1
|
Lin HY, Chen JH. Osteoblast differentiation and phenotype expressions on chitosan-coated Ti-6Al-4V. Carbohydr Polym 2013; 97:618-26. [DOI: 10.1016/j.carbpol.2013.05.048] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2012] [Revised: 04/25/2013] [Accepted: 05/20/2013] [Indexed: 11/29/2022]
|
2
|
Yang C, Liu Y, Li C, Zhang B. Repair of mandibular defects by bone marrow stromal cells expressing the basic fibroblast growth factor transgene combined with multi-pore mineralized Bio-Oss. Mol Med Rep 2012; 7:99-104. [PMID: 23139139 DOI: 10.3892/mmr.2012.1171] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2012] [Accepted: 11/01/2012] [Indexed: 11/05/2022] Open
Abstract
The aim of the present study was to evaluate the effect of combining Bio‑Oss with bone marrow stromal cells (BMSCs) transfected with the basic fibroblast growth factor (bFGF) gene on bone regeneration during mandibular distraction of rabbits. BMSCs obtained from rabbits were transfected with bFGF gene‑encoding plasmids and proliferation rate and the differentiation marker alkaline phosphatase activity were measured. Following seeding into Bio‑Oss collagen and 9‑day culture in vitro, the surface morphology of the Bio‑Oss was assessed using scanning electron microscopy analysis. Three mandibular defects were induced in the lower border of the bilateral mandibular ramus in each New Zealand white rabbit (total n=6). Three scaffolds, group A (seeded with BMSCs/bFGF), B (seeded with BMSCs/pVAX1) and C (cell‑free), which had been cultured in vitro under standard cell culture conditions for 18 days, were implanted into mandibular defects under sterile conditions. Animals were sacrificed by anesthesia overdose 12 weeks following surgery and the scaffolds were extracted for bone mineral density and histological analyses. Results indicate that bFGF was successfully transfected into BMSCs. Proliferation and osteoblast differentiation of BMSCs were stimulated by bFGF in vitro. No differences were identified in surface morphology for Bio‑Oss loaded with variable groups of cells. At week 12 following implantation of Bio‑Oss scaffolds, mineralization of BMSCs in Bio‑Oss scaffolds was observed to be increased by bFGF. New bone and cartilage formation was revealed in hematoxylin and eosin‑stained sections in Bio‑Oss scaffolds and was most abundant in group A (BMSCs transfected with bFGF). In the current study, the bFGF gene was transfected into BMSCs and expressed successfully. bFGF promoted proliferation and differentiation of BMSCs in vitro and implantation of bFGF‑expressing BMSCs combined with Bio‑Oss enhanced new bone regeneration more effectively than traditional methods.
Collapse
Affiliation(s)
- Chunyan Yang
- Department of Maxillofacial Surgery, The Second Affiliated Hospital of Harbin Medical University, Harbin 150001, PR China
| | | | | | | |
Collapse
|
3
|
Association of collagen with calcium phosphate promoted osteogenic responses of osteoblast-like MG63 cells. Colloids Surf B Biointerfaces 2010; 83:245-53. [PMID: 21177080 DOI: 10.1016/j.colsurfb.2010.11.028] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2010] [Revised: 10/12/2010] [Accepted: 11/18/2010] [Indexed: 11/22/2022]
Abstract
In this investigation, the effects of the association of the collagen (COLL) molecules with the calcium phosphate (CaP) film were examined with respect to both the physicochemical properties of the CaP films and the osteoblast responses, such as the adhesion, proliferation, differentiation, and mineralization. The COLL pre-adsorbed CaP film (CaPA) exhibited significant changes in the surface morphology compared to the COLL incorporated CaP film (CaPC). The adhesions of the osteoblast-like MG63 cells were similar on the CaPC or CaPA films. However, the proliferation of the MG63 cells on CaPC was comparable to CaP but considerably different than CaPA. The differentiation of the MG63 cells was greatly improved on CaPC and CaPA compared to CaP and more pronounced on CaPA. The presence of COLL within or on the CaP films significantly modulated the expression of the phenotypic genes, including osteopontin (OPN), alkaline phosphatase (ALP), and the transforming growth factor-β (TGF-β). The expression patterns of these genes elucidated that COLL that was present within or on the CaP film supported the osteoblast proliferation and differentiation. These positive effects were stronger for CaPA than CaPC. The bone-like nodules formed on all of the specimens. However, the mineralization of CaPC and CaPA was significantly higher than CaP, indicating that the association of CaP with COLL promoted the mineral deposition. Therefore, the association of the COLL molecules with the CaP film induced positive effects on the biomineralization. Overall, the incorporation of COLL efficiently enhanced the osteoblast responses of CaP. This system can be utilized in a drug delivery system using calcium phosphate. Although the incorporation effects were slightly higher for the osteoblast responses of CaPA than CaPC, CaPC can be used when the longer drug release times are desirable.
Collapse
|
4
|
Affiliation(s)
- Adele L Boskey
- Musculoskeletal Integrity Program, Hospital for Special Surgery, 535 East 70th Street, New York, New York 10021, USA.
| | | |
Collapse
|
5
|
Boskey A, Mendelsohn R. Infrared analysis of bone in health and disease. JOURNAL OF BIOMEDICAL OPTICS 2005; 10:031102. [PMID: 16229627 DOI: 10.1117/1.1922927] [Citation(s) in RCA: 111] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Infrared spectroscopy, microspectroscopy, and microspectroscopic imaging have been used to probe the composition and physicochemical status of mineral and matrix of bone in normal and diseased tissues using a series of validated parameters that reflect quantitative and qualitative properties. In this review, emphasis is placed on changes in bone's composition and physiochemical status during osteoporosis and the impact of currently used therapeutics on these parameters, although the impact of infrared microscopy in other pathological states is briefly discussed.
