1
|
Singh V, Auerbach DS. Neurocardiac pathologies associated with potassium channelopathies. Epilepsia 2024; 65:2537-2552. [PMID: 39087855 DOI: 10.1111/epi.18066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 07/10/2024] [Accepted: 07/10/2024] [Indexed: 08/02/2024]
Abstract
Voltage-gated potassium channels are expressed throughout the human body and are essential for physiological functions. These include delayed rectifiers, A-type channels, outward rectifiers, and inward rectifiers. They impact electrical function in the heart (repolarization) and brain (repolarization and stabilization of the resting membrane potential). KCNQx and KCNHx encode Kv7.x and Kv11.x proteins, which form delayed rectifier potassium channels. KCNQx and KCNHx channelopathies are associated with both cardiac and neuronal pathologies. These include electrocardiographic abnormalities, cardiac arrhythmias, sudden cardiac death (SCD), epileptiform discharges, seizures, bipolar disorder, and sudden unexpected death in epilepsy (SUDEP). Due to the ubiquitous expression of KCNQx and KCNHx channels, abnormalities in their function can be particularly harmful, increasing the risk of sudden death. For example, KCNH2 variants have a dual role in both cardiac and neuronal pathologies, whereas KCNQ2 and KCNQ3 variants are associated with severe and refractory epilepsy. Recurrent and uncontrolled seizures lead to secondary abnormalities, which include autonomics, cardiac electrical function, respiratory drive, and neuronal electrical activity. Even with a wide array of anti-seizure therapies available on the market, one-third of the more than 70 million people worldwide with epilepsy have uncontrolled seizures (i.e., intractable/drug-resistant epilepsy), which negatively impact neurodevelopment and quality of life. To capture the current state of the field, this review examines KCNQx and KCNHx expression patterns and electrical function in the brain and heart. In addition, it discusses several KCNQx and KCNHx variants that have been clinically and electrophysiologically characterized. Because these channel variants are associated with multi-system pathologies, such as epileptogenesis, Kv7 channel modulators provide a potential anti-seizure therapy, particularly for people with intractable epilepsy. Ultimately an increased understanding of the role of Kv channels throughout the body will fuel the development of innovative, safe, and effective therapies for people at a high risk of sudden death (SCD and SUDEP).
Collapse
Affiliation(s)
- Veronica Singh
- Department of Pharmacology, SUNY Upstate Medical University, Syracuse, New York, USA
| | - David S Auerbach
- Department of Pharmacology, SUNY Upstate Medical University, Syracuse, New York, USA
| |
Collapse
|
2
|
Barker BS, Spampanato J, McCarren HS, Berger K, Jackson CE, Yeung DT, Dudek FE, McDonough JH. The K v7 Modulator, Retigabine, is an Efficacious Antiseizure Drug for Delayed Treatment of Organophosphate-induced Status Epilepticus. Neuroscience 2021; 463:143-158. [PMID: 33836243 PMCID: PMC8142924 DOI: 10.1016/j.neuroscience.2021.03.029] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Revised: 03/23/2021] [Accepted: 03/25/2021] [Indexed: 10/21/2022]
Abstract
Benzodiazepines are the primary treatment option for organophosphate (OP)-induced status epilepticus (SE), but these antiseizure drugs (ASDs) lose efficacy as treatment is delayed. In the event of a mass civilian or military exposure, significant treatment delays are likely. New ASDs that combat benzodiazepine-resistant, OP-induced SE are critically needed, particularly if they can be efficacious after a long treatment delay. This study evaluated the efficacy of the Kv7 channel modulator, retigabine, as a novel therapy for OP-induced SE. Adult, male rats were exposed to soman or diisopropyl fluorophosphate (DFP) to elicit SE and monitored by electroencephalogram (EEG) recording. Retigabine was administered alone or adjunctive to midazolam (MDZ) at delays of 20- or 40-min in the soman model, and 60-min in the DFP model. Following EEG recordings, rats were euthanized and brain tissue was collected for Fluoro-Jade B (FJB) staining to quantify neuronal death. In the DFP model, MDZ + 15 mg/kg retigabine suppressed seizure activity and was neuroprotective. In the soman model, MDZ + 30 mg/kg retigabine suppressed seizures at 20- and 40-min delays. Without MDZ, 15 mg/kg retigabine provided partial antiseizure and neuroprotectant efficacy in the DFP model, while 30 mg/kg without MDZ failed to attenuate soman-induced SE. At 60 mg/kg, retigabine without MDZ strongly reduced seizure activity and neuronal degeneration against soman-induce SE. This study demonstrates the antiseizure and neuroprotective efficacy of retigabine against OP-induced SE. Our data suggest retigabine could be a useful adjunct to standard-of-care and has potential for use in the absence of MDZ.
Collapse
Affiliation(s)
- Bryan S Barker
- United States Army Medical Research Institute of Chemical Defense, Medical Toxicology Research Division, Neuroscience Department, 2900 Ricketts Point Rd, Aberdeen Proving Ground, MD 21010, USA
| | - Jay Spampanato
- Department of Neurosurgery, University of Utah School of Medicine, Salt Lake City, UT 84108, USA.
