1
|
Cha S, Cho K, Lim N, Oh H, Choi E, Shim S, Lee SH, Hahn JS. Enhancement of fermentation traits in industrial Baker's yeast for low or high sugar environments. Food Microbiol 2025; 125:104643. [PMID: 39448153 DOI: 10.1016/j.fm.2024.104643] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2024] [Revised: 09/05/2024] [Accepted: 09/11/2024] [Indexed: 10/26/2024]
Abstract
Saccharomyces cerevisiae SPC-SNU 70-1 is a commercial diploid baking yeast strain valued for its excellent bread-making qualities, including superior leavening capabilities and the production of flavor-enhancing volatile organic acids. Despite its benefits, this strain faces challenges in fermenting both lean (low-sugar) and sweet (high-sugar) doughs. To address these issues, we employed the CRISPR/Cas9 genome editing system to modify genes without leaving any genetic scars. For lean doughs, we enhanced the yeast's ability to utilize maltose over glucose by deleting a gene involved in glucose repression. For sweet doughs, we increased glycerol production by overexpressing glycerol biosynthetic genes and optimizing redox balance, thereby improving the tolerence to osmotic stress during fermentation. Additionally, the glycerol-overproducing strain demonstrated enhanced freeze tolerance, and bread made from this strain exhibited improved storage properties. This study demonstrates the feasibility and benefits of using engineered yeast strains, created solely by editing their own genes without introducing foreign genes, to enhance bread making.
Collapse
Affiliation(s)
- Seungwoo Cha
- School of Chemical and Biological Engineering, Institute of Chemical Processes, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul, 08826, Republic of Korea
| | - Kijoo Cho
- School of Chemical and Biological Engineering, Institute of Chemical Processes, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul, 08826, Republic of Korea
| | - Nayoung Lim
- Research Institute of Food and Biotechnology, SPC Group Co., 1 Gwanak-ro, Gwanak-gu, Seoul, 08826, Republic of Korea
| | - Hyewon Oh
- Research Institute of Food and Biotechnology, SPC Group Co., 1 Gwanak-ro, Gwanak-gu, Seoul, 08826, Republic of Korea
| | - Eunji Choi
- Research Institute of Food and Biotechnology, SPC Group Co., 1 Gwanak-ro, Gwanak-gu, Seoul, 08826, Republic of Korea
| | - Sangmin Shim
- Research Institute of Food and Biotechnology, SPC Group Co., 1 Gwanak-ro, Gwanak-gu, Seoul, 08826, Republic of Korea
| | - Sung-Ho Lee
- Research Institute of Food and Biotechnology, SPC Group Co., 1 Gwanak-ro, Gwanak-gu, Seoul, 08826, Republic of Korea
| | - Ji-Sook Hahn
- School of Chemical and Biological Engineering, Institute of Chemical Processes, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul, 08826, Republic of Korea.
| |
Collapse
|
2
|
Rangel DEN. How Metarhizium robertsii's mycelial consciousness gets its conidia Zen-ready for stress. ADVANCES IN APPLIED MICROBIOLOGY 2024; 129:1-33. [PMID: 39389703 DOI: 10.1016/bs.aambs.2024.07.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/12/2024]
Abstract
This memoir takes a whimsical ride through my professional adventures, spotlighting my fungal stress research on the insect-pathogenic fungus Metarhizium robertsii, which transformed many of my wildest dreams into reality. Imagine the magic of fungi meeting science and me, a happy researcher, arriving at Utah State University ready to dive deep into studies with the legendary insect pathologist, my advisor Donald W. Roberts, and my co-advisor Anne J. Anderson. From my very first "Aha!" moment in the lab, I plunged into a vortex of discovery, turning out research like a mycelium on a mission. Who knew 18 h/day, seven days a week, could be so exhilarating? I was fueled by an insatiable curiosity, boundless creativity, and a perhaps slightly alarming level of motivation. Years later, I managed to bring my grandest vision to life: the International Symposium on Fungal Stress-ISFUS. This groundbreaking event has attracted 162 esteemed speakers from 29 countries to Brazil, proving that fungi can be both fun and globally fascinating. ISFUS is celebrating its fifth edition in 2024, a decade after its 2014 debut.
Collapse
|
3
|
He H, Gao H, Xue X, Ren J, Chen X, Niu B. Variation of sugar compounds in Phoebe chekiangensis seeds during natural desiccation. PLoS One 2024; 19:e0299669. [PMID: 38452127 PMCID: PMC10919866 DOI: 10.1371/journal.pone.0299669] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Accepted: 02/14/2024] [Indexed: 03/09/2024] Open
Abstract
To investigate the role of sugar metabolism in desiccation-sensitive seeds, we performed a natural desiccation treatment on Phoebe chekiangensis seeds in a room and systematically analyzed the changes in seed germination, sugar compounds, malondialdehyde, and relative electrical conductivity during the seed desiccation. The results revealed that the initial moisture content of P. chekiangensis seed was very high (37.06%) and the seed was sensitive to desiccation, the germination percentage of the seed decreased to 5.33% when the seed was desiccated to 22.04% of moisture content, therefore, the seeds were considered recalcitrant. Based on the logistic model, we know that the moisture content of the seeds is 29.05% when the germination percentage drops to 50% and that it is desirable to keep the seed moisture content above 31.74% during ambient transportation. During seed desiccation, sucrose and trehalose contents exhibited increasing trends, and raffinose also increased during the late stage of desiccation, however, low levels of the non-reducing sugar accumulations may not prevent the loss of seed viability caused by desiccation. Glucose and fructose predominated among sugar compounds, and they showed a slight increase followed by a significant decrease. Their depletion may have contributed to the accumulation of sucrose and raffinose family oligosaccharides. Correlation analysis revealed a significant relationship between the accumulation of sucrose, trehalose, and soluble sugars, and the reduction in seed viability. Sucrose showed a significant negative correlation with glucose and fructose. Trehalose also exhibited the same pattern of correlation. These results provided additional data and theoretical support for understanding the mechanism of sugar metabolism in seed desiccation sensitivity.
Collapse
Affiliation(s)
- Huangpan He
- College of Forestry and Grassland, College of Soil and Water Conservation, Nanjing Forestry University, Southern Tree Seed Inspection Center, National Forestry and Grassland Administration, Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing, China
| | - Handong Gao
- College of Forestry and Grassland, College of Soil and Water Conservation, Nanjing Forestry University, Southern Tree Seed Inspection Center, National Forestry and Grassland Administration, Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing, China
| | - Xiaoming Xue
- College of Criminal Science and Technology, Nanjing Police University, Key Laboratory of Wildlife Evidence Technology of National Forestry and Grassland Administration, Nanjing, China
| | - Jiahui Ren
- College of Forestry and Grassland, College of Soil and Water Conservation, Nanjing Forestry University, Southern Tree Seed Inspection Center, National Forestry and Grassland Administration, Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing, China
| | - Xueqi Chen
- College of Forestry and Grassland, College of Soil and Water Conservation, Nanjing Forestry University, Southern Tree Seed Inspection Center, National Forestry and Grassland Administration, Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing, China
| | - Ben Niu
- College of Forestry and Grassland, College of Soil and Water Conservation, Nanjing Forestry University, Southern Tree Seed Inspection Center, National Forestry and Grassland Administration, Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing, China
| |
Collapse
|
4
|
Pater A, Satora P, Zdaniewicz M, Sroka P. The Impact of Dry Yeast Rehydrated in Different Plasma Treated Waters (PTWs) on Fermentation Process and Quality of Beer. Foods 2022; 11:1316. [PMID: 35564041 PMCID: PMC9102840 DOI: 10.3390/foods11091316] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Revised: 04/28/2022] [Accepted: 04/28/2022] [Indexed: 11/18/2022] Open
Abstract
Yeast plays a key role in the production of alcoholic beverages. Effective fermentation requires appropriate conditions to ensure the production of high-quality beer. The paper discusses the effect of dry brewing yeast (Saccharomyces cerevisiae and Saccharomyces pastorianus) after rehydration with water exposed to low-temperature, low-pressure glow plasma (PTW) in the atmosphere of air (PTWAir) and nitrogen (PTWN) in the course of the fermentation process, the formation of volatile compounds and other quality parameters of the finished beer. The obtained results show that the lager yeast strain initiated the process of fermentation faster after rehydration in the presence of PTWAir compared to all of the other treatments. It was observed that PTWAir significantly changed the composition of volatile compounds in the finished beer, especially by increasing the number of terpenes, which are compounds that positively shape the aroma of beer. In the case of PTWN samples, lower alcohol content, real extract, apparent extract and amount of biomass were observed in all analyzed strains.
