1
|
Seyedabadi M, Ghahremani MH, Albert PR. Biased signaling of G protein coupled receptors (GPCRs): Molecular determinants of GPCR/transducer selectivity and therapeutic potential. Pharmacol Ther 2019; 200:148-178. [PMID: 31075355 DOI: 10.1016/j.pharmthera.2019.05.006] [Citation(s) in RCA: 103] [Impact Index Per Article: 17.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2019] [Accepted: 04/26/2019] [Indexed: 02/07/2023]
Abstract
G protein coupled receptors (GPCRs) convey signals across membranes via interaction with G proteins. Originally, an individual GPCR was thought to signal through one G protein family, comprising cognate G proteins that mediate canonical receptor signaling. However, several deviations from canonical signaling pathways for GPCRs have been described. It is now clear that GPCRs can engage with multiple G proteins and the line between cognate and non-cognate signaling is increasingly blurred. Furthermore, GPCRs couple to non-G protein transducers, including β-arrestins or other scaffold proteins, to initiate additional signaling cascades. Receptor/transducer selectivity is dictated by agonist-induced receptor conformations as well as by collateral factors. In particular, ligands stabilize distinct receptor conformations to preferentially activate certain pathways, designated 'biased signaling'. In this regard, receptor sequence alignment and mutagenesis have helped to identify key receptor domains for receptor/transducer specificity. Furthermore, molecular structures of GPCRs bound to different ligands or transducers have provided detailed insights into mechanisms of coupling selectivity. However, receptor dimerization, compartmentalization, and trafficking, receptor-transducer-effector stoichiometry, and ligand residence and exposure times can each affect GPCR coupling. Extrinsic factors including cell type or assay conditions can also influence receptor signaling. Understanding these factors may lead to the development of improved biased ligands with the potential to enhance therapeutic benefit, while minimizing adverse effects. In this review, evidence for ligand-specific GPCR signaling toward different transducers or pathways is elaborated. Furthermore, molecular determinants of biased signaling toward these pathways and relevant examples of the potential clinical benefits and pitfalls of biased ligands are discussed.
Collapse
Affiliation(s)
- Mohammad Seyedabadi
- Department of Pharmacology, School of Medicine, Bushehr University of Medical Sciences, Iran; Education Development Center, Bushehr University of Medical Sciences, Iran
| | | | - Paul R Albert
- Ottawa Hospital Research Institute, Neuroscience, University of Ottawa, Canada.
| |
Collapse
|
2
|
Suh YH, Chang K, Roche KW. Metabotropic glutamate receptor trafficking. Mol Cell Neurosci 2018; 91:10-24. [PMID: 29604330 DOI: 10.1016/j.mcn.2018.03.014] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2018] [Revised: 03/07/2018] [Accepted: 03/26/2018] [Indexed: 01/14/2023] Open
Abstract
The metabotropic glutamate receptors (mGlu receptors) are G protein-coupled receptors that bind to the excitatory neurotransmitter glutamate and are important in the modulation of neuronal excitability, synaptic transmission, and plasticity in the central nervous system. Trafficking of mGlu receptors in and out of the synaptic plasma membrane is a fundamental mechanism modulating excitatory synaptic function through regulation of receptor abundance, desensitization, and signaling profiles. In this review, we cover the regulatory mechanisms determining surface expression and endocytosis of mGlu receptors, with particular focus on post-translational modifications and receptor-protein interactions. The literature we review broadens our insight into the precise events defining the expression of functional mGlu receptors at synapses, and will likely contribute to the successful development of novel therapeutic targets for a variety of developmental, neurological, and psychiatric disorders.