| | - Hilary S McCarren
- United States Army Medical Research Institute of Chemical Defense, Medical Toxicology Research Division, Neuroscience Department, 2900 Ricketts Point Rd, Aberdeen Proving Ground, MD 21010, USA
| | - Kyle Berger
- United States Army Medical Research Institute of Chemical Defense, Medical Toxicology Research Division, Neuroscience Department, 2900 Ricketts Point Rd, Aberdeen Proving Ground, MD 21010, USA
| | - Cecelia E Jackson
- United States Army Medical Research Institute of Chemical Defense, Medical Toxicology Research Division, Neuroscience Department, 2900 Ricketts Point Rd, Aberdeen Proving Ground, MD 21010, USA
| | - David T Yeung
- National Institutes of Health/National Institute of Allergy and Infectious Disease, Bethesda, MD 20892, USA
| | - F Edward Dudek
- Department of Neurosurgery, University of Utah School of Medicine, Salt Lake City, UT 84108, USA
| | - John H McDonough
- United States Army Medical Research Institute of Chemical Defense, Medical Toxicology Research Division, Neuroscience Department, 2900 Ricketts Point Rd, Aberdeen Proving Ground, MD 21010, USA
| |
Collapse
|
3
|
Vigil FA, Bozdemir E, Bugay V, Chun SH, Hobbs M, Sanchez I, Hastings SD, Veraza RJ, Holstein DM, Sprague SM, M Carver C, Cavazos JE, Brenner R, Lechleiter JD, Shapiro MS. Prevention of brain damage after traumatic brain injury by pharmacological enhancement of KCNQ (Kv7, "M-type") K + currents in neurons. J Cereb Blood Flow Metab 2020; 40:1256-1273. [PMID: 31272312 PMCID: PMC7238379 DOI: 10.1177/0271678x19857818] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Nearly three million people in the USA suffer traumatic brain injury (TBI) yearly; however, there are no pre- or post-TBI treatment options available. KCNQ2-5 voltage-gated K+ channels underlie the neuronal "M current", which plays a dominant role in the regulation of neuronal excitability. Our strategy towards prevention of TBI-induced brain damage is predicated on the suggested hyper-excitability of neurons induced by TBIs, and the decrease in neuronal excitation upon pharmacological augmentation of M/KCNQ K+ currents. Seizures are very common after a TBI, making further seizures and development of epilepsy disease more likely. Our hypothesis is that TBI-induced hyperexcitability and ischemia/hypoxia lead to metabolic stress, cell death and a maladaptive inflammatory response that causes further downstream morbidity. Using the mouse controlled closed-cortical impact blunt TBI model, we found that systemic administration of the prototype M-channel "opener", retigabine (RTG), 30 min after TBI, reduces the post-TBI cascade of events, including spontaneous seizures, enhanced susceptibility to chemo-convulsants, metabolic stress, inflammatory responses, blood-brain barrier breakdown, and cell death. This work suggests that acutely reducing neuronal excitability and energy demand via M-current enhancement may be a novel model of therapeutic intervention against post-TBI brain damage and dysfunction.
Collapse
Affiliation(s)
- Fabio A Vigil
- Department of Cellular and Integrative Physiology, University of Texas Health San Antonio, San Antonio, TX, USA
| | - Eda Bozdemir
- Department of Cell Systems and Anatomy, University of Texas Health San Antonio, San Antonio, TX, USA
| | - Vladislav Bugay
- Department of Cellular and Integrative Physiology, University of Texas Health San Antonio, San Antonio, TX, USA
| | - Sang H Chun
- Department of Cell Systems and Anatomy, University of Texas Health San Antonio, San Antonio, TX, USA
| | - MaryAnn Hobbs
- Department of Cellular and Integrative Physiology, University of Texas Health San Antonio, San Antonio, TX, USA
| | - Isamar Sanchez
- Department of Cellular and Integrative Physiology, University of Texas Health San Antonio, San Antonio, TX, USA
| | - Shayne D Hastings
- Department of Cellular and Integrative Physiology, University of Texas Health San Antonio, San Antonio, TX, USA
| | - Rafael J Veraza
- Department of Cellular and Integrative Physiology, University of Texas Health San Antonio, San Antonio, TX, USA
| | - Deborah M Holstein
- Department of Cell Systems and Anatomy, University of Texas Health San Antonio, San Antonio, TX, USA
| | - Shane M Sprague
- Department of Neurosurgery, University of Texas Health San Antonio, San Antonio, TX, USA
| | - Chase M Carver
- Department of Cellular and Integrative Physiology, University of Texas Health San Antonio, San Antonio, TX, USA
| | - Jose E Cavazos
- Department of Neurology, University of Texas Health San Antonio, San Antonio, TX, USA
| | - Robert Brenner
- Department of Cellular and Integrative Physiology, University of Texas Health San Antonio, San Antonio, TX, USA
| | - James D Lechleiter
- Department of Cell Systems and Anatomy, University of Texas Health San Antonio, San Antonio, TX, USA
| | - Mark S Shapiro
- Department of Cellular and Integrative Physiology, University of Texas Health San Antonio, San Antonio, TX, USA
| |
Collapse
|
4
|
Genetically epilepsy-prone rats (GEPRs) and DBA/2 mice: Two animal models of audiogenic reflex epilepsy for the evaluation of new generation AEDs. Epilepsy Behav 2017; 71:165-173. [PMID: 26254980 DOI: 10.1016/j.yebeh.2015.06.030] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/30/2015] [Revised: 06/12/2015] [Accepted: 06/17/2015] [Indexed: 01/08/2023]
Abstract
This review summarizes the current knowledge about DBA/2 mice and genetically epilepsy-prone rats (GEPRs) and discusses the contribution of such animal models on the investigation of possible new therapeutic targets and new anticonvulsant compounds for the treatment of epilepsy. Also, possible chemical or physical agents acting as proconvulsant agents are described. Abnormal activities of enzymes involved in catecholamine and serotonin synthesis and metabolism were reported in these models, and as a result of all these abnormalities, seizure susceptibility in both animals is greatly affected by pharmacological manipulations of the brain levels of monoamines and, prevalently, serotonin. In addition, both genetic epileptic models permit the evaluation of pharmacodynamic and pharmacokinetic interactions among several drugs measuring plasma and/or brain level of each compound. Audiogenic models of epilepsy have been used not only for reflex epilepsy studies, but also as animal models of epileptogenesis. The seizure predisposition (epileptiform response to sound stimulation) and substantial characterization of behavioral, cellular, and molecular alterations in both acute and chronic (kindling) protocols potentiate the usefulness of these models in elucidating ictogenesis, epileptogenesis, and their mechanisms. This article is part of a Special Issue entitled "Genetic and Reflex Epilepsies, Audiogenic Seizures and Strains: From Experimental Models to the Clinic".