Collapse
Affiliation(s)
- Aneta Pater
- Department of Fermentation Technology and Microbiology, Faculty of Food Technology, University of Agriculture, Balicka Street 122, 30-149 Kraków, Poland; (P.S.); (M.Z.); (P.S.)
| | | | | | | |
Collapse
|
5
|
Foster B, Tyrawa C, Ozsahin E, Lubberts M, Krogerus K, Preiss R, van der Merwe G. Kveik Brewing Yeasts Demonstrate Wide Flexibility in Beer Fermentation Temperature Tolerance and Exhibit Enhanced Trehalose Accumulation. Front Microbiol 2022; 13:747546. [PMID: 35369501 PMCID: PMC8966892 DOI: 10.3389/fmicb.2022.747546] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Accepted: 02/11/2022] [Indexed: 11/25/2022] Open
Abstract
Traditional Norwegian Farmhouse ale yeasts, also known as kveik, have captured the attention of the brewing community in recent years. Kveik were recently reported as fast fermenting thermo- and ethanol tolerant yeasts with the capacity to produce a variety of interesting flavor metabolites. They are a genetically distinct group of domesticated beer yeasts of admixed origin with one parent from the “Beer 1” clade and the other unknown. While kveik are known to ferment wort efficiently at warmer temperatures, their range of fermentation temperatures and corresponding fermentation efficiencies, remain uncharacterized. In addition, the characteristics responsible for their increased thermotolerance remain largely unknown. Here we demonstrate variation in kveik strains at a wide range of fermentation temperatures and show not all kveik strains are equal in fermentation performance and stress tolerance. Furthermore, we uncovered an increased capacity of kveik strains to accumulate intracellular trehalose, which likely contributes to their increased thermo- and ethanol tolerances. Taken together our results present a clearer picture of the future opportunities presented by Norwegian kveik yeasts and offer further insight into their applications in brewing.
Collapse
Affiliation(s)
- Barret Foster
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, ON, Canada
| | - Caroline Tyrawa
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, ON, Canada
| | - Emine Ozsahin
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, ON, Canada
| | - Mark Lubberts
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, ON, Canada
| | | | | | - George van der Merwe
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, ON, Canada
| |
Collapse
|
6
|
Xia Y, Qiu Y, Wu Z, Cheng Q, Hu X, Cui X, Wang Z. Preparation of recombinant Kluyveromyces lactis agents for simultaneous degradation of two mycotoxins. AMB Express 2022; 12:20. [PMID: 35181837 PMCID: PMC8857372 DOI: 10.1186/s13568-022-01361-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Accepted: 02/03/2022] [Indexed: 11/23/2022] Open
Abstract
Aflatoxin B1 (AFB1) and zearalenone (ZEN) are widely distributed in corns, peanuts, and other cereals, causing serious threat to food safety and human health. As shown by our previous studies, the recombinant yeast strain Kluyveromyces lactis GG799(pKLAC1-ZPF1) had the ability of degrading AFB1 and ZEN simultaneously. In this work, the agent preparation process was optimized for K. lactis GG799(pKLAC1-ZPF1), and the storage conditions of the prepared yeast agents were investigated, for obtaining the products with high storage activities and potent mycotoxin degradation efficiency. The optimal preparation process was as follows: centrifugation at 6000 rpm for 15 min for collection of the yeast cells, spray drying with the ratio of protective compounds to yeast cells at 3:1 (w/w) and then stored at - 20 °C. Simultaneous degradation tests of AFB1 and ZEN were performed using the supernatants of reactivated yeast agents after three months of storage, and the degradation ratios for AFB1 and ZEN in reaction system 1 (70.0 mmol/L malonic buffer, pH 4.5, with 1.0 mmol/L MnSO4, 0.1 mmol/L H2O2, 5.0 μg/mL AFB1 and ZEN, respectively) were 48.2 ± 3.2% and 34.8 ± 2.8%, while that for ZEN in reaction system 2 (50.0 mmol/L Tris-HCl, pH 7.5, with 5.0 μg/mL AFB1 and ZEN, respectively) was 30.1 ± 2.7%. Besides, the supernatants of reactivated yeast agents degraded more than 80% of AFB1 and 55% of ZEN in contaminated peanuts after twice treatments. Results of this work suggested that the optimized process for K. lactis GG799(pKLAC1-ZPF1) was with high value for industrial applications.
Collapse
Affiliation(s)
- Yu Xia
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, 214122, China.
- School of Food Science and Technology, Jiangnan University, Wuxi, 214122, China.
| | - Yangyu Qiu
- School of Food Science and Technology, Jiangnan University, Wuxi, 214122, China
| | - Zifeng Wu
- School of Food Science and Technology, Jiangnan University, Wuxi, 214122, China
| | - Qianqian Cheng
- School of Food Science and Technology, Jiangnan University, Wuxi, 214122, China
| | - Xiuyu Hu
- China Biotech Fermentation Industry Association, Beijing, 100 833, China
| | - Xiaobing Cui
- Anhui Heiwa Food-Jiangnan University Joint R&D Center, Anhui Heiwa Food Technology Co. LTD, Bozhou, 233600, China
| | - Zhouping Wang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, 214122, China
- School of Food Science and Technology, Jiangnan University, Wuxi, 214122, China
| |
Collapse
|
7
|
Wang L, He M, Wu T, Yang K, Wang Y, Zhang Y, Gu Y, Deng K. Screening of the freeze‐drying protective agent for high‐quality milk beer yeast (
Kluyveromyces marxianus
) and optimization of freeze‐drying process conditions. J FOOD PROCESS PRES 2021. [DOI: 10.1111/jfpp.16016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Affiliation(s)
- Liang Wang
- School of Food and Biological Engineering Jiangsu University Zhenjiang P. R. China
| | - Mingying He
- School of Food and Biological Engineering Jiangsu University Zhenjiang P. R. China
| | - Tao Wu
- School of Food and Biological Engineering Jiangsu University Zhenjiang P. R. China
| | - Kangye Yang
- School of Food and Biological Engineering Jiangsu University Zhenjiang P. R. China
| | - Yulian Wang
- School of Food and Biological Engineering Jiangsu University Zhenjiang P. R. China
| | - Yi Zhang
- School of Food and Biological Engineering Jiangsu University Zhenjiang P. R. China
| | - Yachun Gu
- School of Food and Biological Engineering Jiangsu University Zhenjiang P. R. China
| | - Kaiwen Deng
- School of Food and Biological Engineering Jiangsu University Zhenjiang P. R. China
| |
Collapse
|
8
|
Yu R, Cao X, Sun L, Zhu JY, Wasko BM, Liu W, Crutcher E, Liu H, Jo MC, Qin L, Kaeberlein M, Han Z, Dang W. Inactivating histone deacetylase HDA promotes longevity by mobilizing trehalose metabolism. Nat Commun 2021; 12:1981. [PMID: 33790287 PMCID: PMC8012573 DOI: 10.1038/s41467-021-22257-2] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2020] [Accepted: 03/02/2021] [Indexed: 02/01/2023] Open
Abstract
Histone acetylations are important epigenetic markers for transcriptional activation in response to metabolic changes and various stresses. Using the high-throughput SEquencing-Based Yeast replicative Lifespan screen method and the yeast knockout collection, we demonstrate that the HDA complex, a class-II histone deacetylase (HDAC), regulates aging through its target of acetylated H3K18 at storage carbohydrate genes. We find that, in addition to longer lifespan, disruption of HDA results in resistance to DNA damage and osmotic stresses. We show that these effects are due to increased promoter H3K18 acetylation and transcriptional activation in the trehalose metabolic pathway in the absence of HDA. Furthermore, we determine that the longevity effect of HDA is independent of the Cyc8-Tup1 repressor complex known to interact with HDA and coordinate transcriptional repression. Silencing the HDA homologs in C. elegans and Drosophila increases their lifespan and delays aging-associated physical declines in adult flies. Hence, we demonstrate that this HDAC controls an evolutionarily conserved longevity pathway.
