1
|
Peng B, Wang Y, Xie Y, Dong X, Liu W, Li D, Chen H. An overview of influenza A virus detection methods: from state-of-the-art of laboratories to point-of-care strategies. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2024; 16:4496-4515. [PMID: 38946516 DOI: 10.1039/d4ay00508b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/02/2024]
Abstract
Influenza A virus (IAV), a common respiratory infectious pathogen, poses a significant risk to personal health and public health safety due to rapid mutation and wide host range. To better prevent and treat IAV, comprehensive measures are needed for early and rapid screening and detection of IAV. Although traditional laboratory-based techniques are accurate, they are often time-consuming and not always feasible in emergency or resource-limited areas. In contrast, emerging point-of-care strategies provide faster results but may compromise sensitivity and specificity. Here, this review critically evaluates various detection methods for IAV from established laboratory-based procedures to innovative rapid diagnosis. By analyzing the recent research progress, we aim to address significant gaps in understanding the effectiveness, practicality, and applicability of these methods in different scenarios, which could provide information for healthcare strategies, guide public health response measures, and ultimately strengthen patient care in the face of the ongoing threat of IAV. Through a detailed comparison of diagnostic models, this review can provide a reliable reference for rapid, accurate and efficient detection of IAV, and to contribute to the diagnosis, treatment, prevention, and control of IAV.
Collapse
Affiliation(s)
- Bin Peng
- Guangzhou Huashang Vocational College, Guangzhou, 510000, China
| | - Yaqi Wang
- Guangzhou Institute for Food Inspection, Guangzhou, 510000, China
| | - Yueliang Xie
- Guangdong Agriculture Industry Business Polytechnic College, Guangzhou, 510000, China
| | - Xiangyan Dong
- State Key Laboratory of Chemical Oncogenomics, Institute of Biomedical and Health Engineering, Shenzhen International Graduate School, Tsinghua University, Shenzhen, 518055, China.
| | - Wen Liu
- Guangdong Agriculture Industry Business Polytechnic College, Guangzhou, 510000, China
| | - Dan Li
- College of Pharmacy, Jinzhou Medical University, Jinzhou, 121000, China
| | - Hui Chen
- State Key Laboratory of Chemical Oncogenomics, Institute of Biomedical and Health Engineering, Shenzhen International Graduate School, Tsinghua University, Shenzhen, 518055, China.
| |
Collapse
|
2
|
Varghese PM, Kishore U, Rajkumari R. Innate and adaptive immune responses against Influenza A Virus: Immune evasion and vaccination strategies. Immunobiology 2022; 227:152279. [DOI: 10.1016/j.imbio.2022.152279] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2022] [Revised: 08/31/2022] [Accepted: 09/07/2022] [Indexed: 11/25/2022]
|
3
|
Das A, Banik BK. Advances in heterocycles as DNA intercalating cancer drugs. PHYSICAL SCIENCES REVIEWS 2022. [DOI: 10.1515/psr-2021-0065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Abstract
The insertion of a molecule between the bases of DNA is known as intercalation. A molecule is able to interact with DNA in different ways. DNA intercalators are generally aromatic, planar, and polycyclic. In chemotherapeutic treatment, to suppress DNA replication in cancer cells, intercalators are used. In this article, we discuss the anticancer activity of 10 intensively studied DNA intercalators as drugs. The list includes proflavine, ethidium bromide, doxorubicin, dactinomycin, bleomycin, epirubicin, mitoxantrone, ellipticine, elinafide, and echinomycin. Considerable structural diversities are seen in these molecules. Besides, some examples of the metallo-intercalators are presented at the end of the chapter. These molecules have other crucial properties that are also useful in the treatment of cancers. The successes and limitations of these molecules are also presented.
Collapse
Affiliation(s)
- Aparna Das
- Department of Mathematics and Natural Sciences , College of Sciences and Human Studies, Prince Mohammad Bin Fahd University , Al Khobar 31952 , Kingdom of Saudi Arabia
| | - Bimal Krishna Banik
- Department of Mathematics and Natural Sciences , College of Sciences and Human Studies, Prince Mohammad Bin Fahd University , Al Khobar 31952 , Kingdom of Saudi Arabia
| |
Collapse
|
4
|
Pavesi A. Origin, Evolution and Stability of Overlapping Genes in Viruses: A Systematic Review. Genes (Basel) 2021; 12:genes12060809. [PMID: 34073395 PMCID: PMC8227390 DOI: 10.3390/genes12060809] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Revised: 05/22/2021] [Accepted: 05/24/2021] [Indexed: 12/11/2022] Open
Abstract
During their long evolutionary history viruses generated many proteins de novo by a mechanism called “overprinting”. Overprinting is a process in which critical nucleotide substitutions in a pre-existing gene can induce the expression of a novel protein by translation of an alternative open reading frame (ORF). Overlapping genes represent an intriguing example of adaptive conflict, because they simultaneously encode two proteins whose freedom to change is constrained by each other. However, overlapping genes are also a source of genetic novelties, as the constraints under which alternative ORFs evolve can give rise to proteins with unusual sequence properties, most importantly the potential for novel functions. Starting with the discovery of overlapping genes in phages infecting Escherichia coli, this review covers a range of studies dealing with detection of overlapping genes in small eukaryotic viruses (genomic length below 30 kb) and recognition of their critical role in the evolution of pathogenicity. Origin of overlapping genes, what factors favor their birth and retention, and how they manage their inherent adaptive conflict are extensively reviewed. Special attention is paid to the assembly of overlapping genes into ad hoc databases, suitable for future studies, and to the development of statistical methods for exploring viral genome sequences in search of undiscovered overlaps.
Collapse
Affiliation(s)
- Angelo Pavesi
- Department of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, Parco Area delle Scienze 23/A, I-43124 Parma, Italy
| |
Collapse
|
5
|
Pavesi A. New insights into the evolutionary features of viral overlapping genes by discriminant analysis. Virology 2020; 546:51-66. [PMID: 32452417 PMCID: PMC7157939 DOI: 10.1016/j.virol.2020.03.007] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2020] [Accepted: 03/29/2020] [Indexed: 12/18/2022]
Abstract
Overlapping genes originate by a mechanism of overprinting, in which nucleotide substitutions in a pre-existing frame induce the expression of a de novo protein from an alternative frame. In this study, I assembled a dataset of 319 viral overlapping genes, which included 82 overlaps whose expression is experimentally known and the respective 237 homologs. Principal component analysis revealed that overlapping genes have a common pattern of nucleotide and amino acid composition. Discriminant analysis separated overlapping from non-overlapping genes with an accuracy of 97%. When applied to overlapping genes with known genealogy, it separated ancestral from de novo frames with an accuracy close to 100%. This high discriminant power was crucial to computationally design variants of de novo viral proteins known to possess selective anticancer toxicity (apoptin) or protection against neurodegeneration (X protein), as well as to detect two new potential overlapping genes in the genome of the new coronavirus SARS-CoV-2.
Collapse
Affiliation(s)
- Angelo Pavesi
- Department of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, Parco Area Delle Scienze 23/A, I-43124, Parma, Italy.
| |
Collapse
|
6
|
Landscape of Overlapping Gene Expression in the Equine Placenta. Genes (Basel) 2019; 10:genes10070503. [PMID: 31269762 PMCID: PMC6678446 DOI: 10.3390/genes10070503] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2019] [Revised: 06/26/2019] [Accepted: 06/28/2019] [Indexed: 02/07/2023] Open
Abstract
Increasing evidence suggests that overlapping genes are much more common in eukaryotic genomes than previously thought. These different-strand overlapping genes are potential sense–antisense (SAS) pairs, which might have regulatory effects on each other. In the present study, we identified the SAS loci in the equine genome using previously generated stranded, paired-end RNA sequencing data from the equine chorioallantois. We identified a total of 1261 overlapping loci. The ratio of the number of overlapping regions to chromosomal length was numerically higher on chromosome 11 followed by chromosomes 13 and 12. These results show that overlapping transcription is distributed throughout the equine genome, but that distributions differ for each chromosome. Next, we evaluated the expression patterns of SAS pairs during the course of gestation. The sense and antisense genes showed an overall positive correlation between the sense and antisense pairs. We further provide a list of SAS pairs with both positive and negative correlation in their expression patterns throughout gestation. This study characterizes the landscape of sense and antisense gene expression in the placenta for the first time and provides a resource that will enable researchers to elucidate the mechanisms of sense/antisense regulation during pregnancy.