Collapse
|
5
|
Jepps TA, Bentzen BH, Stott JB, Povstyan OV, Sivaloganathan K, Dalby-Brown W, Greenwood IA. Vasorelaxant effects of novel Kv 7.4 channel enhancers ML213 and NS15370. Br J Pharmacol 2014; 171:4413-24. [PMID: 24909207 DOI: 10.1111/bph.12805] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2014] [Revised: 04/25/2014] [Accepted: 05/14/2014] [Indexed: 12/22/2022] Open
Abstract
BACKGROUND AND PURPOSE The KCNQ-encoded voltage-gated potassium channel family (Kv 7.1-Kv 7.5) are established regulators of smooth muscle contractility, where Kv 7.4 and Kv 7.5 predominate. Various Kv 7.2-7.5 channel enhancers have been developed that have been shown to cause a vasorelaxation in both rodent and human blood vessels. Recently, two novel Kv 7 channel enhancers have been identified, ML213 and NS15370, that show increased potency, particularly on Kv 7.4 channels. The aim of this study was to characterize the effects of these novel enhancers in different rat blood vessels and compare them with Kv 7 enhancers (S-1, BMS204352, retigabine) described previously. We also sought to determine the binding sites of the new Kv 7 enhancers. KEY RESULTS Both ML213 and NS15370 relaxed segments of rat thoracic aorta, renal artery and mesenteric artery in a concentration-dependent manner. In the mesenteric artery ML213 and NS15370 displayed EC50 s that were far lower than other Kv 7 enhancers tested. Current-clamp experiments revealed that both novel enhancers, at low concentrations, caused significant hyperpolarization in mesenteric artery smooth muscle cells. In addition, we determined that the stimulatory effect of these enhancers relied on a tryptophan residue located in the S5 domain, which is the same binding site for the other Kv 7 enhancers tested in this study. CONCLUSIONS AND IMPLICATIONS This study has identified and characterized ML213 and NS15370 as potent vasorelaxants in different blood vessels, thereby highlighting these new compounds as potential therapeutics for various smooth muscle disorders.
Collapse
Affiliation(s)
- T A Jepps
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | | | | | | | | | | | | |
Collapse
|
6
|
Stott JB, Jepps TA, Greenwood IA. KV7 potassium channels: a new therapeutic target in smooth muscle disorders. Drug Discov Today 2014; 19:413-24. [DOI: 10.1016/j.drudis.2013.12.003] [Citation(s) in RCA: 64] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2013] [Revised: 10/21/2013] [Accepted: 12/04/2013] [Indexed: 12/23/2022]
|
7
|
Jepps TA, Olesen SP, Greenwood IA. One man's side effect is another man's therapeutic opportunity: targeting Kv7 channels in smooth muscle disorders. Br J Pharmacol 2014; 168:19-27. [PMID: 22880633 DOI: 10.1111/j.1476-5381.2012.02133.x] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
Retigabine is a first in class anticonvulsant that has recently undergone clinical trials to test its efficacy in epileptic patients. Retigabine's novel mechanism of action - activating Kv7 channels - suppresses neuronal activity to prevent seizure generation by hyperpolarizing the membrane potential and suppressing depolarizing surges. However, Kv7 channels are not expressed exclusively in neurones and data generated over the last decade have shown that Kv7 channels play a key role in various smooth muscle systems of the body. This review discusses the potential of targeting Kv7 channels in the smooth muscle to treat diseases such as hypertension, bladder instability, constipation and preterm labour.
Collapse
Affiliation(s)
- T A Jepps
- Division of Biomedical Sciences, St George's, University of London, Cranmer Terrace, UK
| | | | | |
Collapse
|
8
|
Jankovic S, Ilickovic I. The preclinical discovery and development of ezogabine for the treatment of epilepsy. Expert Opin Drug Discov 2013; 8:1429-37. [DOI: 10.1517/17460441.2013.837882] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
9
|
Ezogabine (Retigabine) and Its Role in the Treatment of Partial-Onset Seizures: A Review. Clin Ther 2012; 34:1845-56.e1. [DOI: 10.1016/j.clinthera.2012.07.009] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2012] [Revised: 07/10/2012] [Accepted: 07/20/2012] [Indexed: 11/21/2022]
|
10
|
Brickel N, Gandhi P, VanLandingham K, Hammond J, DeRossett S. The urinary safety profile and secondary renal effects of retigabine (ezogabine): A first-in-class antiepileptic drug that targets KCNQ (Kv7) potassium channels. Epilepsia 2012; 53:606-12. [DOI: 10.1111/j.1528-1167.2012.03441.x] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
|
11
|
Patsalos PN, Berry DJ. Pharmacotherapy of the third-generation AEDs: lacosamide, retigabine and eslicarbazepine acetate. Expert Opin Pharmacother 2012; 13:699-715. [PMID: 22404663 DOI: 10.1517/14656566.2012.667803] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
INTRODUCTION The search for new, more effective antiepileptic drugs (AEDs) continues. The three most recently approved drugs, the so-called third-generation AEDs, include lacosamide, retigabine and eslicarbazepine acetate and are licensed as adjunctive treatment of partial epilepsy in adults. AREAS COVERED For the above three AEDs, their mechanisms of action, pharmacokinetic characteristics, drug-drug interactions, pharmacotherapeutics, dose and administration and therapeutic drug monitoring are reviewed in this paper. EXPERT OPINION Lacosamide and retigabine act through novel mechanisms, while eslicarbazepine acetate, a pro-drug for eslicarbazepine, acts in a similar manner to several other AEDs. All three AEDs are associated with linear pharmacokinetic and rapid absorption and undergo metabolism. Their drug-drug interaction profile is low (lacosamide and retigabine) to modest (eslicarbazepine) in propensity. At the highest approved doses for the three AEDs, responder rates were similar. The most commonly observed adverse effects compared with placebo were dizziness, headache, diplopia and nausea for lacosamide; dizziness, somnolence and fatigue for retigabine and dizziness and somnolence for eslicarbazepine acetate. The precise role that these new AEDs will have in the treatment of epilepsy and whether they will make a significant impact on the prognosis of intractable epilepsy is not yet known and will have to await further clinical experience.
