1
|
Kalkman HO, Smigielski L. Ceramides may Play a Central Role in the Pathogenesis of Alzheimer's Disease: a Review of Evidence and Horizons for Discovery. Mol Neurobiol 2025:10.1007/s12035-025-04989-0. [PMID: 40295359 DOI: 10.1007/s12035-025-04989-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2025] [Accepted: 04/19/2025] [Indexed: 04/30/2025]
Abstract
While several hypotheses have been proposed to explain the underlying mechanisms of Alzheimer's disease, none have been entirely satisfactory. Both genetic and non-genetic risk factors, such as infections, metabolic disorders and psychological stress, contribute to this debilitating disease. Multiple lines of evidence indicate that ceramides may be central to the pathogenesis of Alzheimer's disease. Tumor necrosis factor-α, saturated fatty acids and cortisol elevate the brain levels of ceramides, while genetic risk factors, such as mutations in APP, presenilin, TREM2 and APOE ε4, also elevate ceramide synthesis. Importantly, ceramides displace sphingomyelin and cholesterol from lipid raft-like membrane patches that connect the endoplasmic reticulum and mitochondria, disturbing mitochondrial oxidative phosphorylation and energy production. As a consequence, the flattening of lipid rafts alters the function of γ-secretase, leading to increased production of Aβ42. Moreover, ceramides inhibit the insulin-signaling cascade via at least three mechanisms, resulting in the activation of glycogen synthase kinase-3 β. Activation of this kinase has multiple consequences, as it further deteriorates insulin resistance, promotes the transcription of BACE1, causes hyperphosphorylation of tau and inhibits the transcription factor Nrf2. Functional Nrf2 prevents apoptosis, mediates anti-inflammatory activity and improves blood-brain barrier function. Thus, various seemingly unrelated Alzheimer's disease risk factors converge on ceramide production, whereas the elevated levels of ceramides give rise to the well-known pathological features of Alzheimer's disease. Understanding and targeting these mechanisms may provide a promising foundation for the development of novel preventive and therapeutic strategies.
Collapse
Affiliation(s)
- Hans O Kalkman
- Child and Adolescent Psychiatry and Psychotherapy, Psychiatric University Hospital Zurich, University of Zurich, Zurich, Switzerland.
| | - Lukasz Smigielski
- Child and Adolescent Psychiatry and Psychotherapy, Psychiatric University Hospital Zurich, University of Zurich, Zurich, Switzerland
| |
Collapse
|
2
|
Koutarapu S, Ge J, Dulewicz M, Srikrishna M, Szadziewska A, Wood J, Blennow K, Zetterberg H, Michno W, Ryan NS, Lashley T, Savas JN, Schöll M, Hanrieder J. Chemical imaging delineates Aβ plaque polymorphism across the Alzheimer's disease spectrum. Nat Commun 2025; 16:3889. [PMID: 40274785 PMCID: PMC12022071 DOI: 10.1038/s41467-025-59085-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2024] [Accepted: 04/09/2025] [Indexed: 04/26/2025] Open
Abstract
Amyloid-beta (Aβ) plaque formation in Alzheimer's disease (AD) pathology is morphologically diverse. Understanding the association of polymorphic Aβ pathology with AD pathogenesis and progression is critical in light of emerging Aβ-targeting therapies. In this work, functional amyloid microscopy enhanced by deep learning was integrated with mass spectrometry imaging to delineate polymorphic plaques and to identify their associated Aβ make-up. In both sporadic AD (n = 12) and familial AD (n = 6), dense-core plaques showed higher levels of Aβ1-40 and N-terminal pyroglutamated Aβx-42 compared to diffuse plaques and plaques in non-demented, amyloid positive individuals (n = 5). Notably, a distinct dense-core plaque subtype, coarse-grained plaque, was observed in AD but not in non-demented, amyloid positive patients. Coarse-grained plaques were more abundant in early onset AD, showed increased neuritic dystrophy and higher levels of Aβ1-40 and Aβ3pE-40, an Aβ-pattern similar to cerebral amyloid angiopathy. The correlative chemical imaging paradigm presented here allowed to link structural and biochemical characteristics of Aβ plaque polymorphism across various AD etiologies.
Collapse
Affiliation(s)
- Srinivas Koutarapu
- Department of Psychiatry and Neurochemistry, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Junyue Ge
- Department of Psychiatry and Neurochemistry, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Maciej Dulewicz
- Department of Psychiatry and Neurochemistry, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Meera Srikrishna
- Department of Psychiatry and Neurochemistry, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
- Wallenberg Centre for Molecular and Translational Medicine, University of Gothenburg, Gothenburg, Sweden
| | - Alicja Szadziewska
- Department of Psychiatry and Neurochemistry, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Jack Wood
- Department of Psychiatry and Neurochemistry, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
- Department of Neuroscience, Physiology and Pharmacology, University College London, London, UK
| | - Kaj Blennow
- Department of Psychiatry and Neurochemistry, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
- Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital Mölndal, Mölndal, Sweden
- Paris Brain Institute, ICM, Pitié-Salpêtrière Hospital, Sorbonne University, Paris, France
- Neurodegenerative Disorder Research Center, Division of Life Sciences and Medicine, and Department of Neurology, Institute on Aging and Brain Disorders, University of Science and Technology of China and First Affiliated Hospital of USTC, Hefei, PR China
| | - Henrik Zetterberg
- Department of Psychiatry and Neurochemistry, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
- Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital Mölndal, Mölndal, Sweden
- Department of Neurodegenerative Disease, Queen Square Institute of Neurology, University College London, London, UK
- UK Dementia Research Institute, University College London, London, UK
- Hong Kong Centre for Neurodegenerative Diseases, Hong Kong, China
- Wisconsin Alzheimer's Disease Research Center, University of Wisconsin School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI, USA
| | - Wojciech Michno
- Department of Psychiatry and Neurochemistry, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
- Department of Public Health and Caring Sciences, Uppsala University, Uppsala, Sweden
| | - Natalie S Ryan
- UK Dementia Research Institute, University College London, London, UK
- Dementia Research Centre, Queen Square Institute of Neurology, University College London, London, UK
| | - Tammaryn Lashley
- Department of Neurodegenerative Disease, Queen Square Institute of Neurology, University College London, London, UK
- Queen Square Brain Bank for Neurological Disorders, Department of Clinical and Movement Neurosciences, Queen Square Institute of Neurology, University College London, London, UK
| | - Jeffrey N Savas
- Ken and Ruth Davee Department of Neurology, Northwestern University Feinberg School of Medicine, Chicago, IL, 60611, USA
| | - Michael Schöll
- Department of Psychiatry and Neurochemistry, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
- Wallenberg Centre for Molecular and Translational Medicine, University of Gothenburg, Gothenburg, Sweden
- Department of Neurodegenerative Disease, Queen Square Institute of Neurology, University College London, London, UK
- Dementia Research Centre, Queen Square Institute of Neurology, University College London, London, UK
| | - Jörg Hanrieder
- Department of Psychiatry and Neurochemistry, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden.
- Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital Mölndal, Mölndal, Sweden.
- Department of Neurodegenerative Disease, Queen Square Institute of Neurology, University College London, London, UK.
- Dementia Research Centre, Queen Square Institute of Neurology, University College London, London, UK.
- Department of Neuropsychiatry, Sahlgrenska University Hospital, Gothenburg, Sweden.
| |
Collapse
|
3
|
Almeida ZL, Vaz DC, Brito RMM. Morphological and Molecular Profiling of Amyloid-β Species in Alzheimer's Pathogenesis. Mol Neurobiol 2025; 62:4391-4419. [PMID: 39446217 PMCID: PMC11880078 DOI: 10.1007/s12035-024-04543-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Accepted: 10/08/2024] [Indexed: 10/25/2024]
Abstract
Alzheimer's disease (AD) is the most common form of dementia around the world (~ 65%). Here, we portray the neuropathology of AD, biomarkers, and classification of amyloid plaques (diffuse, non-cored, dense core, compact). Tau pathology and its involvement with Aβ plaques and cell death are discussed. Amyloid cascade hypotheses, aggregation mechanisms, and molecular species formed in vitro and in vivo (on- and off-pathways) are described. Aβ42/Aβ40 monomers, dimers, trimers, Aβ-derived diffusible ligands, globulomers, dodecamers, amylospheroids, amorphous aggregates, protofibrils, fibrils, and plaques are characterized (structure, size, morphology, solubility, toxicity, mechanistic steps). An update on AD-approved drugs by regulatory agencies, along with new Aβ-based therapies, is presented. Beyond prescribing Aβ plaque disruptors, cholinergic agonists, or NMDA receptor antagonists, other therapeutic strategies (RNAi, glutaminyl cyclase inhibitors, monoclonal antibodies, secretase modulators, Aβ aggregation inhibitors, and anti-amyloid vaccines) are already under clinical trials. New drug discovery approaches based on "designed multiple ligands", "hybrid molecules", or "multitarget-directed ligands" are also being put forward and may contribute to tackling this highly debilitating and fatal form of human dementia.
Collapse
Affiliation(s)
- Zaida L Almeida
- Chemistry Department and Coimbra Chemistry Centre - Institute of Molecular Sciences (CQC-IMS), University of Coimbra, 3004-535, Coimbra, Portugal.
| | - Daniela C Vaz
- Chemistry Department and Coimbra Chemistry Centre - Institute of Molecular Sciences (CQC-IMS), University of Coimbra, 3004-535, Coimbra, Portugal.
- School of Health Sciences, Polytechnic Institute of Leiria, 2411-901, Leiria, Portugal.
- LSRE-LCM, Laboratory of Separation and Reaction Engineering and Laboratory of Catalysis and Materials, Leiria, 2411-901, Portugal.
- ALiCE - Associate Laboratory in Chemical Engineering, University of Porto, 4200-465, Porto, Portugal.
| | - Rui M M Brito
- Chemistry Department and Coimbra Chemistry Centre - Institute of Molecular Sciences (CQC-IMS), University of Coimbra, 3004-535, Coimbra, Portugal.
| |
Collapse
|
4
|
Ghirelli A, Goodrich AW, Stephens YC, Graff-Radford J, Ali F, Machulda MM, Schwarz CG, Senjem ML, Agosta F, Filippi M, Jack CR, Lowe VJ, Josephs KA, Whitwell JL. Relationships between hypometabolism and both β-amyloid and tau PET in corticobasal syndrome. Alzheimers Dement 2025; 21:e70018. [PMID: 40108988 PMCID: PMC11923383 DOI: 10.1002/alz.70018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Revised: 12/22/2024] [Accepted: 01/16/2025] [Indexed: 03/22/2025]
Abstract
INTRODUCTION Alzheimer's disease (AD) pathology causes corticobasal syndrome (CBS) in 21%-50% of patients. Studies have assessed hypometabolism in CBS according to β-amyloid (A) positron emission tomography (PET), but the understanding of the association of both AD-tau (T) and A with hypometabolism is incomplete. METHODS Thirty-three CBS patients and 45 controls underwent fluorodeoxyglucose (FDG), flortaucipir, and Pittsburgh compound-B PET and were classified as A± and T±. FDG-PET uptake was extracted for 12 regions-of-interest in dominant (most affected) and non-dominant hemispheres and compared across A/T groups. RESULTS A+T+ patients had greater hypometabolism in temporo-parieto-occipital cortices than A+T- and A-T- groups, with no differences observed between the A+T- and A-T- groups. FDG asymmetry was more accentuated in A+T+ patients. Medial temporal and basal ganglia metabolism were similar across AT groups. DISCUSSION Amyloid and tau positivity contribute synergistically to hypometabolism and asymmetry in temporo-parieto-occipital cortices in CBS, with AD-like patterns of hypometabolism observed only in A+T+ patients. HIGHLIGHTS Amyloid (A) and tau PET (T) status can be used to stratify CBS patients. A+T+ CBS patients show more hypometabolism in temporo-parieto-occipital cortices. Medial temporal metabolism (typical AD pattern) is similar across AT groups. Parieto-occipital cortices should be assessed when investigating AT pathology in CBS. Amyloid and tau positivity contribute synergistically to hypometabolism and asymmetry in CBS.
Collapse
Affiliation(s)
- Alma Ghirelli
- Department of Neurology, Mayo Clinic, Rochester, Minnesota, USA
- Neuroimaging Research Unit, Division of Neuroscience, IRCCS San Raffaele Scientific Institute, Milan, Italy
- Neurology Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Austin W Goodrich
- Department of Quantitative Health Sciences, Mayo Clinic, Rochester, Minnesota, USA
| | | | | | - Farwa Ali
- Department of Neurology, Mayo Clinic, Rochester, Minnesota, USA
| | - Mary M Machulda
- Department of Psychiatry and Psychology, Mayo Clinic, Rochester, Minnesota, USA
| | | | - Matthew L Senjem
- Department of Radiology, Mayo Clinic, Rochester, Minnesota, USA
- Department of Information Technology, Mayo Clinic, Rochester, Minnesota, USA
| | - Federica Agosta
- Neuroimaging Research Unit, Division of Neuroscience, IRCCS San Raffaele Scientific Institute, Milan, Italy
- Neurology Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy
- Vita-Salute San Raffaele University, Milan, Italy
| | - Massimo Filippi
- Neuroimaging Research Unit, Division of Neuroscience, IRCCS San Raffaele Scientific Institute, Milan, Italy
- Neurology Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy
- Vita-Salute San Raffaele University, Milan, Italy
| | - Clifford R Jack
- Department of Radiology, Mayo Clinic, Rochester, Minnesota, USA
| | - Val J Lowe
- Department of Radiology, Mayo Clinic, Rochester, Minnesota, USA
| | - Keith A Josephs
- Department of Neurology, Mayo Clinic, Rochester, Minnesota, USA
| | | |
Collapse
|
5
|
Kuznetsov NV, Statsenko Y, Ljubisavljevic M. An Update on Neuroaging on Earth and in Spaceflight. Int J Mol Sci 2025; 26:1738. [PMID: 40004201 PMCID: PMC11855577 DOI: 10.3390/ijms26041738] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2025] [Revised: 02/06/2025] [Accepted: 02/08/2025] [Indexed: 02/27/2025] Open
Abstract
Over 400 articles on the pathophysiology of brain aging, neuroaging, and neurodegeneration were reviewed, with a focus on epigenetic mechanisms and numerous non-coding RNAs. In particular, this review the accent is on microRNAs, the discovery of whose pivotal role in gene regulation was recognized by the 2024 Nobel Prize in Physiology or Medicine. Aging is not a gradual process that can be easily modeled and described. Instead, multiple temporal processes occur during aging, and they can lead to mosaic changes that are not uniform in pace. The rate of change depends on a combination of external and internal factors and can be boosted in accelerated aging. The rate can decrease in decelerated aging due to individual structural and functional reserves created by cognitive, physical training, or pharmacological interventions. Neuroaging can be caused by genetic changes, epigenetic modifications, oxidative stress, inflammation, lifestyle, and environmental factors, which are especially noticeable in space environments where adaptive changes can trigger aging-like processes. Numerous candidate molecular biomarkers specific to neuroaging need to be validated to develop diagnostics and countermeasures.
Collapse
Affiliation(s)
- Nik V. Kuznetsov
- ASPIRE Precision Medicine Research Institute Abu Dhabi, United Arab Emirates University, Al Ain P.O. Box 15551, United Arab Emirates; (Y.S.); (M.L.)
| | - Yauhen Statsenko
- ASPIRE Precision Medicine Research Institute Abu Dhabi, United Arab Emirates University, Al Ain P.O. Box 15551, United Arab Emirates; (Y.S.); (M.L.)
- Department of Radiology, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain P.O. Box 15551, United Arab Emirates
| | - Milos Ljubisavljevic
- ASPIRE Precision Medicine Research Institute Abu Dhabi, United Arab Emirates University, Al Ain P.O. Box 15551, United Arab Emirates; (Y.S.); (M.L.)
- Department of Physiology, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain P.O. Box 15551, United Arab Emirates
| |
Collapse
|
6
|
Volloch V, Rits-Volloch S. Production of Amyloid-β in the Aβ-Protein-Precursor Proteolytic Pathway Is Discontinued or Severely Suppressed in Alzheimer's Disease-Affected Neurons: Contesting the 'Obvious'. Genes (Basel) 2025; 16:46. [PMID: 39858593 PMCID: PMC11764795 DOI: 10.3390/genes16010046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2024] [Revised: 12/17/2024] [Accepted: 12/19/2024] [Indexed: 01/27/2025] Open
Abstract
A notion of the continuous production of amyloid-β (Aβ) via the proteolysis of Aβ-protein-precursor (AβPP) in Alzheimer's disease (AD)-affected neurons constitutes both a cornerstone and an article of faith in the Alzheimer's research field. The present Perspective challenges this assumption. It analyses the relevant empirical data and reaches an unexpected conclusion, namely that in AD-afflicted neurons, the production of AβPP-derived Aβ is either discontinued or severely suppressed, a concept that, if proven, would fundamentally change our understanding of the disease. This suppression, effectively self-suppression, occurs in the context of the global inhibition of the cellular cap-dependent protein synthesis as a consequence of the neuronal integrated stress response (ISR) elicited by AβPP-derived intraneuronal Aβ (iAβ; hence self-suppression) upon reaching certain levels. Concurrently with the suppression of the AβPP proteolytic pathway, the neuronal ISR activates in human neurons, but not in mouse neurons, the powerful AD-driving pathway generating the C99 fragment of AβPP independently of AβPP. The present study describes molecular mechanisms potentially involved in these phenomena, propounds novel approaches to generate transgenic animal models of AD, advocates for the utilization of human neuronal cells-based models of the disease, makes verifiable predictions, suggests experiments designed to validate the proposed concept, and considers its potential research and therapeutic implications. Remarkably, it opens up the possibility that the conventional production of AβPP, BACE enzymes, and γ-secretase components is also suppressed under the neuronal ISR conditions in AD-affected neurons, resulting in the dyshomeostasis of AβPP. It follows that whereas conventional AD is triggered by AβPP-derived iAβ accumulated to the ISR-eliciting levels, the disease, in its both conventional and unconventional (triggered by the neuronal ISR-eliciting stressors distinct from iAβ) forms, is driven not (or not only) by iAβ produced in the AβPP-independent pathway, as we proposed previously, but mainly, possibly exclusively, by the C99 fragment generated independently of AβPP and not cleaved at the γ-site due to the neuronal ISR-caused deficiency of γ-secretase (apparently, the AD-driving "substance X" predicted in our previous study), a paradigm consistent with a dictum by George Perry that Aβ is "central but not causative" in AD. The proposed therapeutic strategies would not only deplete the driver of the disease and abrogate the AβPP-independent production of C99 but also reverse the neuronal ISR and ameliorate the AβPP dyshomeostasis, a potentially significant contributor to AD pathology.