Collapse
Affiliation(s)
- Adele Boskey
- Weill Medical College of Cornell University, Program in Musculoskeletal Integrity, Hospital for Special Surgery, Department of Biochemistry, New York, New York 10021, USA
| | | |
Collapse
|
6
|
Shimko DA, Burks CA, Dee KC, Nauman EA. Comparison ofin VitroMineralization by Murine Embryonic and Adult Stem Cells Cultured in an Osteogenic Medium. ACTA ACUST UNITED AC 2004; 10:1386-98. [PMID: 15588399 DOI: 10.1089/ten.2004.10.1386] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Nearly half a million bone-grafting procedures occurred in the United States in the year 2000. Tissue-engineered bone substitutes may mitigate difficulties associated with current grafting options. Embryonic stem cells (ESCs) could be a potential cell source for bone substitutes; however, direct comparisons between ESCs and other cell sources are lacking. Here we provide a direct, long-term, in vitro comparison of mineralization processes in adult, marrow-derived, mesenchymal stem cells (MSCs) and ESCs from the 129/Sv+c/+p mouse strain. MSCs were observed to grow at a slower rate than ESCs. MSCs expressed seven times more alkaline phosphatase (AP) per cell than did ESCs and immediately showed type I collagen and osteocalcin production. ESCs also produced type I collagen and osteocalcin, but production was delayed. Mineral deposition by ESCs was nearly 50 times higher than by MSCs. Spectroscopic analysis showed the calcium-to-phosphorus ratio (Ca:P) of the ESC mineral (1.26:1) to be significantly higher than that of the MSCs (0.29:1), but still 25% lower than hydroxyapatite (1.67:1). Addition of basic fibroblast growth factor significantly inhibited AP expression, mineral deposition, and Ca:P ratios in MSCs and had little effect on ESCs. These functional characteristics may assist with cell selection for purposes of bone tissue engineering.
Collapse
Affiliation(s)
- Daniel A Shimko
- Department of Biomedical Engineering, Tulane University, New Orleans, Louisiana, USA
| | | | | | | |
Collapse
|
7
|
De Wilde A, Lieberherr M, Colin C, Pointillart A. A low dose of daidzein acts as an ERbeta-selective agonist in trabecular osteoblasts of young female piglets. J Cell Physiol 2004; 200:253-62. [PMID: 15174095 DOI: 10.1002/jcp.20008] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
The role of estrogens and estrogen-like molecules, including isoflavones, in regulating bone cell activities is essential in understanding the etiology and treatment of post-menopausal osteoporosis. Although estrogen replacement (HRT) has been the main therapy used to prevent and treat osteoporosis, there are concerns about its safety. Isoflavones have attracted attention to their potential roles in osteoporosis prevention and treatment. We have compared the effects of the isoflavone daidzein (1 nM), which has no effect on tyrosine kinases, and 17beta-estradiol (1 nM) on the development and function of cultured osteoblasts isolated from long bones of young female piglets. Daidzein increased ALP activity, osteocalcin secretion, and mineralization, while E2 increased only ALP activity. The content of ERbeta and osteoprotegerin secretion by control cells gradually increased during osteoblast differentiation, whereas the ERalpha and RANK-L content decreased. Daidzein enhanced only the nuclear ERbeta whereas estradiol increased both ERalpha and ERbeta. Daidzein and estradiol increased osteoprotegerin and RANK-L secretion. Daidzein had a more pronounced effect than did estradiol. Daidzein and estradiol increased the membrane content of RANK-L and the nuclear content of runx2/Cbfa1. Daidzein enhanced the nuclear content of progesterone and vitamin D receptors but not as much as did estradiol. All the effects of daidzein were blocked by ICI 182,780. We conclude that a low concentration of daidzein may exert its anti-resorptive action by increasing the activity of porcine mature osteoblasts via ERbeta, by regulating runx2/Cbfa1 production, and by stimulating the secretion of key proteins involved in osteoclastogenesis, such as osteoprotegerin and RANK-ligand.
Collapse
Affiliation(s)
- Anne De Wilde
- Laboratoire de Nutrition et de Sécurité Alimentaire, Institut National de la Recherche Agronomique, Jouy-en-Josas, France
| | | | | | | |
Collapse
|
8
|
Wolf NS, Penn PE, Rao D, McKee MD. Intraclonal plasticity for bone, smooth muscle, and adipocyte lineages in bone marrow stroma fibroblastoid cells. Exp Cell Res 2003; 290:346-57. [PMID: 14567992 DOI: 10.1016/s0014-4827(03)00321-5] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Bone marrow stroma fibroblastoid cells (BMSFC) develop from a single clone of cells within each of the in vitro fibroblastoid colonies (CFU-F) derived from either murine or human bone marrow. All of the clones represented by these colonies displayed antigenic and product markers for osteoblast, smooth muscle, and adipocyte lineages when tested separately for each marker. Separate sets of fibroblastoid colonies derived from the same individual donor's culture tested positive with antibodies specific for smooth muscle-specific heavy chain myosin (SMMHC), smooth muscle alpha actin-1, bone sialoprotein, osteocalcin, or alkaline phosphatase, and developed von Kossa-positive deposits shown by X-ray microanalysis and electron diffraction to be hydroxyapatite. Individual cells were positive for both SMMHC and osteocalcin. All cells in the multiple clones tested were capable of metabolizing a fatty acid to form intracellular lipid droplets. PCR transcripts obtained from the human cell cultures that provided these BMSFC clones were consistent with the immunocytochemical findings. Transcripts for PPAR (gamma)-2 and Cbfa-1 were dependent upon the culture medium content, suggesting an osteoblast/adipocyte differentiation switch point. Cell lineage specificity for markers and RNA transcripts was determined by comparison to skin fibroblast controls. These findings demonstrate a high degree of interlineage plasticity in vitro for BMSFC.
Collapse
Affiliation(s)
- Norman S Wolf
- Department of Pathology, University of Washington, Seattle, WA 98195, USA.
| | | | | | | |
Collapse
|
9
|
Lieberherr M, Cournot G, Robins SP. Guidelines for using in vitro methods to study the effects of phyto-oestrogens on bone. Br J Nutr 2003; 89 Suppl 1:S59-73. [PMID: 12725651 DOI: 10.1079/bjn2002797] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
These guidelines review the relevant literature on the way plant phyto-oestrogens act on bone and the responsiveness of different bone cell systems to phyto-oestrogenic compounds. The primary emphasis is on the experimental conditions used, the markers available for assessing osteoblast and osteoclast function, and their expected sensitivity. Finally, we assess the published results to derive some general recommendations for in vitro experiments in this area of research.