Collapse
Affiliation(s)
- Philip N Patsalos
- UCL-Institute of Neurology, Department of Clinical and Experimental Epilepsy, Pharmacology and Therapeutics Unit, Queen Square, London, WC1N 3BG, UK.
| | | |
Collapse
|
12
|
Large CH, Sokal DM, Nehlig A, Gunthorpe MJ, Sankar R, Crean CS, VanLandingham KE, White HS. The spectrum of anticonvulsant efficacy of retigabine (ezogabine) in animal models: Implications for clinical use. Epilepsia 2012; 53:425-36. [DOI: 10.1111/j.1528-1167.2011.03364.x] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|
13
|
Affiliation(s)
- Kyoung Heo
- Department of Neurology, Yonsei University College of Medicine, Seoul, Korea
- Epilepsy Research Institute, Yonsei University College of Medicine, Seoul, Korea
| |
Collapse
|
14
|
Chung SS, Kelly K, Schusse C. New and emerging treatments for epilepsy: review of clinical studies of lacosamide, eslicarbazepine acetate, ezogabine, rufinamide, perampanel, and electrical stimulation therapy. J Epilepsy Res 2011; 1:35-46. [PMID: 24649444 PMCID: PMC3952328 DOI: 10.14581/jer.11008] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2011] [Accepted: 11/17/2011] [Indexed: 01/26/2023] Open
Abstract
Although many different medical and surgical treatment options for epilepsy exist, approximately 30% of epilepsy patients remain poorly controlled. For those patients who are refractory to medical treatment, epilepsy surgery often provides meaningful improvement. However, when surgical resection of epileptic foci cannot be offered or failed, combined administration of AEDs or the application of novel AEDs is the most appropriate therapeutic options. The most recent AEDs tend to offer new mechanisms of action and more favorable safety profiles than the first generation of AEDs. More recently, alternative options of thalamic or cortical stimulation emerged as potentiall effective treatment for epilepsy. The purpose of this article is to compare and review clinical information for the new and emerging medications such as lacosamide, eslicarbazepine acetate, ezogabine (retigabine), rufinamide, perampanel, as well as deep brain stimulation and responsive neurostimulation devices.
Collapse
Affiliation(s)
- Steve S. Chung
- Department of Neurology, Barrow Neurological Institute, St. Joseph’s Hospital and Medical Center, Phoenix, AZ, USA
| | - Kristen Kelly
- Department of Neurology, Barrow Neurological Institute, St. Joseph’s Hospital and Medical Center, Phoenix, AZ, USA
| | - Courtney Schusse
- Department of Neurology, Barrow Neurological Institute, St. Joseph’s Hospital and Medical Center, Phoenix, AZ, USA
| |
Collapse
|
15
|
|
16
|
Abstract
Retigabine (ezogabine in the US) opens neuronal voltage-gated potassium channels, resulting in resting membrane potential stabilization, neuronal subthreshold excitability control and anticonvulsant effects. The clinical efficacy of adjunctive oral retigabine in adults with inadequately controlled, partial-onset seizures was demonstrated in two large, well designed, phase III trials (RESTORE-1 and RESTORE-2), generally confirming the findings of an earlier phase IIb study. In the RESTORE trials, retigabine 600, 900 or 1200 mg/day was associated with significantly higher rates of response (i.e. reduction in 28-day total partial seizure frequency of ≥50%) than placebo during both the 12-week maintenance period and the entire 16- or 18-week double-blind phase (i.e. titration plus maintenance) of the studies. Retigabine recipients also had significantly greater median reductions from baseline in 28-day total partial seizure frequency than placebo recipients during these treatment periods. These benefits of retigabine were generally seen irrespective of age, gender, race and baseline seizure frequency, and were maintained for up to 12 months according to interim data from subsequent open-label extension studies, with some patients also experiencing seizure-free periods of up to 12 months. Retigabine was generally well tolerated in adults with partial-onset seizures in the RESTORE studies, with most adverse events being of mild or moderate severity.
Collapse
Affiliation(s)
- Emma D Deeks
- Adis, a Wolters Kluwer Business, Auckland, New Zealand
| |
Collapse
|
17
|
Abstract
This article discusses seven newly available antiepileptic drugs (AEDs) and agents in phase III development. Lacosamide, licensed as an adjunctive treatment for partial-onset seizures, primarily acts by enhancing sodium channel slow inactivation. At daily doses of 200-600 mg, the drug significantly reduced partial-onset seizures in adults with refractory epilepsy. The most common adverse effects are CNS related. Rufinamide, available as adjunctive treatment for seizures associated with Lennox-Gastaut syndrome, has an unclear mechanism of action, although it does block voltage-dependent sodium channels. Coadministration of valproic acid significantly increases rufinamide circulating concentrations. The drug has been shown to have efficacy for partial-onset, primary generalized tonic-clonic, tonic-atonic, absence and atypical absence seizures. Adverse effects are mainly somnolence, nausea and vomiting. Eslicarbazepine acetate, a carbamazepine analogue, was recently licensed as adjunctive treatment for partial-onset seizures. Eslicarbazepine acetate acts at voltage-gated sodium channels, although the precise mechanism of action is unclear. The drug had efficacy for partial-onset seizures in three randomized, double-blind, placebo-controlled studies, using 400, 800 or 1200 mg/day. Adverse effects include dizziness and somnolence. Retigabine (ezogabine) exerts its anticonvulsant effect through the opening of neuronal voltage-gated potassium channels. Following significant seizure reduction rates at dosages of 600, 900 and 1200 mg/day, license applications have been submitted for its use as adjunctive treatment for patients with partial-onset seizures. Dose-related adverse effects include somnolence, confusion and dizziness. Brivaracetam is the n-propyl analogue of levetiracetam. Mixed results have been obtained in phase III studies in patients with partial-onset seizures, and further trials in children, patients with photosensitive epilepsy and patients with partial-onset seizures are ongoing. Dizziness, headache and somnolence are the most common adverse effects reported. Perampanel was designed as an AMPA-type glutamate receptor antagonist. Following encouraging results from phase II studies in patients with refractory partial-onset seizures, recruitment for phase III trials is almost complete. Ganaxolone is a neurosteroid with potent antiepileptic activity that modulates GABA(A) receptors in the CNS. Ganaxolone has shown promise in a variety of seizure types. Dizziness and somnolence have been reported in some patients. The availability of new AEDs has widened the choices for clinicians treating patients with epilepsy. However, given the minimal improvement in prognosis and disappointing efficacy outcomes in double-blind, placebo-controlled, dose-ranging regulatory trials, it seems unlikely that these novel agents will have a major impact on outcomes for people with epilepsy.