Collapse
Affiliation(s)
- Young Ho Suh
- Department of Biomedical Sciences, Neuroscience Research Institute, Seoul National University College of Medicine, Seoul 03080, South Korea.
| | - Kai Chang
- Receptor Biology Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD 20892, USA
| | - Katherine W Roche
- Receptor Biology Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD 20892, USA.
| |
Collapse
|
3
|
Willard SS, Koochekpour S. Glutamate, glutamate receptors, and downstream signaling pathways. Int J Biol Sci 2013; 9:948-59. [PMID: 24155668 PMCID: PMC3805900 DOI: 10.7150/ijbs.6426] [Citation(s) in RCA: 208] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2013] [Accepted: 07/11/2013] [Indexed: 12/23/2022] Open
Abstract
Glutamate is a nonessential amino acid, a major bioenergetic substrate for proliferating normal and neoplastic cells, and an excitatory neurotransmitter that is actively involved in biosynthetic, bioenergetic, metabolic, and oncogenic signaling pathways. Glutamate signaling activates a family of receptors consisting of metabotropic glutamate receptors (mGluRs) and ionotropic glutamate receptors (iGluRs), both of which have been implicated in chronic disabling brain disorders such as Schizophrenia and neurodegenerative diseases like Alzheimer's, Parkinson's, and multiple sclerosis. In this review, we discuss the structural and functional relationship of mGluRs and iGluRs and their downstream signaling pathways. The three groups of mGluRs, the associated second messenger systems, and subsequent activation of PI3K/Akt, MAPK, NFkB, PLC, and Ca/CaM signaling systems will be discussed in detail. The current state of human mGluR1a as one of the most important isoforms of Group I-mGluRs will be highlighted. The lack of studies on the human orthologues of mGluRs family will be outlined. We conclude that upon further study, human glutamate-initiated signaling pathways may provide novel therapeutic opportunities for a variety of non-malignant and malignant human diseases.
Collapse
Affiliation(s)
- Stacey S Willard
- Departments of Cancer Genetics and Urology, Center for Genetics and Pharmacology, Roswell Park Cancer Institute, Elm and Carlton Streets, Buffalo, NY, USA
| | | |
Collapse
|
4
|
Yasumatsu K, Ogiwara Y, Takai S, Yoshida R, Iwatsuki K, Torii K, Margolskee RF, Ninomiya Y. Umami taste in mice uses multiple receptors and transduction pathways. J Physiol 2011; 590:1155-70. [PMID: 22183726 DOI: 10.1113/jphysiol.2011.211920] [Citation(s) in RCA: 77] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
The distinctive umami taste elicited by l-glutamate and some other amino acids is thought to be initiated by G-protein-coupled receptors. Proposed umami receptors include heteromers of taste receptor type 1, members 1 and 3 (T1R1+T1R3), and metabotropic glutamate receptors 1 and 4 (mGluR1 and mGluR4). Multiple lines of evidence support the involvement of T1R1+T1R3 in umami responses of mice. Although several studies suggest the involvement of receptors other than T1R1+T1R3 in umami, the identity of those receptors remains unclear. Here, we examined taste responsiveness of umami-sensitive chorda tympani nerve fibres from wild-type mice and mice genetically lacking T1R3 or its downstream transduction molecule, the ion channel TRPM5. Our results indicate that single umami-sensitive fibres in wild-type mice fall into two major groups: sucrose-best (S-type) and monopotassium glutamate (MPG)-best (M-type). Each fibre type has two subtypes; one shows synergism between MPG and inosine monophosphate (S1, M1) and the other shows no synergism (S2, M2). In both T1R3 and TRPM5 null mice, S1-type fibres were absent, whereas S2-, M1- and M2-types remained. Lingual application of mGluR antagonists selectively suppressed MPG responses of M1- and M2-type fibres. These data suggest the existence of multiple receptors and transduction pathways for umami responses in mice. Information initiated from T1R3-containing receptors may be mediated by a transduction pathway including TRPM5 and conveyed by sweet-best fibres, whereas umami information from mGluRs may be mediated by TRPM5-independent pathway(s) and conveyed by glutamate-best fibres.
