1
|
Tabolacci C, Caruso A, Micai M, Galati G, Lintas C, Pisanu ME, Scattoni ML. Biogenic Amine Metabolism and Its Genetic Variations in Autism Spectrum Disorder: A Comprehensive Overview. Biomolecules 2025; 15:539. [PMID: 40305279 PMCID: PMC12025284 DOI: 10.3390/biom15040539] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2025] [Revised: 03/26/2025] [Accepted: 03/29/2025] [Indexed: 05/02/2025] Open
Abstract
Autism spectrum disorder (ASD) is a genetically heterogeneous syndrome characterized by repetitive, restricted, and stereotyped behaviors, along with persistent difficulties with social interaction and communication. Despite its increasing prevalence globally, the underlying pathogenic mechanisms of this complex neurodevelopmental disorder remain poorly understood. Therefore, the identification of reliable biomarkers could play a crucial role in enabling early screening and more precise classification of ASD subtypes, offering valuable insights into its physiopathology and aiding the customization of treatment or early interventions. Biogenic amines, including serotonin, histamine, dopamine, epinephrine, norepinephrine, and polyamines, are a class of organic compounds mainly produced by the decarboxylation of amino acids. A substantial portion of the genetic variation observed in ASD has been linked to genes that are either directly or indirectly involved in the metabolism of biogenic amines. Their potential involvement in ASD has become an area of growing interest due to their pleiotropic activities in the central nervous system, where they act as both neurotransmitters and neuromodulators or hormones. This review examines the role of biogenic amines in ASD, with a particular focus on genetic alterations in the enzymes responsible for their synthesis and degradation.
Collapse
Affiliation(s)
- Claudio Tabolacci
- Coordination and Promotion of Research, Istituto Superiore di Sanità, Viale Regina Elena 299, 00161 Rome, Italy; (A.C.); (M.M.); (G.G.); (M.L.S.)
| | - Angela Caruso
- Coordination and Promotion of Research, Istituto Superiore di Sanità, Viale Regina Elena 299, 00161 Rome, Italy; (A.C.); (M.M.); (G.G.); (M.L.S.)
| | - Martina Micai
- Coordination and Promotion of Research, Istituto Superiore di Sanità, Viale Regina Elena 299, 00161 Rome, Italy; (A.C.); (M.M.); (G.G.); (M.L.S.)
| | - Giulia Galati
- Coordination and Promotion of Research, Istituto Superiore di Sanità, Viale Regina Elena 299, 00161 Rome, Italy; (A.C.); (M.M.); (G.G.); (M.L.S.)
| | - Carla Lintas
- Research Unit of Medical Genetics, Department of Medicine and Surgery, University Campus Bio-Medico of Rome, Via Alvaro del Portillo 21, 00128 Rome, Italy;
- Operative Research Unit of Medical Genetics, Fondazione Policlinico Universitario Campus Bio-Medico, Via Alvaro del Portillo 200, 00128 Rome, Italy
| | - Maria Elena Pisanu
- Core Facilities, High Resolution NMR Unit, Istituto Superiore di Sanità, 00161 Rome, Italy;
| | - Maria Luisa Scattoni
- Coordination and Promotion of Research, Istituto Superiore di Sanità, Viale Regina Elena 299, 00161 Rome, Italy; (A.C.); (M.M.); (G.G.); (M.L.S.)
| |
Collapse
|
2
|
Oshima K, Yamamoto R, Yamasaki H, Katayama M, Noda K, Oishi T, Ohta H. Synthesis of N-alkylated octopamine derivatives and their interaction with octopamine receptor BmOAR1. JOURNAL OF PESTICIDE SCIENCE 2025; 50:9-13. [PMID: 40103690 PMCID: PMC11911498 DOI: 10.1584/jpestics.d24-054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/17/2024] [Accepted: 01/21/2025] [Indexed: 03/20/2025]
Abstract
A series of N-alkylated octopamine derivatives was synthesized, and the structure-activity relationships of these derivatives with the silkworm Bombyx mori octopamine receptor BmOAR1 were evaluated using a secreted placental alkaline phosphatase reporter assay system. The N-alkyl moiety on the ligand affected the intensity of the agonist activity in the order: CH3>(H)>C2H5. Although linear alkyl chains of C3 or higher did not exhibit any activity, the fixed C3 alkyl group forming a pyrrolidine ring showed significant activity. These results suggest that BmOAR1 has a relatively small space around the amine-binding site, and the alkyl part constituting the cyclic amine could exert the same effect as the small alkyl group.
Collapse
Affiliation(s)
- Kenji Oshima
- Department of Biological and Chemical Systems Engineering, National Institute of Technology, Kumamoto College
| | - Ryunosuke Yamamoto
- Department of Biological and Chemical Systems Engineering, National Institute of Technology, Kumamoto College
| | - Haruna Yamasaki
- Department of Biological and Chemical Systems Engineering, National Institute of Technology, Kumamoto College
| | - Maki Katayama
- Department of Biological and Chemical Systems Engineering, National Institute of Technology, Kumamoto College
| | - Keita Noda
- Graduate School of Science and Technology, Kumamoto University
| | | | - Hiroto Ohta
- Department of Applied Microbial Engineering, Faculty of Life Sciences, Sojo University
| |
Collapse
|
3
|
Wang H, Liu S, Sun Y, Chen C, Hu Z, Li Q, Long J, Yan Q, Liang J, Lin Y, Yang S, Lin M, Liu X, Wang H, Yu J, Yi F, Tan Y, Yang Y, Chen N, Ai Q. Target modulation of glycolytic pathways as a new strategy for the treatment of neuroinflammatory diseases. Ageing Res Rev 2024; 101:102472. [PMID: 39233146 DOI: 10.1016/j.arr.2024.102472] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Revised: 08/22/2024] [Accepted: 08/24/2024] [Indexed: 09/06/2024]
Abstract
Neuroinflammation is an innate and adaptive immune response initiated by the release of inflammatory mediators from various immune cells in response to harmful stimuli. While initially beneficial and protective, prolonged or excessive neuroinflammation has been identified in clinical and experimental studies as a key pathological driver of numerous neurological diseases and an accelerant of the aging process. Glycolysis, the metabolic process that converts glucose to pyruvate or lactate to produce adenosine 5'-triphosphate (ATP), is often dysregulated in many neuroinflammatory disorders and in the affected nerve cells. Enhancing glucose availability and uptake, as well as increasing glycolytic flux through pharmacological or genetic manipulation of glycolytic enzymes, has shown potential protective effects in several animal models of neuroinflammatory diseases. Modulating the glycolytic pathway to improve glucose metabolism and ATP production may help alleviate energy deficiencies associated with these conditions. In this review, we examine six neuroinflammatory diseases-stroke, Alzheimer's disease (AD), Parkinson's disease (PD), Huntington's disease (HD), amyotrophic lateral sclerosis (ALS), and depression-and provide evidence supporting the role of glycolysis in their treatment. We also explore the potential link between inflammation-induced aging and glycolysis. Additionally, we briefly discuss the critical role of glycolysis in three types of neuronal cells-neurons, microglia, and astrocytes-within physiological processes. This review highlights the significance of glycolysis in the pathology of neuroinflammatory diseases and its relevance to the aging process.
Collapse
Affiliation(s)
- Hanlong Wang
- Hunan Engineering Technology Center of Standardization and Function of Chinese Herbal Decoction Pieces, School of Pharmacy, Hunan University of Chinese Medicine, Changsha 410208, China
| | - Shasha Liu
- Department of Pharmacy, Changsha Hospital for Matemal&Child Health Care Affiliated to Hunan Normal University, Changsha 410007, China
| | - Yang Sun
- Hunan Engineering Technology Center of Standardization and Function of Chinese Herbal Decoction Pieces, School of Pharmacy, Hunan University of Chinese Medicine, Changsha 410208, China
| | - Chen Chen
- Department of Pharmacy, The First Hospital of Lanzhou University, Lanzhou 730000, China
| | - Ziyi Hu
- Hunan Engineering Technology Center of Standardization and Function of Chinese Herbal Decoction Pieces, School of Pharmacy, Hunan University of Chinese Medicine, Changsha 410208, China
| | - Qinqin Li
- Hunan Engineering Technology Center of Standardization and Function of Chinese Herbal Decoction Pieces, School of Pharmacy, Hunan University of Chinese Medicine, Changsha 410208, China
| | - Junpeng Long
- Hunan Engineering Technology Center of Standardization and Function of Chinese Herbal Decoction Pieces, School of Pharmacy, Hunan University of Chinese Medicine, Changsha 410208, China
| | - Qian Yan
- Hunan Engineering Technology Center of Standardization and Function of Chinese Herbal Decoction Pieces, School of Pharmacy, Hunan University of Chinese Medicine, Changsha 410208, China
| | - Jinping Liang
- Hunan Engineering Technology Center of Standardization and Function of Chinese Herbal Decoction Pieces, School of Pharmacy, Hunan University of Chinese Medicine, Changsha 410208, China
| | - Yuting Lin
- Hunan Engineering Technology Center of Standardization and Function of Chinese Herbal Decoction Pieces, School of Pharmacy, Hunan University of Chinese Medicine, Changsha 410208, China
| | - Songwei Yang
- Hunan Engineering Technology Center of Standardization and Function of Chinese Herbal Decoction Pieces, School of Pharmacy, Hunan University of Chinese Medicine, Changsha 410208, China
| | - Meiyu Lin
- Hunan Engineering Technology Center of Standardization and Function of Chinese Herbal Decoction Pieces, School of Pharmacy, Hunan University of Chinese Medicine, Changsha 410208, China
| | - Xuan Liu
- Hunan Engineering Technology Center of Standardization and Function of Chinese Herbal Decoction Pieces, School of Pharmacy, Hunan University of Chinese Medicine, Changsha 410208, China
| | - Huiqin Wang
- Hunan Engineering Technology Center of Standardization and Function of Chinese Herbal Decoction Pieces, School of Pharmacy, Hunan University of Chinese Medicine, Changsha 410208, China
| | - Jingbo Yu
- Technology Innovation Center/National Key Laboratory Breeding Base of Chinese Medicine Powders and Innovative Drugs, Hunan University of Chinese Medicine, Changsha 410208, China
| | - Fan Yi
- Key Laboratory of Cosmetic, China National Light Industry, Beijing Technology and Business University, Beijing 100048, China
| | - Yong Tan
- Nephrology Department, Xiangtan Central Hospital, Xiangtan 411100, China
| | - Yantao Yang
- Hunan Engineering Technology Center of Standardization and Function of Chinese Herbal Decoction Pieces, School of Pharmacy, Hunan University of Chinese Medicine, Changsha 410208, China.
| | - Naihong Chen
- Hunan Engineering Technology Center of Standardization and Function of Chinese Herbal Decoction Pieces, School of Pharmacy, Hunan University of Chinese Medicine, Changsha 410208, China; State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica & Neuroscience Center, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China.
| | - Qidi Ai
- Hunan Engineering Technology Center of Standardization and Function of Chinese Herbal Decoction Pieces, School of Pharmacy, Hunan University of Chinese Medicine, Changsha 410208, China.
| |
Collapse
|
4
|
Ramya R, Venkatesh CR, Shyamala BV. olf413 an octopamine biogenesis pathway gene is required for axon growth and pathfinding during embryonic nervous system development in Drosophila melanogaster. BMC Res Notes 2024; 17:46. [PMID: 38326892 PMCID: PMC10848397 DOI: 10.1186/s13104-024-06700-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Accepted: 01/23/2024] [Indexed: 02/09/2024] Open
Abstract
OBJECTIVE Neurotransmitters have been extensively studied as neural communication molecules. Genetic associations discovered, and indirect intervention studies in Humans and mammals have led to a general proposition that neurotransmitters have a role in structuring of neuronal network during development. olf413 is a Drosophila gene annotated as coding for dopamine beta-monooxygenase enzyme with a predicted function in octopaminergic pathway. The biological function of this gene is very little worked out. In this study we investigate the requirement of olf413 gene function for octopamine biogenesis and developmental patterning of embryonic nervous system. RESULT In our study we have used the newly characterized neuronal specific allele olf413SG1.1, and the gene disruption strain olf413MI02014 to dissect out the function of olf413. olf413 has an enhancer activity as depicted by reporter GFP expression, in the embryonic ventral nerve cord, peripheral nervous system and the somatic muscle bundles. Homozygous loss of function mutants show reduced levels of octopamine, and this finding supports the proposed function of the gene in octopamine biogenesis. Further, loss of function of olf413 causes embryonic lethality. FasII staining of these embryos reveal a range of phenotypes in the central and peripheral motor nerves, featuring axonal growth, pathfinding, branching and misrouting defects. Our findings are important as they implicate a key functional requirement of this gene in precise axonal patterning events, a novel developmental role imparted for an octopamine biosynthesis pathway gene in structuring of embryonic nervous system.