Collapse
Affiliation(s)
- Michèle Lieberherr
- Laboratoire de Nutrition et de Sécurité Alimentaire, Institut National de la Recherche Agronomique, F-78350 Jouy-en-Josas, France.
| | | | | |
Collapse
|
10
|
Giliberti DC, Anderson KA, Dee KC. A jet impingement investigation of osteoblastic cell adhesion. JOURNAL OF BIOMEDICAL MATERIALS RESEARCH 2002; 62:422-9. [PMID: 12209928 DOI: 10.1002/jbm.10343] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
When designing dental and orthopedic implants, it is important to consider phenomena occurring at the microscopic level, particularly at the bone-implant interface. The presence of hard tissue at this interface is essential to implant viability. The integrity of this tissue-biomaterial interface is dependent on appropriate osteoblast functions (adhesion, matrix deposition, etc.) in the immediate area. Researchers have modified various materials with cell-adhesive peptides with the ultimate goal of controlling osteoblast functions. This study used microjet impingement to compare the strength of adhesion of osteoblastic cells (at varying populations) and fibroblasts to peptide-modified substrates in the presence and absence of fetal bovine serum. In the presence of the serum, there was no significant difference in cellular adhesion strength between substrates. In the absence of serum, all cells tested adhered more strongly to underlying substrates, and the strength of cellular adhesion was greater on modified surfaces than on plain glass surfaces. In the absence of serum, second-passage osteoblastic cells generally adhered to substrates more strongly than first-passage osteoblastic cells; fibroblasts adhered similarly to second-passage osteoblastic cells. Fundamental studies such as the present increase the understanding of cell adhesion to various substrates--knowledge that may be ultimately useful in creating an optimal bone-implant interface.
Collapse
Affiliation(s)
- Danielle C Giliberti
- Tulane University, Department of Biomedical Engineering, New Orleans, Louisiana 70118, USA
| | | | | |
Collapse
|
11
|
Nauman EA, Ebenstein DM, Hughes KF, Pruitt L, Halloran BP, Bikle DD, Keaveny TM. Mechanical and chemical characteristics of mineral produced by basic fibroblast growth factor-treated bone marrow stromal cells in vitro. TISSUE ENGINEERING 2002; 8:931-9. [PMID: 12542939 DOI: 10.1089/107632702320934038] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
It has been shown that various organ and cell cultures exhibit increased mineral formation with the addition of basic fibroblast growth factor (bFGF) and phosphate ions in the medium. However, to date there has been no attempt to relate the chemical composition of mineral formed in vitro to a measure of its mechanical properties. This information is important for understanding the in vivo mineralization process, the development of in vitro models, and the design of tissue-engineered bone substitutes. In this study we examined the reduced modulus; hardness; and mineral-to-matrix, crystallinity, carbonate-to-mineral, and calcium-to-phosphorus ratios of mineral formed by bFGF-treated rat-derived bone marrow stromal cells in vitro. The cells were treated with 1 or 3 mM beta-glycerophosphate for 3 and 4 weeks. Both mechanical parameters, reduced modulus and hardness, increased with increasing beta-glycerophosphate concentration. The only chemical measure of the mineral composition that exhibited the same dependency was the mineral-to-matrix ratio. The values of crystallinity and carbonate fraction were similar to those for intact cortical bone, but the calcium-to-phosphorus ratio was substantially lower than that of normal bone. These data indicate that the mineral formed by bFGF-treated bone cells is mechanically and chemically different from naturally formed lamellar bone tissue after 4 weeks in culture. These results can be used to improve in vitro models of mineral formation as well as enhance the design of tissue-engineered bone substitutes.
Collapse
Affiliation(s)
- E A Nauman
- Department of Mechanical Engineering, University of California at Berkeley, Berkeley, California, USA.
| | | | | | | | | | | | | |
Collapse
|
12
|
Lisignoli G, Remiddi G, Cattini L, Cocchini B, Zini N, Fini M, Grassi F, Piacentini A, Facchini A. An elevated number of differentiated osteoblast colonies can be obtained from rat bone marrow stromal cells using a gradient isolation procedure. Connect Tissue Res 2002; 42:49-58. [PMID: 11696988 DOI: 10.3109/03008200109014248] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Bone marrow stromal cells (BMSCs) for osteoblast differentiation studies can be obtained by gradient isolation techniques or by directly plating a filtered cell suspension. We compared these two procedures to evaluate whether this step is critical in order to obtain a high number of differentiated colonies. Isolated primary rat BMSCs were cultured in vitro with or without insulin-like growth factor II (IGFII), basic fibroblast growth factor (b-FGF), epidermal growth factor (EGF) or transforming growth factor beta 1 (TGF beta 1), and histochemically and biochemically analysed at different time points. The gradient procedure produced a significantly higher number of colonies capable of osteoblastic differentiation. The growth factors had different effects. In particular, b-FGF and EGF significantly increased the number of Alizarin red S positive colonics, while IGFII and TGF beta I exerted inhibitory effects. Nodules obtained on day 21 showed some alkaline phosphatase positive cells and were Von Kossa-positive. These data demonstrate that more differentiated colonies are obtainable from BMSCs isolated by the gradient procedure.
Collapse
Affiliation(s)
- G Lisignoli
- Laboratorio di Immunologia e Genetica, I.O.R., Via di Barbiano 1/10, 40136 Bologna, Italy
| | | | | | | | | | | | | | | | | |
Collapse
|
13
|
Lisignoli G, Fini M, Giavaresi G, Nicoli AN, Toneguzzi S, Facchini A. Osteogenesis of large segmental radius defects enhanced by basic fibroblast growth factor activated bone marrow stromal cells grown on non-woven hyaluronic acid-based polymer scaffold. Biomaterials 2002; 23:1043-51. [PMID: 11791907 DOI: 10.1016/s0142-9612(01)00216-2] [Citation(s) in RCA: 70] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Osteogenesis of large segmental radius defects in a rat model was studied by implanting a biodegradable non-woven hyaluronic acid-based polymer scaffold (Hyaff 11) alone or in combination with bone marrow stromal cells (BMSCs). These cells had been previously grown in vitro in mineralising medium either supplemented with basic fibroblast growth factor (bFGF) or unsupplemented. The healing of bone defects was evaluated at 40, 80, 160 and 200 days and the repair process investigated by radiographic, histomorphometric (assessment of new bone growth and lamellar bone) and histological analyses (toluidine blue and von Kossa staining). Mineralisation of bone defects occurred in the presence of the Hyaff 11 scaffold alone or when combined with BMSCs grown with or without bFGF, but each process had a different timing. In particular, bFGF significantly induced mineralisation from day 40, whereas 160 days were necessary for direct evidence that a similar process was developing under the other two conditions tested (scaffold alone or with BMSCs). Radiographic score, new bone growth and lamellar bone percentage were highly correlated. The present outcomes were further confirmed by toluidine blue and von Kossa staining. According to these in vivo findings, the Hyaff 11 scaffold is an appropriate carrier vehicle for the repair of bone defects; additionally, it can significantly accelerate bone mineralisation in combination with BMSCs and bFGF.