Collapse
Affiliation(s)
- Ruofan Yu
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
- Huffington Center on Aging, Baylor College of Medicine, Houston, TX, USA
| | - Xiaohua Cao
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
- Huffington Center on Aging, Baylor College of Medicine, Houston, TX, USA
| | - Luyang Sun
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
- Huffington Center on Aging, Baylor College of Medicine, Houston, TX, USA
| | - Jun-Yi Zhu
- Center for Precision Disease Modeling, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Brian M Wasko
- Department of Pathology, University of Washington, Seattle, WA, USA
- University of Houston, Clear Lake, TX, USA
| | - Wei Liu
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
- Huffington Center on Aging, Baylor College of Medicine, Houston, TX, USA
| | - Emeline Crutcher
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
- Huffington Center on Aging, Baylor College of Medicine, Houston, TX, USA
| | - Haiying Liu
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
- Huffington Center on Aging, Baylor College of Medicine, Houston, TX, USA
| | | | - Lidong Qin
- Department of Nanomedicine, Houston Methodist Research Institute, Houston, TX, USA
| | - Matt Kaeberlein
- Department of Pathology, University of Washington, Seattle, WA, USA
| | - Zhe Han
- Center for Precision Disease Modeling, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Weiwei Dang
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA.
- Huffington Center on Aging, Baylor College of Medicine, Houston, TX, USA.
| |
Collapse
|
9
|
Simonis P, Linkeviciute A, Stirke A. Electroporation Assisted Improvement of Freezing Tolerance in Yeast Cells. Foods 2021; 10:foods10010170. [PMID: 33467689 PMCID: PMC7829889 DOI: 10.3390/foods10010170] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2020] [Revised: 01/09/2021] [Accepted: 01/12/2021] [Indexed: 11/23/2022] Open
Abstract
Prolonged storage of frozen dough worsens the structure of thawed dough. The main reason is the inhibition of yeast activity. In this study we investigated applicability of pulsed electric field treatment for introduction of cryoprotectant into yeast cells. We showed that pre-treatment of cells suspended in a trehalose solution improves freezing tolerance and results in higher viability after thawing. Viability increased with rise in electric field strength (from 3 to 4.5 kV/cm) and incubation time (from 0 to 60 min) after exposure. Pretreatment resulted in lower decrease in the viability of thawed cells, viability of untreated cells dropped to 10%, while pre-treatment with PEF and trehalose tripled the viability.
Collapse
|
10
|
Cabrera E, Welch LC, Robinson MR, Sturgeon CM, Crow MM, Segarra VA. Cryopreservation and the Freeze-Thaw Stress Response in Yeast. Genes (Basel) 2020; 11:genes11080835. [PMID: 32707778 PMCID: PMC7463829 DOI: 10.3390/genes11080835] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Revised: 07/19/2020] [Accepted: 07/20/2020] [Indexed: 01/31/2023] Open
Abstract
The ability of yeast to survive freezing and thawing is most frequently considered in the context of cryopreservation, a practical step in both industrial and research applications of these organisms. However, it also relates to an evolved ability to withstand freeze-thaw stress that is integrated with a larger network of survival responses. These responses vary between different strains and species of yeast according to the environments to which they are adapted, and the basis of this adaptation appears to be both conditioned and genetic in origin. This review article briefly touches upon common yeast cryopreservation methods and describes in detail what is known about the biochemical and genetic determinants of cell viability following freeze-thaw stress. While we focus on the budding yeast Saccharomyces cerevisiae, in which the freeze-thaw stress response is best understood, we also highlight the emerging diversity of yeast freeze-thaw responses as a manifestation of biodiversity among these organisms.
Collapse
|
11
|
Lip KYF, García-Ríos E, Costa CE, Guillamón JM, Domingues L, Teixeira J, van Gulik WM. Selection and subsequent physiological characterization of industrial Saccharomyces cerevisiae strains during continuous growth at sub- and- supra optimal temperatures. BIOTECHNOLOGY REPORTS (AMSTERDAM, NETHERLANDS) 2020; 26:e00462. [PMID: 32477898 PMCID: PMC7251540 DOI: 10.1016/j.btre.2020.e00462] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/16/2020] [Revised: 04/22/2020] [Accepted: 04/22/2020] [Indexed: 11/04/2022]
Abstract
A phenotypic screening of 12 industrial yeast strains and the well-studied laboratory strain CEN.PK113-7D at cultivation temperatures between 12 °C and 40 °C revealed significant differences in maximum growth rates and temperature tolerance. From those 12, two strains, one performing best at 12 °C and the other at 40 °C, plus the laboratory strain, were selected for further physiological characterization in well-controlled bioreactors. The strains were grown in anaerobic chemostats, at a fixed specific growth rate of 0.03 h-1 and sequential batch cultures at 12 °C, 30 °C, and 39 °C. We observed significant differences in biomass and ethanol yields on glucose, biomass protein and storage carbohydrate contents, and biomass yields on ATP between strains and cultivation temperatures. Increased temperature tolerance coincided with higher energetic efficiency of cell growth, indicating that temperature intolerance is a result of energy wasting processes, such as increased turnover of cellular components (e.g. proteins) due to temperature induced damage.
Collapse
Affiliation(s)
- Ka Ying Florence Lip
- Department of Biotechnology, Delft University of Technology, Delft 2629HZ, the Netherlands
| | - Estéfani García-Ríos
- Food Biotechnology Department, Instituto de Agroquímica y Tecnología de Alimentos (IATA), Consejo Superior de Investigaciones Científicas (CSIC), Valencia, Spain
| | - Carlos E. Costa
- Centre of Biological Engineering, University of Minho, Braga 4710-057, Portugal
| | - José Manuel Guillamón
- Food Biotechnology Department, Instituto de Agroquímica y Tecnología de Alimentos (IATA), Consejo Superior de Investigaciones Científicas (CSIC), Valencia, Spain
| | - Lucília Domingues
- Centre of Biological Engineering, University of Minho, Braga 4710-057, Portugal
| | - José Teixeira
- Centre of Biological Engineering, University of Minho, Braga 4710-057, Portugal
| | - Walter M. van Gulik
- Department of Biotechnology, Delft University of Technology, Delft 2629HZ, the Netherlands
| |
Collapse
|
12
|
Nascimento CRSD, Souto ADSS, Galvão RM, Lazéra MDS, Trilles L. Genotypic and Phenotypic Stability of Mixed Primary Isolates of Cryptococcus gattii and Cryptococcus neoformans: A Comparative Analysis of Four Preservation Methods. Biopreserv Biobank 2020; 18:196-203. [PMID: 32213084 DOI: 10.1089/bio.2019.0096] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
The choice of a suitable preservation method is critical for long-term microorganisms' viability. The strains should be preserved for long periods using reliable and reproducible methods that minimize genotypic and phenotypic variations and viability losses. The methodologies are usually designed for a better performance in isolated microorganisms. However, atypical primary isolates of Cryptococcus neoformans or Cryptococcus gattii, such as mixed species or even different species of a species complex, are a challenge for long-term preservation and taxonomic review studies. The aim of this study was to evaluate which of the four preservation methods tested presented better performance in the preservation of simulated coexistence strains of C. neoformans and C. gattii. Two environmental strains, one C. gattii and one C. neoformans, were mixed in vitro to test four different preservation methods (freezing at -20°C, -80°C, -196°C, and freeze-drying). The colony-forming units from each preservation method were evaluated, and colonies were randomly selected and cultivated in canavanine glycine bromothymol blue (CGB) agar to evaluate the amounts of CGB-positive (C. gattii) and CGB-negative (C. neoformans) colonies resulting from each preservation method after 1 week, 15 days, 1 month, 6 months, and 1 year. According to our results, cryopreservation at -20°C demonstrated was preferable for C. neoformans species, and further studies after long-term storage are necessary. Recovery of yeast cells after freeze-dried preservation in skim milk is better for both species. Ultrafreezing methods evaluated (-80°C and -196°C) also showed better results in the maintenance of C. gattii. Freeze-drying should be preferred for the maintenance of multilineage isolates from the C. neoformans and C. gattii species complexes.