Collapse
|
7
|
Pavesi A. Asymmetric evolution in viral overlapping genes is a source of selective protein adaptation. Virology 2019; 532:39-47. [PMID: 31004987 PMCID: PMC7125799 DOI: 10.1016/j.virol.2019.03.017] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2019] [Revised: 03/25/2019] [Accepted: 03/26/2019] [Indexed: 12/29/2022]
Abstract
Overlapping genes represent an intriguing puzzle, as they encode two proteins whose ability to evolve is constrained by each other. Overlapping genes can undergo “symmetric evolution” (similar selection pressures on the two proteins) or “asymmetric evolution” (significantly different selection pressures on the two proteins). By sequence analysis of 75 pairs of homologous viral overlapping genes, I evaluated their accordance with one or the other model. Analysis of nucleotide and amino acid sequences revealed that half of overlaps undergo asymmetric evolution, as the protein from one frame shows a number of substitutions significantly higher than that of the protein from the other frame. Interestingly, the most variable protein (often known to interact with the host proteins) appeared to be encoded by the de novo frame in all cases examined. These findings suggest that overlapping genes, besides to increase the coding ability of viruses, are also a source of selective protein adaptation. A dataset of 80 pairs of homologous overlapping genes from viruses is examined. Its analysis reveals that half of overlapping genes undergo asymmetric evolution. The most variable gene product is that encoded by the de novo overlapping gene. Overlapping genes evolving asymmetrically are a source of selective protein adaptation.
Collapse
Affiliation(s)
- Angelo Pavesi
- Department of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, Parco Area delle Scienze 11/A, I-43124, Parma, Italy.
| |
Collapse
|
8
|
Abstract
This chapter is the first one to introduce the detection of viral RNA splicing as a new tool for clinical diagnosis of virus infections. These include various infections caused by influenza viruses, human immunodeficiency viruses (HIV), human T-cell leukemia viruses (HTLV), Torque teno viruses (TTV), parvoviruses, adenoviruses, hepatitis B virus, polyomaviruses, herpesviruses, and papillomaviruses. Detection of viral RNA splicing for active viral gene expression in a clinical sample is a nucleic acid-based detection. The interpretation of the detected viral RNA splicing results is straightforward without concern for carry-over DNA contamination, because the spliced RNA is smaller than its corresponding DNA template. Although many methods can be used, a simple method to detect viral RNA splicing is reverse transcription-polymerase chain reaction (RT-PCR). In principle, the detection of spliced RNA transcripts by RT-PCR depends on amplicon selection and primer design. The most common approach is the amplification over the intron regions by a set of primers in flanking exons. A larger product than the predicted size of smaller, spliced RNA is in general an unspliced RNA or contaminating viral genomic DNA. A spliced mRNA always gives a smaller RT-PCR product than its unspliced RNA due to removal of intron sequences by RNA splicing. The contaminating viral DNA can be determined by a minus RT amplification (PCR). Alternatively, specific amplification of a spliced RNA can be obtained by using an exon-exon junction primer because the sequence at exon-exon junction is not present in the unspliced RNA nor in viral genomic DNA.
Collapse
|
9
|
Kibenge F, Kibenge M. Orthomyxoviruses of Fish. AQUACULTURE VIROLOGY 2016. [PMCID: PMC7173593 DOI: 10.1016/b978-0-12-801573-5.00019-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/17/2023]
Abstract
The family Orthomyxoviridae is well known for containing influenza viruses with a segmented RNA genome that is prone to gene reassortment in mixed infections (known as antigenic shift) resulting in new virus subtypes that cause pandemics, and cumulative mutations (known as antigenic drift), resulting in new virus strains that cause epidemics. This family also contains infectious salmon anemia virus (ISAV) and tilapia lake virus (TiLV), which are a unique orthomyxoviruses that infect fish and is unable to replicate above room temperature (24°C). This chapter describes the comparative virology of members in the family Orthomyxoviridae in general, helping to understand the emergent teleost orthomyxoviruses, ISAV and TiLV. The most current information on virus–host interactions of the fish orthomyxoviruses, particularly ISAV, as they relate to variations in virus structure, virulence, persistence, host range and immunological aspects is presented in detail.
Collapse
|
10
|
Mostafa A, Kanrai P, Ziebuhr J, Pleschka S. Improved dual promotor-driven reverse genetics system for influenza viruses. J Virol Methods 2013; 193:603-10. [PMID: 23886561 DOI: 10.1016/j.jviromet.2013.07.021] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2013] [Revised: 07/01/2013] [Accepted: 07/10/2013] [Indexed: 12/25/2022]
Abstract
Reverse genetic systems for influenza A virus (IAV) allow the generation of genetically manipulated infectious virus from a set of transfected plasmid DNAs encoding the eight genomic viral RNA segments (vRNA). For this purpose, cDNAs representing these eight vRNA segments are cloned into specific plasmid vectors that allow the generation of vRNA-like transcripts using polymerase I (Pol I). In addition, these plasmids support the transcription of viral mRNA by polymerase II (Pol II), leading to the expression of viral protein(s) encoded by the respective transcripts. In an effort to develop this system further, we constructed the bi-directional vector pMPccdB. It is based on pHW2000 (Hoffmann et al., 2000b) but contains additionally (i) the ccdB gene whose expression is lethal for most Escherichia coli strains and therefore used as a negative selection marker and (ii) more efficient AarI cloning sites that flank the ccdB gene on either side. Furthermore, we used a modified one-step restriction/ligation protocol to insert the desired cDNA into the respective pMPccdB vector DNA. Both the use of a negative selection marker and an improved cloning protocol were shown to facilitate the generation of genetically engineered IAV as illustrated in this study by the cloning and rescue of the 2009 pandemic isolate A/Giessen/6/2009 (Gi-H1N1).
Collapse
Affiliation(s)
- Ahmed Mostafa
- Institute of Medical Virology, Justus Liebig University Giessen, BFS, Schubertstrasse 81, 35392 Giessen, Germany; Virology Laboratory, Environmental Research Division, National Research Center, 12311 Dokki, Giza, Egypt.
| | | | | | | |
Collapse
|
11
|
York A, Fodor E. Biogenesis, assembly, and export of viral messenger ribonucleoproteins in the influenza A virus infected cell. RNA Biol 2013; 10:1274-82. [PMID: 23807439 PMCID: PMC3817148 DOI: 10.4161/rna.25356] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
The flow of genetic information from sites of transcription within the nucleus to the cytoplasmic translational machinery of eukaryotic cells is obstructed by a physical blockade, the nuclear double membrane, which must be overcome in order to adhere to the central dogma of molecular biology, DNA makes RNA makes protein. Advancement in the field of cellular and molecular biology has painted a detailed picture of the molecular mechanisms from transcription of genes to mRNAs and their processing that is closely coupled to export from the nucleus. The rules that govern delivering messenger transcripts from the nucleus must be obeyed by influenza A virus, a member of the Orthomyxoviridae that has adopted a nuclear replication cycle. The negative-sense genome of influenza A virus is segmented into eight individual viral ribonucleoprotein (vRNP) complexes containing the viral RNA-dependent RNA polymerase and single-stranded RNA encapsidated in viral nucleoprotein. Influenza A virus mRNAs fall into three major categories, intronless, intron-containing unspliced and spliced. During evolutionary history, influenza A virus has conceived a way of negotiating the passage of viral transcripts from the nucleus to cytoplasmic sites of protein synthesis. The major mRNA nuclear export NXF1 pathway is increasingly implicated in viral mRNA export and this review considers and discusses the current understanding of how influenza A virus exploits the host mRNA export pathway for replication.
Collapse
Affiliation(s)
- Ashley York
- Sir William Dunn School of Pathology; University of Oxford; Oxford, United Kingdom
| | | |
Collapse
|
12
|
Tang YW, Stratton CW. Detection of Viral RNA Splicing in Diagnostic Virology. ADVANCED TECHNIQUES IN DIAGNOSTIC MICROBIOLOGY 2013. [PMCID: PMC7120143 DOI: 10.1007/978-1-4614-3970-7_38] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Affiliation(s)
- Yi-Wei Tang
- Department of Laboratory Medicine, Memorial Sloan-Kettering Cancer Center, 1275 York Avenue, New York, 10065 New York USA
| | - Charles W. Stratton
- Vanderbilt Clinic, Clinical Microbiology Laboratory, Vanderbilt University Medical Center, 22nd Avenue 1301, Nashville, 37232-5310 Tennessee USA
| |
Collapse
|
13
|
The cellular RNA helicase UAP56 is required for prevention of double-stranded RNA formation during influenza A virus infection. J Virol 2011; 85:8646-55. [PMID: 21680511 DOI: 10.1128/jvi.02559-10] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The cellular DEAD box RNA helicase UAP56 plays a pivotal role in the efficient transcription/replication of influenza A virus. UAP56 is recruited by the nucleoprotein (NP) of influenza A viruses, and recent data revealed that the RNA helicase is required for the nuclear export of a subset of spliced and unspliced viral mRNAs. The fact that influenza viruses do not produce detectable amounts of double-stranded RNA (dsRNA) intermediates during transcription/replication suggests the involvement of cellular RNA helicases. Hence, we examined whether the RNA-unwinding activity of UAP56 or its paralog URH49 plays a role in preventing the accumulation of dsRNA during infection. First, our data showed that not only UAP56 but also its paralog URH49 can interact with NPs of avian and human influenza A viruses. The small interfering RNA (siRNA)-mediated depletion of either RNA helicase reduced the transport of M1 and hemagglutinin (HA) mRNAs and, to a lesser extent, NP and NS1 mRNAs into the cytoplasm. Moreover, we found that virus infection of UAP56-depleted cells leads to the rapid accumulation of dsRNA in the perinuclear region. In parallel, we observed a robust virus-mediated activation of dsRNA-dependent protein kinase R (PKR), indicating that the cellular RNA helicase UAP56 may be recruited by influenza virus to prevent dsRNA formation. The accumulation of dsRNA was blocked when actinomycin D or cycloheximide was used to inhibit viral transcription/replication or translation, respectively. In summary, we demonstrate that UAP56 is utilized by influenza A viruses to prevent the formation of dsRNA and, hence, the activation of the innate immune response.