Collapse
Affiliation(s)
- Ravindrakumar Ramya
- Developmental Genetics Laboratory, Department of Studies in Zoology, University of Mysore, Mysuru, 570006, India
| | | | | |
Collapse
|
5
|
Duchatelet L, Coubris C, Pels C, Dupont ST, Mallefet J. Catecholamine Involvement in the Bioluminescence Control of Two Species of Anthozoans. Life (Basel) 2023; 13:1798. [PMID: 37763202 PMCID: PMC10533100 DOI: 10.3390/life13091798] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Revised: 08/20/2023] [Accepted: 08/22/2023] [Indexed: 09/29/2023] Open
Abstract
Bioluminescence, the ability of living organisms to emit visible light, is an important ecological feature for many marine species. To fulfil the ecological role (defence, offence, or communication), bioluminescence needs to be finely controlled. While many benthic anthozoans are luminous, the physiological control of light emission has only been investigated in the sea pansy, Renilla koellikeri. Through pharmacological investigations, a nervous catecholaminergic bioluminescence control was demonstrated for the common sea pen, Pennatula phosphorea, and the tall sea pen, Funiculina quadrangularis. Results highlight the involvement of adrenaline as the main neuroeffector triggering clusters of luminescent flashes. While noradrenaline and octopamine elicit flashes in P. phosphorea, these two biogenic amines do not trigger significant light production in F. quadrangularis. All these neurotransmitters act on both the endodermal photocytes located at the base and crown of autozooids and specific chambers of water-pumping siphonozooids. Combined with previous data on R. koellikeri, our results suggest that a catecholaminergic control mechanisms of bioluminescence may be conserved in Anthozoans.
Collapse
Affiliation(s)
- Laurent Duchatelet
- Marine Biology Laboratory, Earth and Life Institute, Université Catholique de Louvain, 1348 Ottignies-Louvain-la-Neuve, Belgium; (C.C.); (C.P.); (J.M.)
| | - Constance Coubris
- Marine Biology Laboratory, Earth and Life Institute, Université Catholique de Louvain, 1348 Ottignies-Louvain-la-Neuve, Belgium; (C.C.); (C.P.); (J.M.)
| | - Christopher Pels
- Marine Biology Laboratory, Earth and Life Institute, Université Catholique de Louvain, 1348 Ottignies-Louvain-la-Neuve, Belgium; (C.C.); (C.P.); (J.M.)
| | - Sam T. Dupont
- Department of Biological & Environmental Sciences, University of Gothenburg, 451 78 Fiskebäckskil, Sweden;
- Marine Environment Laboratories, International Atomic Energy Agency, MC-98000 Monaco, Monaco
| | - Jérôme Mallefet
- Marine Biology Laboratory, Earth and Life Institute, Université Catholique de Louvain, 1348 Ottignies-Louvain-la-Neuve, Belgium; (C.C.); (C.P.); (J.M.)
| |
Collapse
|
6
|
Shum A, Zaichick S, McElroy G, D’Alessandro K, Alasady M, Novakovic M, Peng W, Grebenik E, Chung D, Flanagan M, Smith R, Morales A, Stumpf L, McGrath K, Krainc D, Mendillo M, Prakriya M, Chandel N, Caraveo G. Octopamine metabolically reprograms astrocytes to confer neuroprotection against α-synuclein. Proc Natl Acad Sci U S A 2023; 120:e2217396120. [PMID: 37068235 PMCID: PMC10151466 DOI: 10.1073/pnas.2217396120] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Accepted: 03/12/2023] [Indexed: 04/19/2023] Open
Abstract
Octopamine is a well-established invertebrate neurotransmitter involved in fight or flight responses. In mammals, its function was replaced by epinephrine. Nevertheless, it is present at trace amounts and can modulate the release of monoamine neurotransmitters by a yet unidentified mechanism. Here, through a multidisciplinary approach utilizing in vitro and in vivo models of α-synucleinopathy, we uncovered an unprecedented role for octopamine in driving the conversion from toxic to neuroprotective astrocytes in the cerebral cortex by fostering aerobic glycolysis. Physiological levels of neuron-derived octopamine act on astrocytes via a trace amine-associated receptor 1-Orai1-Ca2+-calcineurin-mediated signaling pathway to stimulate lactate secretion. Lactate uptake in neurons via the monocarboxylase transporter 2-calcineurin-dependent pathway increases ATP and prevents neurodegeneration. Pathological increases of octopamine caused by α-synuclein halt lactate production in astrocytes and short-circuits the metabolic communication to neurons. Our work provides a unique function of octopamine as a modulator of astrocyte metabolism and subsequent neuroprotection with implications to α-synucleinopathies.
Collapse
Affiliation(s)
- Andrew Shum
- Department of Neurology, Northwestern University Feinberg School of Medicine, Chicago, IL60611
| | - Sofia Zaichick
- Department of Neurology, Northwestern University Feinberg School of Medicine, Chicago, IL60611
| | - Gregory S. McElroy
- Department of Medicine, Division of Pulmonary and Critical Care Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL60611
| | - Karis D’Alessandro
- Department of Medicine, Division of Pulmonary and Critical Care Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL60611
| | - Milad J. Alasady
- Department of Biochemistry and Molecular Genetics, Northwestern University Feinberg School of Medicine, Chicago, IL60611
| | - Michaela Novakovic
- Department of Pharmacology, Northwestern University Feinberg School of Medicine, ChicagoIL60611
| | - Wesley Peng
- Department of Neurology, Northwestern University Feinberg School of Medicine, Chicago, IL60611
| | - Ekaterina A. Grebenik
- Department of Neurology, Northwestern University Feinberg School of Medicine, Chicago, IL60611
| | - Daayun Chung
- Department of Neurology, Northwestern University Feinberg School of Medicine, Chicago, IL60611
| | - Margaret E. Flanagan
- Department of Pathology, Northwestern University Feinberg School of Medicine, ChicagoIL60611
- Mesulam Center for Cognitive Neurology and Alzheimer’s Disease, Northwestern University Fienberg School of Medicine, ChicagoIL60611
| | - Roger Smith
- Department of Biochemistry and Molecular Genetics, Northwestern University Feinberg School of Medicine, Chicago, IL60611
| | - Alejandro Morales
- Department of Neurology, Northwestern University Feinberg School of Medicine, Chicago, IL60611
| | - Laetitia Stumpf
- Department of Neurology, Northwestern University Feinberg School of Medicine, Chicago, IL60611
| | - Kaitlyn McGrath
- Department of Neurology, Northwestern University Feinberg School of Medicine, Chicago, IL60611
| | - Dimitri Krainc
- Department of Neurology, Northwestern University Feinberg School of Medicine, Chicago, IL60611
| | - Marc L. Mendillo
- Department of Biochemistry and Molecular Genetics, Northwestern University Feinberg School of Medicine, Chicago, IL60611
| | - Murali Prakriya
- Department of Pharmacology, Northwestern University Feinberg School of Medicine, ChicagoIL60611
| | - Navdeep S. Chandel
- Department of Medicine, Division of Pulmonary and Critical Care Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL60611
| | - Gabriela Caraveo
- Department of Neurology, Northwestern University Feinberg School of Medicine, Chicago, IL60611
| |
Collapse
|
7
|
Mahmudi R, Azarbayjani MA, Peeri M, Farzanegi P. The Effect of Aerobic Training and Octopamine on Inflammatory Signaling Pathway in White Adipose Tissue of Rats Poisoned with Deep-Fried Oil. Pharm Chem J 2023; 57:101-107. [DOI: 10.1007/s11094-023-02856-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2021] [Indexed: 10/30/2023]
|
8
|
Octopamine signaling via OctαR is essential for a well-orchestrated climbing performance of adult Drosophila melanogaster. Sci Rep 2022; 12:14024. [PMID: 35982189 PMCID: PMC9388497 DOI: 10.1038/s41598-022-18203-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Accepted: 08/08/2022] [Indexed: 11/17/2022] Open
Abstract
The biogenic amine octopamine (OA) orchestrates many behavioural processes in insects. OA mediates its function by binding to OA receptors belonging to the G protein-coupled receptors superfamily. Despite the potential relevance of OA, our knowledge about the role of each octopaminergic receptor and how signalling through these receptors controls locomotion still limited. In this study, RNA interference (RNAi) was used to knockdown each OA receptor type in almost all Drosophila melanogaster tissues using a tubP-GAL4 driver to investigate the loss of which receptor affects the climbing ability of adult flies. The results demonstrated that although all octopaminergic receptors are involved in normal negative geotaxis but OctαR-deficient flies had impaired climbing ability more than those deficient in other OA receptors. Mutation in OA receptors coding genes develop weak climbing behaviour. Directing knockdown of octαR either in muscular system or nervous system or when more specifically restricted to motor and gravity sensing neurons result in similar impaired climbing phenotype, indicating that within Drosophila legs, OA through OctαR orchestrated the nervous system control and muscular tissue responses. OctαR-deficient adult males showed morphometric changes in the length and width of leg parts. Leg parts morphometric changes were also observed in Drosophila mutant in OctαR. Transmission electron microscopy revealed that the leg muscles OctαR-deficient flies have severe ultrastructural changes compared to those of control flies indicating the role played by OctαR signalling in normal muscular system development. The severe impairment in the climbing performance of OctαR-deficient flies correlates well with the completely distorted leg muscle ultrastructure in these flies. Taken together, we could conclude that OA via OctαR plays an important multifactorial role in controlling locomotor activity of Drosophila.
Collapse
|
9
|
Examination of Intracellular GPCR-Mediated Signaling with High Temporal Resolution. Int J Mol Sci 2022; 23:ijms23158516. [PMID: 35955656 PMCID: PMC9369311 DOI: 10.3390/ijms23158516] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Revised: 07/28/2022] [Accepted: 07/29/2022] [Indexed: 11/17/2022] Open
Abstract
The GTP-binding protein-coupled receptors (GPCRs) play important roles in physiology and neuronal signaling. More than a thousand genes, excluding the olfactory receptors, have been identified that encode these integral membrane proteins. Their pharmacological and functional properties make them fascinating targets for drug development, since various disease states can be treated and overcome by pharmacologically addressing these receptors and/or their downstream interacting partners. The activation of the GPCRs typically causes transient changes in the intracellular second messenger concentrations as well as in membrane conductance. In contrast to ion channel-mediated electrical signaling which results in spontaneous cellular responses, the GPCR-mediated metabotropic signals operate at a different time scale. Here we have studied the kinetics of two common GPCR-induced signaling pathways: (a) Ca2+ release from intracellular stores and (b) cyclic adenosine monophosphate (cAMP) production. The latter was monitored via the activation of cyclic nucleotide-gated (CNG) ion channels causing Ca2+ influx into the cell. Genetically modified and stably transfected cell lines were established and used in stopped-flow experiments to uncover the individual steps of the reaction cascades. Using two homologous biogenic amine receptors, either coupling to Go/q or Gs proteins, allowed us to determine the time between receptor activation and signal output. With ~350 ms, the release of Ca2+ from intracellular stores was much faster than cAMP-mediated Ca2+ entry through CNG channels (~6 s). The measurements with caged compounds suggest that this difference is due to turnover numbers of the GPCR downstream effectors rather than the different reaction cascades, per se.