Collapse
Affiliation(s)
- Vladimir Volloch
- Department of Developmental Biology, Harvard School of Dental Medicine, Boston, MA 02115, USA
| | - Sophia Rits-Volloch
- Division of Molecular Medicine, Children’s Hospital, Boston, MA 02115, USA
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA 02115, USA
| |
Collapse
|
7
|
Huang YT, Huang TH, Chen YS, Li YJ, Huang CW. Role of α-amino-3‑hydroxy-5-methyl-4-isoxazolepropionic acid receptors and the antagonist perampanel in geriatric epilepsy and status epilepticus. Arch Gerontol Geriatr 2025; 128:105605. [PMID: 39213748 DOI: 10.1016/j.archger.2024.105605] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2024] [Revised: 07/30/2024] [Accepted: 08/22/2024] [Indexed: 09/04/2024]
Abstract
The α-amino-3‑hydroxy-5-methyl-4-isoxazolepropionic acid receptor (AMPAR) is an ionotropic glutamate receptor recognized for its active involvement in epilepsy. Through AMPAR functional alterations, multiple factors contribute to the increased susceptibility to seizures in the geriatric population. These factors include changes in the hippocampus, neuroinflammation, ischemic insults, amyloid deposition, previous seizures, alterations in the microenvironment, and neurovascular unit dysfunction. Perampanel, a noncompetitive AMPAR antagonist, has been approved for the treatment of focal and generalized epilepsy. However, a complete understanding of AMPAR's role in epileptogenesis and the pharmacotherapy of perampanel in the geriatric population remains elusive. To address this gap, we conducted a comprehensive literature review, screening 1557 articles and ultimately selecting 94 relevant ones. We provided insights into AMPAR functionality changes and perampanel's role in treating geriatric epilepsy. Various clinical trials and retrospective studies have demonstrated that the safety and efficacy of perampanel in the older population are comparable to those in the younger population, with overall good tolerability. It is also effective for treating focal and generalized onset seizures and possibly for managing status epilepticus. In conclusion, the existing body of evidence supports the safety and efficacy of perampanel in the geriatric population, indicating its potential as a valuable therapeutic option for focal and generalized epilepsy. Additional research is warranted to deepen our understanding of AMPAR's involvement in epileptogenesis and to refine the pharmacotherapeutic nuances in this specific demographic.
Collapse
Affiliation(s)
- Yi-Te Huang
- Department of Geriatrics and Gerontology, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Tzu-Hsin Huang
- Zhengxin Neurology & Rehabilitation Center, Tainan, Taiwan
| | - Yu-Shiue Chen
- Department of Neurology, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, 138 Sheng-Li Rd, Tainan 70428, Taiwan
| | - Ya-Jhen Li
- Kun-Yen Medical Library, National Cheng Kung University, Tainan, Taiwan
| | - Chin-Wei Huang
- Department of Neurology, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, 138 Sheng-Li Rd, Tainan 70428, Taiwan.
| |
Collapse
|
8
|
Desai S, Camporesi E, Brinkmalm G, Alatza A, Wood JI, Tripathi T, Bez S, Stasyuk N, Hajar HB, Saito T, Saido TC, Hardy J, Cummings DM, Hanrieder J, Edwards FA. Age- and amyloid-β-dependent initiation of neurofibrillary tau tangles: an improved mouse model of Alzheimer's disease without mutations in MAPT. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.11.04.621900. [PMID: 39574656 PMCID: PMC11580841 DOI: 10.1101/2024.11.04.621900] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/01/2024]
Abstract
Introducing heterozygous humanized tau to App NL-F/NL-F knock-in mice results in the first mouse model of Alzheimer's disease in which age and amyloid-β pathology interact to initiate neurofibrillary tau tangle pathology, not dependent on mutations in MAPT. Gradual progression from amyloid-β to tau pathology in NLFTau m/h mice opens possibilities for understanding processes precipitating clinical stages of Alzheimer's disease and development of translatable therapies to prevent the onset of tau pathology.
Collapse
|
9
|
Villain N, Michalon R. What is Alzheimer's disease? An analysis of nosological perspectives from the 20th and 21st centuries. Eur J Neurol 2024; 31:e16302. [PMID: 38618742 PMCID: PMC11464395 DOI: 10.1111/ene.16302] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Revised: 03/28/2024] [Accepted: 03/29/2024] [Indexed: 04/16/2024]
Abstract
BACKGROUND Recent US proposals suggest defining Alzheimer's disease (AD) based on β-amyloidosis alone. This sparked debates that echoed historical ones about the significance of brain lesions and clinical phenotype. METHODS This review covers debates on AD nosology through three key periods: AD's discovery in German-speaking countries in the early 20th century, its redefinition in Anglo-Saxon countries in the 1960s-1980s, and current debates on the biological or clinicobiological definitions of AD. Key players' opinions are focused on. RESULTS At the beginning of the 20th century, AD was defined as a clinicopathological entity. Debates arose around the pathological anchor, which included extended neurofibrillary tangles versus neuritic plaques (Alzheimer vs. Fischer) and its association with senile dementia (Kraepelin). In the 1960s-1980s, the debate shifted towards whether AD could be diagnosed using qualitative or quantitative neuropathological features and whether it was a unique process (Terry and Katzman) or had subtypes (Roth). The current definition proposed by the US Alzheimer's Association is based purely on biological β-amyloid abnormalities and represents a double break: from the historical clinicopathological definition of AD and from the historical emphasis on tau or combined tau and β-amyloid high levels of pathology. Conversely, the clinicobiological proposal of the International Working Group remains aligned with historical concepts of AD. CONCLUSIONS This historical perspective illustrates the unresolved questions surrounding AD pathogenesis, role of lesions, and the clinical phenotype, especially for sporadic cases. The intense nosological debates throughout the history of AD also illustrate the diversity of theoretical frameworks for defining disease in medicine.
Collapse
Affiliation(s)
- Nicolas Villain
- Sorbonne Université, INSERM U1127, CNRS 7225, Institut du Cerveau–ICMParisFrance
- Department of NeurologyInstitute of Memory and Alzheimer's Disease, AP‐HP Sorbonne Université, Pitié‐Salpêtrière HospitalParisFrance
| | - Robin Michalon
- École des Hautes Etudes en Sciences SocialesParisFrance
- CAK‐CRHST – Centre Alexandre Koyré – Centre de Recherche en Histoire des Sciences et des TechniquesParisFrance
| |
Collapse
|
10
|
Wood JI, Dulewicz M, Ge J, Stringer K, Szadziewska A, Desai S, Koutarapu S, Hajar HB, Blennow K, Zetterberg H, Cummings DM, Savas JN, Edwards FA, Hanrieder J. Isotope Encoded chemical Imaging Identifies Amyloid Plaque Age Dependent Structural Maturation, Synaptic Loss, and Increased Toxicity. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.10.08.617019. [PMID: 39416086 PMCID: PMC11482761 DOI: 10.1101/2024.10.08.617019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 10/19/2024]
Abstract
It is of critical importance to our understanding of Alzheimer's disease (AD) pathology to determine how key pathological factors are interconnected and implicated in nerve cell death, clinical symptoms, and disease progression. The formation of extracellular beta-amyloid (Aβ) plaques is the major pathological hallmark of AD and Aβ has been suggested to be a critical inducer of AD, driving disease pathogenesis. Exactly how Aβ plaque formation begins and how ongoing plaque deposition proceeds and initiates subsequent neurotoxic mechanisms is not well understood. The primary aim of our research is to elucidate the biochemical processes underlying early Aβ plaque formation in brain tissue. We recently introduced a chemical imaging paradigm based on mass spectrometry imaging (MSI) and metabolic isotope labelling to follow stable isotope labelling kinetics (iSILK) in vivo to track the in vivo build-up and deposition of Aβ. Herein, knock-in Aβ mouse models (App NL-F ) that develop Aβ pathology gradually are metabolically labeled with stable isotopes. This chemical imaging approach timestamps amyloid plaques during the period of initial deposition allowing the fate of aggregating Aβ species from before and during the earliest events of plaque pathology through plaque maturation to be tracked. To identify the molecular and cellular response to plaque maturation, we integrated iSILK with single plaque transcriptomics performed on adjacent tissue sections. This enabled changes in gene expression to be tracked as a function of plaque age (as encoded in the Aβ peptide isotopologue pattern) distinct from changes due to the chronological age or pathological severity. This approach identified that plaque age correlates negatively with gene expression patterns associated with synaptic function as early as in 10-month-old animals but persists into 18 months. Finally, we integrated hyperspectral confocal microscopy into our multiomic approach to image amyloid structural isomers, revealing a positive correlation between plaque age and amyloid structural maturity. This analysis identified three categories of plaques, each with a distinct impact on the surrounding microenvironment. Here, we identified that older, more compact plaques were associated with the most significant synapse loss and toxicity. These data show how isotope-encoded MS imaging can be used to delineate Aβ toxicity dynamics in vivo. Moreover, we show for the first time a functional integration of dynamic MSI, structural plaque imaging and whole genome-wide spatial transcriptomics at the single plaque level. This multiomic approach offers an unprecedented combination of temporal and spatial resolution enabling a description of the earliest events of precipitating amyloid pathology and how Aβ modulates synaptotoxic mechanisms.
Collapse
Affiliation(s)
- Jack I. Wood
- Department of Psychiatry and Neurochemistry, Sahlgrenska Academy at the University of Gothenburg, Mölndal Hospital, House V, S-431 80 Mölndal, Sweden
- Department of Neuroscience, Physiology and Pharmacology, University College London, Gower Street, London, United Kingdom
| | - Maciej Dulewicz
- Department of Psychiatry and Neurochemistry, Sahlgrenska Academy at the University of Gothenburg, Mölndal Hospital, House V, S-431 80 Mölndal, Sweden
| | - Junyue Ge
- Department of Psychiatry and Neurochemistry, Sahlgrenska Academy at the University of Gothenburg, Mölndal Hospital, House V, S-431 80 Mölndal, Sweden
| | - Katie Stringer
- Department of Psychiatry and Neurochemistry, Sahlgrenska Academy at the University of Gothenburg, Mölndal Hospital, House V, S-431 80 Mölndal, Sweden
- Department of Neuroscience, Physiology and Pharmacology, University College London, Gower Street, London, United Kingdom
| | - Alicja Szadziewska
- Department of Psychiatry and Neurochemistry, Sahlgrenska Academy at the University of Gothenburg, Mölndal Hospital, House V, S-431 80 Mölndal, Sweden
| | - Sneha Desai
- Department of Psychiatry and Neurochemistry, Sahlgrenska Academy at the University of Gothenburg, Mölndal Hospital, House V, S-431 80 Mölndal, Sweden
- Department of Neuroscience, Physiology and Pharmacology, University College London, Gower Street, London, United Kingdom
| | - Srinivas Koutarapu
- Department of Psychiatry and Neurochemistry, Sahlgrenska Academy at the University of Gothenburg, Mölndal Hospital, House V, S-431 80 Mölndal, Sweden
| | - Haady B. Hajar
- Department of Neuroscience, Physiology and Pharmacology, University College London, Gower Street, London, United Kingdom
| | - Kaj Blennow
- Department of Psychiatry and Neurochemistry, Sahlgrenska Academy at the University of Gothenburg, Mölndal Hospital, House V, S-431 80 Mölndal, Sweden
- Clinical Neurochemistry LaboratoryMemory Clinic, Sahlgrenska University Hospital, Mölndal Hospital, House V, S-431 80 Mölndal, Sweden
- Paris Brain Institute, ICM, Pitié-Salpêtrière Hospital, Sorbonne University, Paris, France
- Neurodegenerative Disorder Research Center, Division of Life Sciences and Medicine, and Department of Neurology, Institute on Aging and Brain Disorders, University of Science and Technology of China and First Affiliated Hospital of USTC, Hefei, P.R. China
| | - Henrik Zetterberg
- Department of Psychiatry and Neurochemistry, Sahlgrenska Academy at the University of Gothenburg, Mölndal Hospital, House V, S-431 80 Mölndal, Sweden
- Clinical Neurochemistry LaboratoryMemory Clinic, Sahlgrenska University Hospital, Mölndal Hospital, House V, S-431 80 Mölndal, Sweden
- Department of Neurodegenerative Disease, Queen Square Institute of Neurology, University College London, Queens Square, WC1N 3BG London, United Kingdom
- UK Dementia Research Institute at UCL, London, UK
- Hong Kong Center for Neurodegenerative Diseases, Clear Water Bay, Hong Kong, China
- Wisconsin Alzheimer’s Disease Research Center, University of Wisconsin School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI, USA
| | - Damian M. Cummings
- Department of Neuroscience, Physiology and Pharmacology, University College London, Gower Street, London, United Kingdom
| | - Jeffrey N. Savas
- Department of Neurology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Frances A. Edwards
- Department of Neuroscience, Physiology and Pharmacology, University College London, Gower Street, London, United Kingdom
| | - Jörg Hanrieder
- Department of Psychiatry and Neurochemistry, Sahlgrenska Academy at the University of Gothenburg, Mölndal Hospital, House V, S-431 80 Mölndal, Sweden
- Clinical Neurochemistry LaboratoryMemory Clinic, Sahlgrenska University Hospital, Mölndal Hospital, House V, S-431 80 Mölndal, Sweden
- Department of Neurodegenerative Disease, Queen Square Institute of Neurology, University College London, Queens Square, WC1N 3BG London, United Kingdom
- SciLifeLab, University of Gothenburg, 40530 Gothenburg, Sweden
| |
Collapse
|
11
|
Zhang S, Crossley CA, Yuan Q. Neuronal Vulnerability of the Entorhinal Cortex to Tau Pathology in Alzheimer's Disease. Br J Biomed Sci 2024; 81:13169. [PMID: 39435008 PMCID: PMC11491395 DOI: 10.3389/bjbs.2024.13169] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Accepted: 09/24/2024] [Indexed: 10/23/2024]
Abstract
This review delves into the entorhinal cortex (EC) as a central player in the pathogenesis of Alzheimer's Disease (AD), emphasizing its role in the accumulation and propagation of tau pathology. It elucidates the multifaceted functions of the EC, encompassing memory formation, spatial navigation, and olfactory processing, while exploring how disruptions in these processes contribute to cognitive decline in AD. The review discusses the intricate interplay between tau pathology and EC vulnerability, highlighting how alterations in neuronal firing patterns and synaptic function within the EC exacerbate cognitive impairments. Furthermore, it elucidates how specific neuronal subtypes within the EC exhibit differential susceptibility to tau-induced damage, contributing to disease progression. Early detection methods, such as imaging techniques and assessments of EC blood flow, are examined as potential tools for identifying tau pathology in the preclinical stages of AD. These approaches offer promise for improving diagnostic accuracy and enabling timely intervention. Therapeutic strategies targeting tau pathology within the EC are explored, including the clearance of pathological tau aggregates and the inhibition of tau aggregation processes. By understanding the molecular and cellular mechanisms underlying EC vulnerability, researchers can develop more targeted and effective interventions to slow disease progression. The review underscores the importance of reliable biomarkers to assess disease progression and therapeutic efficacy in clinical trials targeting the EC. Ultimately, it aims to contribute to the development of more effective management strategies for AD, emphasizing the translation of research findings into clinical practice to address the growing societal burden of the disease.
Collapse
Affiliation(s)
| | - Chelsea Ann Crossley
- Biomedical Sciences, Faculty of Medicine, Memorial University of Newfoundland, St. John’s, NL, Canada
| | | |
Collapse
|
12
|
Volloch V, Rits-Volloch S. Quintessential Synergy: Concurrent Transient Administration of Integrated Stress Response Inhibitors and BACE1 and/or BACE2 Activators as the Optimal Therapeutic Strategy for Alzheimer's Disease. Int J Mol Sci 2024; 25:9913. [PMID: 39337400 PMCID: PMC11432332 DOI: 10.3390/ijms25189913] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Revised: 09/01/2024] [Accepted: 09/03/2024] [Indexed: 09/30/2024] Open
Abstract
The present study analyzes two potential therapeutic approaches for Alzheimer's disease (AD). One is the suppression of the neuronal integrated stress response (ISR). Another is the targeted degradation of intraneuronal amyloid-beta (iAβ) via the activation of BACE1 (Beta-site Aβ-protein-precursor Cleaving Enzyme) and/or BACE2. Both approaches are rational. Both are promising. Both have substantial intrinsic limitations. However, when combined in a carefully orchestrated manner into a composite therapy they display a prototypical synergy and constitute the apparently optimal, potentially most effective therapeutic strategy for AD.
Collapse
Affiliation(s)
- Vladimir Volloch
- Department of Developmental Biology, Harvard School of Dental Medicine, Boston, MA 02115, USA
| | - Sophia Rits-Volloch
- Division of Molecular Medicine, Children’s Hospital, Boston, MA 02115, USA
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA 02115, USA
| |
Collapse
|
13
|
Paterno G, Moore BD, Bell BM, Gorion KMM, Ran Y, Prokop S, Golde TE, Giasson BI. Novel Monoclonal Antibody Specific toward Amyloid-β Binds to a Unique Epitope within the N-Terminal Region. Antibodies (Basel) 2024; 13:68. [PMID: 39189239 PMCID: PMC11348109 DOI: 10.3390/antib13030068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Revised: 08/04/2024] [Accepted: 08/06/2024] [Indexed: 08/28/2024] Open
Abstract
Amyloid-β (Aβ) deposition throughout the neuroaxis is a classical hallmark of several neurodegenerative diseases, most notably Alzheimer's disease (AD). Aβ peptides of varied length and diverse structural conformations are deposited within the parenchyma and vasculature in the brains of individuals with AD. Neuropathologically, Aβ pathology can be assessed using antibodies to label and characterize their features, which in turn leads to a more extensive understanding of the pathological process. In the present study, we generated a novel monoclonal antibody, which we found to be specific for the N-terminal region of Aβ. This antibody reacted to amyloid precursor protein expressed in cultured cells and labels Aβ plaques and cerebral amyloid angiopathy in brain tissue from a mouse model of amyloidosis as well as post-mortem brain tissue from patients diagnosed with AD. This highly specific novel antibody will serve as a unique tool for future studies investigating Aβ deposition in novel mouse models and cross-sectional studies using post-mortem human tissue.
Collapse
Affiliation(s)
- Giavanna Paterno
- Department of Neuroscience, College of Medicine, University of Florida, Gainesville, FL 32610, USA; (G.P.); (B.M.B.); (K.-M.M.G.)
- Center for Translational Research in Neurodegenerative Disease, College of Medicine, University of Florida, Gainesville, FL 32610, USA;
| | - Brenda D. Moore
- Department of Pharmacology and Chemical Biology, Emory University School of Medicine, Atlanta, GA 30322, USA; (B.D.M.); (Y.R.); (T.E.G.)
- Center for Neurodegenerative Disease, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Brach M. Bell
- Department of Neuroscience, College of Medicine, University of Florida, Gainesville, FL 32610, USA; (G.P.); (B.M.B.); (K.-M.M.G.)
- Center for Translational Research in Neurodegenerative Disease, College of Medicine, University of Florida, Gainesville, FL 32610, USA;
| | - Kimberly-Marie M. Gorion
- Department of Neuroscience, College of Medicine, University of Florida, Gainesville, FL 32610, USA; (G.P.); (B.M.B.); (K.-M.M.G.)