Collapse
Affiliation(s)
- Keiko Yasumatsu
- Section of Oral Neuroscience, Graduate School of Dental Sciences, Kyushu University, 3-1-1 Maidashi, Higashi- ku, Fukuoka 812-8582, Japan
| | | | | | | | | | | | | | | |
Collapse
|
5
|
Ferraguti F, Crepaldi L, Nicoletti F. Metabotropic glutamate 1 receptor: current concepts and perspectives. Pharmacol Rev 2008; 60:536-81. [PMID: 19112153 DOI: 10.1124/pr.108.000166] [Citation(s) in RCA: 154] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Almost 25 years after the first report that glutamate can activate receptors coupled to heterotrimeric G-proteins, tremendous progress has been made in the field of metabotropic glutamate receptors. Now, eight members of this family of glutamate receptors, encoded by eight different genes that share distinctive structural features have been identified. The first cloned receptor, the metabotropic glutamate (mGlu) receptor mGlu1 has probably been the most extensively studied mGlu receptor, and in many respects it represents a prototypical subtype for this family of receptors. Its biochemical, anatomical, physiological, and pharmacological characteristics have been intensely investigated. Together with subtype 5, mGlu1 receptors constitute a subgroup of receptors that couple to phospholipase C and mobilize Ca(2+) from intracellular stores. Several alternatively spliced variants of mGlu1 receptors, which differ primarily in the length of their C-terminal domain and anatomical localization, have been reported. Use of a number of genetic approaches and the recent development of selective antagonists have provided a means for clarifying the role played by this receptor in a number of neuronal systems. In this article we discuss recent advancements in the pharmacology and concepts about the intracellular transduction and pathophysiological role of mGlu1 receptors and review earlier data in view of these novel findings. The impact that this new and better understanding of the specific role of these receptors may have on novel treatment strategies for a variety of neurological and psychiatric disorders is considered.
Collapse
Affiliation(s)
- Francesco Ferraguti
- Department of Pharmacology, Innsbruck Medical University, Peter-Mayr Strasse 1a, Innsbruck A-6020, Austria.
| | | | | |
Collapse
|
6
|
Kelley DJ, Bhattacharyya A, Lahvis GP, Yin JCP, Malter J, Davidson RJ. The cyclic AMP phenotype of fragile X and autism. Neurosci Biobehav Rev 2008; 32:1533-43. [PMID: 18601949 DOI: 10.1016/j.neubiorev.2008.06.005] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2008] [Revised: 06/06/2008] [Accepted: 06/08/2008] [Indexed: 12/27/2022]
Abstract
Cyclic AMP (cAMP) is a second messenger involved in many processes including mnemonic processing and anxiety. Memory deficits and anxiety are noted in the phenotype of fragile X (FX), the most common heritable cause of mental retardation and autism. Here we review reported observations of altered cAMP cascade function in FX and autism. Cyclic AMP is a potentially useful biochemical marker to distinguish autism comorbid with FX from autism per se and the cAMP cascade may be a viable therapeutic target for both FX and autism.
Collapse
Affiliation(s)
- Daniel J Kelley
- Waisman Laboratory for Brain Imaging and Behavior, Waisman Center, University of Wisconsin, Madison, WI, USA.
| | | | | | | | | | | |
Collapse
|
7
|
Azad SC, Monory K, Marsicano G, Cravatt BF, Lutz B, Zieglgänsberger W, Rammes G. Circuitry for associative plasticity in the amygdala involves endocannabinoid signaling. J Neurosci 2005; 24:9953-61. [PMID: 15525780 PMCID: PMC6730232 DOI: 10.1523/jneurosci.2134-04.2004] [Citation(s) in RCA: 203] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Endocannabinoids are crucial for the extinction of aversive memories, a process that considerably involves the amygdala. Here, we show that low-frequency stimulation of afferents in the lateral amygdala with 100 pulses at 1 Hz releases endocannabinoids postsynaptically from neurons of the basolateral amygdala of mice in vitro and thereby induces a long-term depression of inhibitory GABAergic synaptic transmission (LTDi) via a presynaptic mechanism. Lowering inhibitory synaptic transmission significantly increases the amplitude of excitatory synaptic currents in principal neurons of the central nucleus, which is the main output site of the amygdala. LTDi involves a selective mGluR1 (metabotropic glutamate receptor 1)-mediated calcium-independent mechanism and the activation of the adenylyl cyclase-protein kinase A pathway. LTDi is abolished by the cannabinoid type 1 (CB1) receptor antagonist SR141716A and cannot be evoked in CB1 receptor-deficient animals. LTDi is significantly enhanced in mice lacking the anandamide-degrading enzyme fatty acid amide hydrolase. The present findings show for the first time that mGluR activation induces a retrograde endocannabinoid signaling via activation of the adenylyl cyclase-protein kinase A pathway and the release of anandamide. Furthermore, the results indicate that anandamide decreases the activity of inhibitory interneurons in the amygdala. This disinhibition increases the activity of common output neurons and could provide a prerequisite for extinction by formation of new memory.