Collapse
Affiliation(s)
- Carlos Roberto Sobrinho do Nascimento
- Microbiology Department, National Institute for Quality Control in Health, Fiocruz, Rio de Janeiro, Brazil.,Mycology Laboratory, National Institute of Infectious Diseases Evandro Chagas, Fiocruz, Rio de Janeiro, Brazil
| | | | - Raíssa Maria Galvão
- Microbiology Department, National Institute for Quality Control in Health, Fiocruz, Rio de Janeiro, Brazil
| | - Marcia Dos Santos Lazéra
- Mycology Laboratory, National Institute of Infectious Diseases Evandro Chagas, Fiocruz, Rio de Janeiro, Brazil
| | - Luciana Trilles
- Mycology Laboratory, National Institute of Infectious Diseases Evandro Chagas, Fiocruz, Rio de Janeiro, Brazil
| |
Collapse
|
13
|
Sato M, Inaba S, Sukenobe J, Sasaki T, Inoue R, Noguchi M, Nakagiri A. A modified perlite protocol with a mixed dimethyl sulfoxide and trehalose cryoprotectant improves the viability of frozen cultures of ectomycorrhizal basidiomycetes. Mycologia 2019; 111:161-176. [PMID: 30714878 DOI: 10.1080/00275514.2018.1520035] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Homolka's perlite protocol (HPP) was evaluated for cryopreservation of a wide range of ectomycorrhizal basidiomycete cultures, then a modified perlite protocol (MPP), in which cryoprotectant was added just before freezing rather than during the culturing process, was applied to cryosensitive strains that failed to survive when HPP was used. Further modifications of MPP with various cryoprotectants were explored to improve the cryopreservation of hard-to-preserve strains. The efficacy of HPP was assessed in 111 strains of 38 species of basidiomycetes of various cryosensitivities. After freezing strains using HPP, the viability and colony diameter of the strains were examined after 2 wk, 6 mo, and 1 y of storage at -80 C. Of the 111 strains tested, 91 survived after 1 y of storage with high viability of 80% or more, whereas the remaining 20 strains exhibited low and unstable viability. For those selected cryosensitive strains that did not survive well when HPP was used, MPP was applied with a mixture of cryoprotectants, dimethyl sulfoxide (DMSO), glycerol, and trehalose, at different concentrations and combinations. Toxicity testing of the cryoprotectants in the nonfrozen state revealed that 12% (v/v) glycerol was highly toxic for six strains (four species), whereas DMSO (5% and 10% [v/v]) was less toxic than glycerol. The viability of the cryosensitive strains after freezing demonstrated that DMSO was more efficient than glycerol, and trehalose enhanced the cryoprotective effects of both glycerol and DMSO when MPP was used for cryopreservation. Our comparative analysis of MPP with various combinations and concentrations of cryoprotectants revealed that a mixture of 5% DMSO and 10% trehalose was the most effective cryoprotectant, and that using MPP with this cryoprotectant was applicable to many cryosensitive strains.
Collapse
Affiliation(s)
- Masanori Sato
- a International Patent Organism Depositary, National Institute of Technology and Evaluation , 2-5-8, Kazusakamatari, Kisarazu-shi , Chiba , 292-0818 , Japan
| | - Shigeki Inaba
- b Biological Resource Center, National Institute of Technology and Evaluation , 2-5-8, Kazusakamatari, Kisarazu-shi , Chiba , 292-0818 , Japan
| | - Junji Sukenobe
- a International Patent Organism Depositary, National Institute of Technology and Evaluation , 2-5-8, Kazusakamatari, Kisarazu-shi , Chiba , 292-0818 , Japan
| | - Tomomi Sasaki
- a International Patent Organism Depositary, National Institute of Technology and Evaluation , 2-5-8, Kazusakamatari, Kisarazu-shi , Chiba , 292-0818 , Japan
| | - Ryutaro Inoue
- a International Patent Organism Depositary, National Institute of Technology and Evaluation , 2-5-8, Kazusakamatari, Kisarazu-shi , Chiba , 292-0818 , Japan
| | - Mariko Noguchi
- a International Patent Organism Depositary, National Institute of Technology and Evaluation , 2-5-8, Kazusakamatari, Kisarazu-shi , Chiba , 292-0818 , Japan
| | - Akira Nakagiri
- c Fungus/Mushroom Resource and Research Center, Faculty of Agriculture , Tottori University , 4-101 Koyama-Minami, Tottori 680-8553 , Japan
| |
Collapse
|
14
|
Berny JF, Hennebert GL. Viability and Stability of Yeast Cells and Filamentous Fungus Spores During Freeze-Drying: Effects of Protectants and Cooling Rates. Mycologia 2018. [DOI: 10.1080/00275514.1991.12026086] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
Affiliation(s)
- J.-F. Berny
- Laboratoire de Mycologie Systématique et Appliquée, Mycothèque de l'Université Catholique de Louvain, Place Croix du Sud, 3, B-1348 Louvain-la-Neuve, Belgium
| | - G. L. Hennebert
- Laboratoire de Mycologie Systématique et Appliquée, Mycothèque de l'Université Catholique de Louvain, Place Croix du Sud, 3, B-1348 Louvain-la-Neuve, Belgium
| |
Collapse
|
15
|
Improving total glutathione and trehalose contents in Saccharomyces cerevisiae cells to enhance their resistance to fluidized bed drying. Process Biochem 2018. [DOI: 10.1016/j.procbio.2018.03.013] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
|
16
|
Bioethanol production by reusable Saccharomyces cerevisiae immobilized in a macroporous monolithic hydrogel matrices. J Biotechnol 2016; 233:56-65. [DOI: 10.1016/j.jbiotec.2016.07.004] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2016] [Revised: 07/02/2016] [Accepted: 07/07/2016] [Indexed: 11/24/2022]
|
17
|
The International Symposium on Fungal Stress: ISFUS. Curr Genet 2015; 61:479-87. [DOI: 10.1007/s00294-015-0501-2] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2015] [Accepted: 06/03/2015] [Indexed: 01/25/2023]
|
18
|
Eleutherio E, Panek A, De Mesquita JF, Trevisol E, Magalhães R. Revisiting yeast trehalose metabolism. Curr Genet 2014; 61:263-74. [DOI: 10.1007/s00294-014-0450-1] [Citation(s) in RCA: 79] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2014] [Revised: 08/21/2014] [Accepted: 08/26/2014] [Indexed: 12/16/2022]
|
19
|
Gamero-Sandemetrio E, Gómez-Pastor R, Matallana E. Antioxidant defense parameters as predictive biomarkers for fermentative capacity of active dried wine yeast. Biotechnol J 2014; 9:1055-64. [DOI: 10.1002/biot.201300448] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2013] [Revised: 02/12/2014] [Accepted: 03/18/2014] [Indexed: 11/05/2022]
|
20
|
Ultrasonication as a potential tool to predict solute crystallization in freeze-concentrates. Pharm Res 2014; 31:1512-24. [PMID: 24398694 DOI: 10.1007/s11095-013-1257-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2013] [Accepted: 12/05/2013] [Indexed: 10/25/2022]
Abstract
PURPOSE We hypothesize that ultrasonication can accelerate solute crystallization in freeze-concentrates. Our objective is to demonstrate ultrasonication as a potential predictive tool for evaluating physical stability of excipients in frozen solutions. METHODS The crystallization tendencies of lyoprotectants (trehalose, sucrose), carboxylic acid buffers (citric, tartaric, malic, and acetic) and an amino acid buffer (histidine HCl) were studied. Aqueous solutions of buffers, lyoprotectants and mixtures of the two were cooled from room temperature to -20°C and sonicated to induce solute crystallization. The crystallized phases were identified by X-ray diffractometry (laboratory or synchrotron source). RESULTS Sonication accelerated crystallization of trehalose dihydrate in frozen trehalose solutions. Sonication also enhanced solute crystallization in tartaric (200 mM; pH 5), citric (200 mM pH 4) and malic (200 mM; pH 4) acid buffers. At lower buffer concentrations, longer annealing times following sonication were required to facilitate solute crystallization. The time for crystallization of histidine HCl progressively increased as a function of sucrose concentration. The insonation period required to effect crystallization also increased with sucrose concentration. CONCLUSIONS Sonication can substantially accelerate solute crystallization in the freeze-concentrate. Ultrasonication may be useful in assessing the crystallization tendency of formulation constituents used in long term frozen storage and freeze-drying.