Collapse
|
10
|
Liu D, Zhang X, Chiqin F, Nyamwasa I, Cao Y, Yin J, Zhang S, Feng H, Li K. Octopamine modulates insect mating and Oviposition. J Chem Ecol 2022; 48:628-640. [PMID: 35687218 DOI: 10.1007/s10886-022-01366-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Revised: 05/10/2022] [Accepted: 05/16/2022] [Indexed: 01/18/2023]
Abstract
The neuro-mechanisms that regulate insect reproduction are not fully understood. Biogenic amines, including octopamine, are neuromodulators that have been shown to modulate insect reproduction in various ways, e.g., promote or inhibit insect mating or oviposition. In this study, we examined the role of octopamine in regulating the reproduction behaviors of a devastating underground insect pest, the dark black chafer (Holotrichia parallela). We first measured the abundance of octopamine in different neural tissues of the adult chafer pre- and post-mating, demonstrating that octopamine decreased in the abdominal ganglia of females but increased in males post-mating. We then fed the adult H. parallela with a concentration gradient of octopamine to test the effects on insect reproductive behaviors. Compared with its antagonist mianserin, octopamine at the concentration of 2 µg/mL resulted in the highest increase in males' preference for sex pheromone and females' oviposition, whereas the mianserin-treatment increased the survival rate and prolonged the lifespan of H. parallela. In addition, we did not observe significant differences in egg hatchability between octopamine and mianserin-treated H. parallela. Our results demonstrated that octopamine promotes H. parallela mating and oviposition with a clear low dosage effect, illustrated how neural substrates modulate insect behaviors, and provided insights for applying octopamine in pest management.
Collapse
Affiliation(s)
- Dandan Liu
- State Key Laboratory for Biology, Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, 100193, Beijing, China
| | - Xinxin Zhang
- Northeast Agricultural University, 150030, Harbin, Heilongjiang, China
| | - Fang Chiqin
- State Key Laboratory for Biology, Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, 100193, Beijing, China
| | - Innocent Nyamwasa
- State Key Laboratory for Biology, Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, 100193, Beijing, China
| | - Yazhong Cao
- State Key Laboratory for Biology, Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, 100193, Beijing, China
| | - Jiao Yin
- State Key Laboratory for Biology, Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, 100193, Beijing, China
| | - Shuai Zhang
- State Key Laboratory for Biology, Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, 100193, Beijing, China
| | - Honglin Feng
- Boyce Thompson Institute, 14853, Ithaca, NewYork, USA.
| | - Kebin Li
- State Key Laboratory for Biology, Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, 100193, Beijing, China.
| |
Collapse
|
11
|
Kuo HW, Cheng W. Cloning and characterization of a key enzyme in octopaminergic pathway: Tyramine beta-hydroxylase from Litopenaeus vannamei, as expressed during Vibrio alginolytics infection and hypothermal stress. FISH & SHELLFISH IMMUNOLOGY 2021; 119:1-10. [PMID: 34600115 DOI: 10.1016/j.fsi.2021.09.036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Revised: 09/13/2021] [Accepted: 09/26/2021] [Indexed: 06/13/2023]
Abstract
Tyramine beta-hydroxylase (TBH) is needed for the biosynthesis of the octopamine (OA) from tyramine (TA). Both OA and TA act as neurotransmitters, neurohormones, and neuromodulators in the invertebrate nervous system. In this study, TBH was identified in white shrimp, Litopenaeus vannamei, and further investigation on its potential function was conducted after inducing hypothermal stress and Vibrio alginolyticus infection. TBH of L. vannamei (LvTBH) was comprised 2178 nucleotide residues and contained an open reading frame encoding 408 amino acids, belonging to the Copper type II, ascorbate-dependent monooxygenases, was characterized by two Cu2_monooxygen domains and five glycosylation sites. LvTBH expression was especially abundant in muscle, and mainly in brain and thoracic ganglia of nervous system, eyestalk tissues, epithelium, and stomach, as determined by quantitative real-time PCR. The effects of hypothermal stress showed significant increases in LvTBH at 15, 30 and 60 min in brain and at 30 min in haemocyte, accompanied by an increase in OA level in haemolymph from 15 to 60 min. Significant increases in LvTBH occurred at 15, 30 and 60 min in haemocyte and at 60 min in brain tissue, and was proportional to the OA level of haemolymph under Vibrio alginolyticus infection from 30 to 60 min. Here, we demonstrated that LvTBH is functionally responsible for biogenic amine synthesis, suggesting that the increased release of OA in haemolymph for potential modulation of physiological and immunological responses is the consequence of the upregulated LvTBH gene expression in L. vannamei exposed to hypothermal stress and Vibrio alginolyticus infection.
Collapse
Affiliation(s)
- Hsin-Wei Kuo
- General Research Service Center, National Pingtung University of Science and Technology, Pingtung, 91201, Taiwan, ROC
| | - Winton Cheng
- Department of Aquaculture, National Pingtung University of Science and Technology, Pingtung, 91201, Taiwan, ROC.
| |
Collapse
|
12
|
Sensitivity to expression levels underlies differential dominance of a putative null allele of the Drosophila tβh gene in behavioral phenotypes. PLoS Biol 2021; 19:e3001228. [PMID: 33970909 PMCID: PMC8136860 DOI: 10.1371/journal.pbio.3001228] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2019] [Revised: 05/20/2021] [Accepted: 04/12/2021] [Indexed: 11/24/2022] Open
Abstract
The biogenic amine octopamine (OA) and its precursor tyramine (TA) are involved in controlling a plethora of different physiological and behavioral processes. The tyramine-β-hydroxylase (tβh) gene encodes the enzyme catalyzing the last synthesis step from TA to OA. Here, we report differential dominance (from recessive to overdominant) of the putative null tβhnM18 allele in 2 behavioral measures in Buridan’s paradigm (walking speed and stripe deviation) and in proboscis extension (sugar sensitivity) in the fruit fly Drosophila melanogaster. The behavioral analysis of transgenic tβh expression experiments in mutant and wild-type flies as well as of OA and TA receptor mutants revealed a complex interaction of both aminergic systems. Our analysis suggests that the different neuronal networks responsible for the 3 phenotypes show differential sensitivity to tβh gene expression levels. The evidence suggests that this sensitivity is brought about by a TA/OA opponent system modulating the involved neuronal circuits. This conclusion has important implications for standard transgenic techniques commonly used in functional genetics. Differential dominance occurs when genes associated with several phenotypes (pleiotropic genes) show different modes of inheritance (e.g., recessive, dominant or overdominant) depending on the phenotype. This study reveals that differential sensitivity to gene expression levels can mediate differential dominance, which can be a significant challenge for standard transgenic techniques commonly used to elucidate gene function.
Collapse
|
13
|
Mishra S, Nguyen HQ, Huang QR, Lin CK, Kuo JL, Patwari GN. Vibrational spectroscopic signatures of hydrogen bond induced NH stretch–bend Fermi-resonance in amines: The methylamine clusters and other N–H⋯N hydrogen-bonded complexes. J Chem Phys 2020; 153:194301. [DOI: 10.1063/5.0025778] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Affiliation(s)
- Saurabh Mishra
- Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai 400076, India
| | - Ha-Quyen Nguyen
- Institute of Atomic and Molecular Sciences, Academia Sinica, Taipei 10617, Taiwan
| | - Qian-Rui Huang
- Institute of Atomic and Molecular Sciences, Academia Sinica, Taipei 10617, Taiwan
| | - Chih-Kai Lin
- Institute of Atomic and Molecular Sciences, Academia Sinica, Taipei 10617, Taiwan
| | - Jer-Lai Kuo
- Institute of Atomic and Molecular Sciences, Academia Sinica, Taipei 10617, Taiwan
| | - G. Naresh Patwari
- Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai 400076, India
| |
Collapse
|
14
|
Peng T, Schroeder M, Grüter C. Octopamine increases individual and collective foraging in a neotropical stingless bee. Biol Lett 2020; 16:20200238. [PMID: 32516562 DOI: 10.1098/rsbl.2020.0238] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
The biogenic amine octopamine (OA) is a key modulator of individual and social behaviours in honeybees, but its role in the other group of highly eusocial bees, the stingless bees, remains largely unknown. In honeybees, OA mediates reward perception and affects a wide range of reward-seeking behaviours. Thus, we tested the hypothesis that OA increases individual foraging effort and collective food source exploitation in the neotropical stingless bee Plebeia droryana. OA treatment caused a significant increase in the number of bees at artificial sucrose feeders and a 1.73-times higher individual foraging frequency. This effect can be explained by OA lowering the sucrose response threshold and, thus, increasing the perceived value of the food source. Our results demonstrate that, similar to its effects on honeybees, OA increases both individual and collective food source exploitation in P. droryana. This suggests that, despite having evolved many complex behaviours independently, OA might have similar regulatory effects on foraging behaviours in the two groups of highly eusocial bees.
Collapse
Affiliation(s)
- Tianfei Peng
- Institute of Organismic and Molecular Evolutionary Biology, Johannes-Gutenberg University of Mainz, Mainz, Germany
| | - Maximilian Schroeder
- Institute of Organismic and Molecular Evolutionary Biology, Johannes-Gutenberg University of Mainz, Mainz, Germany
| | - Christoph Grüter
- Institute of Organismic and Molecular Evolutionary Biology, Johannes-Gutenberg University of Mainz, Mainz, Germany
| |
Collapse
|
15
|
Xu T, Zhao W, Miao J, Zhang B, Yang X, Sheng GD, Yin D. A sensitive optical-based test method for the locomotor activity of earthworms. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 715:136966. [PMID: 32040999 DOI: 10.1016/j.scitotenv.2020.136966] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/28/2019] [Revised: 01/22/2020] [Accepted: 01/25/2020] [Indexed: 06/10/2023]
Abstract
The outdated test methodologies for terrestrial animals have limited the progress of soil ecotoxicology to some extent. To improve the behavioral testing of earthworms, a terrestrial model animal, a sensitive optical-based method for detecting locomotor activity was established. The method measured the fine quantified position offsets of each earthworm in place of a conventional overall response rate, which provided the feasibility for accurate analyses and comparisons. By setting appropriate thresholds, the time proportions of medium and burst states (mid-burdur%) could be an optimized endpoint with an ideal balance in output stability and sensitivity. In addition, we chose the head-end, which is the most flexible part of the earthworm, other than whole body to further elevate the sensitivity in indicating the changed traits. Using octopamine, serotonin, and a serial-dose of lindane exposure, the practice credibility of the test method was validated. Our developed locomotor test method overcame the innate characteristics of the earthworm, and was expected to provide a powerful phenotypic tool for ecological and ecotoxicological studies using earthworms and similar invertebrates.
Collapse
Affiliation(s)
- Ting Xu
- Key Laboratory of Yangtze River Water Environment, Ministry of Education, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, China
| | - Wanting Zhao
- Key Laboratory of Yangtze River Water Environment, Ministry of Education, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China
| | - Juanjuan Miao
- Key Laboratory of Yangtze River Water Environment, Ministry of Education, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China
| | - Bin Zhang
- Key Laboratory of Yangtze River Water Environment, Ministry of Education, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China; State Key Laboratory of Marine Geology, Tongji University, Shanghai 200092, China
| | - Xinyue Yang
- Key Laboratory of Yangtze River Water Environment, Ministry of Education, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China
| | - G Daniel Sheng
- Key Laboratory of Yangtze River Water Environment, Ministry of Education, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, China
| | - Daqiang Yin
- Key Laboratory of Yangtze River Water Environment, Ministry of Education, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, China.
| |
Collapse
|
16
|
Finetti L, Ferrari F, Caló G, Cassanelli S, De Bastiani M, Civolani S, Bernacchia G. Modulation of Drosophila suzukii type 1 tyramine receptor (DsTAR1) by monoterpenes: a potential new target for next generation biopesticides. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2020; 165:104549. [PMID: 32359540 DOI: 10.1016/j.pestbp.2020.02.015] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2019] [Revised: 02/21/2020] [Accepted: 02/22/2020] [Indexed: 06/11/2023]
Abstract
This study proposes a biochemical and molecular model for the interaction between the Drosophila suzukii type 1 tyramine receptor (DsTAR1) and monoterpenes. A preliminary molecular and functional characterization of DsTAR1 cDNA revealed that a 1.8 kb long ORF codes for a 600 amino acid polypeptide featuring seven transmembrane domains, as expected for a GPCR. A stable HEK 293 cell line expressing DsTAR1 was tested for responsiveness to tyramine (TA) and octopamine (OA). In intracellular calcium mobilization studies, TA led to a concentration-dependent increase in [Ca2+]i (pEC50 ~ 6.40), completely abolished by pre-incubation with the antagonist yohimbine 1 μM. Besides, in dynamic mass redistribution (DMR) studies, TA evoked a positive DMR signal in a concentration-dependent manner (pEC50 ~ 6.80). The recombinant cell line was then used to test three monoterpenes (thymol, carvacrol and α-terpineol) as putative ligands for DsTAR1. The terpenoids showed no agonist effects in both DMR and calcium mobilization assays, but they increased the potency of the endogenous ligand, TA, acting as positive allosteric modulators. Moreover, expression analysis on adults D. suzukii, exposed for 24, 72 or 120 h to a sublethal concentration of the three monoterpenes, showed a downregulation of DsTAR1. This evidence has led to hypothesize that the downregulation of DsTAR1 might be a compensatory mechanism in response to the positive allosteric modulation of the receptor induced by monoterpenes. Therefore, these findings might be useful for the development of a new generation of biopesticides against Drosophila suzukii, targeting TAR1.