Collapse
|
14
|
Gultyaev AP, Fouchier RAM, Olsthoorn RCL. Influenza virus RNA structure: unique and common features. Int Rev Immunol 2010; 29:533-56. [PMID: 20923332 DOI: 10.3109/08830185.2010.507828] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
The influenza A virus genome consists of eight negative-sense RNA segments. Here we review the currently available data on structure-function relationships in influenza virus RNAs. Various ideas and hypotheses about the roles of influenza virus RNA folding in the virus replication are also discussed in relation to other viruses.
Collapse
|
15
|
Read EKC, Digard P. Individual influenza A virus mRNAs show differential dependence on cellular NXF1/TAP for their nuclear export. J Gen Virol 2010; 91:1290-301. [PMID: 20071484 PMCID: PMC3052562 DOI: 10.1099/vir.0.018564-0] [Citation(s) in RCA: 65] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
The influenza A virus RNA-dependent RNA polymerase produces capped and polyadenylated mRNAs in the nucleus of infected cells that resemble mature cellular mRNAs, but are made by very different mechanisms. Furthermore, only two of the 10 viral protein-coding mRNAs are spliced: most are intronless, while two contain unremoved introns. The mechanism(s) by which any of these mRNAs are exported from the nucleus is uncertain. To probe the involvement of the primary cellular mRNA export pathway, we treated cells with siRNAs against NXF1, Aly or UAP56, or with the drug 5,6-dichloro-1-beta-d-ribofuranosyl-benzimidazole (DRB), an inhibitor of RNA polymerase II phosphorylation previously shown to inhibit nuclear export of cellular mRNA as well as influenza virus segment 7 mRNAs. Depletion of NXF1 or DRB treatment had similar effects, inhibiting the nuclear export of several of the viral mRNAs. However, differing degrees of sensitivity were seen, depending on the particular segment examined. Intronless HA mRNA and spliced M2 or unspliced M1 transcripts (all encoding late proteins) showed a strong requirement for NXF1, while intronless early gene mRNAs, especially NP mRNA, showed the least dependency. Depletion of Aly had little effect on viral mRNA export, but reduction of UAP56 levels strongly inhibited trafficking and/or translation of the M1, M2 and NS1 mRNAs. Synthesis of NS2 from the spliced segment 8 transcript was, however, resistant. We conclude that influenza A virus co-opts the main cellular mRNA export pathway for a subset of its mRNAs, including most but not all late gene transcripts.
Collapse
Affiliation(s)
- Eliot K C Read
- Division of Virology, Department of Pathology, University of Cambridge, Tennis Court Road, Cambridge CB2 1QP, UK
| | | |
Collapse
|
16
|
Clifford M, Twigg J, Upton C. Evidence for a novel gene associated with human influenza A viruses. Virol J 2009; 6:198. [PMID: 19917120 PMCID: PMC2780412 DOI: 10.1186/1743-422x-6-198] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2009] [Accepted: 11/16/2009] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Influenza A virus genomes are comprised of 8 negative strand single-stranded RNA segments and are thought to encode 11 proteins, which are all translated from mRNAs complementary to the genomic strands. Although human, swine and avian influenza A viruses are very similar, cross-species infections are usually limited. However, antigenic differences are considerable and when viruses become established in a different host or if novel viruses are created by re-assortment devastating pandemics may arise. RESULTS Examination of influenza A virus genomes from the early 20th Century revealed the association of a 167 codon ORF encoded by the genomic strand of segment 8 with human isolates. Close to the timing of the 1948 pseudopandemic, a mutation occurred that resulted in the extension of this ORF to 216 codons. Since 1948, this ORF has been almost totally maintained in human influenza A viruses suggesting a selectable biological function. The discovery of cytotoxic T cells responding to an epitope encoded by this ORF suggests that it is translated into protein. Evidence of several other non-traditionally translated polypeptides in influenza A virus support the translation of this genomic strand ORF. The gene product is predicted to have a signal sequence and two transmembrane domains. CONCLUSION We hypothesize that the genomic strand of segment 8 of encodes a novel influenza A virus protein. The persistence and conservation of this genomic strand ORF for almost a century in human influenza A viruses provides strong evidence that it is translated into a polypeptide that enhances viral fitness in the human host. This has important consequences for the interpretation of experiments that utilize mutations in the NS1 and NEP genes of segment 8 and also for the consideration of events that may alter the spread and/or pathogenesis of swine and avian influenza A viruses in the human population.
Collapse
Affiliation(s)
- Monica Clifford
- Department of Biochemistry and Microbiology, University of Victoria, Victoria, BC, V8W 3P6, Canada
| | - James Twigg
- Department of Biochemistry and Microbiology, University of Victoria, Victoria, BC, V8W 3P6, Canada
| | - Chris Upton
- Department of Biochemistry and Microbiology, University of Victoria, Victoria, BC, V8W 3P6, Canada
| |
Collapse
|
17
|
The full-length isoform of human papillomavirus 16 E6 and its splice variant E6* bind to different sites on the procaspase 8 death effector domain. J Virol 2009; 84:1453-63. [PMID: 19906919 DOI: 10.1128/jvi.01331-09] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Human papillomavirus 16 is a causative agent of most cases of cervical cancer and has also been implicated in the development of some head and neck cancers. The early viral E6 gene codes for two alternatively spliced isoforms, E6(large) and E6*. We have previously demonstrated the differential effects of E6(large) and E6* binding on the expression and stability of procaspase 8, a key mediator of the apoptotic pathway. Additionally, we have reported that E6 binds to the FADD death effector domain (DED) at a novel E6 binding domain. Sequence similarities between the FADD and procaspase 8 DEDs suggested a specific region for E6(large)/procaspase 8 binding, which was subsequently confirmed by mutational analysis as well as by the ability of peptides capable of blocking E6/FADD binding to also block E6(large)/caspase 8 binding. However, the binding of the smaller isoform, E6*, to procaspase 8 occurs at a different region, as deletion and point mutations that disrupt E6(large)/caspase 8 DED binding do not disrupt E6*/caspase 8 DED binding. In addition, peptide inhibitors that can block E6(large)/procaspase 8 binding do not affect the binding of E6* to procaspase 8. These results demonstrate that the residues that mediate E6*/procaspase 8 DED binding localize to a different region on the protein and employ a separate binding motif. This provides a molecular explanation for our initial findings that the two E6 isoforms affect procaspase 8 stability in an opposing manner.
Collapse
|
18
|
Salem TZ, Garcia-Maruniak A, Lietze VU, Maruniak JE, Boucias DG. Analysis of transcripts from predicted open reading frames of Musca domestica salivary gland hypertrophy virus. J Gen Virol 2009; 90:1270-1280. [PMID: 19264592 DOI: 10.1099/vir.0.009613-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
The Musca domestica salivary gland hypertrophy virus (MdSGHV) is a large dsDNA virus that infects and sterilizes adult houseflies. The transcriptome of this newly described virus was analysed by rapid amplification of cDNA 3'-ends (3'-RACE) and RT-PCR. Direct sequencing of 3'-RACE products revealed 78 poly(A) transcripts containing 95 of the 108 putative ORFs. An additional six ORFs not amplified by 3'-RACE were detected by RT-PCR. Only seven of the 108 putative ORFs were not amplified by either 3'-RACE or RT-PCR. A series of 5'-RACE reactions were conducted on selected ORFs that were identified by 3'-RACE to be transcribed in tandem (tandem transcripts). In the majority of cases, the downstream ORFs were detected as single transcripts as well as components of the tandem transcripts, whereas the upstream ORFs were found only in tandem transcripts. The only exception was the upstream ORF MdSGHV084, which was differentially transcribed as a single transcript at 1 and 2 days post-infection (days p.i.) and as a tandem transcript (MdSGHV084/085) at 2 days p.i. Transcriptome analysis of MdSGHV detected splicing in the 3' untranslated region (3'-UTR) and extensive heterogeneity in the polyadenylation signals and cleavage sites. In addition, 23 overlapping antisense transcripts were found. In conclusion, sequencing the 3'-RACE products without cloning served as an alternative approach to detect both 3'-UTRs and transcript variants of this large DNA virus.