Collapse
|
21
|
Honjoh KI. Basic Studies on the Quality and Safety of Foods Stored and Distributed at Low temperature. J JPN SOC FOOD SCI 2014. [DOI: 10.3136/nskkk.61.101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
22
|
Nag A, Das S. Effect of trehalose and lactose as cryoprotectant during freeze-drying,in vitrogastro-intestinal transit and survival of microencapsulated freeze-driedLactobacillus casei431 cells. INT J DAIRY TECHNOL 2013. [DOI: 10.1111/1471-0307.12041] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Arup Nag
- Riddet Institute; Massey University; Private Bag 11 222; Palmerston North; New Zealand
| | - Shantanu Das
- Riddet Institute; Massey University; Private Bag 11 222; Palmerston North; New Zealand
| |
Collapse
|
23
|
Chen PT, Chiang CJ, Chen YT, Lin HC, Liu CH, Chao YP, Shaw JF. Strategy for stable and high-level expression of recombinant trehalose synthase in Escherichia coli. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2012; 60:6063-6068. [PMID: 22612301 DOI: 10.1021/jf301593e] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
Trehalose is a nonreducing disaccharide and has a wide range of applications in food and biorelated industry. This sugar can be synthesized from maltose in one step by trehalose synthase. In this study, we attempted to overproduce trehalose synthase from Picrophilus torridus (PTTS), a thermoacidophilic archaea, in Escherichia coli . However, overproduction of PTTS was hampered when the T7 promoter-driven PTTS gene (PT7-PTTS) on a multicopy plasmid was employed in E. coli . The factors limiting PTTS production were identified in a systematic way, including the codon bias, plasmid instability, a redundant gene copy, a high basal level of PTTS, and metabolic burden resulting from the mutlicopy plasmid DNA and antibiotics. To overcome these difficulties, an E. coli strain was developed with insertion of PT7-PTTS into the chromosome and enhanced expression of genomic argU tRNA and ileX tRNA genes. Without the selective pressure, the constructed producer strain was able to produce a stable and high-level production of recombinant PTTS. Overall, we proposed a simple and effective method to address the issue that is most commonly raised in overproduction of heterologous proteins by E. coli .
Collapse
Affiliation(s)
- Po Ting Chen
- Department of Biotechnology, Southern Taiwan University , No. 1, Nan-Tai Street, Tainan 710, Taiwan
| | | | | | | | | | | | | |
Collapse
|
24
|
Oliveira RPDS, Basso LC, Junior AP, Penna TCV, Del Borghi M, Converti A. Response of Saccharomyces cerevisiae to cadmium and nickel stress: the use of the sugar cane vinasse as a potential mitigator. Biol Trace Elem Res 2012; 145:71-80. [PMID: 21809054 DOI: 10.1007/s12011-011-9156-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/05/2011] [Accepted: 07/15/2011] [Indexed: 10/17/2022]
Abstract
Most of the metals released from industrial activity, among them are cadmium (Cd) and nickel (Ni), inhibit the productivity of cultures and affect microbial metabolism. In this context, the aim of this work was to investigate the capacity of sugar cane vinasse to mitigate the adverse effects of Cd and Ni on cell growth, viability, budding rate and trehalose content of Saccharomyces cerevisiae, likely because of adsorption and chelating action. For this purpose, the yeast was grown batch-wise in YED medium supplemented with selected amounts of vinasse and Cd or Ni. The negative effects of Cd and Ni on S. cerevisiae growth and the mitigating one of sugar cane vinasse were quantified by an exponential model. Without vinasse, the addition of increasing levels of Cd and Ni reduced the specific growth rate, whereas in its presence no reduction was observed. Consistently with the well-proved toxicity of both metals, cell viability and budding rate progressively decreased with increasing their concentration, but in the presence of vinasse the situation was remarkably improved. The trehalose content of S. cerevisiae cells followed the same qualitative behavior as cell viability, even though the negative effect of both metals on this parameter was stronger. These results demonstrate the ability of sugar cane vinasse to mitigate the toxic effects of Cd and Ni.
Collapse
Affiliation(s)
- Ricardo Pinheiro de Souza Oliveira
- Department of Biochemical and Pharmaceutical Technology, Faculty of Pharmaceutical Sciences, São Paulo University, Av Prof Lineu Prestes, 580, Bl. 16, 05508-900 Piracicaba, São Paulo, Brazil
| | | | | | | | | | | |
Collapse
|
25
|
TANI F, NISHITANI I, YASUMOTO K, KITABATAKE N. Preservative Effect of Polyols on the Stability of Biocatalysts during Short-term Dehydration Stress. FOOD SCIENCE AND TECHNOLOGY RESEARCH 2011. [DOI: 10.3136/fstr.17.385] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
26
|
|
27
|
Kandylis P, Manousi ME, Bekatorou A, Koutinas A. Freeze-dried wheat supported biocatalyst for low temperature wine making. Lebensm Wiss Technol 2010. [DOI: 10.1016/j.lwt.2010.05.027] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
28
|
Crystallization of Trehalose in Frozen Solutions and its Phase Behavior during Drying. Pharm Res 2010; 27:2374-83. [DOI: 10.1007/s11095-010-0243-2] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2010] [Accepted: 08/10/2010] [Indexed: 10/19/2022]
|
29
|
Teramoto N, Sachinvala ND, Shibata M. Trehalose and trehalose-based polymers for environmentally benign, biocompatible and bioactive materials. Molecules 2008; 13:1773-816. [PMID: 18794785 PMCID: PMC6245314 DOI: 10.3390/molecules13081773] [Citation(s) in RCA: 90] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2008] [Accepted: 08/11/2008] [Indexed: 12/20/2022] Open
Abstract
Trehalose is a non-reducing disaccharide that is found in many organisms but not in mammals. This sugar plays important roles in cryptobiosis of selaginella mosses, tardigrades (water bears), and other animals which revive with water from a state of suspended animation induced by desiccation. The interesting properties of trehalose are due to its unique symmetrical low-energy structure, wherein two glucose units are bonded face-to-face by 1→1-glucoside links. The Hayashibara Co. Ltd., is credited for developing an inexpensive, environmentally benign and industrial-scale process for the enzymatic conversion of α-1,4-linked polyhexoses to α,α-d-trehalose, which made it easy to explore novel food, industrial, and medicinal uses for trehalose and its derivatives. Trehalose-chemistry is a relatively new and emerging field, and polymers of trehalose derivatives appear environmentally benign, biocompatible, and biodegradable. The discriminating properties of trehalose are attributed to its structure, symmetry, solubility, kinetic and thermodynamic stability and versatility. While syntheses of trehalose-based polymer networks can be straightforward, syntheses and characterization of well defined linear polymers with tailored properties using trehalose-based monomers is challenging, and typically involves protection and deprotection of hydroxyl groups to attain desired structural, morphological, biological, and physical and chemical properties in the resulting products. In this review, we will overview known literature on trehalose’s fascinating involvement in cryptobiology; highlight its applications in many fields; and then discuss methods we used to prepare new trehalose-based monomers and polymers and explain their properties.