Collapse
Affiliation(s)
- Shahnaz C Azad
- Clinical Neuropharmacology, Max-Planck-Institute of Psychiatry, 80804 Munich, Germany.
| | | | | | | | | | | | | |
Collapse
|
8
|
Warwick HK, Nahorski SR, Challiss RAJ. Group I metabotropic glutamate receptors, mGlu1a and mGlu5a, couple to cyclic AMP response element binding protein (CREB) through a common Ca2+ - and protein kinase C-dependent pathway. J Neurochem 2005; 93:232-45. [PMID: 15773922 DOI: 10.1111/j.1471-4159.2005.03012.x] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Coupling of the group I metabotropic glutamate receptors, mGlu1a and mGlu5a, to the cAMP response element binding protein (CREB) has been studied in Chinese hamster ovary cell lines where receptor expression is under the control of an inducible promoter. Both receptors stimulate CREB phosphorylation with similar time courses, and agonist potency was also comparable between the two receptors. Stimulation of cells in Ca(2+)-free medium containing EGTA (100 microm), with or without the additional depletion of intracellular stores, caused marked decreases in agonist-mediated responses in both cell lines. Down-regulation of protein kinase C (PKC) activity by phorbol ester treatment, or treatment with the broad spectrum PKC inhibitor Ro 31-8220, partially attenuated both mGlu1a and mGlu5a receptor-mediated responses. Furthermore, stimulation of cells in the absence of extracellular Ca(2+) following prior PKC down-regulation resulted in additive inhibitory effects. The involvement of extracellular signal-regulated kinases (ERK1/2), Ca(2+)/calmodulin or Ca(2+)/calmodulin-dependent protein kinases was assessed using pharmacological inhibitors. Results indicated that coupling of the group I mGlu receptors to CREB phosphorylation occurs independently of these pathways. Thus, although the [Ca(2+)](i) signatures activated by these mGlu receptors differ, they couple to CREB with comparable potency and recruit similar downstream components to execute CREB phosphorylation.
Collapse
Affiliation(s)
- Helen K Warwick
- Department of Cell Physiology and Pharmacology, University of Leicester, Leicester, UK
| | | | | |
Collapse
|
9
|
Hermans E, Challiss RA. Structural, signalling and regulatory properties of the group I metabotropic glutamate receptors: prototypic family C G-protein-coupled receptors. Biochem J 2001; 359:465-84. [PMID: 11672421 PMCID: PMC1222168 DOI: 10.1042/0264-6021:3590465] [Citation(s) in RCA: 208] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
In 1991 a new type of G-protein-coupled receptor (GPCR) was cloned, the type 1a metabotropic glutamate (mGlu) receptor, which, despite possessing the defining seven-transmembrane topology of the GPCR superfamily, bore little resemblance to the growing number of other cloned GPCRs. Subsequent studies have shown that there are eight mammalian mGlu receptors that, together with the calcium-sensing receptor, the GABA(B) receptor (where GABA is gamma-aminobutyric acid) and a subset of pheromone, olfactory and taste receptors, make up GPCR family C. Currently available data suggest that family C GPCRs share a number of structural, biochemical and regulatory characteristics, which differ markedly from those of the other GPCR families, most notably the rhodopsin/family A GPCRs that have been most widely studied to date. This review will focus on the group I mGlu receptors (mGlu1 and mGlu5). This subgroup of receptors is widely and differentially expressed in neuronal and glial cells within the brain, and receptor activation has been implicated in the control of an array of key signalling events, including roles in the adaptative changes needed for long-term depression or potentiation of neuronal synaptic connectivity. In addition to playing critical physiological roles within the brain, the mGlu receptors are also currently the focus of considerable attention because of their potential as drug targets for the treatment of a variety of neurological and psychiatric disorders.