Collapse
Affiliation(s)
- Tamer Z Salem
- Department of Microbial Molecular Biology, AGERI, Agricultural Research Center, 9 Gamaa Street, Giza 12619, Egypt.,Department of Entomology and Nematology, PO Box 110620, University of Florida, Gainesville, FL 32611-0620, USA
| | - Alejandra Garcia-Maruniak
- Department of Entomology and Nematology, PO Box 110620, University of Florida, Gainesville, FL 32611-0620, USA
| | - Verena-U Lietze
- Department of Entomology and Nematology, PO Box 110620, University of Florida, Gainesville, FL 32611-0620, USA
| | - James E Maruniak
- Department of Entomology and Nematology, PO Box 110620, University of Florida, Gainesville, FL 32611-0620, USA
| | - Drion G Boucias
- Department of Entomology and Nematology, PO Box 110620, University of Florida, Gainesville, FL 32611-0620, USA
| |
Collapse
|
19
|
|
20
|
|
21
|
Nakayama T, Asai S, Takahashi Y, Maekawa O, Kasama Y. Overlapping of genes in the human genome. INTERNATIONAL JOURNAL OF BIOMEDICAL SCIENCE : IJBS 2007; 3:14-9. [PMID: 23675016 PMCID: PMC3614620] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Overlapping genes are relatively common in DNA and RNA viruses. There are several examples in bacterial and eukaryotic genomes, but, in general, overlapping genes are quite rare in organisms other than viruses. There have been a few reports of overlapping genes in mammalian genomes. The present study identified all of the overlapping loci and overlapping exons in every chromosome of the human genome using a public database. The total number of overlapping loci on the same and opposite strands was 949 and 743, respectively. Similarly, in every chromosome, the instances in which two loci were located on the same strand was similar to the number of 2 genes observed on opposite strands, except for chromosome 5. The number of 2 exons located on the same strand was higher than that for 2 exons located on opposite strands, indicating the presence of many comprehensive-type overlaps. The mean percentage of overlapping exons on opposite strands in each chromosome was 3.3%, suggesting that parts of the nucleotide sequences of 26,501 exons are used to produce 2 transcribed products from each strand. The ratio of the number of overlapping regions to chromosomal length revealed that, on chromosomes 22, 17 and 19, ratios were high for both types of 2 loci, with exons located on the same and opposite strands. Ratios were low on chromosomes Y, 13 and 18. These results show that all overlapping types are distributed throughout the human genome, but that distributions differ for each chromosome.
Collapse
Affiliation(s)
- Tomohiro Nakayama
- Division of Molecular Diagnostics, Advanced Medical Research Center, Nihon University School of Medicine, Tokyo, Japan
| | - Satoshi Asai
- Division of Genomic Epidemiology & Clinical Trials, Advanced Medical Research Center at the Nihon University School of Medicine, Tokyo, Japan;
| | - Yasuo Takahashi
- Division of Genomic Epidemiology & Clinical Trials, Advanced Medical Research Center at the Nihon University School of Medicine, Tokyo, Japan;
| | | | | |
Collapse
|
22
|
Gultyaev AP, Heus HA, Olsthoorn RCL. An RNA conformational shift in recent H5N1 influenza A viruses. ACTA ACUST UNITED AC 2006; 23:272-6. [PMID: 17090581 DOI: 10.1093/bioinformatics/btl559] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]
Abstract
UNLABELLED Recent outbreaks of avian influenza are being caused by unusually virulent H5N1 strains. It is unknown what makes these recent H5N1 strains more aggressive than previously circulating strains. Here, we have compared more than 3000 RNA sequences of segment 8 of type A influenza viruses and found a unique single nucleotide substitution typically associated with recent H5N1 strains. By phylogenetic analysis, biochemical and biophysical experiments, we demonstrate that this substitution dramatically affects the equilibrium between a hairpin and a pseudoknot conformation near the 3' splice-site of the NS gene. This conformational shift may have consequences for splicing regulation of segment 8 mRNA. Our data suggest that besides changes at the protein level, changes in RNA secondary structure should be seriously considered when attempting to explain influenza virus evolution. SUPPLEMENTARY INFORMATION Supplementary data are available at Bioinformatics online.
Collapse
|
23
|
Chan AY, Vreede FT, Smith M, Engelhardt OG, Fodor E. Influenza virus inhibits RNA polymerase II elongation. Virology 2006; 351:210-7. [PMID: 16624367 DOI: 10.1016/j.virol.2006.03.005] [Citation(s) in RCA: 64] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2006] [Accepted: 03/07/2006] [Indexed: 10/24/2022]
Abstract
The influenza virus RNA-dependent RNA polymerase interacts with the serine-5 phosphorylated carboxy-terminal domain (CTD) of the large subunit of RNA polymerase II (Pol II). It was proposed that this interaction allows the viral RNA polymerase to gain access to host mRNA-derived capped RNA fragments required as primers for the initiation of viral mRNA synthesis. Here, we show, using a chromatin immunoprecipitation (ChIP) analysis, that similar amounts of Pol II associate with Pol II promoter DNAs in influenza virus-infected and mock-infected cells. However, there is a statistically significant reduction in Pol II densities in the coding region of Pol II genes in infected cells. Thus, influenza virus specifically interferes with Pol II elongation, but not Pol II initiation. We propose that influenza virus RNA polymerase, by binding to the CTD of initiating Pol II and subsequent cleavage of the capped 5' end of the nascent transcript, triggers premature Pol II termination.
Collapse
Affiliation(s)
- Annie Y Chan
- Sir William Dunn School of Pathology, University of Oxford, South Parks Road, Oxford OX1 3RE, UK
| | | | | | | | | |
Collapse
|
24
|
Abstract
This chapter provides an updated view of the host factors that are, at present, believed to participate in replication/transcription of RNA viruses. One of the major hurdles faced when attempting to identify host factors specifically involved in viral RNA replication/transcription is how to discriminate these factors from those involved in translation. Several of the host factors shown to affect viral RNA synthesis are factors known to be involved in protein synthesis, for example, translation factors. In addition, some of the factors identified to date appear to influence viral RNA amplification as well as viral protein synthesis, and translation and replication are frequently tightly associated. Several specific host factors actively participating in viral RNA transcription/replication have been identified and the regions of host protein/replicase or host protein/viral RNA interaction have been determined. The chapter centers exclusively on those factors that appear functionally important for viral amplification. It presents a list of the viruses for which a specific host factor associates with the polymerase, affecting viral genome amplification. It also indicates the usually accepted cell function of the factor and the viral polymerase or polymerase subunit to which the host factor binds.
Collapse
|
25
|
Engelhardt OG, Smith M, Fodor E. Association of the influenza A virus RNA-dependent RNA polymerase with cellular RNA polymerase II. J Virol 2005; 79:5812-8. [PMID: 15827195 PMCID: PMC1082766 DOI: 10.1128/jvi.79.9.5812-5818.2005] [Citation(s) in RCA: 189] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Transcription by the influenza virus RNA-dependent RNA polymerase is dependent on cellular RNA processing activities that are known to be associated with cellular RNA polymerase II (Pol II) transcription, namely, capping and splicing. Therefore, it had been hypothesized that transcription by the viral RNA polymerase and Pol II might be functionally linked. Here, we demonstrate for the first time that the influenza virus RNA polymerase complex interacts with the large subunit of Pol II via its C-terminal domain. The viral polymerase binds hyperphosphorylated forms of Pol II, indicating that it targets actively transcribing Pol II. In addition, immunofluorescence analysis is consistent with a new model showing that influenza virus polymerase accumulates at Pol II transcription sites. The present findings provide a framework for further studies to elucidate the mechanistic principles of transcription by a viral RNA polymerase and have implications for the regulation of Pol II activities in infected cells.