Collapse
Affiliation(s)
- G Lisignoli
- Laboratorio di Immunologia e Genetica, Istituti Ortopedici Rizzoli, Bologna, Italy
| | | | | | | | | | | |
Collapse
|
14
|
Lisignoli G, Zini N, Remiddi G, Piacentini A, Puggioli A, Trimarchi C, Fini M, Maraldi NM, Facchini A. Basic fibroblast growth factor enhances in vitro mineralization of rat bone marrow stromal cells grown on non-woven hyaluronic acid based polymer scaffold. Biomaterials 2001; 22:2095-105. [PMID: 11432589 DOI: 10.1016/s0142-9612(00)00398-7] [Citation(s) in RCA: 71] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
A biodegradable non-woven hyaluronic acid polymer scaffold (Hyaff 11) was analysed in vitro as a carrier vehicle for differentiation and mineralization of rat bone marrow stromal cells (BMSC). BMSC were grown on Hyaff 11 in a mineralizing medium in the presence/absence of basic fibroblast growth factor (bFGF). Osteoblastic differentiation was investigated by light and electron microscopy analysing the expression of osteogenic markers: calcium, alkaline phosphatase (AP), osteopontin (OP), bone sialoprotein (BSP) and collagen type 1. We also measured proliferation, AP activity and mRNA expression of AP and osteocalcin (OC). Electron microscopy and Toluidine-blue staining demonstrated that bFGF accelerated (day 20 vs. day 40) and increased mineralization. With bFGF, calcium, OP and BSP were strongly enhanced at day 40, whereas AP decreased. Our in vitro results demonstrate that Hyaff 11 is a useful vehicle for growth, differentiation and mineralization of rat BMSC, and that it permits bone development.
Collapse
Affiliation(s)
- G Lisignoli
- Laboratorio di Immunologia e Genetica. Istituti Ortopedici Rizzoli, Bologna, Italy
| | | | | | | | | | | | | | | | | |
Collapse
|
15
|
Nauman EA, Satcher RL, Keaveny TM, Halloran BP, Bikle DD. Osteoblasts respond to pulsatile fluid flow with short-term increases in PGE(2) but no change in mineralization. J Appl Physiol (1985) 2001; 90:1849-54. [PMID: 11299276 DOI: 10.1152/jappl.2001.90.5.1849] [Citation(s) in RCA: 81] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Although there is no consensus as to the precise nature of the mechanostimulatory signals imparted to the bone cells during remodeling, it has been postulated that deformation-induced fluid flow plays a role in the mechanotransduction pathway. In vitro, osteoblasts respond to fluid shear stress with an increase in PGE(2) production; however, the long-term effects of fluid shear stress on cell proliferation and differentiation have not been examined. The goal of this study was to apply continuous pulsatile fluid shear stresses to osteoblasts and determine whether the initial production of PGE(2) is associated with long-term biochemical changes. The acute response of bone cells to a pulsatile fluid shear stress (0.6 +/- 0.5 Pa, 3.0 Hz) was characterized by a transient fourfold increase in PGE(2) production. After 7 days of static culture (0 dyn/cm(2)) or low (0.06 +/- 0.05 Pa, 0.3 Hz) or high (0.6 +/- 0.5 Pa, 3.0 Hz) levels of pulsatile fluid shear stress, the bone cells responded with an 83% average increase in cell number, but no statistical difference (P > 0.53) between the groups was observed. Alkaline phosphatase activity per cell decreased in the static cultures but not in the low- or high-flow groups. Mineralization was also unaffected by the different levels of applied shear stress. Our results indicate that short-term changes in PGE(2) levels caused by pulsatile fluid flow are not associated with long-term changes in proliferation or mineralization of bone cells.
Collapse
Affiliation(s)
- E A Nauman
- Orthopaedic Biomechanics Laboratory, Department of Mechanical Engineering, University of California, Berkeley 94720-1740, USA.
| | | | | | | | | |
Collapse
|
16
|
|
17
|
Andrades JA, Han B, Becerra J, Sorgente N, Hall FL, Nimni ME. A recombinant human TGF-beta1 fusion protein with collagen-binding domain promotes migration, growth, and differentiation of bone marrow mesenchymal cells. Exp Cell Res 1999; 250:485-98. [PMID: 10413602 DOI: 10.1006/excr.1999.4528] [Citation(s) in RCA: 112] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
A continuous source of osteoblasts for normal bone maintenance, as well as remodeling and regeneration during fracture repair, is ensured by the mesenchymal osteoprogenitor stem cells of the bone marrow (BM). The differentiation and maturation of osteoprogenitor cells into osteoblasts are thought to be modulated by transforming growth factors-beta (TGF-beta1 and TGF-beta2) and TGF-beta-related bone morphogenetic proteins (BMPs). To define the responses of mesenchymal osteoprogenitor stem cells to several growth factors (GFs), we cultured Fischer 344 rat BM cells in a collagen gel medium containing 0.5% fetal bovine serum for prolonged periods of time. Under these conditions, survival of BM mesenchymal stem cells was dependent on the addition of GFs. Recombinant hTGF-beta1-F2, a fusion protein engineered to contain an auxiliary collagen binding domain, demonstrated the ability to support survival colony formation and growth of the surviving cells, whereas commercial hTGF-beta1 did not. Initially, cells were selected from a whole BM cell population and captured inside a collagen network, on the basis of their survival response to added exogenous GFs. After the 10-day selection period, the surviving cells in the rhTGF-beta1-F2 test groups proliferated rapidly in response to serum factors (10% FBS), and maximal DNA synthesis levels were observed. Upon the addition of osteoinductive factors, osteogenic differentiation in vitro was evaluated by the induction of alkaline phosphatase (ALP) expression, the production of osteocalcin (OC), and the formation of mineralized matrix. Concomitant with a down-regulation of cell proliferation, osteoinduction is marked by increased ALP expression and the formation of colonies that are competent for mineralization. During the induction period, when cells organize into nodules and mineralize, the expression of OC was significantly elevated along with the onset of extracellular matrix mineralization. Differentiation of BM mesenchymal stem cells into putative bone cells as shown by increased ALP, OC synthesis, and in vitro mineralization required the presence of specific GFs, as well as dexamethasone (dex) and beta-glycerophosphate (beta-GP). Although rhTGF-beta1-F2-selected cells exhibited the capacity to mineralize, maximal ALP activity and OC synthesis were observed in the presence of rhBMPs. We further report that a novel rhTGF-beta1-F2 fusion protein, containing a von Willebrand's factor-derived collagen binding domain combined with a type I collage matrix, is able to capture, amplify, and stimulate the differentiation of a population of cells present in rat BM. When these cells are subsequently implanted in inactivated demineralized bone matrix (iDBM) and/or diffusion chambers into older rats they are able to produce bone and cartilage. The population of progenitor cells captured by rhTGF-beta1-F2 is distinct from the committed progenitor cells captured by rhBMPs, which exhibit a considerably more differentiated phenotype.