Collapse
Affiliation(s)
- E Hermans
- Laboratoire de Pharmacologie, Université Catholique de Louvain (54.10), B-1200 Brussels, Belgium.
| | | |
Collapse
|
10
|
Selkirk JV, Price GW, Nahorski SR, Challiss RA. Cell type-specific differences in the coupling of recombinant mGlu1alpha receptors to endogenous G protein sub-populations. Neuropharmacology 2001; 40:645-56. [PMID: 11311892 DOI: 10.1016/s0028-3908(00)00208-2] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
In this study the effects of cell background on the coupling of the type 1alpha metabotropic glutamate (mGlu1alpha) receptor to different G protein sub-populations by recombinant expression of this receptor subtype in baby hamster kidney (BHK) and Chinese hamster ovary (CHO) cells have been investigated. Receptor-G protein interactions were assessed using [(35)S]GTPgammaS binding and subsequent Galpha subunit-specific immunoprecipitation. In a CHO cell line (CHO-lac-mGlu1alpha), where mGlu1alpha receptor expression is under inducible control, stimulation of membranes with the mGlu receptor agonist quisqualate resulted in an increase in specific [(35)S]GTPgammaS binding to G(q/11)alpha only, whereas in a BHK cell line (BHK-mGlu1alpha) agonist stimulation increased [(35)S]GTPgammaS binding to G(q/11)alpha and also to pertussis toxin (PTx)-sensitive G(i/o) proteins (assessed using G(i1/2)alpha- and G(i3/o)alpha-specific antibodies). These data are consistent with our previous observations of dual, antagonistic G(q/11)/G(i/o) regulation of phospholipase C (PLC) in BHK-mGlu1alpha cells, whereas no evidence was found for a G(i/o) modulation of PLC activity in the CHO-lac-mGlu1alpha cell line. PTx pre-treatment of either cell line had no effect on either the magnitude or the concentration-dependency of agonist-stimulated [(35)S]GTPgammaS-G(q/11)alpha binding, excluding the possibility that receptor-G(i/o) uncoupling can unmask an increase in receptor-G(q/11) interaction. mGlu1alpha receptor expression per se had little effect on Galpha protein expression levels in either CHO or BHK cell lines, with the possible exception of a small, but consistent increase in G(o)alpha expression in BHK-mGlu1alpha cells compared to the vector-transfected control cell line (BHK-570). Semi-quantitative assessment of mGlu1alpha receptor immunoreactivity and [(3)H]quisqualate saturation binding analysis demonstrated a ca 10-fold higher mGlu1alpha receptor content in BHK cells. Whether the higher receptor expression level in BHK-mGlu1alpha cells underlies the additional G(i/o) coupling observed in this cell line, or additional factors contribute to the phenomenon are discussed.
Collapse
Affiliation(s)
- J V Selkirk
- Department of Cell Physiology and Pharmacology, Maurice Shock Medical Sciences Building, University of Leicester, University Road, Leicester LE1 9HN, UK.
| | | | | | | |
Collapse
|
11
|
Hermans E, Saunders R, Selkirk JV, Mistry R, Nahorski SR, Challiss RA. Complex involvement of pertussis toxin-sensitive G proteins in the regulation of type 1alpha metabotropic glutamate receptor signaling in baby hamster kidney cells. Mol Pharmacol 2000; 58:352-60. [PMID: 10908303 DOI: 10.1124/mol.58.2.352] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Previously, we demonstrated that the coupling of the metabotropic glutamate receptor mGlu1alpha to phosphoinositide hydrolysis is enhanced by pertussis toxin (PTX) in stably transfected baby hamster kidney cells (BHK). Here, we show that the PTX effect on agonist-stimulated [(3)H]inositol phosphate accumulation can be resolved into two components: an immediate increase in agonist potency, and a more slowly developing increase in the magnitude of the response observed at maximally effective agonist concentrations. Using G(q/11)alpha- and G(i/o)alpha-selective antibodies to immunoprecipitate [(35)S]guanosine-5'-O-(3-thio)triphosphate-bound Galpha proteins, we also show that agonist stimulation of mGlu1alpha in BHK membranes increases specific [(35)S]guanosine-5'-O-(3-thio)triphosphate binding to both G(q/11) and G(i/o) proteins. Preincubation of BHK-mGlu1alpha with L-glutamate (300 microM) results in a progressive loss (60% in 30 min) of L-quisqualate-induced [(3)H]inositol phosphate accumulation (without a change in potency), providing evidence for agonist-induced receptor desensitization. Although such desensitization of mGlu receptor signaling was mimicked by a phorbol ester, agonist-induced phosphorylation of the receptor was not observed and protein kinase C inhibition by Ro 31-8220 did not prevent L-glutamate-mediated desensitization. In contrast, PTX treatment of the cells almost completely prevented L-glutamate-mediated desensitization. Together, these data provide evidence for a multifunctional coupling of mGlu1alpha to different types of G proteins, including PTX-sensitive G(i)-type G proteins. The latter are involved in the negative control of phospholipase C activity while also influencing the rate of desensitization of the mGlu1alpha receptor.