- Center for Translational Research in Neurodegenerative Disease, College of Medicine, University of Florida, Gainesville, FL 32610, USA;
| | - Yong Ran
- Department of Pharmacology and Chemical Biology, Emory University School of Medicine, Atlanta, GA 30322, USA; (B.D.M.); (Y.R.); (T.E.G.)
- Center for Neurodegenerative Disease, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Stefan Prokop
- Center for Translational Research in Neurodegenerative Disease, College of Medicine, University of Florida, Gainesville, FL 32610, USA;
- McKnight Brain Institute, College of Medicine, University of Florida, Gainesville, FL 32610, USA
- Department of Pathology, College of Medicine, University of Florida, Gainesville, FL 32610, USA
| | - Todd E. Golde
- Department of Pharmacology and Chemical Biology, Emory University School of Medicine, Atlanta, GA 30322, USA; (B.D.M.); (Y.R.); (T.E.G.)
- Center for Neurodegenerative Disease, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Benoit I. Giasson
- Department of Neuroscience, College of Medicine, University of Florida, Gainesville, FL 32610, USA; (G.P.); (B.M.B.); (K.-M.M.G.)
- Center for Translational Research in Neurodegenerative Disease, College of Medicine, University of Florida, Gainesville, FL 32610, USA;
- McKnight Brain Institute, College of Medicine, University of Florida, Gainesville, FL 32610, USA
| |
Collapse
|
14
|
Latimer CS, Prater KE, Postupna N, Dirk Keene C. Resistance and Resilience to Alzheimer's Disease. Cold Spring Harb Perspect Med 2024; 14:a041201. [PMID: 38151325 PMCID: PMC11293546 DOI: 10.1101/cshperspect.a041201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2023]
Abstract
Dementia is a significant public health crisis; the most common underlying cause of age-related cognitive decline and dementia is Alzheimer's disease neuropathologic change (ADNC). As such, there is an urgent need to identify novel therapeutic targets for the treatment and prevention of the underlying pathologic processes that contribute to the development of AD dementia. Although age is the top risk factor for dementia in general and AD specifically, these are not inevitable consequences of advanced age. Some individuals are able to live to advanced age without accumulating significant pathology (resistance to ADNC), whereas others are able to maintain cognitive function despite the presence of significant pathology (resilience to ADNC). Understanding mechanisms of resistance and resilience will inform therapeutic strategies to promote these processes to prevent or delay AD dementia. This article will highlight what is currently known about resistance and resilience to AD, including our current understanding of possible underlying mechanisms that may lead to candidate preventive and treatment interventions for this devastating neurodegenerative disease.
Collapse
Affiliation(s)
- Caitlin S Latimer
- Department of Laboratory Medicine and Pathology, University of Washington School of Medicine, Seattle 98195, Washington, USA
| | - Katherine E Prater
- Department of Neurology, University of Washington, Seattle 98195, Washington, USA
| | - Nadia Postupna
- Department of Laboratory Medicine and Pathology, University of Washington School of Medicine, Seattle 98195, Washington, USA
| | - C Dirk Keene
- Department of Laboratory Medicine and Pathology, University of Washington School of Medicine, Seattle 98195, Washington, USA
| |
Collapse
|
15
|
Do Carmo S, Kautzmann MAI, Bhattacharjee S, Jun B, Steinberg C, Emmerson JT, Malcolm JC, Bonomo Q, Bazan NG, Cuello AC. Differential effect of an evolving amyloid and tau pathology on brain phospholipids and bioactive lipid mediators in rat models of Alzheimer-like pathology. J Neuroinflammation 2024; 21:185. [PMID: 39080670 PMCID: PMC11290283 DOI: 10.1186/s12974-024-03184-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Accepted: 07/23/2024] [Indexed: 08/02/2024] Open
Abstract
BACKGROUND Brain inflammation contributes significantly to the pathophysiology of Alzheimer's disease, and it is manifested by glial cell activation, increased production of cytokines/chemokines, and a shift in lipid mediators from a pro-homeostatic to a pro-inflammatory profile. However, whether the production of bioactive lipid mediators is affected at earlier stages, prior to the deposition of Aβ plaques and tau hyperphosphorylation, is unknown. The differential contribution of an evolving amyloid and tau pathology on the composition and abundance of membrane phospholipids and bioactive lipid mediators also remains unresolved. METHODS In this study, we examined the cortical levels of DHA- and AA-derived bioactive lipid mediators and of membrane phospholipids by liquid chromatography with tandem mass spectrometry in transgenic rat models of the Alzheimer's-like amyloid and tau pathologies at early and advanced pathological stages. RESULTS Our findings revealed a complex balance between pro-inflammatory and pro-resolving processes in which tau pathology has a more pronounced effect compared to amyloid pathology. At stages preceding tau misfolding and aggregation, there was an increase in pro-resolving lipid mediators (RVD6 and NPD1), DHA-containing phospholipids and IFN-γ levels. However, in advanced tau pathology displaying NFT-like inclusions, neuronal death, glial activation and cognitive deficits, there was an increase in cytokine and PGD2, PGE2, and PGF2α generation accompanied by a drop in IFN-γ levels. This pathology also resulted in a marked increase in AA-containing phospholipids. In comparison, pre-plaque amyloid pathology already presented high levels of cytokines and AA-containing phospholipids together with elevated RVD6 and NPD1 levels. Finally, Aβ plaque deposition was accompanied by a modest increase in prostaglandins, increased AA-containing phospholipids and reduced DHA-containing phospholipids. CONCLUSIONS Our findings suggest a dynamic trajectory of inflammatory and lipid mediators in the evolving amyloid and tau pathologies and support their differing roles on membrane properties and, consequentially, on signal transduction.
Collapse
Affiliation(s)
- Sonia Do Carmo
- Department of Pharmacology & Therapeutics, McGill University, 3655 Promenade Sir William Osler, Room 1210, Montreal, H3G 1Y6, Canada.
| | - Marie-Audrey I Kautzmann
- Neuroscience Center of Excellence, School of Medicine, Louisiana State University Health New Orleans, 2020 Gravier Street, Suite D, New Orleans, LA, 70112, USA
| | - Surjyadipta Bhattacharjee
- Neuroscience Center of Excellence, School of Medicine, Louisiana State University Health New Orleans, 2020 Gravier Street, Suite D, New Orleans, LA, 70112, USA
| | - Bokkyoo Jun
- Neuroscience Center of Excellence, School of Medicine, Louisiana State University Health New Orleans, 2020 Gravier Street, Suite D, New Orleans, LA, 70112, USA
| | - Carolyn Steinberg
- Department of Pharmacology & Therapeutics, McGill University, 3655 Promenade Sir William Osler, Room 1210, Montreal, H3G 1Y6, Canada
| | - Joshua T Emmerson
- Department of Pharmacology & Therapeutics, McGill University, 3655 Promenade Sir William Osler, Room 1210, Montreal, H3G 1Y6, Canada
| | - Janice C Malcolm
- Department of Cell Anatomy and Cell Biology, McGill University, Montreal, H3A 0C7, Canada
| | - Quentin Bonomo
- Department of Neurology and Neurosurgery, McGill University, Montreal, H3G 1Y6, Canada
| | - Nicolas G Bazan
- Department of Pharmacology & Therapeutics, McGill University, 3655 Promenade Sir William Osler, Room 1210, Montreal, H3G 1Y6, Canada.
- Neuroscience Center of Excellence, School of Medicine, Louisiana State University Health New Orleans, 2020 Gravier Street, Suite D, New Orleans, LA, 70112, USA.
| | - A Claudio Cuello
- Department of Pharmacology & Therapeutics, McGill University, 3655 Promenade Sir William Osler, Room 1210, Montreal, H3G 1Y6, Canada.
- Department of Cell Anatomy and Cell Biology, McGill University, Montreal, H3A 0C7, Canada.
- Department of Neurology and Neurosurgery, McGill University, Montreal, H3G 1Y6, Canada.
- Department of Pharmacology, Oxford University, Oxford, OX1 3QT, UK.
| |
Collapse
|
16
|
Josephs KA, Tosakulwong N, Weigand SD, Graff-Radford J, Schwarz CG, Senjem ML, Machulda MM, Kantarci K, Knopman DS, Nguyen A, Reichard RR, Dickson DW, Petersen RC, Lowe VJ, Jack CR, Whitwell JL. Flortaucipir PET uncovers relationships between tau and amyloid-β in primary age-related tauopathy and Alzheimer's disease. Sci Transl Med 2024; 16:eado8076. [PMID: 39047115 PMCID: PMC11423951 DOI: 10.1126/scitranslmed.ado8076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Accepted: 06/28/2024] [Indexed: 07/27/2024]
Abstract
[18F]-Flortaucipir positron emission tomography (PET) is considered a good biomarker of Alzheimer's disease. However, it is unknown how flortaucipir is associated with the distribution of tau across brain regions and how these associations are influenced by amyloid-β. It is also unclear whether flortaucipir can detect tau in definite primary age-related tauopathy (PART). We identified 248 individuals at Mayo Clinic who had undergone [18F]-flortaucipir PET during life, had died, and had undergone an autopsy, 239 cases of which also had amyloid-β PET. We assessed nonlinear relationships between flortaucipir uptake in nine medial temporal and cortical regions, Braak tau stage, and Thal amyloid-β phase using generalized additive models. We found that flortaucipir uptake was greater with increasing tau stage in all regions. Increased uptake at low tau stages in medial temporal regions was only observed in cases with a high amyloid-β phase. Flortaucipir uptake linearly increased with the amyloid-β phase in medial temporal and cortical regions. The highest flortaucipir uptake occurred with high Alzheimer's disease neuropathologic change (ADNC) scores, followed by low-intermediate ADNC scores, then PART, with the entorhinal cortex providing the best differentiation between groups. Flortaucipir PET had limited ability to detect PART, and imaging-defined PART did not correspond with pathologically defined PART. In summary, spatial patterns of flortaucipir mirrored the histopathological tau distribution, were influenced by the amyloid-β phase, and were useful for distinguishing different ADNC scores and PART.
Collapse
Affiliation(s)
- Keith A Josephs
- Department of Neurology, Mayo Clinic, Rochester, MN 55905, USA
| | - Nirubol Tosakulwong
- Department of Quantitative Health Sciences, Mayo Clinic, Rochester, MN 55905, USA
| | - Stephen D Weigand
- Department of Quantitative Health Sciences, Mayo Clinic, Rochester, MN 55905, USA
| | | | | | - Matthew L Senjem
- Department of Information Technology, Mayo Clinic, Rochester, MN 55905, USA
| | - Mary M Machulda
- Department of Psychiatry and Psychology, Mayo Clinic, Rochester, MN 55905, USA
| | - Kejal Kantarci
- Department of Radiology, Mayo Clinic, Rochester, MN 55905, USA
| | - David S Knopman
- Department of Neurology, Mayo Clinic, Rochester, MN 55905, USA
| | - Aivi Nguyen
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN 55905, USA
| | - R Ross Reichard
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN 55905, USA
| | - Dennis W Dickson
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL 32224, USA
| | | | - Val J Lowe
- Department of Radiology, Mayo Clinic, Rochester, MN 55905, USA
| | - Clifford R Jack
- Department of Radiology, Mayo Clinic, Rochester, MN 55905, USA
| | | |
Collapse
|
17
|
Enzlein T, Lashley T, Sammour DA, Hopf C, Chávez-Gutiérrez L. Integrative Single-Plaque Analysis Reveals Signature Aβ and Lipid Profiles in the Alzheimer's Brain. Anal Chem 2024; 96:9799-9807. [PMID: 38830618 PMCID: PMC11190877 DOI: 10.1021/acs.analchem.3c05557] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Revised: 04/23/2024] [Accepted: 04/23/2024] [Indexed: 06/05/2024]
Abstract
Cerebral accumulation of amyloid-β (Aβ) initiates molecular and cellular cascades that lead to Alzheimer's disease (AD). However, amyloid deposition does not invariably lead to dementia. Amyloid-positive but cognitively unaffected (AP-CU) individuals present widespread amyloid pathology, suggesting that molecular signatures more complex than the total amyloid burden are required to better differentiate AD from AP-CU cases. Motivated by the essential role of Aβ and the key lipid involvement in AD pathogenesis, we applied multimodal mass spectrometry imaging (MSI) and machine learning (ML) to investigate amyloid plaque heterogeneity, regarding Aβ and lipid composition, in AP-CU versus AD brain samples at the single-plaque level. Instead of focusing on a population mean, our analytical approach allowed the investigation of large populations of plaques at the single-plaque level. We found that different (sub)populations of amyloid plaques, differing in Aβ and lipid composition, coexist in the brain samples studied. The integration of MSI data with ML-based feature extraction further revealed that plaque-associated gangliosides GM2 and GM1, as well as Aβ1-38, but not Aβ1-42, are relevant differentiators between the investigated pathologies. The pinpointed differences may guide further fundamental research investigating the role of amyloid plaque heterogeneity in AD pathogenesis/progression and may provide molecular clues for further development of emerging immunotherapies to effectively target toxic amyloid assemblies in AD therapy. Our study exemplifies how an integrative analytical strategy facilitates the unraveling of complex biochemical phenomena, advancing our understanding of AD from an analytical perspective and offering potential avenues for the refinement of diagnostic tools.
Collapse
Affiliation(s)
- Thomas Enzlein
- Center
for Mass Spectrometry and Optical Spectroscopy (CeMOS), Mannheim University of Applied Sciences, Paul-Wittsack Str. 10, Mannheim 68163, Germany
- KU
Leuven-VIB Center for Brain & Disease Research, VIB, Leuven 3000, Belgium
- Department
of Neurosciences, Leuven Institute for Neuroscience and Disease, KU Leuven, Leuven 3000, Belgium
| | - Tammaryn Lashley
- Department
of Neurodegenerative Diseases, UCL Queen
Square Institute of Neurology, London WC1N 3BG, U.K.
| | - Denis Abu Sammour
- Center
for Mass Spectrometry and Optical Spectroscopy (CeMOS), Mannheim University of Applied Sciences, Paul-Wittsack Str. 10, Mannheim 68163, Germany
| | - Carsten Hopf
- Center
for Mass Spectrometry and Optical Spectroscopy (CeMOS), Mannheim University of Applied Sciences, Paul-Wittsack Str. 10, Mannheim 68163, Germany
- Mannheim
Center for Translational Neuroscience (MCTN), Medical Faculty Mannheim, Heidelberg University, Heidelberg 69120, Germany
- Medical Faculty, Heidelberg University, Heidelberg 69120, Germany
| | - Lucía Chávez-Gutiérrez
- KU
Leuven-VIB Center for Brain & Disease Research, VIB, Leuven 3000, Belgium
- Department
of Neurosciences, Leuven Institute for Neuroscience and Disease, KU Leuven, Leuven 3000, Belgium
| |
Collapse
|
18
|
Volloch V, Rits-Volloch S. ACH2.0/E, the Consolidated Theory of Conventional and Unconventional Alzheimer's Disease: Origins, Progression, and Therapeutic Strategies. Int J Mol Sci 2024; 25:6036. [PMID: 38892224 PMCID: PMC11172602 DOI: 10.3390/ijms25116036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 05/19/2024] [Accepted: 05/21/2024] [Indexed: 06/21/2024] Open
Abstract
The centrality of amyloid-beta (Aβ) is an indisputable tenet of Alzheimer's disease (AD). It was initially indicated by the detection (1991) of a mutation within Aβ protein precursor (AβPP) segregating with the disease, which served as a basis for the long-standing Amyloid Cascade Hypothesis (ACH) theory of AD. In the intervening three decades, this notion was affirmed and substantiated by the discovery of numerous AD-causing and AD-protective mutations with all, without an exception, affecting the structure, production, and intraneuronal degradation of Aβ. The ACH postulated that the disease is caused and driven by extracellular Aβ. When it became clear that this is not the case, and the ACH was largely discredited, a new theory of AD, dubbed ACH2.0 to re-emphasize the centrality of Aβ, was formulated. In the ACH2.0, AD is caused by physiologically accumulated intraneuronal Aβ (iAβ) derived from AβPP. Upon reaching the critical threshold, it triggers activation of the autonomous AβPP-independent iAβ generation pathway; its output is retained intraneuronally and drives the AD pathology. The bridge between iAβ derived from AβPP and that generated independently of AβPP is the neuronal integrated stress response (ISR) elicited by the former. The ISR severely suppresses cellular protein synthesis; concurrently, it activates the production of a small subset of proteins, which apparently includes components necessary for operation of the AβPP-independent iAβ generation pathway that are absent under regular circumstances. The above sequence of events defines "conventional" AD, which is both caused and driven by differentially derived iAβ. Since the ISR can be elicited by a multitude of stressors, the logic of the ACH2.0 mandates that another class of AD, referred to as "unconventional", has to occur. Unconventional AD is defined as a disease where a stressor distinct from AβPP-derived iAβ elicits the neuronal ISR. Thus, the essence of both, conventional and unconventional, forms of AD is one and the same, namely autonomous, self-sustainable, AβPP-independent production of iAβ. What distinguishes them is the manner of activation of this pathway, i.e., the mode of causation of the disease. In unconventional AD, processes occurring at locations as distant from and seemingly as unrelated to the brain as, say, the knee can potentially trigger the disease. The present study asserts that these processes include traumatic brain injury (TBI), chronic traumatic encephalopathy, viral and bacterial infections, and a wide array of inflammatory conditions. It considers the pathways which are common to all these occurrences and culminate in the elicitation of the neuronal ISR, analyzes the dynamics of conventional versus unconventional AD, shows how the former can morph into the latter, explains how a single TBI can hasten the occurrence of AD and why it takes multiple TBIs to trigger the disease, and proposes the appropriate therapeutic strategies. It posits that yet another class of unconventional AD may occur where the autonomous AβPP-independent iAβ production pathway is initiated by an ISR-unrelated activator, and consolidates the above notions in a theory of AD, designated ACH2.0/E (for expanded ACH2.0), which incorporates the ACH2.0 as its special case and retains the centrality of iAβ produced independently of AβPP as the driving agent of the disease.
Collapse
Affiliation(s)
- Vladimir Volloch
- Department of Developmental Biology, Harvard School of Dental Medicine, Boston, MA 02115, USA
| | - Sophia Rits-Volloch
- Division of Molecular Medicine, Children’s Hospital, Boston, MA 02115, USA
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA 02115, USA
| |
Collapse
|
19
|
Burkhart MC, Lee LY, Vaghari D, Toh AQ, Chong E, Chen C, Tiňo P, Kourtzi Z. Unsupervised multimodal modeling of cognitive and brain health trajectories for early dementia prediction. Sci Rep 2024; 14:10755. [PMID: 38729989 PMCID: PMC11087538 DOI: 10.1038/s41598-024-60914-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Accepted: 04/29/2024] [Indexed: 05/12/2024] Open
Abstract
Predicting the course of neurodegenerative disorders early has potential to greatly improve clinical management and patient outcomes. A key challenge for early prediction in real-world clinical settings is the lack of labeled data (i.e., clinical diagnosis). In contrast to supervised classification approaches that require labeled data, we propose an unsupervised multimodal trajectory modeling (MTM) approach based on a mixture of state space models that captures changes in longitudinal data (i.e., trajectories) and stratifies individuals without using clinical diagnosis for model training. MTM learns the relationship between states comprising expensive, invasive biomarkers (β-amyloid, grey matter density) and readily obtainable cognitive observations. MTM training on trajectories stratifies individuals into clinically meaningful clusters more reliably than MTM training on baseline data alone and is robust to missing data (i.e., cognitive data alone or single assessments). Extracting an individualized cognitive health index (i.e., MTM-derived cluster membership index) allows us to predict progression to AD more precisely than standard clinical assessments (i.e., cognitive tests or MRI scans alone). Importantly, MTM generalizes successfully from research cohort to real-world clinical data from memory clinic patients with missing data, enhancing the clinical utility of our approach. Thus, our multimodal trajectory modeling approach provides a cost-effective and non-invasive tool for early dementia prediction without labeled data (i.e., clinical diagnosis) with strong potential for translation to clinical practice.