Collapse
Affiliation(s)
- Luca Finetti
- Department of Life Sciences and Biotechnology, University of Ferrara, Ferrara, Italy
| | - Federica Ferrari
- Department of Medical Sciences, Section of Pharmacology, University of Ferrara, Ferrara, Italy
| | - Girolamo Caló
- Department of Medical Sciences, Section of Pharmacology, University of Ferrara, Ferrara, Italy
| | - Stefano Cassanelli
- Department of Life Sciences, University of Modena and Reggio Emilia, Reggio Emilia, Italy
| | - Morena De Bastiani
- Department of Life Sciences and Biotechnology, University of Ferrara, Ferrara, Italy
| | - Stefano Civolani
- Department of Life Sciences and Biotechnology, University of Ferrara, Ferrara, Italy; InnovaRicerca s.r.l. Monestirolo, Ferrara, Italy
| | - Giovanni Bernacchia
- Department of Life Sciences and Biotechnology, University of Ferrara, Ferrara, Italy.
| |
Collapse
|
17
|
Dimić D, Milanović Ž, Jovanović G, Sretenović D, Milenković D, Marković Z, Dimitrić Marković J. Comparative antiradical activity and molecular Docking/Dynamics analysis of octopamine and norepinephrine: the role of OH groups. Comput Biol Chem 2019; 84:107170. [PMID: 31810852 DOI: 10.1016/j.compbiolchem.2019.107170] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2019] [Revised: 11/15/2019] [Accepted: 11/18/2019] [Indexed: 12/20/2022]
Abstract
Octopamine is a neurotransmitter in invertebrates and a phenol analog of norepinephrine. The crystallographic and spectral (UV-visUV, and NMR) characteristics of octopamine were investigated experimentally and theoretically by applying appropriate level of theory, B3LYP-D3BJ/6-311++G(d,p), which reproduced well the experimental bond lengths and angles. The intramolecular interactions governing the stability of conformers were described by NBO and QTAIM analyses. The antiradical potencies of octopamine and norepinephrine towards DPPH and ABTS+ were examined with special emphasis on the preferred mechanism and effect of catechol moiety. Several techniques were used to distinguish Hydrogen Atom Transfer (HAT) and Proton Coupled Electron Transfer (PCET) mechanisms for reaction with DPPH. The calculated rate constants of the reactions with both radicals showed that Sequential Proton Loss Electron Transfer (SPLET) mechanism was dominant both thermodynamically and kinetically, with values of thermodynamic functions and rate constants clearly proving the importance of the second hydroxyl group in structure. The Molecular Docking and afterward Molecular Dynamics calculations of formed complexes between octopamine/norepinephrine with β1- and β2- adrenergic receptors examined in details the interactions that lead to the formation of stable complexes. The number of strong interactions of amino acids with norepinephrine was higher, but the absence of hydroxyl group in octopamine did not lead to a significant change in the type of interactions and stability. The formed complexes showed higher flexibility of amino acids, similar compactness of structure as proteins and increased interatomic distances of the backbone when compared to pure proteins.
Collapse
Affiliation(s)
- Dušan Dimić
- Faculty of Physical Chemistry, University of Belgrade, 12-16 Studentski trg, 11000, Belgrade, Republic of Serbia
| | - Žiko Milanović
- Bioengineering Research and Development Center, Prvoslava Stojanovića 6, 34000, Kragujevac, Republic of Serbia
| | - Goran Jovanović
- Faculty of Physical Chemistry, University of Belgrade, 12-16 Studentski trg, 11000, Belgrade, Republic of Serbia
| | - Dragana Sretenović
- Faculty of Physical Chemistry, University of Belgrade, 12-16 Studentski trg, 11000, Belgrade, Republic of Serbia
| | - Dejan Milenković
- Bioengineering Research and Development Center, Prvoslava Stojanovića 6, 34000, Kragujevac, Republic of Serbia; Institute for Information Technologies, Department of Science, University of Kragujevac, Republic of Serbia
| | - Zoran Marković
- Institute for Information Technologies, Department of Science, University of Kragujevac, Republic of Serbia; Department of Chemical-Technological Sciences, State University of Novi Pazar, Vuka Karadžića bb, 36300, Novi Pazar, Republic of Serbia
| | - Jasmina Dimitrić Marković
- Faculty of Physical Chemistry, University of Belgrade, 12-16 Studentski trg, 11000, Belgrade, Republic of Serbia.
| |
Collapse
|
18
|
Ligand-Induced Conformational Dynamics of A Tyramine Receptor from Sitophilus oryzae. Sci Rep 2019; 9:16275. [PMID: 31700013 PMCID: PMC6838067 DOI: 10.1038/s41598-019-52478-x] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2019] [Accepted: 10/18/2019] [Indexed: 12/20/2022] Open
Abstract
Tyramine receptor (TyrR) is a biogenic amine G protein-coupled receptor (GPCR) associated with many important physiological functions in insect locomotion, reproduction, and pheromone response. Binding of specific ligands to the TyrR triggers conformational changes, relays the signal to G proteins, and initiates an appropriate cellular response. Here, we monitor the binding effect of agonist compounds, tyramine and amitraz, to a Sitophilus oryzae tyramine receptor (SoTyrR) homology model and their elicited conformational changes. All-atom molecular dynamics (MD) simulations of SoTyrR-ligand complexes have shown varying dynamic behavior, especially at the intracellular loop 3 (IL3) region. Moreover, in contrast to SoTyrR-tyramine, SoTyrR-amitraz and non-liganded SoTyrR shows greater flexibility at IL3 residues and were found to be coupled to the most dominant motion in the receptor. Our results suggest that the conformational changes induced by amitraz are different from the natural ligand tyramine, albeit being both agonists of SoTyrR. This is the first attempt to understand the biophysical implication of amitraz and tyramine binding to the intracellular domains of TyrR. Our data may provide insights into the early effects of ligand binding to the activation process of SoTyrR.
Collapse
|
19
|
Cohanim AB, Amsalem E, Saad R, Shoemaker D, Privman E. Evolution of Olfactory Functions on the Fire Ant Social Chromosome. Genome Biol Evol 2018; 10:2947-2960. [PMID: 30239696 PMCID: PMC6279166 DOI: 10.1093/gbe/evy204] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/14/2018] [Indexed: 12/16/2022] Open
Abstract
Understanding the molecular evolutionary basis of social behavior is a major challenge in evolutionary biology. Social insects evolved a complex language of chemical signals to coordinate thousands of individuals. In the fire ant Solenopsis invicta, chemical signals are involved in the determination of a polymorphic social organization. Single-queen (monogyne) or multiqueen (polygyne) social structure is determined by the "social chromosome," a nonrecombining region containing ∼504 genes with two distinct haplotypes, SB and Sb. Monogyne queens are always SBB, while polygyne queens are always SBb. Workers discriminate monogyne from polygyne queens based on olfactory cues. Here, we took an evolutionary genomics approach to search for candidate genes in the social chromosome that could be responsible for this discrimination. We compared the SB and Sb haplotypes and analyzed the evolutionary rates since their divergence. Notably, we identified a cluster of 23 odorant receptors in the nonrecombining region of the social chromosome that stands out in terms of nonsynonymous changes in both haplotypes. The cluster includes twelve genes formed by recent Solenopsis-specific duplications. We found evidence for positive selection on several tree branches and significant differences between the SB and Sb haplotypes of these genes. The most dramatic difference is the complete deletion of two of these genes in Sb. These results suggest that the evolution of polygyne social organization involved adaptations in olfactory genes and opens the way for functional studies of the molecular mechanisms underlying social behavior.
Collapse
Affiliation(s)
- Amir B Cohanim
- Department of Evolutionary and Environmental Biology, Institute of Evolution, University of Haifa, Israel
| | - Etya Amsalem
- Department of Entomology, Huck Institutes of the Life Sciences, Pennsylvania State University
| | - Rana Saad
- Department of Evolutionary and Environmental Biology, Institute of Evolution, University of Haifa, Israel
| | - DeWayne Shoemaker
- Department of Entomology and Plant Pathology, University of Tennessee
| | - Eyal Privman
- Department of Evolutionary and Environmental Biology, Institute of Evolution, University of Haifa, Israel
| |
Collapse
|
20
|
Zhu YC, Cooper RL. Cold Exposure Effects on Cardiac Function and Synaptic Transmission at the Neuromuscular Junction in Invertebrates. ACTA ACUST UNITED AC 2018. [DOI: 10.3923/ijzr.2018.49.60] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
21
|
Majdi S, Larsson A, Hoang Philipsen M, Ewing AG. Electrochemistry in and of the Fly Brain. ELECTROANAL 2018. [DOI: 10.1002/elan.201700790] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Soodabeh Majdi
- Department of Chemistry and Molecular Biology; University of Gothenburg; Kemivägen 10 41296 Gothenburg Sweden
| | - Anna Larsson
- Department of Chemistry and Molecular Biology; University of Gothenburg; Kemivägen 10 41296 Gothenburg Sweden
| | - Mai Hoang Philipsen
- Department of Chemistry and Chemical Engineering; Chalmers University of Technology; Kemivägen 10 41296 Gothenburg Sweden
| | - Andrew G. Ewing
- Department of Chemistry and Molecular Biology; University of Gothenburg; Kemivägen 10 41296 Gothenburg Sweden
- Department of Chemistry and Chemical Engineering; Chalmers University of Technology; Kemivägen 10 41296 Gothenburg Sweden
| |
Collapse
|
22
|
Cichero E. Opportunities and challenges in the design of selective TAAR1 agonists: an editorial. Expert Opin Ther Pat 2018; 28:437-440. [DOI: 10.1080/13543776.2018.1476493] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Elena Cichero
- Department of Pharmacy, University of Genoa, Genoa, Italy
| |
Collapse
|
23
|
Bong LJ, Tu WC, Neoh KB, Huang CG, Ting RX. The Effect of Insecticidal Stress on Reproductive Output of Susceptible and Field Strains of Aedes aegypti (Diptera: Culicidae). JOURNAL OF MEDICAL ENTOMOLOGY 2018; 55:36-42. [PMID: 29040719 DOI: 10.1093/jme/tjx191] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2017] [Indexed: 06/07/2023]
Abstract
The phenomenon of high egg reproduction when mortality risk rises is common in mosquitoes. However, the phenomenon may vary between insecticide susceptible and field-collected strains, due to the latter's decreased energy allocation in reproduction in the presence of insecticide resistance. In this study, we evaluated the effect of chlorpyrifos (CP) and temephos (TP) exposure on the oviposition and survival of Aedes aegypti (Linnaeus) (Diptera: Culicidae) using a susceptible strain (KHsm) and two field strains (KHly and TNnorth). We also dissected the female mosquitoes of each strain on fifth day after the first blood meal to examine the total number of eggs produced. Neither CP nor TP exhibited oviposition deterrent against female mosquitoes of any of the three strains, as the females did not show decreased reproduction activity on the insecticide-treated sites. Of the two insecticides tested, only CP had an adulticidal effect on Ae. aegypti. High mortality was recorded in KHsm after contacting the CP-treated oviposition sites on day 4. Before death, KHsm mosquitoes oviposited significantly more eggs compared to the two field strains. However, the difference of total egg production between susceptible and field-collected strains was subtle. Thus, the decreased reproductive output in field-collected strains might not be directly linked to energy and resource allocation. In this respect, we should consider the possible involvement of biogenic amines in the egg retention in field-collected strains when mortality risk rises. The phenomenon was not observed in nonadulticidal TP treatment.