Collapse
Affiliation(s)
- Linda J Stephen
- Epilepsy Unit, Division of Cardiovascular and Medical Sciences, Western Infirmary, Glasgow, Scotland
| | | |
Collapse
|
18
|
Barrese V, Miceli F, Soldovieri MV, Ambrosino P, Iannotti FA, Cilio MR, Taglialatela M. Neuronal potassium channel openers in the management of epilepsy: role and potential of retigabine. Clin Pharmacol 2010; 2:225-36. [PMID: 22291509 PMCID: PMC3262367 DOI: 10.2147/cpaa.s15369] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Despite the availability of over 20 antiepileptic drugs, about 30% of epileptic patients do not achieve seizure control. Thus, identification of additional molecules targeting novel molecular mechanisms is a primary effort in today's antiepileptic drug research. This paper reviews the pharmacological development of retigabine, an antiepileptic drug with a novel mechanism of action, namely the activation of voltage-gated potassium channels of the Kv7 subfamily. These channels, which act as widespread regulators of intrinsic neuronal excitability and of neurotransmitter-induced network excitability changes, are currently viewed among the most promising targets for anticonvulsant pharmacotherapy. In particular, the present work reviews the pathophysiological role of Kv7 channels in neuronal function, the molecular mechanisms involved in the Kv7 channel-opening action of retigabine, the activity of retigabine in preclinical in vitro and in vivo studies predictive of anticonvulsant activities, and the clinical status of development for this drug as an add-on treatment for pharmacoresistant epilepsy. Particular efforts are devoted to highlighting the potential advantages and disadvantages of retigabine when compared with currently available compounds, in order to provide a comprehensive assessment of its role in therapy for treatment-resistant epilepsies.
Collapse
Affiliation(s)
- Vincenzo Barrese
- Department of Neuroscience, University of Naples Federico II, Naples
| | | | | | | | | | | | | |
Collapse
|
19
|
Isobolographic characterization of interactions of retigabine with carbamazepine, lamotrigine, and valproate in the mouse maximal electroshock-induced seizure model. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2008; 379:163-79. [DOI: 10.1007/s00210-008-0349-9] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/05/2008] [Accepted: 08/18/2008] [Indexed: 10/21/2022]
|
20
|
Cooper EC. Potassium Channels: How Genetic Studies of Epileptic Syndromes Open Paths to New Therapeutic Targets and Drugs. Epilepsia 2008. [DOI: 10.1111/j.1528-1167.2001.0s009.x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Edward C. Cooper
- Departments of Neurology and Physiology, and Northern California Comprehensive Epilepsy Center, University of California, San Francisco, San Francisco, California, U.S.A
| |
Collapse
|
21
|
Crozier RA, Ajit SK, Kaftan EJ, Pausch MH. MrgD activation inhibits KCNQ/M-currents and contributes to enhanced neuronal excitability. J Neurosci 2007; 27:4492-6. [PMID: 17442834 PMCID: PMC6672314 DOI: 10.1523/jneurosci.4932-06.2007] [Citation(s) in RCA: 80] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
The recently identified Mas-related gene (Mrg) family of G-protein-coupled receptors is expressed almost exclusively in dorsal root ganglion (DRG) neurons. The expression of one family member, MrgD, is even further confined to IB4+, nonpeptidergic, small-diameter nociceptors. Although the functional consequences of MrgD activation are not known, this expression profile provides intriguing potential for a role in pain sensation or modulation. In a recombinant cell line, we first assessed the functional significance of MrgD activation by coexpressing MrgD with the KCNQ2/3 potassium channel, a channel implicated in pain. Whole-cell voltage-clamp recordings revealed that bath application of the ligand for MrgD, beta-alanine, resulted in robust inhibition of KCNQ2/3 activity. Pharmacological blockade of G(i/o) and phospholipase C signaling revealed a partial and complete block of the response, respectively. We extended these observations to dissociated DRG neuron cultures by examining MrgD modulation of M-currents (carried primarily by KCNQ2/3). Here too, beta-alanine-induced activation of endogenous MrgD inhibited M-currents, but primarily via a pertussis toxin-sensitive pathway. Finally, we assessed the consequence of beta-alanine-induced activation of MrgD in phasic neurons. Phasic neurons that fired a single action potential (AP) before beta-alanine application fired multiple APs during beta-alanine exposure. In sum, we provide evidence for a novel interaction between MrgD and KCNQ/M-type potassium channels that contributes to an increase in excitability of DRG neurons and thus may enhance the signaling of primary afferent nociceptive neurons.