Collapse
Affiliation(s)
- Michael C Burkhart
- Department of Psychology, University of Cambridge, Cambridge, CB2 3EB, UK
| | - Liz Y Lee
- Department of Psychology, University of Cambridge, Cambridge, CB2 3EB, UK
| | - Delshad Vaghari
- Department of Psychology, University of Cambridge, Cambridge, CB2 3EB, UK
| | - An Qi Toh
- Department of Pharmacology, Memory, Aging, and Cognition Center, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Eddie Chong
- Department of Pharmacology, Memory, Aging, and Cognition Center, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Christopher Chen
- Department of Pharmacology, Memory, Aging, and Cognition Center, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Peter Tiňo
- School of Computer Science, University of Birmingham, Birmingham, B15 2TT, UK
| | - Zoe Kourtzi
- Department of Psychology, University of Cambridge, Cambridge, CB2 3EB, UK.
| |
Collapse
|
20
|
Tsering W, Prokop S. Neuritic Plaques - Gateways to Understanding Alzheimer's Disease. Mol Neurobiol 2024; 61:2808-2821. [PMID: 37940777 PMCID: PMC11043180 DOI: 10.1007/s12035-023-03736-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Accepted: 10/21/2023] [Indexed: 11/10/2023]
Abstract
Extracellular deposits of amyloid-β (Aβ) in the form of plaques are one of the main pathological hallmarks of Alzheimer's disease (AD). Over the years, many different Aβ plaque morphologies such as neuritic plaques, dense cored plaques, cotton wool plaques, coarse-grain plaques, and diffuse plaques have been described in AD postmortem brain tissues, but correlation of a given plaque type with AD progression or AD symptoms is not clear. Furthermore, the exact trigger causing the development of one Aβ plaque morphological subtype over the other is still unknown. Here, we review the current knowledge about neuritic plaques, a subset of Aβ plaques surrounded by swollen or dystrophic neurites, which represent the most detrimental and consequential Aβ plaque morphology. Neuritic plaques have been associated with local immune activation, neuronal network dysfunction, and cognitive decline. Given that neuritic plaques are at the interface of Aβ deposition, tau aggregation, and local immune activation, we argue that understanding the exact mechanism of neuritic plaque formation is crucial to develop targeted therapies for AD.
Collapse
Affiliation(s)
- Wangchen Tsering
- Center for Translational Research in Neurodegenerative Disease, University of Florida, Gainesville, FL, USA
- Department of Neuroscience, University of Florida College of Medicine, Gainesville, FL, USA
- McKnight Brain Institute, University of Florida, Gainesville, USA
| | - Stefan Prokop
- Center for Translational Research in Neurodegenerative Disease, University of Florida, Gainesville, FL, USA.
- McKnight Brain Institute, University of Florida, Gainesville, USA.
- Department of Pathology, University of Florida, Gainesville, USA.
- Fixel Institute for Neurological Diseases, University of Florida, Gainesville, USA.
| |
Collapse
|
21
|
Volloch V, Rits-Volloch S. On the Inadequacy of the Current Transgenic Animal Models of Alzheimer's Disease: The Path Forward. Int J Mol Sci 2024; 25:2981. [PMID: 38474228 PMCID: PMC10932000 DOI: 10.3390/ijms25052981] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Revised: 02/27/2024] [Accepted: 02/28/2024] [Indexed: 03/14/2024] Open
Abstract
For at least two reasons, the current transgenic animal models of Alzheimer's disease (AD) appear to be patently inadequate. They may be useful in many respects, the AD models; however, they are not. First, they are incapable of developing the full spectrum of the AD pathology. Second, they respond spectacularly well to drugs that are completely ineffective in the treatment of symptomatic AD. These observations indicate that both the transgenic animal models and the drugs faithfully reflect the theory that guided the design and development of both, the amyloid cascade hypothesis (ACH), and that both are inadequate because their underlying theory is. This conclusion necessitated the formulation of a new, all-encompassing theory of conventional AD-the ACH2.0. The two principal attributes of the ACH2.0 are the following. One, in conventional AD, the agent that causes the disease and drives its pathology is the intraneuronal amyloid-β (iAβ) produced in two distinctly different pathways. Two, following the commencement of AD, the bulk of Aβ is generated independently of Aβ protein precursor (AβPP) and is retained inside the neuron as iAβ. Within the framework of the ACH2.0, AβPP-derived iAβ accumulates physiologically in a lifelong process. It cannot reach levels required to support the progression of AD; it does, however, cause the disease. Indeed, conventional AD occurs if and when the levels of AβPP-derived iAβ cross the critical threshold, elicit the neuronal integrated stress response (ISR), and trigger the activation of the AβPP-independent iAβ generation pathway; the disease commences only when this pathway is operational. The iAβ produced in this pathway reaches levels sufficient to drive the AD pathology; it also propagates its own production and thus sustains the activity of the pathway and perpetuates its operation. The present study analyzes the reason underlying the evident inadequacy of the current transgenic animal models of AD. It concludes that they model, in fact, not Alzheimer's disease but rather the effects of the neuronal ISR sustained by AβPP-derived iAβ, that this is due to the lack of the operational AβPP-independent iAβ production pathway, and that this mechanism must be incorporated into any successful AD model faithfully emulating the disease. The study dissects the plausible molecular mechanisms of the AβPP-independent iAβ production and the pathways leading to their activation, and introduces the concept of conventional versus unconventional Alzheimer's disease. It also proposes the path forward, posits the principles of design of productive transgenic animal models of the disease, and describes the molecular details of their construction.
Collapse
Affiliation(s)
- Vladimir Volloch
- Department of Developmental Biology, Harvard School of Dental Medicine, Boston, MA 02115, USA
| | - Sophia Rits-Volloch
- Division of Molecular Medicine, Children’s Hospital, Boston, MA 02115, USA
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA 02115, USA
| |
Collapse
|
22
|
Volloch V, Rits-Volloch S. Next Generation Therapeutic Strategy for Treatment and Prevention of Alzheimer's Disease and Aging-Associated Cognitive Decline: Transient, Once-in-a-Lifetime-Only Depletion of Intraneuronal Aβ ( iAβ) by Its Targeted Degradation via Augmentation of Intra- iAβ-Cleaving Activities of BACE1 and/or BACE2. Int J Mol Sci 2023; 24:17586. [PMID: 38139415 PMCID: PMC10744314 DOI: 10.3390/ijms242417586] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Revised: 12/04/2023] [Accepted: 12/05/2023] [Indexed: 12/24/2023] Open
Abstract
Although the long-standing Amyloid Cascade Hypothesis (ACH) has been largely discredited, its main attribute, the centrality of amyloid-beta (Aβ) in Alzheimer's disease (AD), remains the cornerstone of any potential interpretation of the disease: All known AD-causing mutations, without a single exception, affect, in one way or another, Aβ. The ACH2.0, a recently introduced theory of AD, preserves this attribute but otherwise differs fundamentally from the ACH. It posits that AD is a two-stage disorder where both stages are driven by intraneuronal (rather than extracellular) Aβ (iAβ) albeit of two distinctly different origins. The first asymptomatic stage is the decades-long accumulation of Aβ protein precursor (AβPP)-derived iAβ to the critical threshold. This triggers the activation of the self-sustaining AβPP-independent iAβ production pathway and the commencement of the second, symptomatic AD stage. Importantly, Aβ produced independently of AβPP is retained intraneuronally. It drives the AD pathology and perpetuates the operation of the pathway; continuous cycles of the iAβ-stimulated propagation of its own AβPP-independent production constitute an engine that drives AD, the AD Engine. It appears that the dynamics of AβPP-derived iAβ accumulation is the determining factor that either drives Aging-Associated Cognitive Decline (AACD) and triggers AD or confers the resistance to both. Within the ACH2.0 framework, the ACH-based drugs, designed to lower levels of extracellular Aβ, could be applicable in the prevention of AD and treatment of AACD because they reduce the rate of accumulation of AβPP-derived iAβ. The present study analyzes their utility and concludes that it is severely limited. Indeed, their short-term employment is ineffective, their long-term engagement is highly problematic, their implementation at the symptomatic stages of AD is futile, and their evaluation in conventional clinical trials for the prevention of AD is impractical at best, impossible at worst, and misleading in between. In contrast, the ACH2.0-guided Next Generation Therapeutic Strategy for the treatment and prevention of both AD and AACD, namely the depletion of iAβ via its transient, short-duration, targeted degradation by the novel ACH2.0-based drugs, has none of the shortcomings of the ACH-based drugs. It is potentially highly effective, easily evaluable in clinical trials, and opens up the possibility of once-in-a-lifetime-only therapeutic intervention for prevention and treatment of both conditions. It also identifies two plausible ACH2.0-based drugs: activators of physiologically occurring intra-iAβ-cleaving capabilities of BACE1 and/or BACE2.
Collapse
Affiliation(s)
- Vladimir Volloch
- Department of Developmental Biology, Harvard School of Dental Medicine, Boston, MA 02115, USA
| | - Sophia Rits-Volloch
- Division of Molecular Medicine, Children’s Hospital, Boston, MA 02115, USA
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA 02115, USA
| |
Collapse
|
23
|
Tsering W, Hery GP, Phillips JL, Lolo K, Bathe T, Villareal JA, Ruan IY, Prokop S. Transformation of non-neuritic into neuritic plaques during AD progression drives cortical spread of tau pathology via regenerative failure. Acta Neuropathol Commun 2023; 11:190. [PMID: 38037144 PMCID: PMC10691154 DOI: 10.1186/s40478-023-01688-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Accepted: 11/10/2023] [Indexed: 12/02/2023] Open
Abstract
Extracellular amyloid-β (Aβ) plaques and intracellular aggregates of tau protein in form of neurofibrillary tangles (NFT) are pathological hallmarks of Alzheimer's disease (AD). The exact mechanism how these two protein aggregates interact in AD is still a matter of debate. Neuritic plaques (NP), a subset of Aβ plaques containing dystrophic neurites (DN), are suggested to be unique to AD and might play a role in the interaction of Aβ and tau. Quantifying NP and non-NP in postmortem brain specimens from patients with increasing severity of AD neuropathological changes (ADNC), we demonstrate that the total number of Aβ plaques and NP increase, while the number of non-NP stagnates. Furthermore, investigating the correlation between NP and NFT, we identified unexpected brain region-specific differences when comparing cases with increasingly more severe ADNC. In neocortical regions NFT counts increase in parallel with NP counts during the progression of ADNC, while this correlation is not observed in hippocampus. These data support the notion that non-NP are transformed into NP during the progression of ADNC and indicate that NP might drive cortical NFT formation. Next, using spatial transcriptomics, we analyzed the gene expression profile of the microenvironment around non-NP and NP. We identified an upregulation of neuronal systems and Ca-dependent event pathways around NP compared to non-NP. We speculate that the upregulation of these transcripts may hint at a compensatory mechanism underlying NP formation. Our studies suggest that the transformation of non-NP to NP is a key event in ADNC progression and points to regenerative failure as a potential driving force of this process.
Collapse
Affiliation(s)
- Wangchen Tsering
- Center for Translational Research in Neurodegenerative Disease, College of Medicine, University of Florida, Gainesville, FL, USA
- Department of Neuroscience, College of Medicine, University of Florida, Gainesville, FL, USA
- College of Medicine, Mcknight Brain Institute, University of Florida, Gainesville, FL, USA
| | - Gabriela P Hery
- Center for Translational Research in Neurodegenerative Disease, College of Medicine, University of Florida, Gainesville, FL, USA
- Department of Pathology, College of Medicine, University of Florida, Gainesville, FL, USA
| | - Jennifer L Phillips
- Center for Translational Research in Neurodegenerative Disease, College of Medicine, University of Florida, Gainesville, FL, USA
- Department of Pathology, College of Medicine, University of Florida, Gainesville, FL, USA
| | - Kiara Lolo
- Center for Translational Research in Neurodegenerative Disease, College of Medicine, University of Florida, Gainesville, FL, USA
| | - Tim Bathe
- Center for Translational Research in Neurodegenerative Disease, College of Medicine, University of Florida, Gainesville, FL, USA
- Department of Pathology, College of Medicine, University of Florida, Gainesville, FL, USA
- College of Medicine, Mcknight Brain Institute, University of Florida, Gainesville, FL, USA
| | - Jonathan A Villareal
- Center for Translational Research in Neurodegenerative Disease, College of Medicine, University of Florida, Gainesville, FL, USA
| | - Isabelle Y Ruan
- Center for Translational Research in Neurodegenerative Disease, College of Medicine, University of Florida, Gainesville, FL, USA
| | - Stefan Prokop
- Center for Translational Research in Neurodegenerative Disease, College of Medicine, University of Florida, Gainesville, FL, USA.
- Department of Pathology, College of Medicine, University of Florida, Gainesville, FL, USA.
- College of Medicine, Mcknight Brain Institute, University of Florida, Gainesville, FL, USA.
- Fixel Institute for Neurological Diseases, University of Florida, Gainesville, FL, USA.
| |
Collapse
|
24
|
Yada Y, Naoki H. Few-shot prediction of amyloid β accumulation from mainly unpaired data on biomarker candidates. NPJ Syst Biol Appl 2023; 9:59. [PMID: 37993458 PMCID: PMC10665362 DOI: 10.1038/s41540-023-00321-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Accepted: 11/06/2023] [Indexed: 11/24/2023] Open
Abstract
The pair-wise observation of the input and target values obtained from the same sample is mandatory in any prediction problem. In the biomarker discovery of Alzheimer's disease (AD), however, obtaining such paired data is laborious and often avoided. Accumulation of amyloid-beta (Aβ) in the brain precedes neurodegeneration in AD, and the quantitative accumulation level may reflect disease progression in the very early phase. Nevertheless, the direct observation of Aβ is rarely paired with the observation of other biomarker candidates. To this end, we established a method that quantitatively predicts Aβ accumulation from biomarker candidates by integrating the mostly unpaired observations via a few-shot learning approach. When applied to 5xFAD mouse behavioral data, the proposed method predicted the accumulation level that conformed to the observed amount of Aβ in the samples with paired data. The results suggest that the proposed model can contribute to discovering Aβ predictability-based biomarkers.
Collapse
Affiliation(s)
- Yuichiro Yada
- Laboratory of Data-driven Biology, Graduate School of Integrated Sciences for Life, Hiroshima University, Kagamiyama, Higashi-hiroshima, Hiroshima, 739-8526, Japan.
| | - Honda Naoki
- Laboratory of Data-driven Biology, Graduate School of Integrated Sciences for Life, Hiroshima University, Kagamiyama, Higashi-hiroshima, Hiroshima, 739-8526, Japan.
- Kansei-Brain Informatics Group, Center for Brain, Mind and Kansei Sciences Research (BMK Center), Hiroshima University, Kasumi, Minami-ku, Hiroshima, 734-8551, Japan.
- Laboratory of Theoretical Biology, Graduate School of Biostudies, Kyoto University, Yoshidakonoecho, Sakyo, Kyoto, 606-8315, Japan.
- Theoretical Biology Research Group, Exploratory Research Center on Life and Living Systems (ExCELLS), National Institutes of Natural Sciences, Okazaki, Aichi, 444-8787, Japan.
| |
Collapse
|
25
|
Yamashima T, Seike T, Mochly-Rosen D, Chen CH, Kikuchi M, Mizukoshi E. Implication of the cooking oil-peroxidation product "hydroxynonenal" for Alzheimer's disease. Front Aging Neurosci 2023; 15:1211141. [PMID: 37693644 PMCID: PMC10486274 DOI: 10.3389/fnagi.2023.1211141] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Accepted: 07/31/2023] [Indexed: 09/12/2023] Open
Abstract
Aldehyde dehydrogenase 2 (ALDH2) is a mitochondrial enzyme that reduces cell injuries via detoxification of lipid-peroxidation product, 4-hydroxy-2-nonenal (hydroxynonenal). It is generated exogenously via deep-frying of linoleic acid-rich cooking oils and/or endogenously via oxidation of fatty acids involved in biomembranes. Although its toxicity for human health is widely accepted, the underlying mechanism long remained unknown. In 1998, Yamashima et al. have formulated the "calpain-cathepsin hypothesis" as a molecular mechanism of ischemic neuronal death. Subsequently, they found that calpain cleaves Hsp70.1 which became vulnerable after the hydroxynonenal-induced carbonylation at the key site Arg469. Since it is the pivotal aberration that induces lysosomal membrane rupture, they suggested that neuronal death in Alzheimer's disease similarly occurs by chronic ischemia via the calpain-cathepsin cascade triggered by hydroxynonenal. For nearly three decades, amyloid β (Aβ) peptide was thought to be a root substance of Alzheimer's disease. However, because of both the insignificant correlations between Aβ depositions and occurrence of neuronal death or dementia, and the negative results of anti-Aβ medicines tested so far in the patients with Alzheimer's disease, the strength of the "amyloid cascade hypothesis" has been weakened. Recent works have suggested that hydroxynonenal is a mediator of programmed cell death not only in the brain, but also in the liver, pancreas, heart, etc. Increment of hydroxynonenal was considered an early event in the development of Alzheimer's disease. This review aims at suggesting ways out of the tunnel, focusing on the implication of hydroxynonenal in this disease. Herein, the mechanism of Alzheimer neuronal death is discussed by focusing on Hsp70.1 with a dual function as chaperone protein and lysosomal stabilizer. We suggest that Aβ is not a culprit of Alzheimer's disease, but merely a byproduct of autophagy/lysosomal failure resulting from hydroxynonenal-induced Hsp70.1 disorder. Enhancing ALDH2 activity to detoxify hydroxynonenal emerges as a promising strategy for preventing and treating Alzheimer's disease.