Collapse
Affiliation(s)
- J A Andrades
- Surgical Research Laboratories, School of Medicine, University of Southern California, 1335 San Pablo Street, DOH-104, Los Angeles, California, 90033, USA
| | | | | | | | | | | |
Collapse
|
18
|
Heymann D, Touchais S, Bohic S, Rohanizadeh R, Coquard C, Passuti N, Daculsi G. Heterotopic implantation of mouse bone-marrow cells: an in vivo model allowing analysis of mineral phases during mineralization processes. Connect Tissue Res 1998; 37:219-31. [PMID: 9862223 DOI: 10.3109/03008209809002441] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Heterotopic calcification induced after implantation of bone-marrow cells under the murine kidney capsule was used to study the mineral phases occurring during the mineralization process. Ossicles were found to contain numerous osteoblastic cells that produced an organic matrix closely associated with active hematopoietic tissue. During implantation of bone marrow, needle-shaped microcrystals were progressively deposited on collagen fibers. The mineral formed in the heterotopic calcification consisted mainly of calcium phosphate. The distribution and density of the microcrystals were heterogeneous after 6 weeks of implantation but became homogeneous and well-crystallized after 10 weeks. The Fourier transform infrared microspectroscopy provided important spatial data on the nature of the mineral formed and the changes in the mineral environment. Similarities were noted between young bone (bone callus) and 6-week heterotopic ossicles, and between adult bone and 10- or 12-week heterotopic ossicles. The study demonstrated that murine heterotopic calcification under the renal capsule can be a very useful model for studying bone apatite formation during the mineralization process.
Collapse
Affiliation(s)
- D Heymann
- UPRES EA 2159, Centre de Recherche sur les Tissus Calcifiés et les Biomatériaux, Faculté de Chirurgie Dentaire, Nantes, France
| | | | | | | | | | | | | |
Collapse
|
19
|
Bohic S, Pilet P, Heymann D. Effects of leukemia inhibitory factor and oncostatin M on bone mineral formed in in vitro rat bone-marrow stromal cell culture: physicochemical aspects. Biochem Biophys Res Commun 1998; 253:506-13. [PMID: 9878566 DOI: 10.1006/bbrc.1998.9781] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Leukemia inhibitory factor (LIF) and oncostatin M (OSM), two pleiotropic cytokines involved in bone remodeling, have both anabolic and catabolic activities. This study analyzed the effects of LIF and OSM on the physicochemical characteristics of mineral phases formed in a rat bone-marrow stromal cell culture model. Stromal cells were cultured for three weeks in the presence of 10(-8) M dexamethasone, 50 microgram/mL ascorbic acid and 10 mM Na beta-glycerophosphate with or without 10 ng/ml LIF or OSM. Subsequently, the physicochemical characteristics of the mineralization nodules formed were analyzed by energy dispersive X ray microanalysis (EDX) and Fourier transform-infrared (FT-IR) and FT-Raman spectroscopy. EDX and FT-IR spectroscopy revealed the influence of LIF and OSM on the physicochemical characteristics of mineral phases. FT-Raman spectroscopy showed modifications of the main vibrational modes of the organic matrix. These alterations induced by growth factors could help define new strategies for the prevention and treatment of skeletal disorders.
Collapse
Affiliation(s)
- S Bohic
- UPRES EA 2159, Faculté de Chirurgie Dentaire, Nantes, France
| | | | | |
Collapse
|
20
|
Kawai N, Niwa S, Sato M, Sato Y, Suwa Y, Ichihara I. Bone formation by cells from femurs cultured among three-dimensionally arranged hydroxyapatite granules. JOURNAL OF BIOMEDICAL MATERIALS RESEARCH 1997; 37:1-8. [PMID: 9335343 DOI: 10.1002/(sici)1097-4636(199710)37:1<1::aid-jbm1>3.0.co;2-w] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
In vitro bone formation by cells derived from adult rabbit femurs was investigated on or in several substrates with small porous hydroxyapatite granules (HAGs). When the bone fragments were cultured in HAG-packed glass tubes, which were inclined (5 degrees -30 degrees ) and rotated 90 degrees per day after one week of culture, thin lamellar tissues were newly formed in narrow spaces among the HAGs. By 11 days of culture, these tissues had been mineralized except for their periphery and had well developed collagen bundles and several monolayer cells. Some cells resided in bone lacuna-like spaces. By contrast, mineralization was negligible in 6-week cultures on two-dimensional glass and polystyrene plates with or without two-dimensionally arranged HAGs on their surfaces and in three-dimensional collagen gels with or without HAGs in spite of active cell proliferation. These results suggest that osteogenesis is accelerated in a specific three-dimensional constitution of extracellular matrix and/or under the effects of mechanical forces for the new tissue and that bioactive HAGs offer favorable three-dimensional spaces for osteogenic tissue formation.