Collapse
Affiliation(s)
- Othmar G Engelhardt
- Sir William Dunn School of Pathology, University of Oxford, South Parks Rd., Oxford OX1 3RE, United Kingdom
| | | | | |
Collapse
|
26
|
Dauber B, Heins G, Wolff T. The influenza B virus nonstructural NS1 protein is essential for efficient viral growth and antagonizes beta interferon induction. J Virol 2004; 78:1865-72. [PMID: 14747551 PMCID: PMC369500 DOI: 10.1128/jvi.78.4.1865-1872.2004] [Citation(s) in RCA: 76] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
We analyzed the functions of the influenza B virus nonstructural NS1-B protein, both by utilizing a constructed mutant virus (Delta NS1-B) lacking the NS1 gene and by testing the activities of the protein when expressed in cells. The mutant virus replicated to intermediate levels in 6-day-old embryonated chicken eggs that contain an immature interferon (IFN) system, whereas older eggs did not support viral propagation to a significant extent. The Delta NS1-B virus was a substantially stronger inducer of beta IFN (IFN-beta) transcripts in human lung epithelial cells than the wild type, and furthermore, transiently expressed NS1-B protein efficiently inhibited virus-dependent activation of the IFN-beta promoter. Interestingly, replication of the Delta NS1-B knockout virus was attenuated by more than 4 orders of magnitude in tissue culture cells containing or lacking functional IFN-alpha/beta genes. These findings show that the NS1-B protein functions as a viral IFN antagonist and indicate a further requirement of this protein for efficient viral replication that is unrelated to blocking IFN effects.
Collapse
|
27
|
Jackson D, Cadman A, Zurcher T, Barclay WS. A reverse genetics approach for recovery of recombinant influenza B viruses entirely from cDNA. J Virol 2002; 76:11744-7. [PMID: 12388735 PMCID: PMC136801 DOI: 10.1128/jvi.76.22.11744-11747.2002] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The recovery of recombinant influenza A virus entirely from cDNA was recently described (9, 19). We adapted the technique for engineering influenza B virus and generated a mutant bearing an amino acid change E116G in the viral neuraminidase which was resistant in vitro to the neuraminidase inhibitor zanamivir. The method also facilitates rapid isolation of single-gene reassortants suitable as vaccine seeds and will aid further investigations of unique features of influenza B virus.
Collapse
Affiliation(s)
- David Jackson
- University of Reading, Whiteknights, Reading RG6 6AJ. GlaxoSmithKline Medicine Research Centre, Stevenage SG1 2NY, United Kingdom
| | | | | | | |
Collapse
|
28
|
Rogozin IB, Spiridonov AN, Sorokin AV, Wolf YI, Jordan IK, Tatusov RL, Koonin EV. Purifying and directional selection in overlapping prokaryotic genes. Trends Genet 2002; 18:228-32. [PMID: 12047938 DOI: 10.1016/s0168-9525(02)02649-5] [Citation(s) in RCA: 94] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
In overlapping genes, the same DNA sequence codes for two proteins using different reading frames. Analysis of overlapping genes can help in understanding the mode of evolution of a coding region from noncoding DNA. We identified 71 pairs of convergent genes, with overlapping 3' ends longer than 15 nucleotides, that are conserved in at least two prokaryotic genomes. Among the overlap regions, we observed a statistically significant bias towards the 123:132 phase (i.e. the second codon base in one gene facing the degenerate third position in the second gene). This phase ensures the least mutual constraint on nonconservative amino acid replacements in both overlapping coding sequences. The excess of this phase is compatible with directional (positive) selection acting on the overlapping coding regions. This could be a general evolutionary mode for genes emerging from noncoding sequences, in which the protein sequence has not been subject to selection.
Collapse
Affiliation(s)
- Igor B Rogozin
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, MD 20894, USA
| | | | | | | | | | | | | |
Collapse
|
29
|
Klemke M, Kehlenbach RH, Huttner WB. Two overlapping reading frames in a single exon encode interacting proteins--a novel way of gene usage. EMBO J 2001; 20:3849-60. [PMID: 11447126 PMCID: PMC125537 DOI: 10.1093/emboj/20.14.3849] [Citation(s) in RCA: 102] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
The >1 kb XL-exon of the rat XLalphas/Galphas gene encodes the 37 kDa XL-domain, the N-terminal half of the 78 kDa neuroendocrine-specific G-protein alpha-subunit XLalphas. Here, we describe a novel feature of the XL-exon, the presence of an alternative >1 kb open reading frame (ORF) that completely overlaps with the ORF encoding the XL-domain. The alternative ORF starts 32 nucleotides downstream of the start codon for the XL-domain and is terminated by a stop codon exactly at the end of the XL-exon. The alternative ORF encodes ALEX, a very basic (pI 11.8), proline-rich protein of 356 amino acids. Both XLalphas and ALEX are translated from the same mRNA. Like XLalphas, ALEX is expressed in neuroendocrine cells and tightly associated with the cytoplasmic leaflet of the plasma membrane. Remarkably, ALEX binds to the XL-domain of XLalphas. Our results reveal a mechanism of gene usage that is without precedent in mammalian genomes.
Collapse
Affiliation(s)
- Martin Klemke
- Department of Neurobiology, Interdisciplinary Centre of Neuroscience, University of Heidelberg, Im Neuenheimer Feld 364, D-69120 Heidelberg and Max-Planck-Institute of Molecular Cell Biology and Genetics, Pfotenhauerstrasse 108, D-01307 Dresden, Germany Present address: Institute of Immunology and Serology, University of Heidelberg, Im Neuenheimer Feld 305, D-69120 Heidelberg, Germany Present address: Department of Virology, University of Heidelberg, Im Neuenheimer Feld 324, D-69120 Heidelberg, Germany Corresponding author e-mail:
| | - Ralph H. Kehlenbach
- Department of Neurobiology, Interdisciplinary Centre of Neuroscience, University of Heidelberg, Im Neuenheimer Feld 364, D-69120 Heidelberg and Max-Planck-Institute of Molecular Cell Biology and Genetics, Pfotenhauerstrasse 108, D-01307 Dresden, Germany Present address: Institute of Immunology and Serology, University of Heidelberg, Im Neuenheimer Feld 305, D-69120 Heidelberg, Germany Present address: Department of Virology, University of Heidelberg, Im Neuenheimer Feld 324, D-69120 Heidelberg, Germany Corresponding author e-mail:
| | - Wieland B. Huttner
- Department of Neurobiology, Interdisciplinary Centre of Neuroscience, University of Heidelberg, Im Neuenheimer Feld 364, D-69120 Heidelberg and Max-Planck-Institute of Molecular Cell Biology and Genetics, Pfotenhauerstrasse 108, D-01307 Dresden, Germany Present address: Institute of Immunology and Serology, University of Heidelberg, Im Neuenheimer Feld 305, D-69120 Heidelberg, Germany Present address: Department of Virology, University of Heidelberg, Im Neuenheimer Feld 324, D-69120 Heidelberg, Germany Corresponding author e-mail:
| |
Collapse
|
30
|
Cubitt B, Ly C, de la Torre JC. Identification and characterization of a new intron in Borna disease virus. J Gen Virol 2001; 82:641-646. [PMID: 11172106 DOI: 10.1099/0022-1317-82-3-641] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Borna disease virus (BDV) has a non-segmented, negative-strand (NNS) RNA genome. In contrast to all other known NNS RNA animal viruses, BDV replication and transcription occur in the nucleus of infected cells. Moreover, BDV uses RNA splicing for the regulation of its genome expression. Two introns (I and II), both present in two viral primary transcripts of 2.5 and 7.2 kb, have been reported in BDV. Here, evidence is provided of a new BDV intron, intron III, generated by alternative 3' splice-site choice. Intron III-spliced mRNAs were detected at early times post-infection and found to be present in cells from different types and species. Intron III-spliced mRNAs have coding capability for two new viral proteins with predicted molecular masses of 8.4 and 165 (p165) kDa. p165 is a deleted form of the BDV L polymerase, containing three RGD motifs and a signal peptide signal that could target it into the secretory pathway. These findings underscore the proteomic complexity exhibited by BDV.
Collapse
Affiliation(s)
- Beatrice Cubitt
- The Scripps Research Institute, Department of Neuropharmacology IMM-6, 10550 North Torrey Pines Road, La Jolla, CA 92037, USA1
| | - Calvin Ly
- The Scripps Research Institute, Department of Neuropharmacology IMM-6, 10550 North Torrey Pines Road, La Jolla, CA 92037, USA1
| | - Juan Carlos de la Torre
- The Scripps Research Institute, Department of Neuropharmacology IMM-6, 10550 North Torrey Pines Road, La Jolla, CA 92037, USA1
| |
Collapse
|
31
|
Kochs G, Weber F, Gruber S, Delvendahl A, Leitz C, Haller O. Thogoto virus matrix protein is encoded by a spliced mRNA. J Virol 2000; 74:10785-9. [PMID: 11044123 PMCID: PMC110953 DOI: 10.1128/jvi.74.22.10785-10789.2000] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2000] [Accepted: 08/15/2000] [Indexed: 11/20/2022] Open
Abstract
Thogoto virus (THOV) is a tick-transmitted orthomyxovirus with a segmented, negative-stranded RNA genome. In this study, we investigated the coding strategy of RNA segment 6 and found that it contains 956 nucleotides and codes for the matrix (M) protein. The full-length cDNA contains a single, long reading frame that lacks a stop codon but has coding capacity for a putative 35-kDa protein. In contrast, the M protein of THOV has an apparent molecular mass of 29 kDa as assessed by polyacrylamide gel electrophoresis. Therefore, we investigated the possibility of posttranscriptional processing of segment 6 transcripts by reverse transcription-PCR and identified a spliced mRNA that contains a stop codon and is translated into the 29-kDa M protein. Interestingly, the nontemplated UGA stop codon is generated by the splicing event itself. Thus, the unusual M coding strategy of THOV resembles that of Influenza C virus.