Collapse
Affiliation(s)
- Tetsumori Yamashima
- Department of Psychiatry and Behavioral Science, Kanazawa University Graduate School of Medical Sciences, Kanazawa, Japan
- Department of Gastroenterology, Kanazawa University Graduate School of Medical Sciences, Kanazawa, Japan
| | - Takuya Seike
- Department of Gastroenterology, Kanazawa University Graduate School of Medical Sciences, Kanazawa, Japan
- Department of Chemical and Systems Biology, Stanford University School of Medicine, Stanford, CA, United States
| | - Daria Mochly-Rosen
- Department of Chemical and Systems Biology, Stanford University School of Medicine, Stanford, CA, United States
| | - Che-Hong Chen
- Department of Chemical and Systems Biology, Stanford University School of Medicine, Stanford, CA, United States
| | - Mitsuru Kikuchi
- Department of Psychiatry and Behavioral Science, Kanazawa University Graduate School of Medical Sciences, Kanazawa, Japan
| | - Eishiro Mizukoshi
- Department of Gastroenterology, Kanazawa University Graduate School of Medical Sciences, Kanazawa, Japan
| |
Collapse
|
26
|
Lathe R, St Clair D. Programmed ageing: decline of stem cell renewal, immunosenescence, and Alzheimer's disease. Biol Rev Camb Philos Soc 2023; 98:1424-1458. [PMID: 37068798 DOI: 10.1111/brv.12959] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 03/27/2023] [Accepted: 03/30/2023] [Indexed: 04/19/2023]
Abstract
The characteristic maximum lifespan varies enormously across animal species from a few hours to hundreds of years. This argues that maximum lifespan, and the ageing process that itself dictates lifespan, are to a large extent genetically determined. Although controversial, this is supported by firm evidence that semelparous species display evolutionarily programmed ageing in response to reproductive and environmental cues. Parabiosis experiments reveal that ageing is orchestrated systemically through the circulation, accompanied by programmed changes in hormone levels across a lifetime. This implies that, like the circadian and circannual clocks, there is a master 'clock of age' (circavital clock) located in the limbic brain of mammals that modulates systemic changes in growth factor and hormone secretion over the lifespan, as well as systemic alterations in gene expression as revealed by genomic methylation analysis. Studies on accelerated ageing in mice, as well as human longevity genes, converge on evolutionarily conserved fibroblast growth factors (FGFs) and their receptors, including KLOTHO, as well as insulin-like growth factors (IGFs) and steroid hormones, as key players mediating the systemic effects of ageing. Age-related changes in these and multiple other factors are inferred to cause a progressive decline in tissue maintenance through failure of stem cell replenishment. This most severely affects the immune system, which requires constant renewal from bone marrow stem cells. Age-related immune decline increases risk of infection whereas lifespan can be extended in germfree animals. This and other evidence suggests that infection is the major cause of death in higher organisms. Immune decline is also associated with age-related diseases. Taking the example of Alzheimer's disease (AD), we assess the evidence that AD is caused by immunosenescence and infection. The signature protein of AD brain, Aβ, is now known to be an antimicrobial peptide, and Aβ deposits in AD brain may be a response to infection rather than a cause of disease. Because some cognitively normal elderly individuals show extensive neuropathology, we argue that the location of the pathology is crucial - specifically, lesions to limbic brain are likely to accentuate immunosenescence, and could thus underlie a vicious cycle of accelerated immune decline and microbial proliferation that culminates in AD. This general model may extend to other age-related diseases, and we propose a general paradigm of organismal senescence in which declining stem cell proliferation leads to programmed immunosenescence and mortality.
Collapse
Affiliation(s)
- Richard Lathe
- Division of Infection Medicine, Chancellor's Building, University of Edinburgh Medical School, Little France, Edinburgh, EH16 4SB, UK
| | - David St Clair
- Institute of Medical Sciences, School of Medicine, University of Aberdeen, Aberdeen, AB25 2ZD, UK
| |
Collapse
|
27
|
Volloch V, Rits-Volloch S. The Amyloid Cascade Hypothesis 2.0 for Alzheimer's Disease and Aging-Associated Cognitive Decline: From Molecular Basis to Effective Therapy. Int J Mol Sci 2023; 24:12246. [PMID: 37569624 PMCID: PMC10419172 DOI: 10.3390/ijms241512246] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Revised: 07/26/2023] [Accepted: 07/27/2023] [Indexed: 08/13/2023] Open
Abstract
With the long-standing amyloid cascade hypothesis (ACH) largely discredited, there is an acute need for a new all-encompassing interpretation of Alzheimer's disease (AD). Whereas such a recently proposed theory of AD is designated ACH2.0, its commonality with the ACH is limited to the recognition of the centrality of amyloid-β (Aβ) in the disease, necessitated by the observation that all AD-causing mutations affect, in one way or another, Aβ. Yet, even this narrow commonality is superficial since AD-causing Aβ of the ACH differs distinctly from that specified in the ACH2.0: Whereas in the former, the disease is caused by secreted extracellular Aβ, in the latter, it is triggered by Aβ-protein-precursor (AβPP)-derived intraneuronal Aβ (iAβ) and driven by iAβ generated independently of AβPP. The ACH2.0 envisions AD as a two-stage disorder. The first, asymptomatic stage is a decades-long accumulation of AβPP-derived iAβ, which occurs via internalization of secreted Aβ and through intracellular retention of a fraction of Aβ produced by AβPP proteolysis. When AβPP-derived iAβ reaches critical levels, it activates a self-perpetuating AβPP-independent production of iAβ that drives the second, devastating AD stage, a cascade that includes tau pathology and culminates in neuronal loss. The present study analyzes the dynamics of iAβ accumulation in health and disease and concludes that it is the prime factor driving both AD and aging-associated cognitive decline (AACD). It discusses mechanisms potentially involved in AβPP-independent generation of iAβ, provides mechanistic interpretations for all principal aspects of AD and AACD including the protective effect of the Icelandic AβPP mutation, the early onset of FAD and the sequential manifestation of AD pathology in defined regions of the affected brain, and explains why current mouse AD models are neither adequate nor suitable. It posits that while drugs affecting the accumulation of AβPP-derived iAβ can be effective only protectively for AD, the targeted degradation of iAβ is the best therapeutic strategy for both prevention and effective treatment of AD and AACD. It also proposes potential iAβ-degrading drugs.
Collapse
Affiliation(s)
- Vladimir Volloch
- Department of Developmental Biology, Harvard School of Dental Medicine, Boston, MA 02115, USA
| | - Sophia Rits-Volloch
- Division of Molecular Medicine, Children’s Hospital, Boston, MA 02115, USA
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA 02115, USA
| |
Collapse
|
28
|
Madnani RS. Alzheimer's disease: a mini-review for the clinician. Front Neurol 2023; 14:1178588. [PMID: 37426432 PMCID: PMC10325860 DOI: 10.3389/fneur.2023.1178588] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Accepted: 06/02/2023] [Indexed: 07/11/2023] Open
Abstract
Alzheimer's disease (AD), the most common form of dementia, is a striking example of the connection between neurophysiological abnormalities and higher-order cognitive deficiencies. Since its initial description in 1906, research into the pathophysiology and etiology of AD has led to the illumination of an incredibly complex set of genetic and molecular mechanisms for the disease's progression, characterized by much more than the neuropathological hallmarks of beta-amyloid (Aβ) plaques and neurofibrillary tangles (NFTs). In this review, findings relating the neurodegeneration present in AD to its clinical presentation and treatment are summarized, with an emphasis on the interconnectedness of disease pathophysiology. Further, diagnostic guidelines are provided based on the National Institute on Aging-Alzheimer's Association (NIA-AA) workgroup's clinical recommendations. Through the dissemination of detailed but digestible open access resources such as this one, we can move towards an increase in the equity and accessibility of education for the modern clinician.
Collapse
|
29
|
Avelar-Pereira B, Belloy ME, O'Hara R, Hosseini SMH. Decoding the heterogeneity of Alzheimer's disease diagnosis and progression using multilayer networks. Mol Psychiatry 2023; 28:2423-2432. [PMID: 36539525 PMCID: PMC10279806 DOI: 10.1038/s41380-022-01886-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Revised: 09/19/2022] [Accepted: 11/10/2022] [Indexed: 12/24/2022]
Abstract
Alzheimer's disease (AD) is a multifactorial and heterogeneous disorder, which makes early detection a challenge. Studies have attempted to combine biomarkers to improve AD detection and predict progression. However, most of the existing work reports results in parallel or compares normalized findings but does not analyze data simultaneously. We tested a multi-dimensional network framework, applied to 490 subjects (cognitively normal [CN] = 147; mild cognitive impairment [MCI] = 287; AD = 56) from ADNI, to create a single model capable of capturing the heterogeneity and progression of AD. First, we constructed subject similarity networks for structural magnetic resonance imaging, amyloid-β positron emission tomography, cerebrospinal fluid, cognition, and genetics data and then applied multilayer community detection to find groups with shared similarities across modalities. Individuals were also followed-up longitudinally, with AD subjects having, on average, 4.5 years of follow-up. Our findings show that multilayer community detection allows for accurate identification of present and future AD (≈90%) and is also able to identify cases that were misdiagnosed clinically. From all MCI participants who developed AD or reverted to CN, the multilayer model correctly identified 90.8% and 88.5% of cases respectively. We observed similar subtypes across the full sample and when examining multimodal data from subjects with no AD pathology (i.e., amyloid negative). Finally, these results were also validated using an independent testing set. In summary, the multilayer framework is successful in detecting AD and provides unique insight into the heterogeneity of the disease by identifying subtypes that share similar multidisciplinary profiles of neurological, cognitive, pathological, and genetics information.
Collapse
Affiliation(s)
- Bárbara Avelar-Pereira
- Department of Psychiatry and Behavioral Sciences, School of Medicine, Stanford University, Stanford, CA, 94304, USA.
| | - Michael E Belloy
- Department of Neurology and Neurological Sciences, School of Medicine, Stanford University, Stanford, CA, 94304, USA
| | - Ruth O'Hara
- Department of Psychiatry and Behavioral Sciences, School of Medicine, Stanford University, Stanford, CA, 94304, USA
| | - S M Hadi Hosseini
- Department of Psychiatry and Behavioral Sciences, School of Medicine, Stanford University, Stanford, CA, 94304, USA.
| |
Collapse
|
30
|
Dreos A, Ge J, Najera F, Tebikachew BE, Perez-Inestrosa E, Moth-Poulsen K, Blennow K, Zetterberg H, Hanrieder J. Investigating New Applications of a Photoswitchable Fluorescent Norbornadiene as a Multifunctional Probe for Delineation of Amyloid Plaque Polymorphism. ACS Sens 2023; 8:1500-1509. [PMID: 36946692 PMCID: PMC10152485 DOI: 10.1021/acssensors.2c02496] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Accepted: 03/03/2023] [Indexed: 03/23/2023]
Abstract
Amyloid beta (Aβ) plaques are a major pathological hallmark of Alzheimer's disease (AD) and constitute of structurally heterogenic entities (polymorphs) that have been implicated in the phenotypic heterogeneity of AD pathology and pathogenesis. Understanding amyloid aggregation has been a critical limiting factor to gain understanding of AD pathogenesis, ultimately reflected in that the underlying mechanism remains elusive. We identified a fluorescent probe in the form of a turn-off photoswitchable norbornadiene derivative (NBD1) with several microenvironment-sensitive properties that make it relevant for applications within advanced fluorescence imaging, for example, multifunctional imaging. We explored the application of NBD1 for in situ delineation of structurally heterogenic Aβ plaques in transgenic AD mouse models. NBD1 plaque imaging shows characteristic broader emission bands in the periphery and more narrow emission bands in the dense cores of mature cored plaques. Further, we demonstrate in situ photoisomerization of NBD1 to quadricyclane and thermal recovery in single plaques, which is relevant for applications within both functional and super-resolution imaging. This is the first time a norbornadiene photoswitch has been used as a probe for fluorescence imaging of Aβ plaque pathology in situ and that its spectroscopic and switching properties have been studied within the specific environment of senile Aβ plaques. These findings open the way toward new applications of NBD-based photoswitchable fluorescent probes for super-resolution or dual-color imaging and multifunctional microscopy of amyloid plaque heterogeneity. This could allow to visualize Aβ plaques with resolution beyond the diffraction limit, label different plaque types, and gain insights into their physicochemical composition.
Collapse
Affiliation(s)
- Ambra Dreos
- Department
of Psychiatry and Neurochemistry, Sahlgrenska Academy, University of Gothenburg, 43180 Mölndal, Sweden
- Instituto
de Investigación Biomédica de Málaga y Plataforma
en Nanomedicina−IBIMA Plataforma Bionand, 29590 Malaga, Spain
| | - Junyue Ge
- Department
of Psychiatry and Neurochemistry, Sahlgrenska Academy, University of Gothenburg, 43180 Mölndal, Sweden
| | - Francisco Najera
- Instituto
de Investigación Biomédica de Málaga y Plataforma
en Nanomedicina−IBIMA Plataforma Bionand, 29590 Malaga, Spain
- Departamento
de Química Orgánica, Facultad de Ciencias, Universidad de Málaga, 29071 Málaga, Spain
| | - Behabitu Ergette Tebikachew
- Department
of Chemistry and Chemical Engineering, Chalmers
University of Technology, 41296 Gothenburg, Sweden
| | - Ezequiel Perez-Inestrosa
- Instituto
de Investigación Biomédica de Málaga y Plataforma
en Nanomedicina−IBIMA Plataforma Bionand, 29590 Malaga, Spain
- Departamento
de Química Orgánica, Facultad de Ciencias, Universidad de Málaga, 29071 Málaga, Spain
| | - Kasper Moth-Poulsen
- Department
of Chemistry and Chemical Engineering, Chalmers
University of Technology, 41296 Gothenburg, Sweden
- Institute
of Materials Science of Barcelona, ICMAB-CSIC, Bellaterra, 08193 Barcelona, Spain
- Catalan
Institution for Research and Advanced Studies ICREA, Pg. Lluís Companys 23, 08010 Barcelona, Spain
- Department
of Chemical Engineering, Universitat Politecnica
de Catalunya, EEBE, Eduard
Maristany 10-14, 08019 Barcelona, Spain
| | - Kaj Blennow
- Department
of Psychiatry and Neurochemistry, Sahlgrenska Academy, University of Gothenburg, 43180 Mölndal, Sweden
- Clinical
Neurochemistry Laboratory, Sahlgrenska University
Hospital, 43180 Mölndal, Sweden
| | - Henrik Zetterberg
- Department
of Psychiatry and Neurochemistry, Sahlgrenska Academy, University of Gothenburg, 43180 Mölndal, Sweden
- Clinical
Neurochemistry Laboratory, Sahlgrenska University
Hospital, 43180 Mölndal, Sweden
- Department
of Neurodegenerative Disease, Queen Square Institute of Neurology, University College London, London WC1N 3BG, UK
- UK
Dementia Research Institute, University
College London, London WC1N 3BG, UK
- Hong
Kong Center for Neurodegenerative Diseases, Hong Kong 1512-1518, China
- UW
Department of Medicine, School of Medicine and Public Health, Madison, Wisconsin 53726, United States
| | - Jörg Hanrieder
- Department
of Psychiatry and Neurochemistry, Sahlgrenska Academy, University of Gothenburg, 43180 Mölndal, Sweden
- Department
of Neurodegenerative Disease, Queen Square Institute of Neurology, University College London, London WC1N 3BG, UK
| |
Collapse
|
31
|
Ng PY, McNeely TL, Baker DJ. Untangling senescent and damage-associated microglia in the aging and diseased brain. FEBS J 2023; 290:1326-1339. [PMID: 34873840 PMCID: PMC9167891 DOI: 10.1111/febs.16315] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Revised: 11/16/2021] [Accepted: 12/06/2021] [Indexed: 01/10/2023]
Abstract
Microglial homeostasis has emerged as a critical mediator of health and disease in the central nervous system. In their neuroprotective role as the predominant immune cells of the brain, microglia surveil the microenvironment for debris and pathogens, while also promoting neurogenesis and performing maintenance on synapses. Chronological ageing, disease onset, or traumatic injury promotes irreparable damage or deregulated signaling to reinforce neurotoxic phenotypes in microglia. These insults may include cellular senescence, a stable growth arrest often accompanied by the production of a distinctive pro-inflammatory secretory phenotype, which may contribute to age- or disease-driven decline in neuronal health and cognition and is a potential novel therapeutic target. Despite this increased scrutiny, unanswered questions remain about what distinguishes senescent microglia and non-senescent microglia reacting to insults occurring in ageing, disease, and injury, and how central the development of senescence is in their pivot from guardian to assailant. To intelligently design future studies to untangle senescent microglia from other primed and reactionary states, specific criteria must be developed that define this population and allow for comparisons between different model systems. Comparing microglial activity seen in homeostasis, ageing, disease, and injury allows for a more coherent understanding of when and how senescent and other harmful microglial subpopulations should be targeted.
Collapse
Affiliation(s)
- Pei Y Ng
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, MN, USA
| | - Taylor L McNeely
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, MN, USA
| | - Darren J Baker
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, MN, USA.,Department of Pediatric and Adolescent Medicine, Mayo Clinic, Rochester, MN, USA
| |
Collapse
|
32
|
Volloch V, Rits-Volloch S. The Amyloid Cascade Hypothesis 2.0: Generalization of the Concept. J Alzheimers Dis Rep 2023; 7:21-35. [PMID: 36777328 PMCID: PMC9912825 DOI: 10.3233/adr-220079] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Accepted: 12/09/2022] [Indexed: 12/31/2022] Open
Abstract
Recently, we proposed the Amyloid Cascade Hypothesis 2.0 (ACH2.0), a reformulation of the ACH. In the former, in contrast to the latter, Alzheimer's disease (AD) is driven by intraneuronal amyloid-β (iAβ) and occurs in two stages. In the first, relatively benign stage, Aβ protein precursor (AβPP)-derived iAβ activates, upon reaching a critical threshold, the AβPP-independent iAβ-generating pathway, triggering a devastating second stage resulting in neuronal death. While the ACH2.0 remains aligned with the ACH premise that Aβ is toxic, the toxicity is exerted because of intra- rather than extracellular Aβ. In this framework, a once-in-a-lifetime-only iAβ depletion treatment via transient activation of BACE1 and/or BACE2 (exploiting their Aβ-cleaving activities) or by any means appears to be the best therapeutic strategy for AD. Whereas the notion of differentially derived iAβ being the principal moving force at both AD stages is both plausible and elegant, a possibility remains that the second AD stage is enabled by an AβPP-derived iAβ-activated self-sustaining mechanism producing a yet undefined deleterious "substance X" (sX) which anchors the second AD stage. The present study generalizes the ACH2.0 by incorporating this possibility and shows that, in this scenario, the iAβ depletion therapy may be ineffective at symptomatic AD stages but fully retains its preventive potential for both AD and the aging-associated cognitive decline, which is defined in the ACH2.0 framework as the extended first stage of AD.