Collapse
Affiliation(s)
- Lee-Jin Bong
- National Mosquito-borne Diseases Control Research Center, National Health Research Institute, Zhunan, Miaoli County, Taiwan, ROC
| | - Wu-Chun Tu
- National Mosquito-borne Diseases Control Research Center, National Health Research Institute, Zhunan, Miaoli County, Taiwan, ROC
- Department of Entomology, National Chung Hsing University, Taichung, Taiwan, ROC
| | - Kok-Boon Neoh
- Department of Entomology, National Chung Hsing University, Taichung, Taiwan, ROC
| | - Chin-Gi Huang
- National Mosquito-borne Diseases Control Research Center, National Health Research Institute, Zhunan, Miaoli County, Taiwan, ROC
- Department of Earth and Life Science, University of Taipei, Taipei, Taiwan, ROC
| | - Rou-Xing Ting
- National Mosquito-borne Diseases Control Research Center, National Health Research Institute, Zhunan, Miaoli County, Taiwan, ROC
| |
Collapse
|
24
|
Sinakevitch IT, Daskalova SM, Smith BH. The Biogenic Amine Tyramine and its Receptor (AmTyr1) in Olfactory Neuropils in the Honey Bee ( Apis mellifera) Brain. Front Syst Neurosci 2017; 11:77. [PMID: 29114209 PMCID: PMC5660842 DOI: 10.3389/fnsys.2017.00077] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2017] [Accepted: 10/02/2017] [Indexed: 11/13/2022] Open
Abstract
This article describes the cellular sources for tyramine and the cellular targets of tyramine via the Tyramine Receptor 1 (AmTyr1) in the olfactory learning and memory neuropils of the honey bee brain. Clusters of approximately 160 tyramine immunoreactive neurons are the source of tyraminergic fibers with small varicosities in the optic lobes, antennal lobes, lateral protocerebrum, mushroom body (calyces and gamma lobes), tritocerebrum and subesophageal ganglion (SEG). Our tyramine mapping study shows that the primary sources of tyramine in the antennal lobe and calyx of the mushroom body are from at least two Ventral Unpaired Median neurons (VUMmd and VUMmx) with cell bodies in the SEG. To reveal AmTyr1 receptors in the brain, we used newly characterized anti-AmTyr1 antibodies. Immunolocalization studies in the antennal lobe with anti-AmTyr1 antibodies showed that the AmTyr1 expression pattern is mostly in the presynaptic sites of olfactory receptor neurons (ORNs). In the mushroom body calyx, anti-AmTyr1 mapped the presynaptic sites of uniglomerular Projection Neurons (PNs) located primarily in the microglomeruli of the lip and basal ring calyx area. Release of tyramine/octopamine from VUM (md and mx) neurons in the antennal lobe and mushroom body calyx would target AmTyr1 expressed on ORN and uniglomerular PN presynaptic terminals. The presynaptic location of AmTyr1, its structural similarity with vertebrate alpha-2 adrenergic receptors, and previous pharmacological evidence suggests that it has an important role in the presynaptic inhibitory control of neurotransmitter release.
Collapse
Affiliation(s)
| | - Sasha M Daskalova
- Biodesign Center for BioEnergetics, Arizona State University, Tempe, AZ, United States
| | - Brian H Smith
- School of Life Sciences, Arizona State University, Tempe, AZ, United States
| |
Collapse
|
25
|
Huynh TG, Shiu YL, Nguyen TP, Truong QP, Chen JC, Liu CH. Current applications, selection, and possible mechanisms of actions of synbiotics in improving the growth and health status in aquaculture: A review. FISH & SHELLFISH IMMUNOLOGY 2017; 64:367-382. [PMID: 28336489 DOI: 10.1016/j.fsi.2017.03.035] [Citation(s) in RCA: 68] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/27/2016] [Revised: 03/16/2017] [Accepted: 03/17/2017] [Indexed: 06/06/2023]
Abstract
Synbiotics, a conjunction between prebiotics and probiotics, have been used in aquaculture for over 10 years. However, the mechanisms of how synbiotics work as growth and immunity promoters are far from being unraveled. Here, we show that a prebiotic as part of a synbiotic is hydrolyzed to mono- or disaccharides as the sole carbon source with diverse mechanisms, thereby increasing biomass and colonization that is established by specific crosstalk between probiotic bacteria and the surface of intestinal epithelial cells of the host. Synbiotics may indirectly and directly promote the growth of aquatic animals through releasing extracellular bacterial enzymes and bioactive products from synbiotic metabolic processes. These compounds may activate precursors of digestive enzymes of the host and augment the nutritional absorptive ability that contributes to the efficacy of food utilization. In fish immune systems, synbiotics cause intestinal epithelial cells to secrete cytokines which modulate immune functional cells as of dendritic cells, T cells, and B cells, and induce the ability of lipopolysaccharides to trigger tumor necrosis factor-α and Toll-like receptor 2 gene transcription leading to increased respiratory burst activity, phagocytosis, and nitric oxide production. In shellfish, synbiotics stimulate the proliferation and degranulation of hemocytes of shrimp due to the presence of bacterial cell walls. Pathogen-associated molecular patterns are subsequently recognized and bound by specific pattern-recognition proteins, triggering melanization and phagocytosis processes.
Collapse
Affiliation(s)
- Truong-Giang Huynh
- Department of Aquaculture, National Pingtung University of Science and Technology, Pingtung 912, Taiwan, ROC; College of Aquaculture and Fisheries, CanTho University, CanTho, Viet Nam
| | - Ya-Li Shiu
- Department of Aquaculture, National Pingtung University of Science and Technology, Pingtung 912, Taiwan, ROC
| | | | - Quoc-Phu Truong
- College of Aquaculture and Fisheries, CanTho University, CanTho, Viet Nam
| | - Jiann-Chu Chen
- Department of Aquaculture, College of Life Sciences, National Taiwan Ocean University, Keelung 202, Taiwan, ROC
| | - Chun-Hung Liu
- Department of Aquaculture, National Pingtung University of Science and Technology, Pingtung 912, Taiwan, ROC.
| |
Collapse
|
26
|
Aonuma H, Kaneda M, Hatakeyama D, Watanabe T, Lukowiak K, Ito E. Weak involvement of octopamine in aversive taste learning in a snail. Neurobiol Learn Mem 2017; 141:189-198. [DOI: 10.1016/j.nlm.2017.04.010] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2017] [Revised: 04/20/2017] [Accepted: 04/23/2017] [Indexed: 01/06/2023]
|
27
|
In vitro screening for inhibitor of cloned Drosophila melanogaster tyramine-β-hydroxylase and docking studies. Int J Biol Macromol 2016; 93:889-895. [PMID: 27355756 DOI: 10.1016/j.ijbiomac.2016.06.026] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2016] [Revised: 06/07/2016] [Accepted: 06/10/2016] [Indexed: 11/22/2022]
Abstract
Biogenic amines are common biologically active substances extended within the whole animal kingdom where they play vital roles as signal transducer as well as regulator of cell functions. One of these biogenic amines called octopamine (OA) is synthesized from tyramine (TA) by the catalysis of tyramine-β-hydroxylase (TβH) originated in the insect nervous system. Both TA and OA act as neurotransmitters, neurohormones and neuromodulators in the arthropod nervous system. Herein, the inhibitory activity of 1-arylimidazole-2(3H)-thiones (AITs) was tested on cloned Drosophila tyramine-β-hydroxylase (DmTβH) expressed in Bombyx mori strain. Radiolabelled 3H-TA was used to analyze the activity of AITs exhibited inhibitory effects on DmTβH, whose ID50 values range from 0.02 to 2511nM where DmTβH was inhibited in a dose-dependent manner at pH 7.6 and 25°C during a 30min of incubation. To understand the catalytic role of the TβH, a three dimensional structure of the TβH from Drosophila melanogaster was constructed by homology modeling using the Phyre2 web server with 100% confidence. The modeled three-dimensional structure of TβH was used to perform the docking study with AITs. This may give more insights to precise design of inhibitors for TβH to control insect's population.
Collapse
|
28
|
D'Andrea G, Leone M, Bussone G, Fiore PD, Bolner A, Aguggia M, Saracco MG, Perini F, Giordano G, Gucciardi A, Leon A. Abnormal tyrosine metabolism in chronic cluster headache. Cephalalgia 2016; 37:148-153. [PMID: 27009563 DOI: 10.1177/0333102416640502] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Objective Episodic cluster headache is characterized by abnormalities in tyrosine metabolism (i.e. elevated levels of dopamine, tyramine, octopamine and synephrine and low levels of noradrenalin in plasma and platelets.) It is unknown, however, if such biochemical anomalies are present and/or constitute a predisposing factor in chronic cluster headache. To test this hypothesis, we measured the levels of dopamine and noradrenaline together with those of elusive amines, such as tyramine, octopamine and synephrine, in plasma of chronic cluster patients and control individuals. Methods Plasma levels of dopamine, noradrenaline and trace amines, including tyramine, octopamine and synephrine, were measured in a group of 23 chronic cluster headache patients (10 chronic cluster ab initio and 13 transformed from episodic cluster), and 16 control participants. Results The plasma levels of dopamine, noradrenaline and tyramine were several times higher in chronic cluster headache patients compared with controls. The levels of octopamine and synephrine were significantly lower in plasma of these patients with respect to control individuals. Conclusions These results suggest that anomalies in tyrosine metabolism play a role in the pathogenesis of chronic cluster headache and constitute a predisposing factor for the transformation of the episodic into a chronic form of this primary headache.
Collapse
Affiliation(s)
| | - Massimo Leone
- 2 Headache Center, Neurology Department, Clinical Neuroscience Department, C. Besta Neurological Institute IRCCS Foundation, Italy
| | - Gennaro Bussone
- 2 Headache Center, Neurology Department, Clinical Neuroscience Department, C. Besta Neurological Institute IRCCS Foundation, Italy
| | - Paola Di Fiore
- 2 Headache Center, Neurology Department, Clinical Neuroscience Department, C. Besta Neurological Institute IRCCS Foundation, Italy
| | | | - Marco Aguggia
- 3 Headache Center, Neurology Department, Asti Hospital, Italy
| | | | - Francesco Perini
- 4 Headache Center, Neurology Department, Vicenza Hospital, Italy
| | - Giuseppe Giordano
- 5 Mass Spectrometry and Metabolomic Laboratory, Institute of Pediatric Research IRP Città della Speranza, Italy.,6 Women's and Children's Health Department, University of Padova, Italy
| | - Antonina Gucciardi
- 5 Mass Spectrometry and Metabolomic Laboratory, Institute of Pediatric Research IRP Città della Speranza, Italy
| | | |
Collapse
|
29
|
Zhu YC, Yocom E, Sifers J, Uradu H, Cooper RL. Modulatory effects on Drosophila larva hearts: room temperature, acute and chronic cold stress. J Comp Physiol B 2016; 186:829-41. [DOI: 10.1007/s00360-016-0997-x] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2015] [Revised: 05/02/2016] [Accepted: 05/10/2016] [Indexed: 11/25/2022]
|
30
|
Tinikul Y, Poljaroen J, Tinikul R, Chotwiwatthanakun C, Anuracpreeda P, Hanna PJ, Sobhon P. Alterations in the levels and distribution of octopamine in the central nervous system and ovary of the Pacific white shrimp, Litopenaeus vannamei, and its possible role in ovarian development. Gen Comp Endocrinol 2015; 210:12-22. [PMID: 25305581 DOI: 10.1016/j.ygcen.2014.09.018] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/02/2014] [Revised: 09/24/2014] [Accepted: 09/30/2014] [Indexed: 11/21/2022]
Abstract
Octopamine (OA) is a major neurotransmitter that has not been studied in the Pacific white shrimp, Litopenaeus vannamei. Therefore, we investigated changes in OA levels, its distribution in regions of the central nervous system (CNS) and ovary during the ovarian maturation cycle, as well as its possible role in regulating ovarian maturation. OA exhibited the highest concentration in the brain and thoracic ganglia at ovarian stage II, and then declined to the lowest concentration at ovarian stages III and IV. In the cerebral ganglia, OA-immunoreactivity (OA-ir) was present in neurons of clusters 6, 17, the anterior and posterior medial protocerebral, olfactory, antenna II, and tegumentary neuropils. In the circumesophageal, subesophageal, thoracic ganglia and abdominal ganglia, OA-ir was detected in several neuropils, neurons and fibers. The high level of intensity in OA immunostaining was observed in early developmental stage of oocyte by comparison with low level of OA-ir in late stages of oocyte development. Functionally, OA-injected female shrimps at doses of 2.5×10(-7) and 2.5×10(-6)mol/shrimp, showed significantly decreased gonado-somatic indices, oocyte diameters, and hemolymph vitellogenin levels, compared with control groups. This study showed changes of OA in the CNS and ovary reaching the highest level in early ovarian stages and declining in late stages, and it decreased hemolymph vitellogenin levels, suggesting significant involvement of OA in female reproduction in this species.