Collapse
Affiliation(s)
- E Hermans
- Department of Cell Physiology and Pharmacology, University of Leicester, Leicester, United Kingdom.
| | | | | | | | | | | |
Collapse
|
12
|
Corti C, Restituito S, Rimland JM, Brabet I, Corsi M, Pin JP, Ferraguti F. Cloning and characterization of alternative mRNA forms for the rat metabotropic glutamate receptors mGluR7 and mGluR8. Eur J Neurosci 1998; 10:3629-41. [PMID: 9875342 DOI: 10.1046/j.1460-9568.1998.00371.x] [Citation(s) in RCA: 99] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Novel mRNA isoforms for two members of the group III metabotropic glutamate receptors (mGluRs), called mGluR7b and mGluR8b, were identified from rat brain cerebral cortex and hippocampus. In both cases, the alternative splicing is generated by a similar out-of-frame insertion in the carboxyl-terminus that results in the replacement of the last 16 amino acids of mGluR7 and mGluR8 by 23 and 16 different amino acids, respectively. Distribution analysis for mGluR7 and mGluR8 isoforms revealed that the two splice variants are generally coexpressed in the same brain areas. The few exceptions were the olfactory bulb, in which only the mGluR7a form could be detected by reverse transcription-polymerase chain reaction, and the lateral reticular and ambiguous nuclei, which showed only mGluR8a labelling. Despite expression in the same regions, different mRNA abundance for the two variants of each receptor were observed. When transiently coexpressed in HEK 293 cells with the phospholipase C-activating chimeric G alpha qi9-G-protein, the a and b forms for both receptor subtypes showed a similar pharmacological profile. The rank order of potencies for both was: DL-amino-4-phosphonobutyrate > L-serine-O-phosphate > glutamate. However, the agonist potencies were significantly higher for mGluR8a, b compared with mGluR7a,b. In Xenopus oocytes, glutamate evoked currents only with mGluR8 when coexpressed with Kir 3.1 and 3.4. Glutamate-induced currents were antagonized by the group II/III antagonist (RS)-alpha-cyclopropyl-4-phosphonophenylglycine. In conclusion, the two isoforms of each receptor have identical pharmacological profiles when expressed in heterologous systems, despite structural differences in the carboxyl-terminal domains.