Collapse
Affiliation(s)
- N Kawai
- Department of Anatomy, Aichi Medical University, Japan
| | | | | | | | | | | |
Collapse
|
21
|
Becerra J, Andrades JA, Ertl DC, Sorgente N, Nimni ME. Demineralized bone matrix mediates differentiation of bone marrow stromal cells in vitro: effect of age of cell donor. J Bone Miner Res 1996; 11:1703-14. [PMID: 8915778 DOI: 10.1002/jbmr.5650111114] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Bone maintenance requires a continuous source of osteoblasts throughout life. Its remodeling and regeneration during fracture repair is ensured by osteoprogenitor stem cells which are part of the stroma of the bone marrow (BM). Many investigators have reported that in cultured BM stromal cells there is a cell population that will differentiate along an osteogenic lineage if stimulated by the addition of osteogenic inducers, such as dexamethasone (dex), beta-glycerophosphate (beta-GP), transforming growth factor beta-1 (TGF-beta 1) and bone morphogenetic protein-2 (BMP-2). Here we report the effects of demineralized bone matrix (DBM) on the osteogenic differentiation of BM stromal cells in vitro, using morphological criteria, alkaline phosphatase (AP) activity, and calcium accumulation. DBM and DBM-conditioned medium (DBMcm) enhanced bone formation in the presence of dex and beta-GP, whereas DBM particles caused changes in the cell phenotype. Temporal expression of total and skeletal AP by BM stromal cells from 4-week-old rats showed a biphasic pattern enhanced by DBM and suggesting the presence of two cell populations. In one population, AP synthesis reaches a maximum during the first week in culture, following which cells either die or loose their ability to synthesize AP. A second, less abundant population begins to proliferate and synthesize AP during the second and third weeks. The synthesis of AP, which often decreases by the third week, can be maintained at high levels only if DBM is added to the cultures. BM stromal cells isolated from 24- and 48-week-old rats showed a decrease or loss of this biphasic AP expression pattern compared with cells isolated from 4-week-old rats. The addition of DBM to cultures derived from 24- and 48-week-old rats stimulated mostly the second cell population to synthesize AP, suggesting that DBM contains a factor(s) that acts on a specific bone marrow cell population by increasing the proliferation of active cells or inducing the differentiation of dormant cells.
Collapse
Affiliation(s)
- J Becerra
- Division of Surgical Research, Children's Hospital Los Angeles, University of Southern California, USA
| | | | | | | | | |
Collapse
|
22
|
Ishizeki K, Takigawa M, Nawa T, Suzuki F. Mouse Meckel's cartilage chondrocytes evoke bone-like matrix and further transform into osteocyte-like cells in culture. Anat Rec (Hoboken) 1996; 245:25-35. [PMID: 8731036 DOI: 10.1002/(sici)1097-0185(199605)245:1<25::aid-ar5>3.0.co;2-e] [Citation(s) in RCA: 41] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
BACKGROUND We reported that when Meckel's cartilage was transplanted ectopically, chondrocytes transformed into osteocyte-like cells accompanying the extracellular calcified matrix. However, we could not determine whether the osteocyte-like cells were derived from host tissues or from Meckel's cartilage itself. Therefore, we examined whether the Meckel's cartilage chondrocytes, which have a retrogressive ultimate fate, are capable of inducing the observed calcification and further transform into osteocyte-like cells in culture. METHODS Meckelian chondrocytes isolated enzymatically were plated at a low density and grown in alpha-MEM containing 10% FBS at 37 degrees C under 5% CO2 in air for up to 4 weeks. RESULTS Chondrocytes were fibroblast-like cells early in culture, but gradually transformed from polygonal cells into typical chondrocytes showing metachromasia with toluidine blue staining. After an additional week of culture, the chondrocytes transformed from large to small round cells accompanying nodule formations. Small round cells multiple-layered actively, and showed more intense alkaline phosphatase (ALPase) activity. Immunostaining identified type II collagen in the extracellular matrix at 2 weeks of culture, and type I collagen and osteocalcin were later synthesized by round cells. von Kossa's reaction showed extensive precipitation of calcification throughout the flocculent materials. Ultrastructural analysis showed that the cells surrounded by calcified matrix strongly resembled osteocytes. CONCLUSIONS The present study suggested that the Meckel's cartilage chondrocytes can express the osteocyte-like phenotype in vitro during synthesis of bone-type marker proteins such as osteocalcin or type I collagen.
Collapse
Affiliation(s)
- K Ishizeki
- Department of Oral Anatomy, Iwate Medical University School of Dentistry, Morioka, Japan
| | | | | | | |
Collapse
|
23
|
Shioi A, Nishizawa Y, Jono S, Koyama H, Hosoi M, Morii H. Beta-glycerophosphate accelerates calcification in cultured bovine vascular smooth muscle cells. Arterioscler Thromb Vasc Biol 1995; 15:2003-9. [PMID: 7583582 DOI: 10.1161/01.atv.15.11.2003] [Citation(s) in RCA: 203] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Calcification is a common feature of advanced atherosclerotic lesions and is being reemphasized as a clinically significant element of vascular disease. However, the scarcity of in vitro models of vascular calcification preclude studying its molecular and cellular mechanism. In the present study, we describe an in vitro calcification in which diffuse calcification can be induced by culturing bovine vascular smooth muscle cells (BVSMC) in the presence of beta-glycerophosphate, ascorbic acid, and insulin in a manner analogous to in vitro mineralization by osteoblasts. Calcification was confirmed by von Kossa staining and 45Ca accumulation. Factor analysis revealed that beta-glycerophosphate is the most important factor for this calcification process, suggesting that alkaline phosphatase (ALP) may be involved. As predicted, high levels of ALP expression were detected by ALP assay and Northern blot analysis. Functional significance of ALP was confirmed by demonstrating that levamisole, a specific inhibitor of ALP, inhibited BVSMC calcification in a dose-dependent manner. Bisphosphonates such as etidronate and pamidronate potently inhibited BVSMC calcification, suggesting that hydroxyapatite formation may be involved. Importantly, expression of osteopontin mRNA was dramatically increased in calcified BVSMC compared with uncalcified control cells. These data suggest that beta-glycerophosphate can induce diffuse calcification by an ALP-dependent mechanism and that this in vitro calcification system is useful for analyzing the molecular and cellular mechanisms of vascular calcification.