Collapse
Affiliation(s)
- G Kochs
- Abteilung für Virologie, Institut für Medizinische Mikrobiologie und Hygiene, Universitätsklinikum Freiburg, D-79008 Freiburg, Germany.
| | | | | | | | | | | |
Collapse
|
32
|
Jordan IK, Sutter BA, McClure MA. Molecular evolution of the Paramyxoviridae and Rhabdoviridae multiple-protein-encoding P gene. Mol Biol Evol 2000; 17:75-86. [PMID: 10666708 DOI: 10.1093/oxfordjournals.molbev.a026240] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Presented here is an analysis of the molecular evolutionary dynamics of the P gene among 76 representative sequences of the Paramyxoviridae and Rhabdoviridae RNA virus families. In a number of Paramyxoviridae taxa, as well as in vesicular stomatitis viruses of the Rhabdoviridae, the P gene encodes multiple proteins from a single genomic RNA sequence. These products include the phosphoprotein (P), as well as the C and V proteins. The complexity of the P gene makes it an intriguing locus to study from an evolutionary perspective. Amino acid sequence alignments of the proteins encoded at the P and N loci were used in independent phylogenetic reconstructions of the Paramyxoviridae and Rhabdoviridae families. P-gene-coding capacities were mapped onto the Paramyxoviridae phylogeny, and the most parsimonious path of multiple-coding-capacity evolution was determined. Levels of amino acid variation for Paramyxoviridae and Rhabdoviridae P-gene-encoded products were also analyzed. Proteins encoded in overlapping reading frames from the same nucleotides have different levels of amino acid variation. The nucleotide architecture that underlies the amino acid variation was determined in order to evaluate the role of selection in the evolution of the P gene overlapping reading frames. In every case, the evolution of one of the proteins encoded in the overlapping reading frames has been constrained by negative selection while the other has evolved more rapidly. The integrity of the overlapping reading frame that represents a derived state is generally maintained at the expense of the ancestral reading frame encoded by the same nucleotides. The evolution of such multicoding sequences is likely a response by RNA viruses to selective pressure to maximize genomic information content while maintaining small genome size. The ability to evolve such a complex genomic strategy is intimately related to the dynamics of the viral quasispecies, which allow enhanced exploration of the adaptive landscape.
Collapse
Affiliation(s)
- I K Jordan
- Department of Biological Sciences, University of Nevada at Las Vegas, USA
| | | | | |
Collapse
|
33
|
Crescenzo-Chaigne B, Naffakh N, van der Werf S. Comparative analysis of the ability of the polymerase complexes of influenza viruses type A, B and C to assemble into functional RNPs that allow expression and replication of heterotypic model RNA templates in vivo. Virology 1999; 265:342-53. [PMID: 10600605 DOI: 10.1006/viro.1999.0059] [Citation(s) in RCA: 46] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Influenza viruses type A, B, and C are human pathogens that share common structural and functional features, yet they do not form natural reassortants. To determine to what extent type-specific interactions of the polymerase complex with template RNA contribute to this lack of genotypic mixing, we investigated whether homotypic or heterotypic polymerase complexes support the expression and replication of model type A, B, or C RNA templates in vivo. A plasmid-based expression system, as initially described by Pleschka et al. [(1996) J. Virol. 70, 4188-4192] for influenza A virus, was developed for influenza viruses B/Harbin/7/94 and C/Johannesburg/1/66. The type A core proteins expressed heterotypic model RNAs with similar efficiencies as the homotypic RNA. The influenza B virus model RNA was efficiently expressed by all three types of polymerase complexes. Although no functional polymerase complex could be reconstituted with heterotypic P protein subunits, when the influenza A virus P proteins were expressed together with heterotypic nucleoproteins, significant, albeit limited, expression of RNA templates of all influenza virus types was detected. Taken together, our results suggest that less strict type-specific interactions are involved for the polymerase complex of influenza A compared with influenza B or C viruses.
Collapse
Affiliation(s)
- B Crescenzo-Chaigne
- Unité de Génétique Moléculaire des Virus Respiratoires, URA 1966 CNRS, Institut Pasteur, Paris, France
| | | | | |
Collapse
|
34
|
Affiliation(s)
- A Portela
- Centro Nacional de Biotecnología (CSIC) Madrid, Spain
| | | | | | | |
Collapse
|
35
|
Falcón AM, Fortes P, Marión RM, Beloso A, Ortín J. Interaction of influenza virus NS1 protein and the human homologue of Staufen in vivo and in vitro. Nucleic Acids Res 1999; 27:2241-7. [PMID: 10325410 PMCID: PMC148787 DOI: 10.1093/nar/27.11.2241] [Citation(s) in RCA: 75] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
A screening for human proteins capable of interacting with influenza virus NS1 has been carried out using the two-hybrid genetic trap in yeast. A cDNA corresponding to the human homologue of Drosophila melanogaster Staufen protein (hStaufen) was isolated that fulfilled all genetic controls of the two-hybrid protocol. Using a hStaufen cDNA isolated from a lambda human library, the interaction of hStaufen and NS1 proteins was characterised in vivo and in vitro. Co-transfection of NS1 cDNA and a partial cDNA of hStaufen led to the relocalisation of recombinant hStaufen protein from its normal accumulation site in the cytoplasm to the nuclear location of NS1 protein. NS1 and hStaufen proteins could be co-immunoprecipitated from extracts of co-transfected cells and from mixtures of extracts containing either protein, as well as from extracts of influenza virus-infected cells. Furthermore, both proteins co-localised in the ribosomal and polysomal fractions of influenza virus-infected cells. The interaction was also detected in pull-down experiments using a resin containing purified hStaufen and NS1 protein translated in vitro. Deletion mapping of the NS1 gene indicated that a mutant protein containing the N-terminal 81 amino acids is unable to interact with hStaufen, in spite of retaining full RNA-binding capacity. These results are discussed in relation to the possible mechanisms of action of hStaufen and its relevance for influenza virus infection.
Collapse
Affiliation(s)
- A M Falcón
- Centro Nacional de Biotecnología (CSIC), Campus de Cantoblanco, 28049 Madrid, Spain
| | | | | | | | | |
Collapse
|
36
|
Gray TA, Saitoh S, Nicholls RD. An imprinted, mammalian bicistronic transcript encodes two independent proteins. Proc Natl Acad Sci U S A 1999; 96:5616-21. [PMID: 10318933 PMCID: PMC21909 DOI: 10.1073/pnas.96.10.5616] [Citation(s) in RCA: 130] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Polycistronic transcripts are common in prokaryotes but rare in eukaryotes. Phylogenetic analysis of the SNRPN (SmN) mRNA in five eutherian mammals reveals a second highly conserved coding sequence, termed SNURF (SNRPN upstream reading frame). The vast majority of nucleotide substitutions in SNURF occur in the wobble codon position, providing strong evolutionary evidence for selection for protein-coding function. Because SNURF-SNRPN maps to human chromosome 15q11-q13 and is paternally expressed, each cistron is a candidate for a role in the imprinted Prader-Willi syndrome (PWS) and PWS mouse models. SNURF encodes a highly basic 71-aa protein that is nuclear-localized (as is SmN). Because SNURF is the only protein-coding sequence within the imprinting regulatory region in 15q11-q13, it may have provided the original selection for imprinting in this domain. Whereas some human tissues express a minor SNURF-only transcript, mouse tissues express only the bicistronic Snurf-Snrpn transcript. We show that both SNURF and SNRPN are translated in normal, but not PWS, human, and mouse tissues and cell lines. These findings identify SNURF as a protein that is produced along with SmN from a bicistronic transcript; polycistronic mRNAs therefore are encoded in mammalian genomes where they may form functional operons.