Collapse
Affiliation(s)
- C Corti
- Department of Pharmacology, GlaxoWellcome Medicines Research Centre, Verona, Italy
| | | | | | | | | | | | | |
Collapse
|
13
|
Strasser U, Lobner D, Behrens MM, Canzoniero LM, Choi DW. Antagonists for group I mGluRs attenuate excitotoxic neuronal death in cortical cultures. Eur J Neurosci 1998; 10:2848-55. [PMID: 9758154 DOI: 10.1111/j.1460-9568.1998.00291.x] [Citation(s) in RCA: 65] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Activation of ion channel-linked glutamate receptors, especially N-methyl-D-aspartate (NMDA) receptors, mediates the excitotoxic effects of glutamate upon central neurons. We examined the hypothesis that activation of group I metabotropic glutamate receptors (mGluRs) would increase NMDA receptor-mediated cortical neuronal death. Addition of the selective group I mGluR agonists, dihydroxyphenylglycine (DHPG) or trans-azetidine-2,4-dicarboxylic acid (t-ADA) potentiated NMDA-induced neuronal death, and application of the group I mGluR-selective antagonist, aminoindan-1,5-dicarboxylic acid (AIDA), as well as the non-selective antagonists methyl-4-carboxyphenylglycine (MCPG) or 4-carboxyphenylglycine (4CPG) reduced NMDA- and kainate-induced neuronal death in murine cortical cultures. The pro-excitotoxic effect of group I mGluR activation may be mediated largely by enhancement of glutamate release, as DHPG potentiated high potassium-stimulated glutamate release, and the protective effects of both AIDA and MCPG were abolished when NMDA and alpha-amino-3-hydroxy-5-methyl-4-isoxazole proprionic acid (AMPA) receptors were blocked immediately after toxic NMDA receptor overstimulation. The present data support the possibility that antagonizing group I mGluRs may be a useful strategy for attenuating excitotoxic neuronal death in certain disease states.
Collapse
Affiliation(s)
- U Strasser
- Department of Neurology, Center for the Study of the Nervous System Injury, Washington University School of Medicine, St Louis, MO 63110, USA
| | | | | | | | | |
Collapse
|
14
|
Llansola M, Hermenegildo C, Miñana MD, Felipo V. Carbachol-induced hydrolysis of phospholipids in hippocampal slices may be mediated in part by subsequent activation of metabotropic glutamate receptors. Neurochem Res 1998; 23:913-8. [PMID: 9580390 DOI: 10.1023/a:1022423415238] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
We observed that AP-3, an antagonist of metabotropic glutamate receptors, reduced carbachol-induced hydrolysis of phospholipids in hippocampal slices. This inhibition could be explained in different ways, e.g.: 1) AP-3 acts also as antagonist of muscarinic receptors mediating the hydrolysis of phospholipids induced by carbachol, 2) Carbachol induces the release of glutamate which, by activating metabotropic glutamate receptors, leads to additional hydrolysis of phospholipids. The aim of this work was to test these possibilities. It is shown that AP-3 reduces carbachol-induced hydrolysis of phospholipids in hippocampal slices but not in cerebellar neurons at 10-14 days of culture, when these cells are not able to induce hydrolysis of phospholipids following activation of metabotropic glutamate receptors. It is also shown that carbachol induces a release of [3H]aspartate in hippocampal slices. The results reported suggest that the hydrolysis of phospholipids induced by carbachol in hippocampal slices would have two components. One part would be due to direct activation by carbachol of muscarinic receptors associated to activation of phospholipase C. This part would not be inhibited by AP-3. The second part would be due to subsequent release of glutamate and activation of metabotropic glutamate receptors. This part would be inhibited by AP-3.
Collapse
Affiliation(s)
- M Llansola
- Instituto de Investigaciones Citologicas de la Fundación Valenciana de Investigaciones Biomédicas, Valencia, Spain
| | | | | | | |
Collapse
|
15
|
Mary S, Stephan D, Gomeza J, Bockaert J, Pruss RM, Pin JP. The rat mGlu1d receptor splice variant shares functional properties with the other short isoforms of mGlu1 receptor. Eur J Pharmacol 1997; 335:65-72. [PMID: 9371547 DOI: 10.1016/s0014-2999(97)01155-2] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Three splice variants of the rat metabotropic glutamate receptor 1 (mGlu1a, 1b and 1c receptors) have been characterized so far. All have the same sequence up to the 46th residue following the 7th transmembrane domain, followed by different carboxyl-terminal tails. Whereas mGlu1b and mGlu1c receptors possess a short intracellular carboxyl-terminal tail, the mGlu1a receptor has a very long one. Compared to cells expressing mGlu1b or mGlu1c receptors, a higher agonist potency and basal phospholipase C activity were detected in cells expressing mGlu1a receptors. Another variant with a short carboxyl-terminal tail, the HmGlu1d receptor, has been recently isolated from human brain. Here we show that the mGlu1d receptor variant also exists in the rat. Like all rat mGlu1 receptor variants, the mGlu1d receptor activates phospholipase C upon stimulation with mGlu1 receptor agonists. Although the rank order of agonist potency is the same on mGlu1a and mGlu1d receptors, agonists are less potent in stimulating phospholipase C in mGlu1d receptor-expressing cells than in cells expressing mGlu1a receptors. Moreover, like the other short variants it has no significant constitutive activity. These results indicate that the mGlu1d receptor shares similar functional properties with the other short mGlu1 receptor splice variants, and further suggests that the long carboxyl-terminal tail of the mGlu1a receptor increases phospholipase C coupling efficacy.