Collapse
Affiliation(s)
- Naozumi Teramoto
- Department of Life and Environmental Sciences, Faculty of Engineering, Chiba Institute of Technology, 2-17-1 Tsudanuma, Narashino, Chiba 275-0016, Japan; E-mail:
- Author to whom correspondence should be addressed; E-Mail:
| | - Navzer D. Sachinvala
- Retired, Southern Regional Research Center, USDA-ARS, New Orleans, LA, USA; Home: 2261 Brighton Place, Harvey, LA 70058; E-mail:
| | - Mitsuhiro Shibata
- Department of Life and Environmental Sciences, Faculty of Engineering, Chiba Institute of Technology, 2-17-1 Tsudanuma, Narashino, Chiba 275-0016, Japan; E-mail:
| |
Collapse
|
30
|
França MB, Panek AD, Eleutherio ECA. Oxidative stress and its effects during dehydration. Comp Biochem Physiol A Mol Integr Physiol 2007; 146:621-31. [PMID: 16580854 DOI: 10.1016/j.cbpa.2006.02.030] [Citation(s) in RCA: 265] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2005] [Revised: 02/14/2006] [Accepted: 02/21/2006] [Indexed: 10/25/2022]
Abstract
Water is usually thought to be required for the living state, but several organisms are capable of surviving complete dehydration (anhydrobiotes). Elucidation of the mechanisms of tolerance against dehydration may lead to development of new methods for preserving biological materials that do not normally support drying, which is of enormous practical importance in industry, in clinical medicine as well as in agriculture. One of the molecular mechanisms of damage leading to death in desiccation-sensitive cells upon drying is free-radical attack to phospholipids, DNA and proteins. This review aims to summarize the strategies used by anhydrobiotes to cope with the danger of oxygen toxicity and to present our recent results about the importance of some antioxidant defense systems in the dehydration tolerance of Saccharomyces cerevisiae, a usual model in the study of stress response.
Collapse
Affiliation(s)
- M B França
- Departamento de Bioquímica, Instituto de Química, UFRJ, 21949-900, Rio de Janeiro, RJ, Brazil
| | | | | |
Collapse
|
31
|
Izawa S, Ikeda K, Takahashi N, Inoue Y. Improvement of tolerance to freeze–thaw stress of baker’s yeast by cultivation with soy peptides. Appl Microbiol Biotechnol 2007; 75:533-7. [PMID: 17505771 DOI: 10.1007/s00253-007-0855-6] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2006] [Revised: 01/17/2007] [Accepted: 01/21/2007] [Indexed: 10/23/2022]
Abstract
The tolerance to freeze-thaw stress of yeast cells is critical for frozen-dough technology in the baking industry. In this study, we examined the effects of soy peptides on the freeze-thaw stress tolerance of yeast cells. We found that the cells cultured with soy peptides acquired improved tolerance to freeze-thaw stress and retained high leavening ability in dough after frozen storage for 7 days. The final quality of bread regarding its volume and texture was also improved by using yeast cells cultured with soy peptides. These findings promote the utilization of soy peptides as ingredients of culture media to improve the quality of baker's yeast.
Collapse
Affiliation(s)
- Shingo Izawa
- Division of Applied Life Sciences, Graduate School of Agriculture, Kyoto University, Uji, Kyoto, 611-0011, Japan.
| | | | | | | |
Collapse
|
32
|
Izawa S, Ikeda K, Ohdate T, Inoue Y. Msn2p/Msn4p-activation is essential for the recovery from freezing stress in yeast. Biochem Biophys Res Commun 2007; 352:750-5. [PMID: 17150183 DOI: 10.1016/j.bbrc.2006.11.100] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2006] [Accepted: 11/16/2006] [Indexed: 10/23/2022]
Abstract
Since it seems quite difficult for frozen cells to repair the damage caused by freezing, the adequate responses appear to be induced during and/or after the thawing process to recover from the damage due to freezing. In this study, the cellular events happening upon the return from freezing at -30 degrees C to a growth temperature (28 degrees C) were investigated. Yap1p, an oxidative stress-responsive transcription factor, was not activated in the thawed cells, indicating that no serious oxidative stress was generated in the frozen-thawed cells. On the other hand, Msn2p and Msn4p, general stress-responsive transcription factors, were activated in the thawed cells and caused the increased expression of a number of Msn2p/Msn4p-target genes including SOD1, SOD2, and several HSP genes. Since almost no expression of Msn2p/Msn4p-target genes was induced before thawing, these results indicate that Msn2p and Msn4p play a role during the recovery process from freezing.
Collapse
Affiliation(s)
- Shingo Izawa
- Laboratory of Molecular Microbiology, Graduate School of Agriculture, Kyoto University, Uji, Kyoto 611-0011, Japan.
| | | | | | | |
Collapse
|
33
|
HONJOH KI, MACHIDA T, NISHI K, MATSUURA K, SOLI KW, SAKAI T, ISHIKAWA H, MATSUMOTO K, MIYAMOTO T, IIO M. Improvement of Freezing and Oxidative Stress Tolerance in Saccharomyces cerevisiae by Taurine. FOOD SCIENCE AND TECHNOLOGY RESEARCH 2007. [DOI: 10.3136/fstr.13.145] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
34
|
Ratnakumar S, Tunnacliffe A. Intracellular trehalose is neither necessary nor sufficient for desiccation tolerance in yeast. FEMS Yeast Res 2006; 6:902-13. [PMID: 16911512 DOI: 10.1111/j.1567-1364.2006.00066.x] [Citation(s) in RCA: 69] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
Abstract
Trehalose is thought to be important for desiccation tolerance in a number of organisms, including Saccharomyces cerevisiae, but there is limited in vivo evidence to support this hypothesis. In wild-type yeast, the degree of desiccation tolerance has been shown previously to increase in cultures after diauxic shift and also in exponential-phase cultures after exposure to heat stress. Under both these conditions, increased survival of desiccation correlates with elevated intracellular trehalose concentrations. Our data confirm these findings, but we have tested the apparent importance of trehalose using mutant strains with a deleted trehalose-6-phosphate synthase gene (tps1Delta). Although tps1Delta strains do not produce trehalose, they are nevertheless capable of desiccation tolerance, and the degree of tolerance also increases after diauxic shift or heat stress, albeit slightly less than in the wild type. Conversely, when wild-type yeast is subjected to osmotic stress, mid-exponential-phase cultures produce high concentrations of intracellular trehalose but show little improvement in desiccation tolerance. These results show that there is no consistent relationship between intracellular trehalose levels and desiccation tolerance in S. cerevisiae. Trehalose seems to be neither necessary nor sufficient for, although in some strains might quantitatively improve, survival of desiccation, suggesting that other adaptations are more important.
Collapse
|
35
|
A simple method for obtaining reusable reactors containing immobilized trehalase: Characterization of a crude trehalase preparation immobilized on chitin particles. Enzyme Microb Technol 2006. [DOI: 10.1016/j.enzmictec.2005.07.011] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
36
|
Adya AK, Canetta E, Walker GM. Atomic force microscopic study of the influence of physical stresses onSaccharomyces cerevisiaeandSchizosaccharomyces pombe. FEMS Yeast Res 2006; 6:120-8. [PMID: 16423077 DOI: 10.1111/j.1567-1364.2005.00003.x] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
Abstract
Morphological changes in the cell surfaces of the budding yeast Saccharomyces cerevisiae (strain NCYC 1681), and the fission yeast Schizosaccharomyces pombe (strain DVPB 1354), in response to thermal and osmotic stresses, were investigated using an atomic force microscope. With this microscope imaging, together with measurements of culture viability and cell size, it was possible to relate topological changes of the cell surface at nanoscale with cellular stress physiology. As expected, when the yeasts were exposed to thermostress or osmostress, their viability together with the mean cell volume decreased in conjunction with the increase in thermal or osmotic shock. Nevertheless, the viability of cells stressed for up to 1 h remained relatively high. For example, viabilities were >50% and >90% for the thermostressed, and >60% and >70% for the osmostressed S. cerevisiae and Schiz. pombe, respectively. Mean cell volume measurements, and bearing and roughness analyses of atomic force microscope images of stressed yeasts indicate that Schiz. pombe may be more resistant to physical stresses than S. cerevisiae. Overall, this study has highlighted the usefulness of atomic force microscope in studies of yeast stress physiology.