Collapse
Affiliation(s)
- Vladimir Volloch
- Department of Developmental Biology, Harvard School of Dental Medicine, Boston, MA, USA,Correspondence to: Vladimir Volloch, Department of Developmental Biology, Harvard School of Dental Medicine, Boston, MA, USA. and Sophia Rits-Volloch, Division of Molecular Medicine, Children’s Hospital, Boston, MA, USA. E-mail:
| | - Sophia Rits-Volloch
- Division of Molecular Medicine, Children’s Hospital, Boston, MA, USA,Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
33
|
Murray ME, Moloney CM, Kouri N, Syrjanen JA, Matchett BJ, Rothberg DM, Tranovich JF, Sirmans TNH, Wiste HJ, Boon BDC, Nguyen AT, Reichard RR, Dickson DW, Lowe VJ, Dage JL, Petersen RC, Jack CR, Knopman DS, Vemuri P, Graff-Radford J, Mielke MM. Global neuropathologic severity of Alzheimer's disease and locus coeruleus vulnerability influences plasma phosphorylated tau levels. Mol Neurodegener 2022; 17:85. [PMID: 36575455 PMCID: PMC9795667 DOI: 10.1186/s13024-022-00578-0] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Accepted: 10/26/2022] [Indexed: 12/28/2022] Open
Abstract
BACKGROUND Advances in ultrasensitive detection of phosphorylated tau (p-tau) in plasma has enabled the use of blood tests to measure Alzheimer's disease (AD) biomarker changes. Examination of postmortem brains of participants with antemortem plasma p-tau levels remains critical to understanding comorbid and AD-specific contribution to these biomarker changes. METHODS We analyzed 35 population-based Mayo Clinic Study of Aging participants with plasma p-tau at threonine 181 and threonine 217 (p-tau181, p-tau217) available within 3 years of death. Autopsied participants included cognitively unimpaired, mild cognitive impairment, AD dementia, and non-AD neurodegenerative disorders. Global neuropathologic scales of tau, amyloid-β, TDP-43, and cerebrovascular disease were examined. Regional digital pathology measures of tau (phosphorylated threonine 181 and 217 [pT181, pT217]) and amyloid-β (6F/3D) were quantified in hippocampus and parietal cortex. Neurotransmitter hubs reported to influence development of tangles (nucleus basalis of Meynert) and amyloid-β plaques (locus coeruleus) were evaluated. RESULTS The strongest regional associations were with parietal cortex for tau burden (p-tau181 R = 0.55, p = 0.003; p-tau217 R = 0.66, p < 0.001) and amyloid-β burden (p-tau181 R = 0.59, p < 0.001; p-tau217 R = 0.71, p < 0.001). Linear regression analysis of global neuropathologic scales explained 31% of variability in plasma p-tau181 (Adj. R2 = 0.31) and 59% in plasma p-tau217 (Adj. R2 = 0.59). Neither TDP-43 nor cerebrovascular disease global scales independently contributed to variability. Global scales of tau pathology (β-coefficient = 0.060, p = 0.016) and amyloid-β pathology (β-coefficient = 0.080, p < 0.001) independently predicted plasma p-tau217 when modeled together with co-pathologies, but only amyloid-β (β-coefficient = 0.33, p = 0.021) significantly predicted plasma p-tau181. While nucleus basalis of Meynert neuron count/mm2 was not associated with plasma p-tau levels, a lower locus coeruleus neuron count/mm2 was associated with higher plasma p-tau181 (R = -0.50, p = 0.007) and higher plasma p-tau217 (R = -0.55, p = 0.002). Cognitive scores (Adj. R2 = 0.25-0.32) were predicted by the global tau scale, but not by the global amyloid-β scale or plasma p-tau when modeled simultaneously. CONCLUSIONS Higher soluble plasma p-tau levels may be the result of an intersection between insoluble deposits of amyloid-β and tau accumulation in brain, and may be associated with locus coeruleus degeneration.
Collapse
Affiliation(s)
- Melissa E. Murray
- Department of Neuroscience, Mayo Clinic Florida, 4500 San Pablo Road, Jacksonville, FL 32224 USA
| | - Christina M. Moloney
- Department of Neuroscience, Mayo Clinic Florida, 4500 San Pablo Road, Jacksonville, FL 32224 USA
| | - Naomi Kouri
- Department of Neuroscience, Mayo Clinic Florida, 4500 San Pablo Road, Jacksonville, FL 32224 USA
| | - Jeremy A. Syrjanen
- Department of Quantitative Health Sciences, Mayo Clinic, Rochester, MN USA
| | - Billie J. Matchett
- Department of Neuroscience, Mayo Clinic Florida, 4500 San Pablo Road, Jacksonville, FL 32224 USA
| | - Darren M. Rothberg
- Department of Neuroscience, Mayo Clinic Florida, 4500 San Pablo Road, Jacksonville, FL 32224 USA
| | - Jessica F. Tranovich
- Department of Neuroscience, Mayo Clinic Florida, 4500 San Pablo Road, Jacksonville, FL 32224 USA
| | - Tiffany N. Hicks Sirmans
- Department of Neuroscience, Mayo Clinic Florida, 4500 San Pablo Road, Jacksonville, FL 32224 USA
| | - Heather J. Wiste
- Department of Quantitative Health Sciences, Mayo Clinic, Rochester, MN USA
| | - Baayla D. C. Boon
- Department of Neuroscience, Mayo Clinic Florida, 4500 San Pablo Road, Jacksonville, FL 32224 USA
| | - Aivi T. Nguyen
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN USA
| | - R. Ross Reichard
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN USA
| | - Dennis W. Dickson
- Department of Neuroscience, Mayo Clinic Florida, 4500 San Pablo Road, Jacksonville, FL 32224 USA
| | - Val J. Lowe
- Department of Radiology, Mayo Clinic, Rochester, MN USA
| | - Jeffrey L. Dage
- Department of Neurology, Indiana University, Indianapolis, IN USA
| | | | | | | | | | | | - Michelle M. Mielke
- Department of Quantitative Health Sciences, Mayo Clinic, Rochester, MN USA
- Wake Forest University School of Medicine, Winston-Salem, NC USA
- Department of Epidemiology and Prevention, Division of Public Health Sciences, Wake Forest University School of Medicine, 525 Vine, 5th floor, Winston-Salem, NC 27157 USA
| |
Collapse
|
34
|
Di Scala C, Armstrong N, Chahinian H, Chabrière E, Fantini J, Yahi N. AmyP53, a Therapeutic Peptide Candidate for the Treatment of Alzheimer’s and Parkinson’s Disease: Safety, Stability, Pharmacokinetics Parameters and Nose-to Brain Delivery. Int J Mol Sci 2022; 23:ijms232113383. [PMID: 36362170 PMCID: PMC9654333 DOI: 10.3390/ijms232113383] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Revised: 10/26/2022] [Accepted: 10/30/2022] [Indexed: 11/06/2022] Open
Abstract
Neurodegenerative disorders are a major public health issue. Despite decades of research efforts, we are still seeking an efficient cure for these pathologies. The initial paradigm of large aggregates of amyloid proteins (amyloid plaques, Lewis bodies) as the root cause of Alzheimer’s and Parkinson’s diseases has been mostly dismissed. Instead, membrane-bound oligomers forming Ca2+-permeable amyloid pores are now considered appropriate targets for these diseases. Over the last 20 years, our group deciphered the molecular mechanisms of amyloid pore formation, which appeared to involve a common pathway for all amyloid proteins, including Aβ (Alzheimer) and α-synuclein (Parkinson). We then designed a short peptide (AmyP53), which prevents amyloid pore formation by targeting gangliosides, the plasma membrane receptors of amyloid proteins. Herein, we show that aqueous solutions of AmyP53 are remarkably stable upon storage at temperatures up to 45 °C for several months. AmyP53 appeared to be more stable in whole blood than in plasma. Pharmacokinetics studies in rats demonstrated that the peptide can rapidly and safely reach the brain after intranasal administration. The data suggest both the direct transport of AmyP53 via the olfactory bulb (and/or the trigeminal nerve) and an indirect transport via the circulation and the blood–brain barrier. In vitro experiments confirmed that AmyP53 is as active as cargo peptides in crossing the blood–brain barrier, consistent with its amino acid sequence specificities and physicochemical properties. Overall, these data open a route for the use of a nasal spray formulation of AmyP53 for the prevention and/or treatment of Alzheimer’s and Parkinson’s diseases in future clinical trials in humans.
Collapse
Affiliation(s)
- Coralie Di Scala
- Neuroscience Center—HiLIFE, Helsinki Institute of Life Science, University of Helsinki, 00014 Helsinki, Finland
| | - Nicholas Armstrong
- IRD, APHM, MEPHI, IHU Méditerranée Infection, Aix Marseille University, 13005 Marseille, France
| | - Henri Chahinian
- INSERM UMR_S 1072, Aix Marseille University, 13015 Marseille, France
| | - Eric Chabrière
- IRD, APHM, MEPHI, IHU Méditerranée Infection, Aix Marseille University, 13005 Marseille, France
| | - Jacques Fantini
- INSERM UMR_S 1072, Aix Marseille University, 13015 Marseille, France
| | - Nouara Yahi
- INSERM UMR_S 1072, Aix Marseille University, 13015 Marseille, France
- Correspondence:
| |
Collapse
|
35
|
Princiotta Cariddi L, Mauri M, Cosentino M, Versino M, Marino F. Alzheimer's Disease: From Immune Homeostasis to Neuroinflammatory Condition. Int J Mol Sci 2022; 23:13008. [PMID: 36361799 PMCID: PMC9658357 DOI: 10.3390/ijms232113008] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Revised: 10/12/2022] [Accepted: 10/14/2022] [Indexed: 08/13/2023] Open
Abstract
Alzheimer's Disease is the most common cause in the world of progressive cognitive decline. Although many modifiable and non-modifiable risk factors have been proposed, in recent years, neuroinflammation has been hypothesized to be an important contributing factor of Alzheimer's Disease pathogenesis. Neuroinflammation can occur through the combined action of the Central Nervous System resident immune cells and adaptive peripheral immune system. In the past years, immunotherapies for neurodegenerative diseases have focused wrongly on targeting protein aggregates Aβ plaques and NFT treatment. The role of both innate and adaptive immune cells has not been fully clarified, but several data suggest that immune system dysregulation plays a key role in neuroinflammation. Recent studies have focused especially on the role of the adaptive immune system and have shown that inflammatory markers are characterized by increased CD4+ Teff cells' activities and reduced circulating CD4+ Treg cells. In this review, we discuss the key role of both innate and adaptive immune systems in the degeneration and regeneration mechanisms in the pathogenesis of Alzheimer's Disease, with a focus on how the crosstalk between these two systems is able to sustain brain homeostasis or shift it to a neurodegenerative condition.
Collapse
Affiliation(s)
- Lucia Princiotta Cariddi
- PhD Program in Clinical and Experimental Medicine and Medical Humanities, University of Insubria, 21100 Varese, Italy
- Neurology and Stroke Unit, ASST Sette Laghi Hospital, 21100 Varese, Italy
| | - Marco Mauri
- Neurology and Stroke Unit, ASST Sette Laghi Hospital, 21100 Varese, Italy
- Department of Biotechnology and Life Sciences, University of Insubria, 21100 Varese, Italy
| | - Marco Cosentino
- Center of Research in Medical Pharmacology, University of Insubria, 21100 Varese, Italy
| | - Maurizio Versino
- Neurology and Stroke Unit, ASST Sette Laghi Hospital, 21100 Varese, Italy
- Department of Medicine and Surgery, University of Insubria, 21100 Varese, Italy
| | - Franca Marino
- Center of Research in Medical Pharmacology, University of Insubria, 21100 Varese, Italy
| |
Collapse
|
36
|
Summers KL, Roseman G, Schilling KM, Dolgova NV, Pushie MJ, Sokaras D, Kroll T, Harris HH, Millhauser GL, Pickering IJ, George GN. Alzheimer's Drug PBT2 Interacts with the Amyloid β 1-42 Peptide Differently than Other 8-Hydroxyquinoline Chelating Drugs. Inorg Chem 2022; 61:14626-14640. [PMID: 36073854 PMCID: PMC9957665 DOI: 10.1021/acs.inorgchem.2c01694] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Although Alzheimer's disease (AD) was first described over a century ago, it remains the leading cause of age-related dementia. Innumerable changes have been linked to the pathology of AD; however, there remains much discord regarding which might be the initial cause of the disease. The "amyloid cascade hypothesis" proposes that the amyloid β (Aβ) peptide is central to disease pathology, which is supported by elevated Aβ levels in the brain before the development of symptoms and correlations of amyloid burden with cognitive impairment. The "metals hypothesis" proposes a role for metal ions such as iron, copper, and zinc in the pathology of AD, which is supported by the accumulation of these metals within amyloid plaques in the brain. Metals have been shown to induce aggregation of Aβ, and metal ion chelators have been shown to reverse this reaction in vitro. 8-Hydroxyquinoline-based chelators showed early promise as anti-Alzheimer's drugs. Both 5-chloro-7-iodo-8-hydroxyquinoline (CQ) and 5,7-dichloro-2-[(dimethylamino)methyl]-8-hydroxyquinoline (PBT2) underwent unsuccessful clinical trials for the treatment of AD. To gain insight into the mechanism of action of 8HQs, we have investigated the potential interaction of CQ, PBT2, and 5,7-dibromo-8-hydroxyquinoline (B2Q) with Cu(II)-bound Aβ(1-42) using X-ray absorption spectroscopy (XAS), high energy resolution fluorescence detected (HERFD) XAS, and electron paramagnetic resonance (EPR). By XAS, we found CQ and B2Q sequestered ∼83% of the Cu(II) from Aβ(1-42), whereas PBT2 sequestered only ∼59% of the Cu(II) from Aβ(1-42), suggesting that CQ and B2Q have a higher relative Cu(II) affinity than PBT2. From our EPR, it became clear that PBT2 sequestered Cu(II) from a heterogeneous mixture of Cu(II)Aβ(1-42) species in solution, leaving a single Cu(II)Aβ(1-42) species. It follows that the Cu(II) site in this Cu(II)Aβ(1-42) species is inaccessible to PBT2 and may be less solvent-exposed than in other Cu(II)Aβ(1-42) species. We found no evidence to suggest that these 8HQs form ternary complexes with Cu(II)Aβ(1-42).
Collapse
Affiliation(s)
- Kelly L. Summers
- Molecular and Environmental Sciences Group, Department of Geological Sciences, College of Arts and Science, University of Saskatchewan, 114 Science Place, Saskatoon, Saskatchewan S7N 5E2, Canada
- Department of Chemistry, College of Arts and Science, University of Saskatchewan, 110 Science Place, Saskatoon, Saskatchewan S7N 5C9, Canada
| | - Graham Roseman
- Department of Chemistry and Biochemistry, University of California, Santa Cruz, 1156 High Street, Santa Cruz, California 95064, United States
| | - Kevin M. Schilling
- Department of Chemistry and Biochemistry, University of California, Santa Cruz, 1156 High Street, Santa Cruz, California 95064, United States
| | - Natalia V. Dolgova
- Molecular and Environmental Sciences Group, Department of Geological Sciences, College of Arts and Science, University of Saskatchewan, 114 Science Place, Saskatoon, Saskatchewan S7N 5E2, Canada
| | - M. Jake Pushie
- Department of Surgery, University of Saskatchewan, 103 Hospital Dr, Saskatoon, Saskatchewan S7N 0W8, Canada
| | - Dimosthenis Sokaras
- Stanford Synchrotron Radiation Lightsource, SLAC National Accelerator Laboratory, Stanford University, Menlo Park, California 94025, United States
| | - Thomas Kroll
- Stanford Synchrotron Radiation Lightsource, SLAC National Accelerator Laboratory, Stanford University, Menlo Park, California 94025, United States
| | - Hugh H. Harris
- Department of Chemistry, University of Adelaide, South Australia 5005, Australia
| | - Glenn L. Millhauser
- Department of Chemistry and Biochemistry, University of California, Santa Cruz, 1156 High Street, Santa Cruz, California 95064, United States
| | - Ingrid J. Pickering
- Molecular and Environmental Sciences Group, Department of Geological Sciences, College of Arts and Science, University of Saskatchewan, 114 Science Place, Saskatoon, Saskatchewan S7N 5E2, Canada
- Department of Chemistry, College of Arts and Science, University of Saskatchewan, 110 Science Place, Saskatoon, Saskatchewan S7N 5C9, Canada
| | - Graham N. George
- Molecular and Environmental Sciences Group, Department of Geological Sciences, College of Arts and Science, University of Saskatchewan, 114 Science Place, Saskatoon, Saskatchewan S7N 5E2, Canada
- Department of Chemistry, College of Arts and Science, University of Saskatchewan, 110 Science Place, Saskatoon, Saskatchewan S7N 5C9, Canada
| |
Collapse
|
37
|
Contribution of hyperglycemia-induced changes in microglia to Alzheimer's disease pathology. Pharmacol Rep 2022; 74:832-846. [PMID: 36042131 DOI: 10.1007/s43440-022-00405-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Revised: 08/04/2022] [Accepted: 08/05/2022] [Indexed: 10/14/2022]
Abstract
Alzheimer's disease (AD) is a neurodegenerative condition characterized by cognitive and functional impairments. The investigation of AD has focused on the formation of senile plaques, composed mainly by amyloid β (Aβ) peptide, and neurofibrillary tangles (NFTs) in the brain. Senile plaques and NFTs cause the excessive recruitment and activation of microglia, thus generating neuroinflammation and neuronal damage. Among the risk factors for the development of AD, diabetes has increasingly attracted attention. Hyperglycemia, the fundamental characteristic of diabetes, is involved in several mechanisms that give rise to microglial overactivation, resulting in neuronal damage and cognitive impairment. Indeed, various studies have identified the correlation between diabetes and AD. The aim of this review is to describe various mechanisms of the hyperglycemia-induced overactivation of microglia, which leads to neuroinflammation and neuronal damage and consequently contributes to the pathology of AD. The disruption of the regulation of microglial activity by hyperglycemia occurs through many mechanisms, including a greater production of reactive oxygen species (ROS) and glycation end products (AGEs), and a decrease in the elimination of Aβ. The future direction of research on the relation between hyperglycemia and AD is addressed, such as the importance of determining whether the hyperglycemia-induced harmful effects on microglial activity can be reversed or attenuated if blood glucose returns to a normal level.
