were induced. These effects were mediated by activation of N-methyl-D-aspartate receptors since they were blocked by 2-amino-5-phosphonovalerate, a specific N-methyl-D-aspartate-receptor antagonist. Iontophoretic application of N-methyl-D-aspartate also induced membrane oscillations and bursts in almost all caudate neurons. Dopamine decreased the amplitude of postsynaptic responses, an effect antagonized by domperidone, a selective D2 dopamine receptor antagonist. Developmentally, the greatest change was an increase in action potential amplitude, although input resistance decreased and action potential afterhyperpolarization amplitude increased. Postsynaptic responses were similar across age. All but one of the caudate neurons identified by intracellular injection of biocytin or Lucifer Yellow were medium-sized spiny cells. These experiments show that human caudate neurons display a number of electrophysiological properties similar to rat neostriatal or cat caudate neurons recorded in brain slices. Furthermore, few electrophysiological parameters changed significantly over the age period examined suggesting that the human caudate at eight months displays many of the neuronal functions of the more mature caudate nucleus.
Collapse
Affiliation(s)
- C Cepeda
- Mental Retardation Research Center, UCLA School of Medicine 90024
| | | | | | | | | |
Collapse
|
10
|
Mott DD, Lewis DV. The pharmacology and function of central GABAB receptors. INTERNATIONAL REVIEW OF NEUROBIOLOGY 1994; 36:97-223. [PMID: 7822122 DOI: 10.1016/s0074-7742(08)60304-9] [Citation(s) in RCA: 182] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
In conclusion, GABAB receptors enable GABA to modulate neuronal function in a manner not possible through GABAA receptors alone. These receptors are present at both pre- and postsynaptic sites and can exert both inhibitory and disinhibitory effects. In particular, GABAB receptors are important in regulating NMDA receptor-mediated responses, including the induction of LTP. They also can regulate the filtering properties of neural networks, allowing peak transmission in the frequency range of theta rhythm. Finally, GABAB receptors are G protein-coupled to a variety of intracellular effector systems, and thereby have the potential to produce long-term changes in the state of neuronal activity, through actions such as protein phosphorylation. Although the majority of the effects of GABAB receptors have been reported in vitro, recent studies have also demonstrated that GABAB receptors exert electrophysiological actions in vivo. For example, GABAB receptor antagonists reduce the late IPSP in vivo and consequently can decrease inhibition of spontaneous neuronal firing following a stimulus (Lingenhöhl and Olpe, 1993). In addition, blockade of GABAB receptors can increase spontaneous activity of central neurons, suggesting the presence of GABAB receptor-mediated tonic inhibition (Andre et al., 1992; Lingenhöhl and Olpe, 1993). Despite these electrophysiological effects, antagonism of GABAB receptors has generally been reported to produce few behavioral actions. This lack of overt behavioral effects most likely reflects the modulatory nature of the receptor action. Nevertheless, two separate behavioral studies have recently reported an enhancement of cognitive performance in several different animal species following blockade of GABAB receptors (Mondadori et al., 1992; Carletti et al., 1993). Because of their small number of side effects, GABAB receptor antagonists may represent effective therapeutic tools for modulation of cognition. Alternatively, the lack of overt behavioral effects of GABAB receptors may indicate that these receptors are more important in pathologic rather than normal physiological states (Wojcik et al., 1989). For example, a change in receptor affinity or receptor number brought on by the pathology could enhance the effectiveness of GABAB receptors. Of significance, CGP 35348 has been shown to block absence seizures in genetically seizure prone animals, while inducing no seizures in control animals (Hosford et al., 1992; Liu et al., 1992). Thus, GABAB receptors may represent effective sites for pharmacological regulation of absence seizures. Perhaps further behavioral effects of these receptors will become apparent only after additional studies have been performed using the highly potent antagonists that have been recently introduced.(ABSTRACT TRUNCATED AT 400 WORDS)
Collapse
Affiliation(s)
- D D Mott
- Department of Pediatrics (Neurology), Duke University Medical Center, Durham, North Carolina 27710
| | | |
Collapse
|
11
|
Boeijinga PH, Mulder AB, Pennartz CM, Manshanden I, Lopes da Silva FH. Responses of the nucleus accumbens following fornix/fimbria stimulation in the rat. Identification and long-term potentiation of mono- and polysynaptic pathways. Neuroscience 1993; 53:1049-58. [PMID: 8389427 DOI: 10.1016/0306-4522(93)90488-2] [Citation(s) in RCA: 49] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
The nucleus accumbens occupies a strategic position as an interface between limbic cortex and midbrain structures involved in motor performance. The fornix-fimbria carries limbic inputs to the ventral striatum, namely by way of fibers originating in the CA1/subiculum and projecting to the nucleus accumbens. It also carries fibers arising in the septal area that project to the hippocampal formation, and projection fibers to other areas of the rostral forebrain from Ammon's horn. Electrical stimulation of this bundle causes characteristic field potentials both in the nucleus accumbens and in the subiculum. In rats, under halothane anesthesia, the responses evoked by fornix/fimbria stimulation in the nucleus accumbens consist of two main positive peaks (at 10 and 25 ms, referred to as P10 and P25, respectively). P10 represents monosynaptic activation. We hypothesized that P25 reflects the activation of a polysynaptic loop, i.e. a fornix-fimbria hippocampal loop in series with the fibers that arise in the subiculum and project to the nucleus accumbens. To test this hypothesis, we reversibly blocked the fibers projecting caudally to the hippocampus by a local anesthetic (lidocaine) and the glutamatergic transmission through the CA1/subiculum by a local injection of kynurenic acid. Both manipulations yielded a reversible depression of about 90% of the P25 component while P10 remained unaffected as expected. In concert a strong reduction (to 24-31%) of control values of the responses evoked in the subiculum was seen. The dynamics of the mono- and polysynaptic pathways differ markedly. The synaptic responses through both pathways are enhanced by paired-pulse stimulation, but the polysynaptic pathway is facilitated in a much stronger way. Following a tetanus (50 Hz, 2 s duration) applied to the fornix/fimbria, the P10 component of the nucleus accumbens responses showed an immediate increase by a factor of about 2 followed by a phase of gradual decrement with half-decay time of about 10 min, after which a persistent long-term potentiation of about 25% above control level was maintained for the rest of the experiment (max 90 min). The P25 component showed a transient 10-fold potentiation with return to control values after about 10 min. In contrast to the P25 elicited by a conditioning stimulus, the P25 component elicited by a second stimulus delivered at an interval of 100 ms (test stimulus) showed a persistent long-term potentiation.(ABSTRACT TRUNCATED AT 400 WORDS)
Collapse
Affiliation(s)
- P H Boeijinga
- Graduate School of Neurosciences, University of Amsterdam, Department of Experimental Zoology, The Netherlands
| | | | | | | | | |
Collapse
|
12
|
Meredith GE, Pennartz CM, Groenewegen HJ. The cellular framework for chemical signalling in the nucleus accumbens. PROGRESS IN BRAIN RESEARCH 1993; 99:3-24. [PMID: 7906426 DOI: 10.1016/s0079-6123(08)61335-7] [Citation(s) in RCA: 136] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Affiliation(s)
- G E Meredith
- Department of Anatomy and Embryology, Free University Faculty of Medicine, Amsterdam, The Netherlands
| | | | | |
Collapse
|