Collapse
Affiliation(s)
- Yotsawan Tinikul
- Department of Anatomy, Faculty of Science, Mahidol University, Bangkok 10400, Thailand; Mahidol University, Nakhonsawan Campus, Nakhonsawan 60130, Thailand.
| | - Jaruwan Poljaroen
- Department of Anatomy, Faculty of Science, Mahidol University, Bangkok 10400, Thailand; Mahidol University, Nakhonsawan Campus, Nakhonsawan 60130, Thailand
| | - Ruchanok Tinikul
- Mahidol University, Nakhonsawan Campus, Nakhonsawan 60130, Thailand
| | - Charoonroj Chotwiwatthanakun
- Department of Anatomy, Faculty of Science, Mahidol University, Bangkok 10400, Thailand; Mahidol University, Nakhonsawan Campus, Nakhonsawan 60130, Thailand
| | - Panat Anuracpreeda
- Department of Anatomy, Faculty of Science, Mahidol University, Bangkok 10400, Thailand; Agricultural Science Division, Mahidol University, Kanchanaburi Campus, Saiyok, Kanchanaburi 71150, Thailand
| | - Peter J Hanna
- Department of Anatomy, Faculty of Science, Mahidol University, Bangkok 10400, Thailand; Pro Vice-Chancellor's Office, Faculty of Science and Technology, Deakin University, Locked Bay 20000, Geelong, VIC 3220, Australia
| | - Prasert Sobhon
- Department of Anatomy, Faculty of Science, Mahidol University, Bangkok 10400, Thailand
| |
Collapse
|
31
|
Balfanz S, Jordan N, Langenstück T, Breuer J, Bergmeier V, Baumann A. Molecular, pharmacological, and signaling properties of octopamine receptors from honeybee (Apis mellifera) brain. J Neurochem 2013; 129:284-96. [PMID: 24266860 DOI: 10.1111/jnc.12619] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2013] [Revised: 11/07/2013] [Accepted: 11/19/2013] [Indexed: 01/07/2023]
Abstract
G protein-coupled receptors are important regulators of cellular signaling processes. Within the large family of rhodopsin-like receptors, those binding to biogenic amines form a discrete subgroup. Activation of biogenic amine receptors leads to transient changes of intracellular Ca²⁺-([Ca²⁺](i)) or 3',5'-cyclic adenosine monophosphate ([cAMP](i)) concentrations. Both second messengers modulate cellular signaling processes and thereby contribute to long-lasting behavioral effects in an organism. In vivo pharmacology has helped to reveal the functional effects of different biogenic amines in honeybees. The phenolamine octopamine is an important modulator of behavior. Binding of octopamine to its receptors causes elevation of [Ca²⁺](i) or [cAMP](i). To date, only one honeybee octopamine receptor that induces Ca²⁺ signals has been molecularly and pharmacologically characterized. Here, we examined the pharmacological properties of four additional honeybee octopamine receptors. When heterologously expressed, all receptors induced cAMP production after binding to octopamine with EC₅₀(s) in the nanomolar range. Receptor activity was most efficiently blocked by mianserin, a substance with antidepressant activity in vertebrates. The rank order of inhibitory potency for potential receptor antagonists was very similar on all four honeybee receptors with mianserin >> cyproheptadine > metoclopramide > chlorpromazine > phentolamine. The subroot of octopamine receptors activating adenylyl cyclases is the largest that has so far been characterized in arthropods, and it should now be possible to unravel the contribution of individual receptors to the physiology and behavior of honeybees.
Collapse
Affiliation(s)
- Sabine Balfanz
- Institute of Complex Systems, ICS-4, Forschungszentrum Jülich, Jülich, Germany
| | | | | | | | | | | |
Collapse
|
32
|
de Oliveira AL, de Paula MN, Comar JF, Vilela VR, Peralta RM, Bracht A. Adrenergic metabolic and hemodynamic effects of octopamine in the liver. Int J Mol Sci 2013; 14:21858-72. [PMID: 24196353 PMCID: PMC3856039 DOI: 10.3390/ijms141121858] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2013] [Revised: 10/21/2013] [Accepted: 10/22/2013] [Indexed: 11/16/2022] Open
Abstract
The fruit extracts of Citrus aurantium (bitter orange) are traditionally used as weight-loss products and as appetite suppressants. A component of these extracts is octopamine, which is an adrenergic agent. Weight-loss and adrenergic actions are always related to metabolic changes and this work was designed to investigate a possible action of octopamine on liver metabolism. The isolated perfused rat liver was used to measure catabolic and anabolic pathways and hemodynamics. Octopamine increased glycogenolysis, glycolysis, oxygen uptake, gluconeogenesis and the portal perfusion pressure. Octopamine also accelerated the oxidation of exogenous fatty acids (octanoate and oleate), as revealed by the increase in ¹⁴CO₂ production derived from ¹⁴C labeled precursors. The changes in glycogenolysis, oxygen uptake and perfusion pressure were almost completely abolished by α₁-adrenergic antagonists. The same changes were partly sensitive to the β-adrenergic antagonist propranolol. It can be concluded that octopamine accelerates both catabolic and anabolic processes in the liver via adrenergic stimulation. Acceleration of oxygen uptake under substrate-free perfusion conditions also means acceleration of the oxidation of endogenous fatty acids, which are derived from lipolysis. All these effects are compatible with an overall stimulating effect of octopamine on metabolism, which is compatible with its reported weight-loss effects in experimental animals.
Collapse
Affiliation(s)
- Andrea Luiza de Oliveira
- Department of Biochemistry, University of Maringá, Avenida Colombo 5790, Maringá 87020900, Brazil.
| | | | | | | | | | | |
Collapse
|
33
|
D'Andrea G, D'Amico D, Bussone G, Bolner A, Aguggia M, Saracco MG, Galloni E, De Riva V, Colavito D, Leon A, Rosteghin V, Perini F. The role of tyrosine metabolism in the pathogenesis of chronic migraine. Cephalalgia 2013; 33:932-7. [PMID: 23493762 DOI: 10.1177/0333102413480755] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
OBJECTIVE The pathogenesis of chronic migraine (CM) remains largely unknown. We hypothesized that anomalies of tyrosine metabolism, found in migraine without aura (MwwA) patients, play an important role in the transformation of MwwA into CM, since the increase in the number of MwwA attacks is the most predisposing factor for the occurrence of CM. METHODS To test our hypothesis we measured the plasma levels of dopamine (DA), noradrenaline (NE) and trace amines, including tyramine (TYR) and octopamine (OCT), in a group of 73 patients with CM, 13 patients with chronic tension-type headache (CTTH) and 37 controls followed in the Headache Centers of the Neurology Departments of Asti, Milan and Vicenza hospitals in Italy. RESULTS The plasma levels of DA and NE were several-fold higher in CM patients compared with control subjects ( P > 0.001). The plasma levels of TYR were also extremely elevated ( P > 0.001); furthermore, these levels progressively increased with the duration of the CM. CONCLUSIONS Our data support the hypothesis that altered tyrosine metabolism plays an important role in the pathogenesis of CM. The high plasma levels of TYR, a potent agonist of the trace amine associated receptors type 1 (TAAR1), may ultimately down-regulate this receptor because of loss of inhibitory presynaptic regulation, therein resulting in uncontrolled neurotransmitter release. This may produce functional metabolic consequences in the synaptic clefts of the pain matrix implicated in CM.
Collapse
|
34
|
Zhang Z, Peng ZY, Yi K, Cheng Y, Xia Y. Identification of representative genes of the central nervous system of the locust, Locusta migratoria manilensis by deep sequencing. JOURNAL OF INSECT SCIENCE (ONLINE) 2012; 12:86. [PMID: 23421689 PMCID: PMC3612920 DOI: 10.1673/031.012.8601] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/24/2011] [Accepted: 12/22/2011] [Indexed: 06/01/2023]
Abstract
The shortage of available genomic and transcriptomic data hampers the molecular study on the migratory locust, Locusta migratoria manilensis (L.) (Orthoptera: Acrididae) central nervous system (CNS). In this study, locust CNS RNA was sequenced by deep sequencing. 41,179 unigenes were obtained with an average length of 570 bp, and 5,519 unigenes were longer than 1,000 bp. Compared with an EST database of another locust species Schistocerca gregaria Forsskåi, 9,069 unigenes were found conserved, while 32,110 unigenes were differentially expressed. A total of 15,895 unigenes were identified, including 644 nervous system relevant unigenes. Among the 25,284 unknown unigenes, 9,482 were found to be specific to the CNS by filtering out the previous ESTs acquired from locust organs without CNS's. The locust CNS showed the most matches (18%) with Tribolium castaneum (Herbst) (Coleoptera: Tenebrionidae) sequences. Comprehensive assessment reveals that the database generated in this study is broadly representative of the CNS of adult locust, providing comprehensive gene information at the transcriptional level that could facilitate research of the locust CNS, including various physiological aspects and pesticide target finding.
Collapse
Affiliation(s)
- Zhengyi Zhang
- Genetic Engineering Research Center, School of Bioengineering, Chongqing Engineering Research Center for Fungal Insecticide, The Key Laboratory of Gene Function and Expression Regulation, Chongqing University Chongqing 400030, China
| | - Zhi-Yu Peng
- Beijing Genomics Institute-Shenzhen, Shenzhen 518083, China
| | - Kang Yi
- Beijing Genomics Institute-Shenzhen, Shenzhen 518083, China
| | - Yanbing Cheng
- Beijing Genomics Institute-Shenzhen, Shenzhen 518083, China
| | - Yuxian Xia
- Genetic Engineering Research Center, School of Bioengineering, Chongqing Engineering Research Center for Fungal Insecticide, The Key Laboratory of Gene Function and Expression Regulation, Chongqing University Chongqing 400030, China
| |
Collapse
|
35
|
Differential modulation of Beta-adrenergic receptor signaling by trace amine-associated receptor 1 agonists. PLoS One 2011; 6:e27073. [PMID: 22073124 PMCID: PMC3205048 DOI: 10.1371/journal.pone.0027073] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2011] [Accepted: 10/09/2011] [Indexed: 11/19/2022] Open
Abstract
Trace amine-associated receptors (TAAR) are rhodopsin-like G-protein-coupled receptors (GPCR). TAAR are involved in modulation of neuronal, cardiac and vascular functions and they are potentially linked with neurological disorders like schizophrenia and Parkinson's disease. Subtype TAAR1, the best characterized TAAR so far, is promiscuous for a wide set of ligands and is activated by trace amines tyramine (TYR), phenylethylamine (PEA), octopamine (OA), but also by thyronamines, dopamine, and psycho-active drugs. Unfortunately, effects of trace amines on signaling of the two homologous β-adrenergic receptors 1 (ADRB1) and 2 (ADRB2) have not been clarified yet in detail. We, therefore, tested TAAR1 agonists TYR, PEA and OA regarding their effects on ADRB1/2 signaling by co-stimulation studies. Surprisingly, trace amines TYR and PEA are partial allosteric antagonists at ADRB1/2, whereas OA is a partial orthosteric ADRB2-antagonist and ADRB1-agonist. To specify molecular reasons for TAAR1 ligand promiscuity and for observed differences in signaling effects on particular aminergic receptors we compared TAAR, tyramine (TAR) octopamine (OAR), ADRB1/2 and dopamine receptors at the structural level. We found especially for TAAR1 that the remarkable ligand promiscuity is likely based on high amino acid similarity in the ligand-binding region compared with further aminergic receptors. On the other hand few TAAR specific properties in the ligand-binding site might determine differences in ligand-induced effects compared to ADRB1/2. Taken together, this study points to molecular details of TAAR1-ligand promiscuity and identified specific trace amines as allosteric or orthosteric ligands of particular β-adrenergic receptor subtypes.