Collapse
Affiliation(s)
- Robert A Crozier
- Wyeth Research, Discovery Neuroscience, CN 8000, Princeton, New Jersey 08543-8000, USA.
| | | | | | | |
Collapse
|
22
|
Abstract
Retigabine is a novel antiseizure drug that acts through potassium channels and has activity in a broad range of animal models of epilepsy. It is also effective in several preclinical pain models. The drug has been extensively studied in phase I and II studies, with very promising results. The maximal tolerated dose for most patients is 1,200 mg/day. Adverse effects have been largely CNS-related and mild; most have occurred during the titration periods in the various studies. At present, retigabine is in two pivotal phase III studies.
Collapse
Affiliation(s)
- Roger J Porter
- Department of Pediatrics, School of Medicine, Emory University, Atlanta, Georgia 30322, USA.
| | | | | |
Collapse
|
23
|
Abstract
Retigabine has anticonvulsant properties that appear to be primarily mediated by opening neuronal voltage-gated potassium channels. This action has been shown in neuronal KCNQ2/3 and KCNQ3/5 potassium channels. In addition to this unique action, retigabine also potentiates GABA-evoked currents in cortical neurons at high concentrations. When used as adjunctive therapy in patients with partial seizures, retigabine 600-1200 mg/day (200-400 mg three times daily) was associated with significant linear dose-dependent reductions in monthly seizure frequency compared with placebo in a large 16-week randomised phase II trial. Median monthly seizure frequency decreased from baseline by up to 35% among patients in the retigabine treatment arms compared with 13% in the placebo group. Retigabine 1200 mg/day was also significantly more effective than retigabine 600 mg/day. Responder rates, defined as the proportion of patients with > or = 50% reduction in seizure frequency, were significantly higher among patients in the retigabine 900 and 1200 mg/day groups than in those who received placebo. CNS-related adverse events were the most commonly reported treatment-emergent adverse events associated with retigabine in clinical trials. Across all three retigabine groups in the large phase II trial, somnolence (20.3%), dizziness (14.6%), confusion (12.3%) and speech disorder (11.3%) were the most frequent CNS-related adverse events.
Collapse
|
24
|
Vervaeke K, Gu N, Agdestein C, Hu H, Storm JF. Kv7/KCNQ/M-channels in rat glutamatergic hippocampal axons and their role in regulation of excitability and transmitter release. J Physiol 2006; 576:235-56. [PMID: 16840518 PMCID: PMC1995637 DOI: 10.1113/jphysiol.2006.111336] [Citation(s) in RCA: 100] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
M-current (I(M)) plays a key role in regulating neuronal excitability. Mutations in Kv7/KCNQ subunits, the molecular correlates of I(M), are associated with a familial human epilepsy syndrome. Kv7/KCNQ subunits are widely expressed, and I(M) has been recorded in somata of several types of neurons, but the subcellular distribution of M-channels remains elusive. By combining field-potential, whole-cell and intracellular recordings from area CA1 in rat hippocampal slices, and computational modelling, we provide evidence for functional M-channels in unmyelinated axons in the brain. Our data indicate that presynaptic M-channels can regulate axonal excitability and synaptic transmission, provided the axons are depolarized into the I(M) activation range (beyond approximately -65 mV). Here, such depolarization was achieved by increasing the extracellular K(+) concentration ([K(+)](o)). Extracellular recordings in the presence of moderately elevated [K(+)](o) (7-11 mm), showed that the specific M-channel blocker XE991 reduced the amplitude of the presynaptic fibre volley and the field EPSP in a [K(+)](o)-dependent manner, both in stratum radiatum and in stratum lacknosum moleculare. The M-channel opener, retigabine, had opposite effects. The higher the [K(+)](o), the greater the effects of XE991 and retigabine. Similar pharmacological modulation of EPSPs recorded intracellularly from CA1 pyramidal neurons, while blocking postsynaptic K(+) channels with intracellular Cs(+), confirmed that active M-channels are located presynaptically. Computational analysis with an axon model showed that presynaptic I(M) can control Na(+) channel inactivation and thereby affect the presynaptic action potential amplitude and Ca(2+) influx, provided the axonal membrane potential is sufficiently depolarized. Finally, we compared the effects of blocking I(M) on the spike after-depolarization and bursting in CA3 pyramidal neuron somata versus their axons. In standard [K(+)](o) (2.5 mm), XE991 increased the ADP and promoted burst firing at the soma, but not in the axons. However, I(M) contributed to the refractory period in the axons when spikes were broadened by a low dose 4-aminopyridine (200 microm). Our results indicate that functional Kv7/KCNQ/M-channels are present in unmyelinated axons in the brain, and that these channels may have contrasting effects on excitability depending on their subcellular localization.