Collapse
Affiliation(s)
- A Shioi
- Second Department of Internal Medicine, Osaka City University Medical School, Japan
| | | | | | | | | | | |
Collapse
|
24
|
Groeneveld MC, Everts V, Beertsen W. Formation of afibrillar acellular cementum-like layers induced by alkaline phosphatase activity from periodontal ligament explants maintained in vitro. J Dent Res 1994; 73:1588-92. [PMID: 7929972 DOI: 10.1177/00220345940730100201] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
Fibroblasts of the periodontal ligament, by their alkaline phosphatase (ALP) activity, are considered to play a role in the formation of acellular cementum. As a means of exploring this hypothesis, periodontal ligament explants from rat incisors were cultured in direct contact with bovine dentin slices in the presence of 10 mmol/L beta-glycerophosphate. Periosteal and pericardial tissue explants were maintained under similar conditions. After two weeks, the slices were harvested and processed for electron microscopic examination. Controls included periodontal ligament explants to which the ALP-inhibitor levamisole was added. The results suggest that only ALP-positive cultures from periodontal ligament and periosteum form mineralized layers along the dentin. After demineralization, layers consisted of fine filamentous or granular material of moderate electron-density and resembled afibrillar acellular cementum. Our findings support the hypothesis that periodontal ligament fibroblasts, by means of their ALP activity, play a pivotal role in the formation of acellular cementum.
Collapse
Affiliation(s)
- M C Groeneveld
- Department of Periodontology, Academic Centre for Dentistry Amsterdam (ACTA), The Netherlands
| | | | | |
Collapse
|
25
|
Kasugai S, Shibata S, Suzuki S, Susami T, Ogura H. Characterization of a system of mineralized-tissue formation by rat dental pulp cells in culture. Arch Oral Biol 1993; 38:769-77. [PMID: 8240085 DOI: 10.1016/0003-9969(93)90073-u] [Citation(s) in RCA: 46] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Pulp tissue was obtained from maxillary incisors of young adult male Wistar rats, minced and digested with 0.5% trypsin and 0.02% EGTA at 37 degrees C for 30 min. Dissociated cells were cultured with or without 10 nM dexamethasone using Eagle's minimal essential medium supplemented with 10% fetal bovine serum and 50 micrograms/ml ascorbic acid. Confluent cells were subcultured at 7 days and the medium further supplemented with beta-glycerophosphate (beta-GP). Dexamethasone in primary culture and/or secondary culture enhanced the formation of mineralized tissue while > 5 mM beta-GP was necessary for mineralization to occur. Biochemical analysis of the radiolabelled medium revealed that these cells produced type I, type I trimer and type III collagens. Analysis of [32PO4]-labelled medium, using DEAE-Sephacel ion-exchange chromatography and sodium dodecylsulphate-polyacrylamide gel electrophoresis, showed that these cells produced phosphophoryn-like protein. These results indicate that some of the rat dental pulp cells in culture express an odontoblast-like phenotype.
Collapse
Affiliation(s)
- S Kasugai
- Department of Pharmacology, Faculty of Dentistry, Tokyo Medical and Dental University, Japan
| | | | | | | | | |
Collapse
|
26
|
Vilamitjana-Amedee J, Bareille R, Rouais F, Caplan AI, Harmand MF. Human bone marrow stromal cells express an osteoblastic phenotype in culture. In Vitro Cell Dev Biol Anim 1993; 29A:699-707. [PMID: 8407713 DOI: 10.1007/bf02631426] [Citation(s) in RCA: 94] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
This study reports the selection and characterization of osteogenic precursors from human bone marrow which were isolated by two "clonings" and successive subculturing. These cell lines express alkaline phosphatase activity. Gel electrophoresis of [3H]-proline labeled cultures showed that the cloned cells produce only type I collagen. They synthetize osteocalcin and osteonectin. They respond to 1,25 dihydroxy vitamin D3 by increasing osteocalcin synthesis and secretion, and to parathyroid hormone by increasing cyclic AMP synthesis. After the third subculture in the absence of beta-glycerophosphate, these cell lines formed lots of clusters which exhibit high alkaline phosphatase activity and positive von Kossa staining. X-ray energy spectrum shows that these cells are surrounded by "budding" structures containing calcium and phosphorus with a ratio Ca:P identical to those of pure hydroxyapatite. This process was associated with 45Ca uptake into the cells. All these data support the selection of osteogenic cells which may be of considerable clinical importance.
Collapse
|
27
|
Mukai M, Yoshimine Y, Akamine A, Maeda K. Bone-like nodules formed in vitro by rat periodontal ligament cells. Cell Tissue Res 1993; 271:453-60. [PMID: 8472303 DOI: 10.1007/bf02913727] [Citation(s) in RCA: 44] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
The periodontal ligament has been shown to possess the ability to regenerate both new cementum and alveolar bone as well as a self-regenerative capacity; however, the source of cementoblasts and osteoblasts is not still clear. We investigated the development of bone-like tissue in vitro by periodontal ligament cells, in order to determine whether the periodontal ligament contains osteoprogenitor cells. Periodontal ligament cells were obtained from periodontal ligament tissue attached to the maxillary incisors of 6-week-old WKA rats by means of the explant technique. Cells at passage #3 were cultured for long term in alpha-minimum essential medium containing 10% fetal bovine serum, antibiotics, and 50 micrograms/ml ascorbic acid, and were then examined using phase-contrast microscopy, histochemistry, transmission electron microscopy, X-ray microanalysis, and electron diffraction. Nodules were formed in the cultures, and when 10 mM Na-beta-glycerophosphate was added, these nodules became mineralized. The mineralized nodules were identified as bone-like elements in view of the presence of osteoblast-like and osteocyte-like cells, collagenous matrix, a mineral composed of hydroxyapatite, and intense alkaline phosphatase activity. The results show that the periodontal ligament contains osteoprogenitor cells, which differentiate into osteoblasts and produce bone-like tissue.