Collapse
|
36
|
D'Andrea G, Leon A. Pathogenesis of migraine: from neurotransmitters to neuromodulators and beyond. Neurol Sci 2010; 31 Suppl 1:S1-7. [PMID: 20464574 DOI: 10.1007/s10072-010-0267-8] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
Here, in this review, we present our hypothesis of the migraine pathogenesis. We believe that migraine attacks derive from a top-down dysfunctional process that initiates in a hyperexcitable and hypoenergetic brain in the frontal lobe and downstream in abnormally activated nuclei of the pain matrix. This hypothesis derived from the results of the biochemical studies, mainly generated from our laboratory, on the possible metabolic shifts of tyrosine toward an activation of decarboxylase enzyme activity with an increased synthesis of traces amines, i.e. tyr, oct and syn, and an unphysiological synthesis of noradrenalin and dopamine. This metabolic shift is possibly favored by the reduced mitochondrial energy and high levels of glutamate in CNS of migraine patients. The unbalanced levels of neurotransmitters (DA and NE) and neuromodulators (tyr, oct and syn) in the synaptic dopaminergic and noradrenergic clefts of the pain matrix may activate, downstream, the trigeminal system that releases calcitonin gene-related G peptide. This induces the formation of an inflammatory soup, the sensitization of first trigeminal neuron and the migraine attack.
Collapse
Affiliation(s)
- G D'Andrea
- Headache Center of Villa Margherita Neurologic Clinic, 36057, Arcugnano, Vicenza, Italy.
| | | |
Collapse
|
37
|
Duportets L, Barrozo RB, Bozzolan F, Gaertner C, Anton S, Gadenne C, Debernard S. Cloning of an octopamine/tyramine receptor and plasticity of its expression as a function of adult sexual maturation in the male moth Agrotis ipsilon. INSECT MOLECULAR BIOLOGY 2010; 19:489-499. [PMID: 20491982 DOI: 10.1111/j.1365-2583.2010.01009.x] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2023]
Abstract
In the male moth Agrotis ipsilon behavioural response and antennal lobe (AL) neuron sensitivity to the female-produced sex pheromone increase with age and juvenile hormone (JH) level. We recently showed that the neuromodulator, octopamine (OA), interacts with JH in this age-dependent olfactory plasticity. To further elucidate its role, we cloned a full cDNA encoding a protein that presents biochemical features essential to OA/tyramine receptor (AipsOAR/TAR) function. The AipsOAR/TAR transcript was detected predominantly in the antennae, the brain and, more specifically, in ALs where its expression level varied concomitantly with age. This expression plasticity indicates that AipsOAR/TAR might be involved in central processing of the pheromone signal during maturation of sexual behaviour in A. ipsilon.
Collapse
Affiliation(s)
- L Duportets
- UMR 1272, UPMC-INRA, Physiologie de l'Insecte: Signalisation et Communication, Université Paris VI, Bât A, 7 quai Saint Bernard, Paris, France
| | | | | | | | | | | | | |
Collapse
|
38
|
Verlinden H, Vleugels R, Marchal E, Badisco L, Pflüger HJ, Blenau W, Broeck JV. The role of octopamine in locusts and other arthropods. JOURNAL OF INSECT PHYSIOLOGY 2010; 56:854-867. [PMID: 20621695 DOI: 10.1016/j.jinsphys.2010.05.018] [Citation(s) in RCA: 109] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2010] [Revised: 05/19/2010] [Accepted: 05/20/2010] [Indexed: 05/29/2023]
Abstract
The biogenic amine octopamine and its biological precursor tyramine are thought to be the invertebrate functional homologues of the vertebrate adrenergic transmitters. Octopamine functions as a neuromodulator, neurotransmitter and neurohormone in insect nervous systems and prompts the whole organism to "dynamic action". A growing number of studies suggest a prominent role for octopamine in modulating multiple physiological and behavioural processes in invertebrates, as for example the phase transition in Schistocerca gregaria. Both octopamine and tyramine exert their effects by binding to specific receptor proteins that belong to the superfamily of G protein-coupled receptors. Since these receptors do not appear to be present in vertebrates, they may present very suitable and specific insecticide and acaricide targets.
Collapse
Affiliation(s)
- Heleen Verlinden
- Molecular Developmental Physiology and Signal Transduction, Animal Physiology and Neurobiology, Zoological Institute, KU Leuven, Naamsestraat 59, B-3000 Leuven, Belgium
| | | | | | | | | | | | | |
Collapse
|
39
|
Scheiner R, Baumann A, Blenau W. Aminergic control and modulation of honeybee behaviour. Curr Neuropharmacol 2010; 4:259-76. [PMID: 18654639 DOI: 10.2174/157015906778520791] [Citation(s) in RCA: 99] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2005] [Revised: 05/04/2006] [Accepted: 05/04/2006] [Indexed: 11/22/2022] Open
Abstract
Biogenic amines are important messenger substances in the central nervous system and in peripheral organs of vertebrates and of invertebrates. The honeybee, Apis mellifera, is excellently suited to uncover the functions of biogenic amines in behaviour, because it has an extensive behavioural repertoire, with a number of biogenic amine receptors characterised in this insect.In the honeybee, the biogenic amines dopamine, octopamine, serotonin and tyramine modulate neuronal functions in various ways. Dopamine and serotonin are present in high concentrations in the bee brain, whereas octopamine and tyramine are less abundant. Octopamine is a key molecule for the control of honeybee behaviour. It generally has an arousing effect and leads to higher sensitivity for sensory inputs, better learning performance and increased foraging behaviour. Tyramine has been suggested to act antagonistically to octopamine, but only few experimental data are available for this amine. Dopamine and serotonin often have antagonistic or inhibitory effects as compared to octopamine.Biogenic amines bind to membrane receptors that primarily belong to the large gene-family of GTP-binding (G) protein coupled receptors. Receptor activation leads to transient changes in concentrations of intracellular second messengers such as cAMP, IP(3) and/or Ca(2+). Although several biogenic amine receptors from the honeybee have been cloned and characterised more recently, many genes still remain to be identified. The availability of the completely sequenced genome of Apis mellifera will contribute substantially to closing this gap.In this review, we will discuss the present knowledge on how biogenic amines and their receptor-mediated cellular responses modulate different behaviours of honeybees including learning processes and division of labour.
Collapse
Affiliation(s)
- R Scheiner
- Institut für Okologie, Technische Universität Berlin, Germany.
| | | | | |
Collapse
|
40
|
Farooqui T. Octopamine-mediated neuronal plasticity in honeybees: implications for olfactory dysfunction in humans. Neuroscientist 2007; 13:304-22. [PMID: 17644763 DOI: 10.1177/10738584070130040501] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Biogenic amines, such as norepinephrine (in vertebrates) and octopamine (in invertebrates), have structural and functional similarities. These amines play crucial roles in animal behavior by modifying the synaptic output of relevant neurons. Increased levels of norepinephrine in the olfactory bulb preferentially increase mitral cell excitatory responses to olfactory nerve inputs, suggesting its critical role in modulating olfactory function including memory formation and/or recall of specific olfactory memories. Increased levels of octopamine in the antennal lobe play an important role in a reinforcement pathway involved in olfactory learning and memory in honeybees. Similar to adrenergic receptors in the human brain, activation of octopaminergic receptors in the honeybee brain induces specific second messenger pathways that change protein phosphorylation and/or gene expression, altering the activity and/or abundance of proteins responsible for neuronal signaling leading to changes in olfactory behavior. The author's studies in honeybees Apis mellifera indicate that oxidative stress plays a major role in olfactory dysfunction. A similar mechanism has been proposed for olfactory abnormalities in patients of Alzheimer disease and Parkinson disease. Due to similarities in cellular and molecular processes, which govern neuronal plasticity in humans and honeybees, the author proposes that the honeybee can be used as a potential and relatively simple model system for understanding human olfactory dysfunction during aging and in neurodegenerative diseases.
Collapse
Affiliation(s)
- Tahira Farooqui
- Department of Entomology, The Ohio State University, Columbus, Ohio 43210, USA.
| |
Collapse
|
41
|
Farooqui T. Octopamine-mediated neuromodulation of insect senses. Neurochem Res 2007; 32:1511-29. [PMID: 17484052 DOI: 10.1007/s11064-007-9344-7] [Citation(s) in RCA: 103] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2006] [Accepted: 04/03/2007] [Indexed: 11/28/2022]
Abstract
Octopamine functions as a neuromodulator, neurotransmitter, and neurohormone in insect nervous systems. Octopamine has a prominent role in influencing multiple physiological events: (a) as a neuromodulator, it regulates desensitization of sensory inputs, arousal, initiation, and maintenance of various rhythmic behaviors and complex behaviors such as learning and memory; (b) as a neurotransmitter, it regulates endocrine gland activity; and (c) as a neurohormone, it induces mobilization of lipids and carbohydrates. Octopamine exerts its effects by binding to specific proteins that belong to the superfamily of G protein-coupled receptors and share the structural motif of seven transmembrane domains. The activation of octopamine receptors is coupled with different second messenger pathways depending on species, tissue source, receptor type and cell line used for the expression of cloned receptor. The second messengers include adenosine 3',5'-cyclic monophosphate (cAMP), calcium, diacylglycerol (DAG), and inositol 1,4,5-trisphosphate (IP3). The cAMP activates protein kinase A, calcium and DAG activate protein kinase C, and IP3 mobilizes calcium from intracellular stores. Octopamine-mediated generation of these second messengers is associated with changes in cellular response affecting insect behaviors. The main objective of this review is to discuss significance of octopamine-mediated neuromodulation in insect sensory systems.
Collapse
Affiliation(s)
- Tahira Farooqui
- Department of Entomology, The Ohio State University, 400 Aronoff Laboratory, 318 West 12th Ave., Columbus, OH 43210-1220, USA.
| |
Collapse
|
42
|
Zucchi R, Chiellini G, Scanlan TS, Grandy DK. Trace amine-associated receptors and their ligands. Br J Pharmacol 2006; 149:967-78. [PMID: 17088868 PMCID: PMC2014643 DOI: 10.1038/sj.bjp.0706948] [Citation(s) in RCA: 217] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
Classical biogenic amines (adrenaline, noradrenaline, dopamine, serotonin and histamine) interact with specific families of G protein-coupled receptors (GPCRs). The term 'trace amines' is used when referring to p-tyramine, beta-phenylethylamine, tryptamine and octopamine, compounds that are present in mammalian tissues at very low (nanomolar) concentrations. The pharmacological effects of trace amines are usually attributed to their interference with the aminergic pathways, but in 2001 a new gene was identified, that codes for a GPCR responding to p-tyramine and beta-phenylethylamine but not to classical biogenic amines. Several closely related genes were subsequently identified and designated as the trace amine-associated receptors (TAARs). Pharmacological investigations in vitro show that many TAAR subtypes may not respond to p-tyramine, beta-phenylethylamine, tryptamine or octopamine, suggesting the existence of additional endogenous ligands. A novel endogenous thyroid hormone derivative, 3-iodothyronamine, has been found to interact with TAAR1 and possibly other TAAR subtypes. In vivo, micromolar concentrations of 3-iodothyronamine determine functional effects which are opposite to those produced on a longer time scale by thyroid hormones, including reduction in body temperature and decrease in cardiac contractility. Expression of all TAAR subtypes except TAAR1 has been reported in mouse olfactory epithelium, and several volatile amines were shown to interact with specific TAAR subtypes. In addition, there is evidence that TAAR1 is targeted by amphetamines and other psychotropic agents, while genetic linkage studies show a significant association between the TAAR gene family locus and susceptibility to schizophrenia or bipolar affective disorder.