Collapse
Affiliation(s)
- T A Gray
- Department of Genetics, Case Western Reserve University School of Medicine and Center for Human Genetics, University Hospitals of Cleveland, OH 44106, USA
| | | | | |
Collapse
|
37
|
Gale M, Katze MG. Molecular mechanisms of interferon resistance mediated by viral-directed inhibition of PKR, the interferon-induced protein kinase. Pharmacol Ther 1998; 78:29-46. [PMID: 9593328 DOI: 10.1016/s0163-7258(97)00165-4] [Citation(s) in RCA: 308] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The interferon (IFN)-induced cellular antiviral response is the first line of defense against viral infection within an animal host. In order to establish a productive infection, eukaryotic viruses must first overcome the IFN-induced blocks imposed on viral replication. The double-stranded RNA-activated protein kinase (PKR) is a key component mediating the antiviral actions of IFN. This IFN-induced protein kinase can restrict viral replication through its ability to phosphorylate the protein synthesis initiation factor eukaryotic initiation factor-2 alpha-subunit and reduce levels of viral protein synthesis. Viruses, therefore, must block the function of PKR in order to avoid these deleterious antiviral effects associated with PKR activity. Indeed, many viruses have developed effective measures to repress PKR activity during infection. This review will focus primarily on an overview of the different molecular mechanisms employed by these viruses to meet a common goal: the inhibition of PKR function, uncompromised viral protein synthesis, and unrestricted virus replication. The past few years have seen exciting new advances in this area. Rather unexpectedly, this area of research has benefited from the use of the yeast system to study PKR. Other recent advances include studies on PKR regulation by the herpes simplex viruses and data from our laboratory on the medically important hepatitis C viruses. We speculate that IFN is ineffective as a therapeutic agent against hepatitis C virus because the virus can effectively repress PKR function. Finally, we will discuss briefly the future directions of this PKR field.
Collapse
Affiliation(s)
- M Gale
- Department of Microbiology, School of Medicine, University of Washington, Seattle 98195, USA
| | | |
Collapse
|
38
|
Multiple Levels of Posttranscriptional Regulation of Influenza Virus Gene Expression. ACTA ACUST UNITED AC 1998. [DOI: 10.1006/smvy.1997.0136] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
39
|
Mjaaland S, Rimstad E, Falk K, Dannevig BH. Genomic characterization of the virus causing infectious salmon anemia in Atlantic salmon (Salmo salar L.): an orthomyxo-like virus in a teleost. J Virol 1997; 71:7681-6. [PMID: 9311851 PMCID: PMC192118 DOI: 10.1128/jvi.71.10.7681-7686.1997] [Citation(s) in RCA: 130] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
The genome of infectious salmon anemia virus (ISAV), which infects farmed Atlantic salmon (Salmo salar L.), is characterized here. The virus has an RNA genome, as shown by using specific DNA virus metabolic inhibitors and radioactive in vivo labeling of ISAV nucleic acid. Electrophoresis of [14C]uridine-labeled ISAV RNA revealed that the ISAV genome is segmented. The genome consists of eight segments that range from 1.0 to 2.3 kb, with a total molecular size of approximately 14.5 kb. One ISAV-specific molecular clone, corresponding to the smallest genome segment, was obtained by cDNA cloning of mRNA from an ISAV-infected cell culture. This clone gave a positive hybridization signal on Northern blots of pelleted ISAV. Pretreatment of the ISAV pellet with RNase A resulted in the disappearance of the positive hybridization signal, demonstrating that the genome is single stranded. Reverse transcriptase PCR with primers corresponding to sequences from the molecular clone and target RNA from ISAV-infected and noninfected fish tissues gave specific positive reactions. Alignments of the nucleotide sequence of the molecular clone did not reveal significant homology with any other available sequence in databases. However, the data presented here, together with morphological and replicational properties previously described, indicate that ISAV has a strong resemblance to members of the Orthomyxoviridae family. This is the first thoroughly characterized orthomyxo-like virus isolated from a teleost.
Collapse
Affiliation(s)
- S Mjaaland
- National Veterinary Institute and Department of Pharmacology, Microbiology and Food Hygiene, Norwegian College of Veterinary Medicine, Oslo, Norway.
| | | | | | | |
Collapse
|
40
|
Jambrina E, Bárcena J, Uez O, Portela A. The three subunits of the polymerase and the nucleoprotein of influenza B virus are the minimum set of viral proteins required for expression of a model RNA template. Virology 1997; 235:209-17. [PMID: 9281500 DOI: 10.1006/viro.1997.8682] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
The genes encoding the nucleoprotein, PB1, PB2, and PA proteins of the influenza virus strain B/Panamá/45/90 have been cloned under control of the T7 RNA polymerase promoter of plasmid pGEM-3. Transfection of the recombinant plasmids obtained into mammalian cells, which had been infected with a vaccinia virus encoding the T7 RNA polymerase, resulted in expression of the expected influenza B virus polypeptides. Moreover, it is shown that coexpression of the four recombinant core proteins in COS-1 cells reconstituted a functional polymerase capable of expressing a synthetic influenza B virus-like CAT RNA. By using the influenza B virus recombinant plasmids and a set of pGEM-derived plasmids encoding the homologous core proteins of the influenza A virus A/Victoria/3/75 (I. Mena et al. (1994). J. Gen. Virol. 75, 2109-2114), the capabilities of homo- and heterotypic mixtures of the four core proteins to express synthetic type A and B CAT RNAs were analyzed. Both the influenza A and B virus polymerases were active in expressing, albeit with reduced efficiencies, the heterotypic model CAT RNAs. However, none of all possible heterotypic mixtures of the core proteins reconstituted a functional polymerase. In order to fully characterize the recombinant plasmids obtained, the nucleotide sequences of the cloned genes were determined and compared to sequences of other type B virus isolates. The results obtained from these latter analyses are discussed in terms of the conservation and evolution of the influenza B virus core genes.
Collapse
Affiliation(s)
- E Jambrina
- Instituto de Salud Carlos III, Centro Nacional de Biología Fundamental, Majadahonda 28220, Madrid, Spain
| | | | | | | |
Collapse
|
41
|
Sha B, Luo M. Structure of a bifunctional membrane-RNA binding protein, influenza virus matrix protein M1. NATURE STRUCTURAL BIOLOGY 1997; 4:239-44. [PMID: 9164466 DOI: 10.1038/nsb0397-239] [Citation(s) in RCA: 167] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Matrix protein (M1) of influenza virus is a bifunctional protein that mediates the encapsidation of RNA-nucleoprotein cores into the membrane envelope. It is therefore required that M1 binds both membrane and RNA simultaneously. The X-ray crystal structure of the N-terminal portion of type A influenza virus M1-amino acid residues 2-158-has been determined at 2.08 A resolution at pH 4.0. The protein forms a dimer. A highly positively charged region on the dimer surface is suitably positioned to bind RNA while the hydrophobic surface opposite the RNA binding region may be involved in interactions with the membrane. The membrane-binding hydrophobic surface could be buried or exposed after a conformational change.
Collapse
Affiliation(s)
- B Sha
- Department of Microbiology, University of Alabama at Birmingham 35294, USA
| | | |
Collapse
|
42
|
Weber F, Haller O, Kochs G. Nucleoprotein viral RNA and mRNA of Thogoto virus: a novel "cap-stealing" mechanism in tick-borne orthomyxoviruses? J Virol 1996; 70:8361-7. [PMID: 8970956 PMCID: PMC190924 DOI: 10.1128/jvi.70.12.8361-8367.1996] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
Tick-borne Thogoto virus (THOV) represents the prototype virus of a new genus in the Orthomyxoviridae family. Its genome consists of six segments of negative-sense, single-stranded RNA. We have cloned and sequenced the fifth genomic segment, which codes for the viral nucleoprotein (NP). The deduced amino acid sequence shows 43% similarity to the NP of Dhori virus, a related tick-transmitted orthomyxovirus, and about 14% sequence similarity to those of the influenza viruses. To reveal the mechanism by which THOV initiates mRNA synthesis, we characterized the 5' ends of the NP mRNAs. Transcripts were recognized by a cap-specific monoclonal antibody, indicating that THOV mRNAs are capped. Surprisingly, no large heterogeneous extensions were found at the 5' end, as would have been expected if THOV were using a classical "cap-stealing" mechanism. We therefore propose that THOV is stealing only the cap structure with one or two additional nucleotides from cellular mRNAs to generate appropriate primers for initiation of viral mRNA transcription.