Collapse
Affiliation(s)
- Ashok K Adya
- Condensed Matter Group and Bio- and Nano-Technologies for Health Centre, School of Contemporary Sciences, University of Abertay Dundee, Dundee, UK.
| | | | | |
Collapse
|
37
|
Delalibera I, Humber RA, Hajek AE. Preservation of in vitro cultures of the mite pathogenic fungus Neozygites tanajoae. Can J Microbiol 2004; 50:579-86. [PMID: 15467783 DOI: 10.1139/w04-041] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Neozygites tanajoae has recently been described as a new fungal pathogen distinct from Neozygites floridana. This pathogen is currently being used as a classical biological control agent against the cassava green mite, Mononychellus tanajoa (Bondar), in Africa. Neozygites tanajoae is a particularly fastidious species, and in vitro cultures of isolates from Brazil and Africa have only recently been established. In this study, the efficacy of several cryoprotectants at different exposure times, cooling rates, and warming rates for protecting hyphal bodies of N. tanajoae during cryopreservation was investigated. A protocol for preservation of cultures of N. tanajoae at ultra-low temperatures of –80 °C or –196 °C, using 1% trehalose + 2% dimethyl sulfoxide as cryoprotective agents, is described in detail. In this study, we demonstrate that N. tanajoae differs remarkably from N. floridana (isolates ARSEF 662 and ARSEF 5376) in the ability to withstand the stress of cold temperature (4 °C) and cryopreservation. In vitro cultures of the 2 N. floridana isolates remained viable at 4 °C for up to 47 d; however, cultures of N. tanajoae did not survive this temperature for 4 d. Cryopreservation methods successful for N. tanajoae isolates are not suitable for N. floridana and are unusual in comparison to those for many fungi.Key words: Neozygites floridana, Mononychellus tanajoa, cryopreservation, fungal storage, Entomophthorales.
Collapse
Affiliation(s)
- Italo Delalibera
- Department of Entomology, Cornell University, Ithaca, NY 14853, USA.
| | | | | |
Collapse
|
38
|
Izawa S, Sato M, Yokoigawa K, Inoue Y. Intracellular glycerol influences resistance to freeze stress in Saccharomyces cerevisiae: analysis of a quadruple mutant in glycerol dehydrogenase genes and glycerol-enriched cells. Appl Microbiol Biotechnol 2004; 66:108-14. [PMID: 15127164 DOI: 10.1007/s00253-004-1624-4] [Citation(s) in RCA: 66] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2004] [Revised: 04/02/2004] [Accepted: 04/07/2004] [Indexed: 11/29/2022]
Abstract
Glycerol is well known as a cryoprotectant similar to trehalose. However, there is little information about the effects of intracellular glycerol on the freeze-thaw stress tolerance of yeast. Through analysis of a quadruple-knockout mutant of glycerol dehydrogenase genes (ara1 Delta gcy1 Delta gre3 Delta ypr1 Delta) in Saccharomyces cerevisiae, we revealed that the decrease in glycerol dehydrogenase activity led to increased levels of intracellular glycerol. We also found that this mutant showed higher tolerance to freeze stress than wild type strain W303-1A. Furthermore, we demonstrated that intracellular-glycerol-enriched cells cultured in glycerol medium acquire tolerance to freeze stress and retain high leavening ability in dough even after frozen storage for 7 days. These results suggest the possibility of using intracellular-glycerol-enriched cells to develop better frozen dough.
Collapse
Affiliation(s)
- Shingo Izawa
- Laboratory of Molecular Microbiology, Graduate School of Agriculture, Kyoto University, Kyoto 611-0011, Japan
| | | | | | | |
Collapse
|
39
|
Tanghe A, Van Dijck P, Thevelein JM. Determinants of freeze tolerance in microorganisms, physiological importance, and biotechnological applications. ADVANCES IN APPLIED MICROBIOLOGY 2004; 53:129-76. [PMID: 14696318 DOI: 10.1016/s0065-2164(03)53004-0] [Citation(s) in RCA: 65] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Affiliation(s)
- An Tanghe
- Laboratory of Molecular Cell Biology, Institute of Botany and Microbiology, Katholieke Universiteit Leuven, Belgium
| | | | | |
Collapse
|
40
|
Tunnacliffe A, Lapinski J. Resurrecting Van Leeuwenhoek's rotifers: a reappraisal of the role of disaccharides in anhydrobiosis. Philos Trans R Soc Lond B Biol Sci 2004; 358:1755-71. [PMID: 14561331 PMCID: PMC1693263 DOI: 10.1098/rstb.2002.1214] [Citation(s) in RCA: 130] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
In 1702, Van Leeuwenhoek was the first to describe the phenomenon of anhydrobiosis in a species of bdelloid rotifer, Philodina roseola. It is the purpose of this review to examine what has been learned since then about the extreme desiccation tolerance in rotifers and how this compares with our understanding of anhydrobiosis in other organisms. Remarkably, much of what is known today about the requirements for successful anhydrobiosis, and the degree of biostability conferred by the dry state, was already determined in principle by the time of Spallanzani in the late 18th century. Most modern research on anhydrobiosis has emphasized the importance of the non-reducing disaccharides trehalose and sucrose, one or other sugar being present at high concentrations during desiccation of anhydrobiotic nematodes, brine shrimp cysts, bakers' yeast, resurrection plants and plant seeds. These sugars are proposed to act as water replacement molecules, and as thermodynamic and kinetic stabilizers of biomolecules and membranes. In apparent contradiction of the prevailing models, recent experiments from our laboratory show that bdelloid rotifers undergo anhydrobiosis without producing trehalose or any analogous molecule. This has prompted us to critically re-examine the association of disaccharides with anhydrobiosis in the literature. Surprisingly, current hypotheses are based almost entirely on in vitro data: there is very limited information which is more than simply correlative in the literature on living systems. In many species, disaccharide accumulation occurs at approximately the same time as desiccation tolerance is acquired. However, several studies indicate that these sugars are not sufficient for anhydrobiosis; furthermore, there is no conclusive evidence, through mutagenesis or functional knockout experiments, for example, that sugars are necessary for anhydrobiosis. Indeed, some plant seeds and micro-organisms, like the rotifer, exhibit excellent desiccation tolerance in the absence of high intracellular sugar concentrations. Accordingly, it seems appropriate to call for a re-evaluation of our understanding of anhydrobiosis and to embark on new experimental programmes to determine the key molecular mechanisms involved.
Collapse
Affiliation(s)
- A Tunnacliffe
- Institute of Biotechnology, University of Cambridge, Tennis Court Road, Cambridge CB2 1QT, UK.
| | | |
Collapse
|
41
|
Sipkema D, Snijders APL, Schroën CGPH, Osinga R, Wijffels RH. The life and death of sponge cells. Biotechnol Bioeng 2003; 85:239-47. [PMID: 14748078 DOI: 10.1002/bit.10886] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Cell viability is an essential touchstone in the study of the effect of medium components on cell physiology. We developed a flow-cytometric assay to determine sponge-cell viability, based on the combined use of fluorescein diacetate (FDA) and propidium iodide (PI). Cell fluorescence measurements based on incubation of cells with FDA or PI resulted in a useful and reproducible estimate of the viability of primary sponge-cell cultures. We studied the effects of temperature, ammonium, and the fungicide amphotericin B on the viability of a primary-cell culture from the marine sponge Suberites domuncula using the aforementioned flow-cytometric assay. S. domuncula cells die rapidly at a temperature of >or=22 degrees C, but they are insensitive to ammonium concentrations of up to 25 mM. Amphotericin B, which is frequently used in sponge-cell culture media, was found to be toxic to S. domuncula cells.
Collapse
Affiliation(s)
- Detmer Sipkema
- Food and Bioprocess Engineering Group, Wageningen University, PO Box 8129, 6700 EV Wageningen, The Netherlands.
| | | | | | | | | |
Collapse
|
42
|
Subden R, Husnik J, van Twest R, van der Merwe G, van Vuuren H. Autochthonous microbial population in a Niagara Peninsula icewine must. Food Res Int 2003. [DOI: 10.1016/s0963-9969(03)00034-6] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
43
|
Abstract
The cryoprotective additives (CPAs) used in the frozen storage of microorganisms (viruses, bacteria, fungi, algae, and protozoa) include a variety of simple and more complex chemical compounds, but only a few of them have been used widely and with satisfactory results: these include dimethylsulfoxide (Me2SO), glycerol, blood serum or serum albumin, skimmed milk, peptone, yeast extract, saccharose, glucose, methanol, polyvinylpyrrolidone (PVP), sorbitol, and malt extract. Pairwise comparisons of the cryoprotective activity of the more common CPAs used in cryomicrobiology, based on published experimental reports, indicate that the most successful CPAs have been Me2SO, methanol, ethylene glycol, propylene glycol, and serum or serum albumin, while glycerol, polyethylene glycol, PVP, and sucrose are less successful, and other sugars, dextran, hydroxyethyl starch, sorbitol, and milk are the least effective. However, diols (as well as some other CPAs) are toxic for many microbes. Me2SO might be regarded as the most universally useful CPA, although certain other CPAs can sometimes yield better recoveries with particular organisms. The best CPA, or combination of CPAs, and the optimum concentration for a particular cryosensitive microorganism has to be determined empirically. This review aims to provide a summary of the main experimental findings with a wide range of additives and organisms. A brief discussion of mechanisms of CPA action is also included.