Collapse
Affiliation(s)
- M Mukai
- Department of Periodontics and Endodontics, Faculty of Dentistry, Kyushu University, Fukuoka, Japan
| | | | | | | |
Collapse
|
28
|
Boskey AL, Ziecheck W, Guidon P, Doty SB. Gallium nitrate inhibits alkaline phosphatase activity in a differentiating mesenchymal cell culture. BONE AND MINERAL 1993; 20:179-92. [PMID: 8453333 DOI: 10.1016/s0169-6009(08)80026-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
The effect of gallium nitrate on alkaline phosphatase activity in a differentiating chick limb-bud mesenchymal cell culture was monitored in order to gain insight into the observation that rachitic rats treated with gallium nitrate failed to show the expected increase in serum alkaline phosphatase activity. Cultures maintained in media containing 15 microM gallium nitrate showed drastically decreased alkaline phosphatase activities in the absence of significant alterations in total protein synthesis and DNA content. However, addition of 15 microM gallium nitrate to cultures 18 h before assay for alkaline phosphatase activity had little effect. At the light microscopic and electron microscopic level, gallium-treated cultures differed morphologically from gallium-free cultures: with gallium present, there were fewer hypertrophic chondrocytes and cartilage nodules were flatter and further apart. Because of altered morphology, staining with an antibody against chick cartilage alkaline phosphatase appeared less extensive; however, all nodules stained equivalently relative to gallium-free controls. Histochemical staining for alkaline phosphatase activity was negative in gallium-treated cultures, demonstrating that the alkaline phosphatase protein present was not active. The defective alkaline phosphatase activity in cultures maintained in the presence of gallium was also evidenced when cultures were supplemented with the alkaline phosphatase substrate, beta-glycerophosphate (beta GP). The data presented suggest that gallium inhibits alkaline phosphatase activity in this culture system and that gallium causes alterations in the differentiation of mesenchymal cells into hypertrophic chondrocytes.
Collapse
Affiliation(s)
- A L Boskey
- Hospital for Special Surgery, Cornell University Medical College, New York, NY 10021
| | | | | | | |
Collapse
|
29
|
Diduch DR, Coe MR, Joyner C, Owen ME, Balian G. Two cell lines from bone marrow that differ in terms of collagen synthesis, osteogenic characteristics, and matrix mineralization. J Bone Joint Surg Am 1993; 75:92-105. [PMID: 8419395 DOI: 10.2106/00004623-199301000-00012] [Citation(s) in RCA: 91] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Two cloned cell lines were isolated from cultures of mouse bone-marrow cells. One of the lines, D1, exhibited osteogenic properties and synthesized type-I collagen (alpha 1)2 alpha 2. The second cell line, D2, was not osteogenic and produced a collagen homotrimer (alpha 1)3. Whereas the extracellular matrix of the D1 cell cultures contained striated collagen fibrils, presumably composed of type-I collagen, the homotrimer-producing D2 cells did not demonstrate striated collagen fibrils. Instead, they had thin filaments without detectable striations. Sodium ascorbate stimulated collagen synthesis at the transcriptional level in both the D1 and the D2 cells. The bone-producing characteristics of D1 in vitro included high levels of alkaline phosphatase, increased cyclic adenosine monophosphate on treatment with parathyroid hormone, and expression of osteocalcin mRNA. The D1 cells, unlike the D2 cells, produced a mineralized matrix in vitro. Mineralization in the cultures of the D1 cells occurred in nodules of increased cell density, which also contained the cells with the highest concentrations of collagen mRNA, as shown by in situ hybridization. When the D1 cells were implanted in a diffusion chamber in vivo, a mixture of both osteogenic and adipogenic tissues was formed. This indicates that the D1 cell line is derived from an early marrow stromal precursor that is multipotential.
Collapse
Affiliation(s)
- D R Diduch
- Orthopaedic Research Laboratory, University of Virginia School of Medicine, Charlottesville 22908
| | | | | | | | | |
Collapse
|
30
|
Boskey AL, Camacho NP, Mendelsohn R, Doty SB, Binderman I. FT-IR microscopic mappings of early mineralization in chick limb bud mesenchymal cell cultures. Calcif Tissue Int 1992; 51:443-8. [PMID: 1451012 DOI: 10.1007/bf00296678] [Citation(s) in RCA: 53] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Chick limb bud mesenchymal cells differentiate into chondrocytes and form a cartilaginous matrix in culture. In this study, the mineral formed in different areas within cultures supplemented with 4 mM inorganic phosphate, or 2.5, 5.0, and 10 mM beta-glycerophosphate (beta GP), was characterized by Fourier-transform infrared (FT-IR) microscopy. The relative mineral-to-matrix ratios, and distribution of crystal sizes at specific locations throughout the matrix were measured from day 14 to day 30. The only mineral phase detected was a poorly crystalline apatite. Cultures receiving 4 mM inorganic phosphate had smaller crystals which were less randomly distributed around the cartilage nodules than those in the beta GP-treated cultures. beta GP-induced mineral consisted of larger, more perfect apatite crystals. In cultures receiving 5 or 10 mM beta GP, the relative mineral-to-matrix ratios (calculated from the integrated intensities of the phosphate and amide I bands, respectively) were higher than in the cultures with 4 mM inorganic phosphate or in the in vivo calcified chick cartilage.
Collapse
Affiliation(s)
- A L Boskey
- Laboratory for Ultrastructure Biochemistry, Hospital for Special Surgery, New York, New York 10021
| | | | | | | | | |
Collapse
|
31
|
Coe MR, Summers TA, Parsons SJ, Boskey AL, Balian G. Matrix mineralization in hypertrophic chondrocyte cultures. Beta glycerophosphate increases type X collagen messenger RNA and the specific activity of pp60c-src kinase. BONE AND MINERAL 1992; 18:91-106. [PMID: 1381978 DOI: 10.1016/0169-6009(92)90850-d] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
The phenomenon of chondrocyte hypertrophy is accompanied by the expression of type X collagen and the appearance of matrix mineralization. These events are also associated with changes in the phosphorylation of intracellular proteins. In this study the addition of 10 mM beta-glycerophosphate to hypertrophic chondrocytes resulted in stimulation of type X collagen synthesis up to 10 days in culture and an increase in the expression of type X collagen mRNA. This was followed by the onset of mineralization and the appearance of calcium hydroxyapatite. In contrast, the addition of beta-glycerophosphate to non-hypertrophic chondrocytes failed to induce expression of type X collagen or to produce changes in calcium and phosphate. The increased formation of type X collagen and of mineral in hypertrophic chondrocytes was accompanied by changes in the tyrosine kinase pp60c-src. While the level of c-src protein decreased approximately 2.5-fold in hypertrophic chondrocytes after 17 days of beta-glycerophosphate treatment, the specific activity of pp60c-src kinase increased approximately 3-fold in the cells that could be induced to mineralize but remained unchanged in cells that did not exhibit this property. Regulation of kinase activity may be an important event in endochondral ossification.
Collapse
Affiliation(s)
- M R Coe
- University of Virginia School of Medicine, Charlottesville 22908
| | | | | | | | | |
Collapse
|