Collapse
Affiliation(s)
- R Zucchi
- Dipartimento di Scienze dell'Uomo e dell'Ambiente, University of Pisa, Pisa, Italy.
| | | | | | | |
Collapse
|
43
|
Maeda M, Nishimura S, Fukumura T, Kojima M. Enantioselective synthesis of 11C-labeled phenylethanolamine. J Labelled Comp Radiopharm 2006. [DOI: 10.1002/jlcr.2580250302] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
44
|
Morita M, Susuki J, Amino H, Yoshiki F, Moizumi S, Kudo Y. Use of the exogenous Drosophila octopamine receptor gene to study Gq-coupled receptor-mediated responses in mammalian neurons. Neuroscience 2006; 137:545-53. [PMID: 16289891 DOI: 10.1016/j.neuroscience.2005.09.012] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2004] [Revised: 08/31/2005] [Accepted: 09/03/2005] [Indexed: 10/25/2022]
Abstract
Diverse excitatory and inhibitory neuronal responses are mediated via Gq-coupled receptors, but the lack of a systematic comparison of different receptors or neurons has hindered a better understanding of these responses. Such a comparison may be provided by an exogenous receptor that is activated by compounds that have no effect on endogenous receptors. We therefore expressed an invertebrate biogenic amine receptor, the Drosophila octopamine receptor, in rat cortical neurons and compared octopamine receptor-mediated responses with those mediated by the group I metabotropic glutamate receptor, the endogenous Gq-coupled receptor in rat cortical neurons. Stimulation of either receptor did not result in a calcium response in octopamine receptor-expressing neurons, although octopamine preferentially elicited a calcium increase in octopamine receptor-expressing PC12h cells, while enhancing the neuronal depolarization-induced calcium increase and the electrical excitability. The increased excitability was caused by inward currents resulting from a reduction in the leak current, which was voltage-independent and blocked by genistein, a non-selective tyrosine kinase inhibitor. These results show that, in cortical neurons, exogenous octopamine receptor in mushroom bodies activated the same cell signaling pathway as endogenous metabotropic glutamate receptor, suggesting that the diverse neuronal responses mediated by Gq-coupled receptors are due to the properties of different neurons, rather than to the properties of the receptors.
Collapse
Affiliation(s)
- M Morita
- Laboratory of Cellular Neurobiology, School of Life Science, Tokyo University of Pharmacy and Life Science, 1432-1, Horinouchi, Hachioji, 192-0392, Japan.
| | | | | | | | | | | |
Collapse
|
45
|
Gray EE, Small SN, McGuirl MA. Expression and characterization of recombinant tyramine beta-monooxygenase from Drosophila: a monomeric copper-containing hydroxylase. Protein Expr Purif 2005; 47:162-70. [PMID: 16376104 DOI: 10.1016/j.pep.2005.11.008] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2005] [Revised: 10/31/2005] [Accepted: 11/03/2005] [Indexed: 10/25/2022]
Abstract
We report here the development of a robust recombinant expression system for Drosophila melanogaster tyramine beta-monooxygenase (TbetaM), the insect analog of mammalian dopamine beta-monooxygenase. Recombinant TbetaM is rapidly purified from the host cell media in three chromatographic steps. The expression system produces approximately 3-10 mg of highly purified, active protein per liter of culture. Recombinant TbetaM requires copper for activity and has a typical type 2 copper EPR spectrum. While TbetaM efficiently hydroxylates the aliphatic carbon of phenolic amines such as tyramine (the physiological substrate) and dopamine, phenethylamine is a poor substrate. TbetaM is most likely a monomer under physiological conditions, although under conditions of high pH and low ionic strength the dimeric form predominates. The lower oligomeric state of TbetaM may provide an advantage for structural studies over DbetaM, which exists as a mixture of dimer and tetramer.
Collapse
Affiliation(s)
- Erin E Gray
- Division of Biological Sciences and the Biomolecular Structure and Dynamics Program, The University of Montana/Missoula, MT 59812, USA
| | | | | |
Collapse
|
46
|
Evans PD, Maqueira B. Insect octopamine receptors: a new classification scheme based on studies of cloned Drosophila G-protein coupled receptors. INVERTEBRATE NEUROSCIENCE 2005; 5:111-8. [PMID: 16211376 DOI: 10.1007/s10158-005-0001-z] [Citation(s) in RCA: 193] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/04/2005] [Accepted: 07/20/2005] [Indexed: 11/29/2022]
Abstract
Insect octopamine receptors are G-protein coupled receptors. They can be coupled to second messenger pathways to mediate either increases or decreases in intracellular cyclic AMP levels or the generation of intracellular calcium signals. Insect octopamine receptors were originally classified on the basis of second messenger changes induced in a variety of intact tissue preparations. Such a classification system is problematic if more than one receptor subtype is present in the same tissue preparation. Recent progress on the cloning and characterization in heterologous cell systems of octopamine receptors from Drosophila and other insects is reviewed. A new classification system for insect octopamine receptors into "alpha-adrenergic-like octopamine receptors (OctalphaRs)", "beta-adrenergic-like octopamine receptors (OctbetaRs)" and "octopamine/tyramine (or tyraminergic) receptors" is proposed based on their similarities in structure and in signalling properties with vertebrate adrenergic receptors. In future studies on the molecular basis of octopamine signalling in individual tissues it will be essential to identify the relative expression levels of the different classes of octopamine receptor present. In addition, it will be essential to identify if co-expression of such receptors in the same cells results in the formation of oligomeric receptors with specific emergent pharmacological and signalling properties.
Collapse
Affiliation(s)
- Peter D Evans
- The Inositide Laboratory, The Babraham Institute, Cambridge, CB2 4AT, UK.
| | | |
Collapse
|
47
|
Maqueira B, Chatwin H, Evans PD. Identification and characterization of a novel family of Drosophila beta-adrenergic-like octopamine G-protein coupled receptors. J Neurochem 2005; 94:547-60. [PMID: 15998303 DOI: 10.1111/j.1471-4159.2005.03251.x] [Citation(s) in RCA: 141] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Insect octopamine receptors carry out many functional roles traditionally associated with vertebrate adrenergic receptors. These include control of carbohydrate metabolism, modulation of muscular tension, modulation of sensory inputs and modulation of memory and learning. The activation of octopamine receptors mediating many of these actions leads to increases in the levels of cyclic AMP. However, to date none of the insect octopamine receptors that have been cloned have been convincingly shown to be capable of directly mediating selective and significant increases in cyclic AMP levels. Here we report on the identification and characterization of a novel, neuronally expressed family of three Drosophila G-protein coupled receptors that are selectively coupled to increases in intracellular cyclic AMP levels by octopamine. This group of receptors, DmOct beta1R (CG6919), DmOct beta2R (CG6989) and DmOct beta3R (CG7078) shows homology to vertebrate beta-adrenergic receptors. When expressed in Chinese hamster ovary cells all three receptors show a strong preference for octopamine over tyramine for the accumulation of cyclic AMP but show unique pharmacological profiles when tested with a range of synthetic agonists and antagonists. Thus, the pharmacological profile of individual insect tissue responses to octopamine might vary with the combination and the degree of expression of the individual octopamine receptors present.
Collapse
|
48
|
Balfanz S, Strünker T, Frings S, Baumann A. A family of octopamine [corrected] receptors that specifically induce cyclic AMP production or Ca2+ release in Drosophila melanogaster. J Neurochem 2005; 93:440-51. [PMID: 15816867 DOI: 10.1111/j.1471-4159.2005.03034.x] [Citation(s) in RCA: 128] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
In invertebrates, the biogenic-amine octopamine is an important physiological regulator. It controls and modulates neuronal development, circadian rhythm, locomotion, 'fight or flight' responses, as well as learning and memory. Octopamine mediates its effects by activation of different GTP-binding protein (G protein)-coupled receptor types, which induce either cAMP production or Ca(2+) release. Here we describe the functional characterization of two genes from Drosophila melanogaster that encode three octopamine receptors. The first gene (Dmoa1) codes for two polypeptides that are generated by alternative splicing. When heterologously expressed, both receptors cause oscillatory increases of the intracellular Ca(2+) concentration in response to applying nanomolar concentrations of octopamine. The second gene (Dmoa2) codes for a receptor that specifically activates adenylate cyclase and causes a rise of intracellular cAMP with an EC(50) of approximately 3 x 10(-8) m octopamine. Tyramine, the precursor of octopamine biosynthesis, activates all three receptors at > or = 100-fold higher concentrations, whereas dopamine and serotonin are non-effective. Developmental expression of Dmoa genes was assessed by RT-PCR. Overlapping but not identical expression patterns were observed for the individual transcripts. The genes characterized in this report encode unique receptors that display signature properties of native octopamine receptors.
Collapse
Affiliation(s)
- Sabine Balfanz
- Institut für Biologische Informationsverarbeitung, Forschungszentrum Jülich, Jülich, Germany
| | | | | | | |
Collapse
|
49
|
Shpakov AO, Shipilov VN, Gur'yanov IA, Kuznetsova LA, Bondareva VM, Plesneva SA, Pertseva MN. Molecular mechanisms of the regulatory effect of biogenic amines on the functional activity of the adenylate cyclase signal system in nerve ganglia of the mollusk Anodonta cygnea. DOKL BIOCHEM BIOPHYS 2005; 401:177-80. [PMID: 15999832 DOI: 10.1007/s10628-005-0064-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- A O Shpakov
- Sechenov Institute of Evolutionary Physiology and Biochemistry, Russian Academy of Sciences, pr. Morisa Toreza 44, St. Petersburg 194223, Russia
| | | | | | | | | | | | | |
Collapse
|
50
|
Sinakevitch I, Niwa M, Strausfeld NJ. Octopamine-like immunoreactivity in the honey bee and cockroach: Comparable organization in the brain and subesophageal ganglion. J Comp Neurol 2005; 488:233-54. [PMID: 15952163 DOI: 10.1002/cne.20572] [Citation(s) in RCA: 72] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
A serum raised against octopamine reveals in cockroaches and honey bees structurally comparable systems of perikarya and their extensive yet discrete systems of arborizations in neuropils. Numerous and prominent clusters of lateral cell bodies in the brain as well as many midline perikarya provide octopamine-like immunoreactive processes to circumscribed regions of the subesophageal ganglion, antennal lobe glomeruli, optic neuropils, and neuropils of the protocerebrum. There is dense octopaminergic innervation in the protocerebral bridge and ellipsoid body of the central complex. The antennal lobes are supplied by at least three octopamine-immunoreactive neurons. In contrast, the mushroom bodies show the fewest immunoreactive elements. In Apis a single axon supplies sparse immunoreactive processes to the calyces' basal ring, collar, and lip. A diffuse arrangement of immunoreactive processes invades all zones of the mushroom body calyces in Periplaneta. These processes derive from an ascending axon ascribed to a dorsal unpaired median neuron at the maxillary segment of the subesophageal ganglion. In both taxa octopamine-immunoreactive processes invade only the gamma lobes of the mushroom bodies, omitting their other divisions. The present observations are discussed with respect to possible roles of octopamine in sensory integration and association.
Collapse
Affiliation(s)
- Irina Sinakevitch
- Arizona Research Laboratories, Division of Neurobiology, University of Arizona, Tucson, Arizona 85721, USA
| | | | | |
Collapse
|