Collapse
Affiliation(s)
- K Vervaeke
- Department of Physiology at IMB and Centre for Molecular Biology and Neuroscience, CMBN, University of Oslo, PB 1103 Blindern, N-0317 Oslo, Norway
| | | | | | | | | |
Collapse
|
25
|
|
26
|
Borlak J, Gasparic A, Locher M, Schupke H, Hermann R. N-Glucuronidation of the antiepileptic drug retigabine: results from studies with human volunteers, heterologously expressed human UGTs, human liver, kidney, and liver microsomal membranes of Crigler-Najjar type II. Metabolism 2006; 55:711-21. [PMID: 16713428 DOI: 10.1016/j.metabol.2006.01.006] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/06/2004] [Accepted: 01/15/2006] [Indexed: 12/25/2022]
Abstract
Retigabine (D-23129), an N-2-amino-4-(4-fluorobenzylamino)phenylcarbamine acid ethyl ester, is a novel antiepileptic drug which is currently in phase II clinical development. This drug undergoes N-glucuronidation. We aimed to identify the principal enzymes involved in the N-glucuronidation pathway of retigabine and compared our findings with those obtained from human liver (a pool of 30 donors) and kidney microsomes (a pool of 3 donors) and with results from a human absorption, distribution, metabolism, and excretion study upon administration of 200 microCi of [(14)C]-D-23129. Essentially, microsomal assays with UGT1A1 produced only one of the 2 N-glucuronides, whereas UGT1A9 is capable of forming both N-glucuronides. The rates of metabolism for UGT1A9, human liver microsomes, and UGT1A1 were 200, 100, and 100 pmol N-glucuronide per minute per milligram of protein, respectively. At the 50 micromol/L uridine diphosphate glucoronic acid (UDPGA) concentration, UGT1A4 also catalyzed the N-glucuronidation of retigabine, the rates being approximately 5 and 6 pmol/(min.mg protein). With UGT1A9, the production of metabolites 1 and 2 proceeded at a K(m) of 38+/-25 and 45+/-15 micromol/L, whereas the K(m) for retigabine N-glucuronidation by human liver microsomal fractions was 145+/-39 micromol/L. Furthermore, a V(max) of 1.2+/-0.3 (nmol/[min.mg protein]) was estimated for human liver microsomes (4 individual donors). We investigated the potential for drug-drug interaction using the antiepileptic drugs valproic acid, lamotrigine, the tricyclic antidepressant imipramine, and the anesthetic propofol. These are commonly used medications and are extensively glucuronidated. No potential for drug-drug interactions was found at clinically relevant concentrations (when assayed with human liver microsomes or UGT1A9 enzyme preparations). Notably, the biosynthesis of retigabine-N-glucuronides was not inhibited in human liver microsomal assays in the presence of 330 micromol/L bilirubin, and glucuronidation of retigabine was also observed with microsomal preparations from human kidney and Crigler-Najjar type II liver. This suggests that lack of a particular UDP-glucuronosyltransferase (UGT) isoform (eg, UGT1A1 in kidney) or functional loss of an entire UGT1A gene does not completely abolish disposal of the drug. Finally, chromatographic separations of extracts from microsomal assays and human urine of volunteers receiving a single dose of (14)C-retigabine provided clear evidence for the presence of the 2 N-glucuronides known to be produced by UGT1A9. We therefore suggest N-glucuronidation of retigabine to be of importance in the metabolic clearance of this drug.
Collapse
Affiliation(s)
- Jürgen Borlak
- Fraunhofer Institute of Toxicology and Experimental Medicine, Center for Drug Research and Medical Biotechnology, D-30625 Hannover, Germany.
| | | | | | | | | |
Collapse
|
27
|
Chung HJ, Jan YN, Jan LY. Polarized axonal surface expression of neuronal KCNQ channels is mediated by multiple signals in the KCNQ2 and KCNQ3 C-terminal domains. Proc Natl Acad Sci U S A 2006; 103:8870-5. [PMID: 16735477 PMCID: PMC1472242 DOI: 10.1073/pnas.0603376103] [Citation(s) in RCA: 151] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The M channels, important regulators of neuronal excitability, are voltage-gated potassium channels composed of KCNQ2-5 subunits. Mutations in KCNQ2 and KCNQ3 cause benign familial neonatal convulsions (BFNC), dominantly inherited epilepsy and myokymia. Crucial for their functions in controlling neuronal excitability, the M channels must be placed at specific regions of the neuronal membrane. However, the precise distribution of surface KCNQ channels is not known. Here, we show that KCNQ2/KCNQ3 channels are preferentially localized to the surface of axons both at the axonal initial segment and more distally. Whereas axonal initial segment targeting of surface KCNQ channels is mediated by ankyrin-G binding motifs of KCNQ2 and KCNQ3, sequences mediating targeting to more distal portion of the axon reside in the membrane proximal and A domains of the KCNQ2 C-terminal tail. We further show that several BFNC mutations of KCNQ2 and KCNQ3 disrupt surface expression or polarized surface distribution of KCNQ channels, thereby revealing impaired targeting of KCNQ channels to axonal surfaces as a BFNC etiology.
Collapse
Affiliation(s)
- Hee Jung Chung
- Departments of Physiology and Biochemistry, Howard Hughes Medical Institute, University of California, San Francisco, CA 94143
| | - Yuh Nung Jan
- Departments of Physiology and Biochemistry, Howard Hughes Medical Institute, University of California, San Francisco, CA 94143
| | - Lily Y. Jan
- *To whom correspondence should be addressed. E-mail:
| |
Collapse
|
28
|
Mora G, Tapia R. Effects of retigabine on the neurodegeneration and extracellular glutamate changes induced by 4-aminopyridine in rat hippocampus in vivo. Neurochem Res 2006; 30:1557-65. [PMID: 16362775 DOI: 10.1007/s11064-005-8834-8] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/23/2005] [Indexed: 01/21/2023]
Abstract
We have previously shown that microdialysis perfusion of the K+ channel blocker 4-aminopyridine (4-AP) in rat hippocampus induces convulsions and neurodegeneration, due to the stimulation of glutamate release from synaptic terminals. Retigabine is an opener of the KCNQ2/Q3-type K+ channel that possesses antiepileptic action and may be neuroprotective, and we have therefore studied its effect on the hyperexcitation, the neuronal damage and the changes in extracellular glutamate induced by 4-AP. Retigabine and 4-AP were co-administered by microdialysis in the hippocampus of anesthetized rats, with simultaneous recording of the EEG, and the extracellular concentration of glutamate was measured in the microdialysis fractions. In 70-80% of the rats tested retigabine reduced the 4-AP-induced stimulation of glutamate release and prevented the neuronal damage observed at 24 h in the CA1 hippocampal region. However, retigabine did not block the EEG epileptic discharges and their duration was reduced in only 20-25% of the tested animals. We conclude that the neuroprotective action of retigabine is probably due to the blockade of the 4-AP-induced stimulation of glutamate release. This inhibition, however, was not sufficient to block the epileptic activity.