Collapse
Affiliation(s)
- S Mary
- Mécanismes Moléculaires des Communications Cellulaires, UPR 9023-CNRS, CCIPE, Montpellier, France
| | | | | | | | | | | |
Collapse
|
16
|
Akam EC, Carruthers AM, Nahorski SR, Challiss RA. Pharmacological characterization of type 1alpha metabotropic glutamate receptor-stimulated [35S]-GTPgammaS binding. Br J Pharmacol 1997; 121:1203-9. [PMID: 9249258 PMCID: PMC1564797 DOI: 10.1038/sj.bjp.0701238] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
1. The activation of G proteins by type 1alpha metabotropic glutamate receptors (mGluRs) in membranes from recombinant baby hamster kidney cells expressing the cloned rat mGluR1alpha receptor has been studied by use of a [35S]-guanosine 5'-[gamma-thio]triphosphate ([35S]-GTPgammaS) binding assay. 2. L-Glutamate increased the rate of [35S]-GTPgammaS binding in a concentration-dependent manner (-logEC50 (M) 5.25 +/- 0.07), with an optimal (62.4 +/- 1.6%) increase over basal binding being observed following 60 min incubation at 30 degrees C with 70 pM [35S]-GTPgammaS, 1 microM GDP, 10 mM MgCl2, 100 mM NaCl and 100 microg membrane protein ml(-1). The L-glutamate (100 microM)-stimulated increase in [35S]-GTPgammaS binding was totally prevented in the presence of the group I mGluR antagonist (S)-4-carboxy-3-hydroxyphenylglycine (300 microM). 3. Quantitative analysis of the affinity and number of G proteins activated by a maximally effective concentration of L-glutamate revealed an equilibrium dissociation constant (K(D)) for [35S]-GTPgammaS binding of 0.76 +/- 0.20 nM and a maximal number of GTPgammaS-liganded G proteins (Bmax) of 361 +/- 30 fmol mg(-1) protein. 4. Metabotropic glutamate receptor agonists, quisqualate (-logEC50 (M) 6.74 +/- 0.06), 1S,3R-ACPD (4.64 +/- 0.08) and (S)-3,5-dihydroxyphenylglycine (5.16 +/- 0.23) also increased [35S]-GTPgammaS binding in a concentration-dependent manner, with the latter two agents behaving as partial agonists. 5. (+)-alpha-Methylcarboxyphenylglycine (300 microM) caused a parallel rightward shift of the L-glutamate concentration-effect curve for [35S]-GTPgammaS binding, allowing an antagonist equilibrium dissociation constant (K(D)) of 34.0 +/- 7.8 microM to be calculated for this mGluR antagonist. 6. Pretreatment of BHK-mGluR1alpha cells with a concentration of pertussis toxin (PTX) shown to be maximally effective (100 ng ml(-1), 24 h) before membrane preparation resulted in a marked decrease in agonist-stimulated [35S]-GTPgammaS binding (by 66.0 +/- 0.9%), and an altered concentration-effect relationship for agonist-stimulated [35S]-GTPgammaS binding by the residual PTX-insensitive G-protein population. 7. The modulation of [35S]-GTPgammaS binding by agonists and antagonists in membranes from recombinant cells provides an excellent system in which to study mGluR interactions with PTX-sensitive and -insensitive G proteins.
Collapse
Affiliation(s)
- E C Akam
- Department of Cell Physiology and Pharmacology, University of Leicester
| | | | | | | |
Collapse
|