Collapse
|
38
|
Cho S, Cousins KAQ, Shellikeri S, Ash S, Irwin DJ, Liberman MY, Grossman M, Nevler N. Lexical and Acoustic Speech Features Relating to Alzheimer Disease Pathology. Neurology 2022; 99:e313-e322. [PMID: 35487701 PMCID: PMC9421771 DOI: 10.1212/wnl.0000000000200581] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Accepted: 03/08/2022] [Indexed: 11/15/2022] Open
Abstract
BACKGROUND AND OBJECTIVES We compared digital speech and language features of patients with amnestic Alzheimer disease (aAD) or logopenic variant primary progressive aphasia (lvPPA) in a biologically confirmed cohort and related these features to neuropsychiatric test scores and CSF analytes. METHODS We included patients with aAD or lvPPA with CSF (phosphorylated tau ([p-tau]/β-amyloid [Aβ] ≥0.09, and total tau/Aβ ≥0.34) or autopsy confirmation of AD pathology and age-matched healthy controls (HC) recruited at the Frontotemporal Degeneration Center of the University of Pennsylvania for a cross-sectional study. We extracted speech and language variables with automated lexical and acoustic pipelines from participants' oral picture descriptions. We compared the groups and correlated distinct features with clinical ratings and CSF p-tau levels. RESULTS We examined patients with aAD (n = 44; age 62 ± 8 years; 24 women; Mini-Mental State Examination [MMSE] score 21.1 ± 4.8) or lvPPA (n = 21; age 64.1 ± 8.2 years; 11 women; MMSE score 23.0 ± 4.2) and HC (n = 28; age 65.9 ± 5.9 years, 15 women; MMSE score 29 ± 1). Patients with lvPPA produced fewer verbs (10.5 ± 2.3; p = 0.001) and adjectives (2.7 ± 1.3, p = 0.019) and more fillers (7.4 ± 3.9; p = 0.022) with lower lexical diversity (0.84 ± 0.1; p = 0.05) and higher pause rate (54.2 ± 19.2; p = 0.015) than individuals with aAD (verbs 12.5 ± 2; adjectives 3.8 ± 2; fillers 4.9 ± 4.5; lexical diversity 0.87 ± 0.1; pause rate 45.3 ± 12.8). Both groups showed some shared language impairments compared with HC. Word frequency (MMSE score: β = -1.6, p = 0.009; Boston Naming Test [BNT] score: β = -4.36, p < 0.001), adverbs (MMSE score: β = -1.9, p = 0.003; BNT score: β = -2.41, p = 0.041), pause rate (MMSE score: β = -1.21, p = 0.041; BNT score: β = -2.09, p = 0.041), and word length (MMSE score: β = 1.75, p = 0.001; BNT score: β = 2.94, p = 0.003) were significantly correlated with both MMSE and BNT scores, but other measures were not correlated with MMSE and/or BNT score. Prepositions (r = -0.36, p = 0.019), nouns (r = -0.31, p = 0.047), speech segment duration (r = -0.33, p = 0.032), word frequency (r = 0.33, p = 0.036), and pause rate (r = 0.34, p = 0.026) were correlated with patients' CSF p-tau levels. DISCUSSION Our measures captured language and speech differences between the 2 phenotypes that traditional language-based clinical assessments failed to identify. This work demonstrates the potential of natural speech in reflecting underlying variants with AD pathology.
Collapse
Affiliation(s)
- Sunghye Cho
- From the Linguistic Data Consortium (S.C., M.Y.L.) and Department of Neurology (K.A.Q.C., S.S., S.A., D.J.I., M.G., N.N.), University of Pennsylvania, Philadelphia.
| | - Katheryn Alexandra Quilico Cousins
- From the Linguistic Data Consortium (S.C., M.Y.L.) and Department of Neurology (K.A.Q.C., S.S., S.A., D.J.I., M.G., N.N.), University of Pennsylvania, Philadelphia
| | - Sanjana Shellikeri
- From the Linguistic Data Consortium (S.C., M.Y.L.) and Department of Neurology (K.A.Q.C., S.S., S.A., D.J.I., M.G., N.N.), University of Pennsylvania, Philadelphia
| | - Sharon Ash
- From the Linguistic Data Consortium (S.C., M.Y.L.) and Department of Neurology (K.A.Q.C., S.S., S.A., D.J.I., M.G., N.N.), University of Pennsylvania, Philadelphia
| | - David John Irwin
- From the Linguistic Data Consortium (S.C., M.Y.L.) and Department of Neurology (K.A.Q.C., S.S., S.A., D.J.I., M.G., N.N.), University of Pennsylvania, Philadelphia
| | - Mark Yoffe Liberman
- From the Linguistic Data Consortium (S.C., M.Y.L.) and Department of Neurology (K.A.Q.C., S.S., S.A., D.J.I., M.G., N.N.), University of Pennsylvania, Philadelphia
| | - Murray Grossman
- From the Linguistic Data Consortium (S.C., M.Y.L.) and Department of Neurology (K.A.Q.C., S.S., S.A., D.J.I., M.G., N.N.), University of Pennsylvania, Philadelphia
| | - Naomi Nevler
- From the Linguistic Data Consortium (S.C., M.Y.L.) and Department of Neurology (K.A.Q.C., S.S., S.A., D.J.I., M.G., N.N.), University of Pennsylvania, Philadelphia
| |
Collapse
|
39
|
Volloch V, Rits-Volloch S. The Amyloid Cascade Hypothesis 2.0: On the Possibility of Once-in-a-Lifetime-Only Treatment for Prevention of Alzheimer’s Disease and for Its Potential Cure at Symptomatic Stages. J Alzheimers Dis Rep 2022; 6:369-399. [PMID: 36072366 PMCID: PMC9397896 DOI: 10.3233/adr-220031] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Accepted: 06/08/2022] [Indexed: 11/15/2022] Open
Abstract
We posit that Alzheimer’s disease (AD) is driven by amyloid-β (Aβ) generated in the amyloid-β protein precursor (AβPP) independent pathway activated by AβPP-derived Aβ accumulated intraneuronally in a life-long process. This interpretation constitutes the Amyloid Cascade Hypothesis 2.0 (ACH2.0). It defines a tandem intraneuronal-Aβ (iAβ)-anchored cascade occurrence: intraneuronally-accumulated, AβPP-derived iAβ triggers relatively benign cascade that activates the AβPP-independent iAβ-generating pathway, which, in turn, initiates the second, devastating cascade that includes tau pathology and leads to neuronal loss. The entire output of the AβPP-independent iAβ-generating pathway is retained intraneuronally and perpetuates the pathway’s operation. This process constitutes a self-propagating, autonomous engine that drives AD and ultimately kills its host cells. Once activated, the AD Engine is self-reliant and independent from Aβ production in the AβPP proteolytic pathway; operation of the former renders the latter irrelevant to the progression of AD and brands its manipulation for therapeutic purposes, such as BACE (beta-site AβPP-cleaving enzyme) inhibition, as futile. In the proposed AD paradigm, the only valid direct therapeutic strategy is targeting the engine’s components, and the most effective feasible approach appears to be the activation of BACE1 and/or of its homolog BACE2, with the aim of exploiting their Aβ-cleaving activities. Such treatment would collapse the iAβ population and ‘reset’ its levels below those required for the operation of the AD Engine. Any sufficiently selective iAβ-depleting treatment would be equally effective. Remarkably, this approach opens the possibility of a short-duration, once-in-a-lifetime-only or very infrequent, preventive or curative therapy for AD; this therapy would be also effective for prevention and treatment of the ‘common’ pervasive aging-associated cognitive decline. The ACH2.0 clarifies all ACH-unresolved inconsistencies, explains the widespread ‘resilience to AD’ phenomenon, predicts occurrences of a category of AD-afflicted individuals without excessive Aβ plaque load and of a novel type of familial insusceptibility to AD; it also predicts the lifespan-dependent inevitability of AD in humans if untreated preventively. The article details strategy and methodology to generate an adequate AD model and validate the hypothesis; the proposed AD model may also serve as a research and drug development platform.
Collapse
Affiliation(s)
- Vladimir Volloch
- Department of Developmental Biology, Harvard School of Dental Medicine, Boston, MA, USA
| | - Sophia Rits-Volloch
- Division of Molecular Medicine, Children’s Hospital, Boston, MA, USA
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
40
|
Microglia in Alzheimer’s Disease: A Favorable Cellular Target to Ameliorate Alzheimer’s Pathogenesis. Mediators Inflamm 2022; 2022:6052932. [PMID: 35693110 PMCID: PMC9184163 DOI: 10.1155/2022/6052932] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2021] [Accepted: 05/09/2022] [Indexed: 11/18/2022] Open
Abstract
Microglial cells serve as molecular sensors of the brain that play a role in physiological and pathological conditions. Under normal physiology, microglia are primarily responsible for regulating central nervous system homeostasis through the phagocytic clearance of redundant protein aggregates, apoptotic cells, damaged neurons, and synapses. Furthermore, microglial cells can promote and mitigate amyloid β phagocytosis and tau phosphorylation. Dysregulation of the microglial programming alters cellular morphology, molecular signaling, and secretory inflammatory molecules that contribute to various neurodegenerative disorders especially Alzheimer’s disease (AD). Furthermore, microglia are considered primary sources of inflammatory molecules and can induce or regulate a broad spectrum of cellular responses. Interestingly, in AD, microglia play a double-edged role in disease progression; for instance, the detrimental microglial effects increase in AD while microglial beneficiary mechanisms are jeopardized. Depending on the disease stages, microglial cells are expressed differently, which may open new avenues for AD therapy. However, the disease-related role of microglial cells and their receptors in the AD brain remain unclear. Therefore, this review represents the role of microglial cells and their involvement in AD pathogenesis.
Collapse
|
41
|
Abstract
Senile plaques have been studied in postmortem brains for more than 120 years and the resultant knowledge has not only helped us understand the etiology and pathogenesis of Alzheimer disease (AD), but has also pointed to possible modes of prevention and treatment. Within the last 15 years, it has become possible to image plaques in living subjects. This is arguably the single greatest advance in AD research since the identification of the Aβ peptide as the major plaque constituent. The limitations and potentialities of amyloid imaging are still not completely clear but are perhaps best glimpsed through the perspective gained from the accumulated postmortem histological studies. The basic morphological classification of plaques into neuritic, cored and diffuse has been supplemented by sophisticated immunohistochemical and biochemical analyses and increasingly detailed mapping of plaque brain distribution. Changes in plaque classification and staging have in turn contributed to changes in the definition and diagnostic criteria for AD. All of this information continues to be tested by clinicopathological correlations and it is through the insights thereby gained that we will best be able to employ the powerful tool of amyloid imaging.
Collapse
Affiliation(s)
- Thomas G Beach
- From the Civin Laboratory for Neuropathology, Banner Sun Health Research Institute, Sun City, Arizona, USA
| |
Collapse
|
42
|
Abdi S, Javanmehr N, Ghasemi-Kasman M, Bali HY, Pirzadeh M. Stem Cell-based Therapeutic and Diagnostic Approaches in Alzheimer's Disease. Curr Neuropharmacol 2022; 20:1093-1115. [PMID: 34970956 PMCID: PMC9886816 DOI: 10.2174/1570159x20666211231090659] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Revised: 07/24/2021] [Accepted: 09/21/2021] [Indexed: 11/22/2022] Open
Abstract
BACKGROUND Alzheimer's disease (AD) is a neurodegenerative impairment mainly recognized by memory loss and cognitive deficits. However, the current therapies against AD are mostly limited to palliative medications, prompting researchers to investigate more efficient therapeutic approaches for AD, such as stem cell therapy. Recent evidence has proposed that extensive neuronal and synaptic loss and altered adult neurogenesis, which is perceived pivotal in terms of plasticity and network maintenance, occurs early in the course of AD, which exacerbates neuronal vulnerability to AD. Thus, regeneration and replenishing the depleted neuronal networks by strengthening the endogenous repair mechanisms or exogenous stem cells and their cargoes is a rational therapeutic approach. Currently, several stem cell-based therapies as well as stem cell products like exosomes, have shown promising results in the early diagnosis of AD. OBJECTIVE This review begins with a comparison between AD and normal aging pathophysiology and a discussion on open questions in the field. Next, summarizing the current stem cell-based therapeutic and diagnostic approaches, we declare the advantages and disadvantages of each method. Also, we comprehensively evaluate the human clinical trials of stem cell therapies for AD. METHODOLOGY Peer-reviewed reports were extracted through Embase, PubMed, and Google Scholar until 2021. RESULTS With several ongoing clinical trials, stem cells and their derivatives (e.g., exosomes) are an emerging and encouraging field in diagnosing and treating neurodegenerative diseases. Although stem cell therapies have been successful in animal models, numerous clinical trials in AD patients have yielded unpromising results, which we will further discuss.
Collapse
Affiliation(s)
- Sadaf Abdi
- Student Research Committee, Babol University of Medical Sciences, Babol, Iran
| | - Nima Javanmehr
- Student Research Committee, Babol University of Medical Sciences, Babol, Iran
| | - Maryam Ghasemi-Kasman
- Cellular and Molecular Biology Research Center, Health Research Institute, Babol University of Medical Sciences, Babol, Iran;,Neuroscience Research Center, Health Research Institute, Babol University of Medical Sciences, Babol, Iran,Address correspondence to this author at the Cellular and Molecular Biology Research Center, Health Research Institute, Babol University of Medical Sciences, P.O. Box 4136747176, Babol, Iran; Tel/Fax: +98-11-32190557; E-mail:
| | | | - Marzieh Pirzadeh
- Student Research Committee, Babol University of Medical Sciences, Babol, Iran
| |
Collapse
|
43
|
Watson N, Bonsack F, Sukumari-Ramesh S. Intracerebral Hemorrhage: The Effects of Aging on Brain Injury. Front Aging Neurosci 2022; 14:859067. [PMID: 35547620 PMCID: PMC9082316 DOI: 10.3389/fnagi.2022.859067] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Accepted: 03/01/2022] [Indexed: 12/25/2022] Open
Abstract
Intracerebral hemorrhage (ICH) is a devastating subtype of stroke with high rates of mortality and morbidity. ICH patients often suffer devastating and debilitating neurological impairments, from which the majority of victims are unable to fully recover to functional independence. Unfortunately, there is no established medical therapy for ICH, which is partly attributed to the lack of understanding of the complex pathology of the disorder. Despite advanced age being a major risk factor of ICH, most preclinical studies on ICH employed young animal subjects. Due to this discrepancy, the molecular level changes in the aging brain after ICH are largely unknown, limiting the translation of preclinical studies into potential human treatments. The purpose of this review is to highlight the effects of advanced age on ICH- induced brain injury and recovery and to draw attention to current knowledge gaps, which warrant further investigation.
Collapse
|
44
|
Nafady MH, Sayed ZS, Abdelkawy DA, Shebl ME, Elsayed RA, Ashraf GM, Perveen A, Attia MS, Bahbah EI. The Effect of Gut Microbe Dysbiosis on the Pathogenesis of Alzheimer's Disease (AD) and related conditions. Curr Alzheimer Res 2022; 19:274-284. [PMID: 35440296 DOI: 10.2174/1567205019666220419101205] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Revised: 02/17/2022] [Accepted: 03/09/2022] [Indexed: 11/22/2022]
Abstract
It has been hypothesized that the shift in gut microbiota composition, known as gut microbe dysbiosis, may be correlated with the onset of Alzheimer's disease (AD), which is the most common cause of dementia characterized by a gradual deterioration in cognitive function associated with the development of amyloid-beta (Aβ) plaques. The gut microbiota dysbiosis induces the release of significant amounts of amyloids, lipopolysaccharides, and neurotoxins, which might play a role in modulating signaling pathways and immune activation, leading to the production of proinflammatory cytokines related to the pathogenesis of AD. The dysbiosis of gut microbe is associated with various diseases such as type 2 diabetes, obesity, hypertension, and some neuropsychiatric disorders like depression, anxiety, and stress. It is conceivable that these diseases trigger the onset of AD. Thus, modifying the gut microbiota composition with probiotic and prebiotic supplementation can reduce depression and anxiety symptoms, lower stress reactivity, and improve memory. This narrative review aimed to examine the possible role of gut microbe dysbiosis in AD's pathogenesis.
Collapse
Affiliation(s)
- Mohamed H Nafady
- Radiological Imaging Technology Department, Faculty of Applied Medical Science, Misr university for science and technology (MUST), Cairo, Egypt.,Radiation Science Department, Medical Research Institute, Alexandria University, Alexandria, Egypt
| | - Zeinab S Sayed
- Faculty of Applied Medical Science (AMS), Misr university for science and technology (MUST), Cairo, Egypt
| | - Dalia A Abdelkawy
- Faculty of Applied Medical Science (AMS), Misr university for science and technology (MUST), Cairo, Egypt
| | - Mostafa E Shebl
- Faculty of Applied Medical Science (AMS), Misr university for science and technology (MUST), Cairo, Egypt
| | - Reem A Elsayed
- Faculty of Applied Medical Science (AMS), Misr university for science and technology (MUST), Cairo, Egypt
| | - Ghulam Md Ashraf
- Pre-Clinical Research Unit, King Fahd Medical Research Center, King Abdulaziz University, Jeddah, Saudi Arabia.,Department of Medical Laboratory Technology, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Asma Perveen
- Glocal School of Life Sciences, Glocal University, Mirzapur Pole, Saharanpur, Uttar Pradesh, India
| | - Mohamed S Attia
- Department of Pharmaceutics, Faculty of Pharmacy, Zagazig University, Zagazig, Egypt
| | - Eshak I Bahbah
- Faculty of Medicine, Al-Azhar University, Damietta, Egypt.,Medical Research Group of Egypt (MRGE), Cairo, Egypt.,SevoClin Research Group, Cairo, Egypt
| |
Collapse
|
45
|
Moore BD, Levites Y, Xu G, Hampton H, Adamo MF, Croft CL, Futch HS, Moran C, Fromholt S, Janus C, Prokop S, Dickson D, Lewis J, Giasson BI, Golde TE, Borchelt DR. Soluble brain homogenates from diverse human and mouse sources preferentially seed diffuse Aβ plaque pathology when injected into newborn mouse hosts. FREE NEUROPATHOLOGY 2022; 3:9. [PMID: 35494163 PMCID: PMC9053163 DOI: 10.17879/freeneuropathology-2022-3766] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Accepted: 02/28/2022] [Indexed: 12/21/2022]
Abstract
Background Seeding of pathology related to Alzheimer's disease (AD) and Lewy body disease (LBD) by tissue homogenates or purified protein aggregates in various model systems has revealed prion-like properties of these disorders. Typically, these homogenates are injected into adult mice stereotaxically. Injection of brain lysates into newborn mice represents an alternative approach of delivering seeds that could direct the evolution of amyloid-β (Aβ) pathology co-mixed with either tau or α-synuclein (αSyn) pathology in susceptible mouse models. Methods Homogenates of human pre-frontal cortex were injected into the lateral ventricles of newborn (P0) mice expressing a mutant humanized amyloid precursor protein (APP), human P301L tau, human wild type αSyn, or combinations thereof. The homogenates were prepared from AD and AD/LBD cases displaying variable degrees of Aβ pathology and co-existing tau and αSyn deposits. Behavioral assessments of APP transgenic mice injected with AD brain lysates were conducted. For comparison, homogenates of aged APP transgenic mice that preferentially exhibit diffuse or cored deposits were similarly injected into the brains of newborn APP mice. Results We observed that lysates from the brains with AD (Aβ+, tau+), AD/LBD (Aβ+, tau+, αSyn+), or Pathological Aging (Aβ+, tau-, αSyn-) efficiently seeded diffuse Aβ deposits. Moderate seeding of cerebral amyloid angiopathy (CAA) was also observed. No animal of any genotype developed discernable tau or αSyn pathology. Performance in fear-conditioning cognitive tasks was not significantly altered in APP transgenic animals injected with AD brain lysates compared to nontransgenic controls. Homogenates prepared from aged APP transgenic mice with diffuse Aβ deposits induced similar deposits in APP host mice; whereas homogenates from APP mice with cored deposits induced similar cored deposits, albeit at a lower level. Conclusions These findings are consistent with the idea that diffuse Aβ pathology, which is a common feature of human AD, AD/LBD, and PA brains, may arise from a distinct strain of misfolded Aβ that is highly transmissible to newborn transgenic APP mice. Seeding of tau or αSyn comorbidities was inefficient in the models we used, indicating that additional methodological refinement will be needed to efficiently seed AD or AD/LBD mixed pathologies by injecting newborn mice.