Collapse
Affiliation(s)
- Zdenek Hubálek
- Medical Zoology Laboratory, Institute of Vertebrate Biology, Academy of Sciences, Klásterní 2, CZ-69142 Valtice, Czech Republic.
| |
Collapse
|
44
|
Abstract
Based on the well-documented notion that oxygen affects the stability of dried cells, the role of the cytosolic and mitochondrial forms of superoxide dismutase (Sod) in the capacity of cells to resist dehydration was examined. Both enzymes are important for improving survival, and the absence of only 1 isoform did not impair tolerance against dehydration. In addition, sod strains showed the same Sod activity as the control strain, indicating that the deficiency in either cytoplasmic Cu/Zn or mitochondrial Mn was overcome by an increase in activity of the remaining Sod. To measure the level of intracellular oxidation produced by dehydration, a fluorescent probe, 2',7'-dichlorofluorescein, was used. Dry cells exhibited a high increase in fluorescence: both control and sod mutant strains became almost 10-fold more oxidized after dehydration. Furthermore, the disaccharide trehalose was shown to protect dry cells against oxidation.
Collapse
Affiliation(s)
- Elenilda de Jesus Pereira
- Departamento de Bioquímica, Instituto de Química, Universidade Federal do Rio de Janeiro, 21949-900 Rio de Janeiro, Brazil
| | | | | |
Collapse
|
45
|
Abadias M, Benabarre A, Teixidó N, Usall J, Viñas I. Effect of freeze drying and protectants on viability of the biocontrol yeast Candida sake. Int J Food Microbiol 2001; 65:173-82. [PMID: 11393686 DOI: 10.1016/s0168-1605(00)00513-4] [Citation(s) in RCA: 149] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
The effects of freezing method, freeze drying process, and the use of protective agents on the viability of the biocontrol yeast Candida sake were studied. Freezing at -20 degrees C was the best method to preserve the viability of C. sake cells after freeze drying using 10% skim milk as a protectant (28.9% survival). Liquid nitrogen freezing caused the highest level of damage to the cells with viability < 10%. Different concentrations of exogenous substances including sugars, polyols, polymers and nitrogen compounds were tested either alone or in combination with skim milk. There was little or no effect when additives were used at 1% concentration. Galactose, raffinose and sodium glutamate at 10% were the best protective agents tested alone but the viability of freeze-dried C. sake cells was always < 20%. Survival of yeast cells was increased from 0.2% to 30-40% by using appropriate protective media containing combinations of skim milk and other protectants such as 5% or 10% lactose or glucose, and 10% fructose or sucrose.
Collapse
Affiliation(s)
- M Abadias
- Postharvest Unit, CeRTA Centre UdL-IRTA, Lleida, Catalonia, Spain.
| | | | | | | | | |
Collapse
|
46
|
Worrall EE, Litamoi JK, Seck BM, Ayelet G. Xerovac: an ultra rapid method for the dehydration and preservation of live attenuated Rinderpest and Peste des Petits ruminants vaccines. Vaccine 2000; 19:834-9. [PMID: 11115706 DOI: 10.1016/s0264-410x(00)00229-2] [Citation(s) in RCA: 60] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
The accepted procedure for the long-term preservation of live viruses and bacteria in vaccines has been lyophilisation. We show that thermolabile viruses can be dehydrated in vitro, within 18 h, in an excipient containing trehalose. We further demonstrate that in the resulting dehydrated state, where the viruses are captive in a metastable glass composed of trehalose, they are capable of resisting 45 degrees C for a period of 14 days with minimal loss of potency. The degree of thermotolerance achieved matches that of current 'thermostable' lyophilised vaccines, but with the distinct advantage of a shorter, cheaper and simpler process. The development and utilisation of this process can make significant improvements in current live virus vaccine production. It presents a further step away from dependence on mandatory low temperature refrigerated storage and could lead to greater confidence in vaccine stability, potency and efficacy.
Collapse
Affiliation(s)
- E E Worrall
- Ty Mawr, Trefilan, Dyfed SA48 8RD, Lampeter, UK.
| | | | | | | |
Collapse
|
47
|
Abstract
We have developed a simple method for cryopreserving Schizosaccharomyces pombe and Saccharomyces cerevisiae competent intact cells that permits high transformation efficiency and long-term storage for electroporation. Transformation efficiency is significantly decreased if intact cells are frozen in common permeating cryoprotectants such as glycerol or dimethyl sulphoxide. On the other hand, we found that a high transformation efficiency could be maintained if the cells were frozen in a non-permeating cryoprotectant such as sorbitol. The optimum concentration of sorbitol was found in a hypertonic solution of around 2 M. It was also very important to use S. pombe cells grown in minimal medium and S. cerevisiae cells grown in nutrient medium in the exponential growth phase. A slow freezing rate of 10 degrees C/min and a rapid thawing rate of 200 degrees C/min resulted in the highest transformation efficiency. We also found it necessary to wash the thawed cells with 1.0 M of non-electrolyte sorbitol, since the intracellular electrolytes had leaked as a result of cryoinjury. The frozen competent cells stored at -80 degrees C could be used for more than 9 months without any loss of transformation efficiency. This cryopreservation method for electroporation is simple and useful for routine transformations of intact cells. Frozen competent cells offer the advantages of long-term storage with high efficiency and freedom from the preparation of fresh competent cells for each transformation.
Collapse
Affiliation(s)
- M Suga
- Department of Materials and Biosystem Engineering, Toyama University, 3190 Gofuku Toyama-City, Toyama 930-8555, Japan.
| | | | | |
Collapse
|
48
|
Choi SH, Gu MB. Enhancement in the viability and biosensing activity of freeze-dried recombinant bioluminescent bacteria. BIOTECHNOL BIOPROC E 2000. [DOI: 10.1007/bf02936595] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
49
|
|
50
|
Abstract
Two different methods commonly used to preserve intact yeast cells-freezing and freeze-drying-were compared. Different yeast cells submitted to these treatments were stored for 28 days and cell viability assessed during this period. Intact yeast cells showed to be less tolerant to freeze-drying than to freezing. The rate of survival for both treatments could be enhanced by exogenous trehalose (10%) added during freezing and freeze-drying treatments or by a combination of two procedures: a pre-exposure of cells to 40 degrees C for 60 min and addition of trehalose. A maximum survival level of 71.5 +/- 6.3% after freezing could be achieved at the end of a storage period of 28 days, whereas only 25.0 +/- 1.4% showed the ability to tolerate freeze-drying treatment, if both low-temperature treatments were preceded by a heat exposure and addition of trehalose to yeast cells. Increased survival ability was also obtained when the pre-exposure treatment of yeast cells was performed at 10 degrees C for 3 h and trehalose was added: these treatments enhanced cell survival following freezing from 20.5 +/- 7. 7% to 60.0 +/- 3.5%. Although both mild cold and heat shock treatments could enhance cell tolerance to low temperature, only the heat treatment was able to increase the accumulation of intracellular trehalose whereas, during cold shock exposure, the intracellular amount of trehalose remained unaltered. Intracellular trehalose levels seemed not to be the only factor contributing to cell tolerance against freezing and freeze-drying treatments; however, the protection that this sugar confers to cells can be exerted only if it is to be found on both sides of the plasma membrane.
Collapse
Affiliation(s)
- L Diniz-Mendes
- Departamento de Bioquímica, Instituto de Química, Universidade Federal do Rio de Janeiro, Cidade Universitária, 21949-900, Rio de Janeiro, RJ, Brazil
| | | | | | | | | |
Collapse
|