Collapse
Affiliation(s)
- F Weber
- Abteilung Virologie, Institut für Medizinische Mikrobiologie und Hygiene, Universität Freiburg, Germany
| | | | | |
Collapse
|
43
|
Bergmann M, Muster T. Mutations in the nonconserved noncoding sequences of the influenza A virus segments affect viral vRNA formation. Virus Res 1996; 44:23-31. [PMID: 8873410 DOI: 10.1016/0168-1702(96)01335-4] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Influenza A virus replication and packaging is mediated by cis-acting signals, which are located at the 3' and the 5' end of the viral segments. The terminal residues can be divided into conserved and nonconserved residues. We have constructed a mutant influenza A/WSN/33 virus, which contains multiple mutations in the nonconserved residues of the neuraminidase (NA) segment. This virus shows a segment-specific reduction of the genomic RNA content in the infected cell and in the progeny virus. Further mutants and revertant viruses revealed that it was not possible to define specific residues, which were responsible for the reduction of the NA-specific RNA. Thus, it appears that an efficient vRNA formation is dependent on the synergistic effect of the terminal sequences.
Collapse
Affiliation(s)
- M Bergmann
- Department of Surgery, University of Vienna, Austria
| | | |
Collapse
|
44
|
Abstract
The tumor suppressor gene encoding the cyclin-dependent kinase inhibitor p16 has, remarkably, been found to encode a second protein, p19, with a distinct sequence translated from an alternative reading frame; like p16, p19 can block the cell cycle in G1 phase.
Collapse
Affiliation(s)
- D Sidransky
- Johns Hopkins University School of Medicine, Department of Otolaryngology - Head & Neck Surgery, Baltimore, Maryland 21205-2196, USA
| |
Collapse
|
45
|
Abstract
The roles of the 3'- and 5'-terminal nucleotides and the panhandle structure of influenza B virus virion RNA were analyzed in vitro by transcription of model RNA templates with influenza B virus RNA polymerase. The results suggest that the stability of the panhandle and breathing of the extreme ends of the panhandle are important factors for efficient transcription. Influenza B virus polymerase appears to be more tolerant of mutations in the panhandle structure than influenza A virus polymerase. This is consistent with the greater degree of heterogeneity observed naturally in the 3'-terminal nucleotides of the virion RNA of influenza B virus than in influenza A virus.
Collapse
Affiliation(s)
- Y S Lee
- Institute of Biological Sciences, Hanhyo Institutes of Technology, Kyungki-Do, South Korea
| | | |
Collapse
|
46
|
Toyoda T, Kobayashi M, Nakada S, Ishihama A. Molecular dissection of influenza virus RNA polymerase: PB1 subunit alone is able to catalyze RNA synthesis. Virus Genes 1996; 12:155-63. [PMID: 8879132 DOI: 10.1007/bf00572954] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Influenza virus RNA polymerase with the subunit structure PB1-PB2-PA is involved in both transcription and replication of the RNA genome. Enzyme reconstitution experiments indicated that all three P proteins are required for RNA synthesis in vitro (Kobayashi, et al. Virus Res 22, 235-245, 1992). Nuclear extracts of HeLa cells infected with three kinds of the recombinant vaccinia virus, each carrying one of the three P protein cDNAs, exhibited the activity of complete replication, that is, vRNA-sense RNA-directed and cRNA-sense RNA-directed RNA synthesis in the absence of primers. The nuclear extract from cells singly infected with the virus carrying PB1 cDNA exhibited a significant level of model v-sense RNA-directed RNA synthesis activity. Thus we conclude that PB1 is the catalytic subunit of influenza virus RNA polymerase and that under certain conditions, PB1 alone is able to catalyze RNA synthesis in vitro.
Collapse
Affiliation(s)
- T Toyoda
- Department of Molecular Genetics, National Institute of Genetics, Shizuoka, Japan
| | | | | | | |
Collapse
|
47
|
Quelle DE, Zindy F, Ashmun RA, Sherr CJ. Alternative reading frames of the INK4a tumor suppressor gene encode two unrelated proteins capable of inducing cell cycle arrest. Cell 1995; 83:993-1000. [PMID: 8521522 DOI: 10.1016/0092-8674(95)90214-7] [Citation(s) in RCA: 1029] [Impact Index Per Article: 34.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
The INK4a (MTS1, CDKN2) gene encodes an inhibitor (p16INK4a) of the cyclin D-dependent kinases CDK4 and CDK6 that blocks them from phosphorylating the retinoblastoma protein (pRB) and prevents exit from the G1 phase of the cell cycle. Deletions and mutations involving INK4a occur frequently in cancers, implying that p16INK4a, like pRB, suppresses tumor formation. An unrelated protein (p19ARF) arises in major part from an alternative reading frame of the mouse INK4a gene, and its ectopic expression in the nucleus of rodent fibroblasts induces G1 and G2 phase arrest. Economical reutilization of coding sequences in this manner is practically without precedent in mammalian genomes, and the unitary inheritance of p16INK4a and p19ARF may underlie their dual requirement in cell cycle control.
Collapse
Affiliation(s)
- D E Quelle
- Howard Hughes Medical Institute, St. Jude Children's Research Hospital, Memphis, Tennessee 38101, USA
| | | | | | | |
Collapse
|
48
|
Abstract
Hypothetical Products from Noncoding Frames (i.e., HyPNoFs) are hypothetical, not-coded proteins, translated from alternate reading frames (i.e., coding + 1 and coding + 2) of cDNAs. HyPNoFs of CD4, PKC, oncostatin, bcl-2 proto-oncogene, tumor suppressor p53, cystic fibrosis transmembrane regulator (CFTR), and tumor necrosis factors alpha and beta were searched as query sequences vs the SWISS-PROT data bank. Homology searchers carried out revealed that hypothetical products (i.e., HyPNoFs) may share high similarity with real protein products actually coded. Sequence similarity of hypothetical products to real proteins is sometimes very high, suggesting common conformational features, according to the Sander and Schneider cutoff value. This finding supports the hypothesis that eukaryotic DNA, currently considered to be monocistronic, might occasionally have polycistronic regions, carrying different protein messages on overlapping frames. As yet, polycistronic genes have been observed in viral genomes only. The presence of polycistronic regions in eukaryotic genes is likely reminiscent of an ancient strategy, rather than a present feature of the genome in eukaryotes. These data suggest that thorough investigation of HyPNoFs is likely to improve our ability to trace genes' evolution and to investigate structure-function relationships of protein and DNA sequences.
Collapse
Affiliation(s)
- A Facchiano
- Raggio Italgene S.p.A., Pomezia, Roma, Italy
| |
Collapse
|
49
|
Lipkin WI, Schneemann A, Solbrig MV. Borna disease virus: implications for human neuropsychiatric illness. Trends Microbiol 1995; 3:64-9. [PMID: 7728387 DOI: 10.1016/s0966-842x(00)88877-0] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
The cause of Borna disease, a neurological syndrome affecting mammals and birds, has recently been shown to be infection with an RNA virus. Molecular genetic analysis suggests that Borna disease virus represents a new viral taxon. It has a wide host range and is tropic for specific circuits in the central nervous system. There is indirect evidence that links it to diseases of the human central nervous system.
Collapse
Affiliation(s)
- W I Lipkin
- Dept of Neurology, University of California, Irvine 92717, USA
| | | | | |
Collapse
|
50
|
Nakagawa Y, Kimura N, Toyoda T, Mizumoto K, Ishihama A, Oda K, Nakada S. The RNA polymerase PB2 subunit is not required for replication of the influenza virus genome but is involved in capped mRNA synthesis. J Virol 1995; 69:728-33. [PMID: 7815536 PMCID: PMC188635 DOI: 10.1128/jvi.69.2.728-733.1995] [Citation(s) in RCA: 49] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
An established cell line, clone 64, in which the expression of the RNA polymerase PB1 and PA subunit genes and the nucleoprotein (NP) gene but not the PB2 subunit gene of influenza virus can be induced by the addition of dexamethasone, was used to analyze the replication and transcription machineries of the influenza virus. Both NS-CATc and NS-CATv, the chimeric nonstructural protein chloramphenicol acetyltransferase (NS-CAT) RNAs in the sense and antisense orientations positioned between the 5'- and 3'-terminal sequences of influenza virus RNA segment 8 (the NS gene), respectively, can be transcribed into the corresponding complementary-strand RNA in clone 64 cells only when treated with dexamethasone. Although sense-strand poly(A)+ CAT RNA was detected in the dexamethasone-treated clone 64 cells transfected with NS-CATv RNA, CAT activity was not detected in these cells and the isolated poly(A)+ CAT RNA was inert in an in vitro translation system. However, when the poly(A)+ CAT RNA was capped by using a purified yeast mRNA capping enzyme (mRNA guanylyltransferase), the capped poly(A)+ CAT RNA became translatable in the in vitro translation system. These results indicated that PB1, PA, and NP can support the replication of the influenza virus genome as well as the transcription to yield uncapped poly(A)+ RNA and that PB2 is specifically required for the synthesis of capped RNA.
Collapse
Affiliation(s)
- Y Nakagawa
- Department of Biological Science and Technology, Science University of Tokyo, Chiba, Japan
| | | | | | | | | | | | | |
Collapse
|