Collapse
Affiliation(s)
- Brenda D. Moore
- Department of Neuroscience, College of Medicine, University of Florida, Gainesville, FLUnited States
- Center for Translational Research in Neurodegenerative Disease, College of Medicine, University of Florida, Gainesville, FLUnited States
- McKnight Brain Institute, College of Medicine, University of Florida, Gainesville, FLUnited States
| | - Yona Levites
- Department of Neuroscience, College of Medicine, University of Florida, Gainesville, FLUnited States
- Center for Translational Research in Neurodegenerative Disease, College of Medicine, University of Florida, Gainesville, FLUnited States
- McKnight Brain Institute, College of Medicine, University of Florida, Gainesville, FLUnited States
| | - Guilian Xu
- Department of Neuroscience, College of Medicine, University of Florida, Gainesville, FLUnited States
- Center for Translational Research in Neurodegenerative Disease, College of Medicine, University of Florida, Gainesville, FLUnited States
- McKnight Brain Institute, College of Medicine, University of Florida, Gainesville, FLUnited States
| | - Hailey Hampton
- Department of Neuroscience, College of Medicine, University of Florida, Gainesville, FLUnited States
- Center for Translational Research in Neurodegenerative Disease, College of Medicine, University of Florida, Gainesville, FLUnited States
| | - Munir F. Adamo
- Department of Neuroscience, College of Medicine, University of Florida, Gainesville, FLUnited States
- Center for Translational Research in Neurodegenerative Disease, College of Medicine, University of Florida, Gainesville, FLUnited States
| | - Cara L. Croft
- Department of Neuroscience, College of Medicine, University of Florida, Gainesville, FLUnited States
- Center for Translational Research in Neurodegenerative Disease, College of Medicine, University of Florida, Gainesville, FLUnited States
- McKnight Brain Institute, College of Medicine, University of Florida, Gainesville, FLUnited States
| | - Hunter S. Futch
- Department of Neuroscience, College of Medicine, University of Florida, Gainesville, FLUnited States
- Center for Translational Research in Neurodegenerative Disease, College of Medicine, University of Florida, Gainesville, FLUnited States
| | - Corey Moran
- Department of Neuroscience, College of Medicine, University of Florida, Gainesville, FLUnited States
- Center for Translational Research in Neurodegenerative Disease, College of Medicine, University of Florida, Gainesville, FLUnited States
| | - Susan Fromholt
- Department of Neuroscience, College of Medicine, University of Florida, Gainesville, FLUnited States
- Center for Translational Research in Neurodegenerative Disease, College of Medicine, University of Florida, Gainesville, FLUnited States
| | - Christopher Janus
- Department of Neuroscience, College of Medicine, University of Florida, Gainesville, FLUnited States
- Center for Translational Research in Neurodegenerative Disease, College of Medicine, University of Florida, Gainesville, FLUnited States
- McKnight Brain Institute, College of Medicine, University of Florida, Gainesville, FLUnited States
| | - Stefan Prokop
- Center for Translational Research in Neurodegenerative Disease, College of Medicine, University of Florida, Gainesville, FLUnited States
- McKnight Brain Institute, College of Medicine, University of Florida, Gainesville, FLUnited States
- Department of Pathology, University of Florida, Gainesville, FLUnited States
- Fixel Institute for Neurological Diseases, University of Florida, Gainesville, FLUnited States
| | - Dennis Dickson
- Department of Neuroscience, Mayo Clinic, Jacksonville, FLUnited States
| | - Jada Lewis
- Department of Neuroscience, College of Medicine, University of Florida, Gainesville, FLUnited States
- Center for Translational Research in Neurodegenerative Disease, College of Medicine, University of Florida, Gainesville, FLUnited States
- McKnight Brain Institute, College of Medicine, University of Florida, Gainesville, FLUnited States
| | - Benoit I. Giasson
- Department of Neuroscience, College of Medicine, University of Florida, Gainesville, FLUnited States
- Center for Translational Research in Neurodegenerative Disease, College of Medicine, University of Florida, Gainesville, FLUnited States
- McKnight Brain Institute, College of Medicine, University of Florida, Gainesville, FLUnited States
| | - Todd E. Golde
- Department of Neuroscience, College of Medicine, University of Florida, Gainesville, FLUnited States
- Center for Translational Research in Neurodegenerative Disease, College of Medicine, University of Florida, Gainesville, FLUnited States
- McKnight Brain Institute, College of Medicine, University of Florida, Gainesville, FLUnited States
- Department of Neurology, College of Medicine, University of Florida, Gainesville FLUnited States
| | - David R. Borchelt
- Department of Neuroscience, College of Medicine, University of Florida, Gainesville, FLUnited States
- Center for Translational Research in Neurodegenerative Disease, College of Medicine, University of Florida, Gainesville, FLUnited States
- McKnight Brain Institute, College of Medicine, University of Florida, Gainesville, FLUnited States
| |
Collapse
|
46
|
Abstract
The key pathological hallmarks-extracellular plaques and intracellular neurofibrillary tangles (NFT)-described by Alois Alzheimer in his seminal 1907 article are still central to the postmortem diagnosis of Alzheimer's disease (AD), but major advances in our understanding of the underlying pathophysiology as well as significant progress in clinical diagnosis and therapy have changed the perspective and importance of neuropathologic evaluation of the brain. The notion that the pathological processes underlying AD already start decades before symptoms are apparent in patients has brought a major change reflected in the current neuropathological classification of AD neuropathological changes (ADNC). The predictable progression of beta-amyloid (Aβ) plaque pathology from neocortex, over limbic structures, diencephalon, and basal ganglia, to brainstem and cerebellum is captured in phases described by Thal and colleagues. The progression of NFT pathology from the transentorhinal region to the limbic system and ultimately the neocortex is described in stages proposed by Braak and colleagues. The density of neuritic plaque pathology is determined by criteria defined by the Consortium to establish a registry for Alzheimer's diseases (CERAD). While these changes neuropathologically define AD, it becomes more and more apparent that the majority of patients present with a multitude of additional pathological changes which are possible contributing factors to the clinical presentation and disease progression. The impact of co-existing Lewy body pathology has been well studied, but the importance of more recently described pathologies including limbic-predominant age-related TDP-43 encephalopathy (LATE), chronic traumatic encephalopathy (CTE), and aging-related tau astrogliopathy (ARTAG) still needs to be evaluated in large cohort studies. In addition, it is apparent that vascular pathology plays an important role in the AD patient population, but a lack of standardized reporting criteria has hampered progress in elucidating the importance of these changes for clinical presentation and disease progression. More recently a key role was ascribed to the immune response to pathological protein aggregates, and it will be important to analyze these changes systematically to better understand the temporal and spatial distribution of the immune response in AD and elucidate their importance for the disease process. Advances in digital pathology and technologies such as single cell sequencing and digital spatial profiling have opened novel avenues for improvement of neuropathological diagnosis and advancing our understanding of underlying molecular processes. Finally, major strides in biomarker-based diagnosis of AD and recent advances in targeted therapeutic approaches may have shifted the perspective but also highlight the continuous importance of postmortem analysis of the brain in neurodegenerative diseases.
Collapse
Affiliation(s)
- Jorge A Trejo-Lopez
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN, 55905, USA
| | - Anthony T Yachnis
- Department of Pathology, Immunology, and Laboratory Medicine, University of Florida, Gainesville, FL, 32610, USA
| | - Stefan Prokop
- Department of Pathology, Immunology, and Laboratory Medicine, University of Florida, Gainesville, FL, 32610, USA.
- Center for Translational Research in Neurodegenerative Disease, University of Florida, Gainesville, FL, 32610, USA.
- McKnight Brain Institute, University of Florida, Gainesville, FL, 32610, USA.
- Fixel Institute for Neurological Diseases, University of Florida, Gainesville, FL, 32610, USA.
| |
Collapse
|
47
|
Mckean NE, Handley RR, Snell RG. A Review of the Current Mammalian Models of Alzheimer's Disease and Challenges That Need to Be Overcome. Int J Mol Sci 2021; 22:13168. [PMID: 34884970 PMCID: PMC8658123 DOI: 10.3390/ijms222313168] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Revised: 11/30/2021] [Accepted: 12/02/2021] [Indexed: 01/04/2023] Open
Abstract
Alzheimer's disease (AD) is one of the looming health crises of the near future. Increasing lifespans and better medical treatment for other conditions mean that the prevalence of this disease is expected to triple by 2050. The impact of AD includes both the large toll on individuals and their families as well as a large financial cost to society. So far, we have no way to prevent, slow, or cure the disease. Current medications can only alleviate some of the symptoms temporarily. Many animal models of AD have been created, with the first transgenic mouse model in 1995. Mouse models have been beset by challenges, and no mouse model fully captures the symptomatology of AD without multiple genetic mutations and/or transgenes, some of which have never been implicated in human AD. Over 25 years later, many mouse models have been given an AD-like disease and then 'cured' in the lab, only for the treatments to fail in clinical trials. This review argues that small animal models are insufficient for modelling complex disorders such as AD. In order to find effective treatments for AD, we need to create large animal models with brains and lifespan that are closer to humans, and underlying genetics that already predispose them to AD-like phenotypes.
Collapse
Affiliation(s)
- Natasha Elizabeth Mckean
- Applied Translational Genetics Group, School of Biological Sciences, University of Auckland, 3a Symonds Street, Auckland 1010, New Zealand; (N.E.M.); (R.R.H.)
- Centre for Brain Research, Faculty of Medical and Health Sciences, University of Auckland, Auckland 1010, New Zealand
| | - Renee Robyn Handley
- Applied Translational Genetics Group, School of Biological Sciences, University of Auckland, 3a Symonds Street, Auckland 1010, New Zealand; (N.E.M.); (R.R.H.)
- Centre for Brain Research, Faculty of Medical and Health Sciences, University of Auckland, Auckland 1010, New Zealand
| | - Russell Grant Snell
- Applied Translational Genetics Group, School of Biological Sciences, University of Auckland, 3a Symonds Street, Auckland 1010, New Zealand; (N.E.M.); (R.R.H.)
- Centre for Brain Research, Faculty of Medical and Health Sciences, University of Auckland, Auckland 1010, New Zealand
| |
Collapse
|
48
|
Stepanchuk AA, Barber PA, Lashley T, Joseph JT, Stys PK. Quantitative detection of grey and white matter amyloid pathology using a combination of K114 and CRANAD-3 fluorescence. Neurobiol Dis 2021; 161:105540. [PMID: 34751140 DOI: 10.1016/j.nbd.2021.105540] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2021] [Revised: 10/07/2021] [Accepted: 10/27/2021] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND Alzheimer's disease (AD) is a neurodegenerative disease that exacts a huge toll on the patient, the healthcare system and society in general. Abundance and morphology of protein aggregates such as amyloid β plaques and tau tangles, along with cortical atrophy and gliosis are used as measures to assess the changes in the brain induced by the disease. Not all of these parameters have a direct correlation with cognitive decline. Studies have shown that only particular protein conformers can be the main drivers of disease progression, and conventional approaches are unable to distinguish different conformations of disease-relevant proteins. METHODS AND RESULTS Using the fluorescent amyloid probes K114 and CRANAD-3 and spectral confocal microscopy, we examined formalin-fixed paraffin-embedded brain samples from different control and AD cases. Based on the emission spectra of the probes used in this study, we found that certain spectral signatures can be correlated with different aggregates formed by different proteins. The combination of spectral imaging and advanced image analysis tools allowed us to detect variability of protein deposits across the samples. CONCLUSION Our proposed method offers a quicker and easier neuropathological assessment of tissue samples, as well as introducing an additional parameter by which protein aggregates can be discriminated.
Collapse
Affiliation(s)
- Anastasiia A Stepanchuk
- Department of Clinical Neurosciences, Hotchkiss Brain Institute, University of Calgary, Cumming School of Medicine, Calgary, AB, Canada
| | - Philip A Barber
- Department of Clinical Neurosciences, Hotchkiss Brain Institute, University of Calgary, Cumming School of Medicine, Calgary, AB, Canada
| | - Tammaryn Lashley
- Department of Neurodegenerative Disease, UCL Queen Square Institute of Neurology, London, UK; Queen Square Brain Bank for Neurological Disorders, Department of Clinical and Movement Neuroscience, UCL Queen Square Institute of Neurology, London, UK
| | - Jeffrey T Joseph
- Department of Clinical Neurosciences, Hotchkiss Brain Institute, University of Calgary, Cumming School of Medicine, Calgary, AB, Canada; Department of Pathology and Laboratory Medicine, Alberta Health Services, Calgary, AB, Canada
| | - Peter K Stys
- Department of Clinical Neurosciences, Hotchkiss Brain Institute, University of Calgary, Cumming School of Medicine, Calgary, AB, Canada.
| |
Collapse
|
49
|
Streubel-Gallasch L, Zyśk M, Beretta C, Erlandsson A. Traumatic brain injury in the presence of Aβ pathology affects neuronal survival, glial activation and autophagy. Sci Rep 2021; 11:22982. [PMID: 34837024 PMCID: PMC8626479 DOI: 10.1038/s41598-021-02371-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Accepted: 11/15/2021] [Indexed: 11/09/2022] Open
Abstract
Traumatic brain injury (TBI) presents a widespread health problem in the elderly population. In addition to the acute injury, epidemiological studies have observed an increased probability and earlier onset of dementias in the elderly following TBI. However, the underlying mechanisms of the connection between TBI and Alzheimer's disease in the aged brain and potential exacerbating factors is still evolving. The aim of this study was to investigate cellular injury-induced processes in the presence of amyloid β (Aβ) pathology. For this purpose, a co-culture system of cortical stem-cell derived astrocytes, neurons and oligodendrocytes were exposed to Aβ42 protofibrils prior to a mechanically induced scratch injury. Cellular responses, including neurodegeneration, glial activation and autophagy was assessed by immunoblotting, immunocytochemistry, ELISA and transmission electron microscopy. Our results demonstrate that the combined burden of Aβ exposure and experimental TBI causes a decline in the number of neurons, the differential expression of the key astrocytic markers glial fibrillary acidic protein and S100 calcium-binding protein beta, mitochondrial alterations and prevents the upregulation of autophagy. Our study provides valuable information about the impact of TBI sustained in the presence of Aβ deposits and helps to advance the understanding of geriatric TBI on the cellular level.
Collapse
Affiliation(s)
- Linn Streubel-Gallasch
- Department of Public Health and Caring Sciences/Molecular Geriatrics, Rudbeck Laboratory, Uppsala University, 751 85, Uppsala, Sweden
| | - Marlena Zyśk
- Department of Public Health and Caring Sciences/Molecular Geriatrics, Rudbeck Laboratory, Uppsala University, 751 85, Uppsala, Sweden
| | - Chiara Beretta
- Department of Public Health and Caring Sciences/Molecular Geriatrics, Rudbeck Laboratory, Uppsala University, 751 85, Uppsala, Sweden
| | - Anna Erlandsson
- Department of Public Health and Caring Sciences/Molecular Geriatrics, Rudbeck Laboratory, Uppsala University, 751 85, Uppsala, Sweden.
| |
Collapse
|
50
|
Dulski J, Cerquera-Cleves C, Milanowski L, Kidd A, Sitek EJ, Strongosky A, Vanegas Monroy AM, Dickson DW, Ross OA, Pentela-Nowicka J, Sławek J, Wszolek ZK. Clinical, pathological and genetic characteristics of Perry disease-new cases and literature review. Eur J Neurol 2021; 28:4010-4021. [PMID: 34342072 DOI: 10.1111/ene.15048] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2021] [Revised: 07/25/2021] [Accepted: 07/29/2021] [Indexed: 11/27/2022]
Abstract
BACKGROUND AND PURPOSE Perry disease (or Perry syndrome) is an autosomal dominant neurodegenerative disorder characterized by parkinsonism, neuropsychiatric symptoms, central hypoventilation, weight loss and distinct TDP-43 pathology. It is caused by mutations of the DCTN1 gene encoding an essential component of axonal transport. The objectives were to provide the current state of knowledge on clinical, pathological and genetic aspects of Perry disease, as well as practical suggestions for the management of the disease. METHODS Data on new patients from New Zealand, Poland and Colombia were collected, including autopsy report. Also all of the published papers since the original work by Perry in 1975 were gathered and analyzed. RESULTS Parkinsonism was symmetrical, progressed rapidly and was poorly responsive to L-Dopa; nonetheless, a trial with high doses of L-Dopa is warranted. Depression was severe, associated with suicidal ideations, and benefited from antidepressants and L-Dopa. Respiratory symptoms were the leading cause of death, and artificial ventilation or a diaphragm pacemaker prolonged survival. Weight loss occurred in most patients and was of multifactorial etiology. Autonomic dysfunction was frequent but underdiagnosed. There was a clinical overlap with other neurodegenerative disorders. An autopsy showed distinctive pallidonigral degeneration with TDP-43 pathology. Genetic testing provided evidence of a common founder for two families. There was striking phenotypic variability in DCTN1-related disorders. It is hypothesized that oligogenic or polygenic inheritance is at play. CONCLUSIONS Perry disease and other DCTN1-related diseases are increasingly diagnosed worldwide. Relatively effective symptomatic treatments are available. Further studies are needed to pave the way toward curative/gene therapy.
Collapse
Affiliation(s)
- Jarosław Dulski
- Division of Neurological and Psychiatric Nursing, Faculty of Health Sciences, Medical University of Gdansk, Gdansk, Poland.,Neurology Department, St Adalbert Hospital, Copernicus PL, Gdansk, Poland
| | - Catalina Cerquera-Cleves
- Neurology Unit, Pontificia Universidad Javeriana, San Ignacio Hospital, Bogotá, Colombia.,Movement Disorders Clinic, Clínica Universitaria Colombia, Bogotá, Colombia
| | - Lukasz Milanowski
- Department of Neurology, Mayo Clinic, Jacksonville, FL, USA.,Department of Neuroscience, Mayo Clinic, Jacksonville, FL, USA.,Department of Neurology, Faculty of Health Science, Medical University of Warsaw, Warsaw, Poland
| | - Alexa Kidd
- Clinical Genetics NZ Ltd, Christchurch, New Zealand
| | - Emilia J Sitek
- Division of Neurological and Psychiatric Nursing, Faculty of Health Sciences, Medical University of Gdansk, Gdansk, Poland.,Neurology Department, St Adalbert Hospital, Copernicus PL, Gdansk, Poland
| | | | | | | | - Owen A Ross
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL, USA
| | | | - Jarosław Sławek
- Division of Neurological and Psychiatric Nursing, Faculty of Health Sciences, Medical University of Gdansk, Gdansk, Poland.,Neurology Department, St Adalbert Hospital, Copernicus PL, Gdansk, Poland
| | | |
Collapse
|