Collapse
Affiliation(s)
- Gabriela Mora
- Departamento de Neurociencias, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, AP 70-253, 04510, México, D. F., México
| | | |
Collapse
|
29
|
Wolff C, Gillard M, Fuks B, Chatelain P. [3H]linopirdine binding to rat brain membranes is not relevant for M-channel interaction. Eur J Pharmacol 2005; 518:10-7. [PMID: 16018996 DOI: 10.1016/j.ejphar.2005.06.005] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2005] [Revised: 06/03/2005] [Accepted: 06/07/2005] [Indexed: 11/21/2022]
Abstract
Linopirdine was developed as a cognitive enhancing molecule and demonstrated to specifically block the potassium current generated by the brain specific KCNQ2-KCNQ3 proteins (M-channel). In this study we investigated the relevance of [(3)H]linopirdine binding in rat brain extracts to the interaction with the M-channel proteins. Our results confirm the presence of a high affinity site for [(3)H]linopirdine in rat brain tissues (KD = 10 nM) but we also identified a high affinity binding site for [(3)H]linopirdine in rat liver tissues (KD = 9 nM). Competition experiments showed that [(3)H]linopirdine is displaced by unlabelled linopirdine with comparable affinities from its binding sites on rat brain and rat liver membranes. [(3)H]linopirdine was completely displaced by a set of cytochrome P450 (CYP450) ligands suggesting that [(3)H]linopirdine binding to rat brain and liver membranes is linked to CYP450 interaction. The testing of CYP450 ligands on the M-channel activity, using a Rb(+) efflux assay on cells expressing the KCNQ2-KCNQ3 proteins, demonstrated that [(3)H]linopirdine binding results cannot be correlated to M-channel inhibition. The results obtained in this study demonstrate that [(3)H]linopirdine binding to rat brain and rat liver membranes is representative for CYP450 interaction and not relevant for the binding to the M-channel proteins.
Collapse
Affiliation(s)
- Christian Wolff
- Deparment of in vitro Pharmacology, UCB SA, CNS Preclinical Research, chemin du Foriest R4, 1420 Braine l' Alleud, Belgium.
| | | | | | | |
Collapse
|
30
|
Wickenden AD, Roeloffs R, McNaughton-Smith G, Rigdon GC. KCNQ potassium channels: drug targets for the treatment of epilepsy and pain. Expert Opin Ther Pat 2005. [DOI: 10.1517/13543776.14.4.457] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
31
|
Otto JF, Kimball MM, Wilcox KS. Effects of the anticonvulsant retigabine on cultured cortical neurons: changes in electroresponsive properties and synaptic transmission. Mol Pharmacol 2002; 61:921-7. [PMID: 11901232 DOI: 10.1124/mol.61.4.921] [Citation(s) in RCA: 89] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The whole-cell patch-clamp technique was used to examine the effects of retigabine, a novel anticonvulsant drug, on the electroresponsive properties of individual neurons as well as on neurotransmission between monosynaptically connected pairs of cultured mouse cortical neurons. Consistent with its known action on potassium channels, retigabine significantly hyperpolarized the resting membrane potentials of the neurons, decreased input resistance, and decreased the number of action potentials generated by direct current injection. In addition, retigabine potentiated inhibitory postsynaptic currents (IPSCs) mediated by activation of gamma-aminobutyric acid(A) (GABA(A)) receptors. IPSC peak amplitude, 90-to-10% decay time, weighted decay time constant, slow decay time constant, and, consequently, the total charge transfer were all significantly enhanced by retigabine in a dose-dependent manner. This effect was limited to IPSCs; retigabine had no significant effect on excitatory postsynaptic currents (EPSCs) mediated by activation of non-N-methyl-D-aspartate ionotropic glutamate receptors. A form of short-term presynaptic plasticity, paired-pulse depression, was not altered by retigabine, suggesting that its effect on IPSCs is primarily postsynaptic. Consistent with the hypothesis that retigabine increases inhibitory neurotransmission via a direct action on the GABA(A) receptor, the peak amplitudes, 90-to-10% decay times, and total charge transfer of spontaneous miniature IPSCs were also significantly increased. Therefore, retigabine potently reduces excitability in neural circuits via a synergistic combination of mechanisms.
Collapse
Affiliation(s)
- James F Otto
- Anticonvulsant Drug Development Program, Department of Pharmacology and Toxicology, University of Utah, Salt Lake City, Utah 84112, USA
| | | | | |
Collapse
|
32
|
Cooper EC. Potassium channels: how genetic studies of epileptic syndromes open paths to new therapeutic targets and drugs. Epilepsia 2002; 42 Suppl 5:49-54. [PMID: 11887968 DOI: 10.1046/j.1528-1157.2001.0420s5049.x] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
How can epilepsy gene hunting lead to better care for patients with epilepsy? Lessons may be learned from the progress made by identifying the mutated genes that cause Benign Familial Neonatal Convulsions (BFNC). In 1998, a decade of clinical and laboratory-based genetics work resulted in the cloning of the KCNQ2 potassium channel gene at the BFNC locus on chromosome 20. Subsequently, computer "mining" of public DNA databases allowed the rapid identification of three more brain KCNQ genes. Mutations in each of these additional genes were implicated as causes of human hereditary diseases: epilepsy (KCNQ3), deafness (KCNQ4), and, possibly, retinal degeneration (KCNQ5). Physiologists discovered that the KCNQ genes encoded subunits of the "M-channel," a type of potassium channel known to control repetitive neuronal discharges. Finally, pharmacologists discovered that retigabine, a novel anticonvulsant with a broad but distinctive efficacy profile in animal studies, was a potent KCNQ channel opener. These studies suggest that KCNQ channels may be an important new class of targets for anticonvulsant therapies. The efficacy of retigabine is currently being tested in multicenter clinical trials; identification of its molecular targets will allow it to be more efficiently exploited as a "lead compound." Cloned human KCNQ channels can now be expressed in cultured cells for "high-throughput" screening of drug candidates. Ongoing studies of the KCNQ channels in humans and animal models will refine our understanding of how M-channels control excitability at the cellular, network, and behavioral levels, and may reveal additional targets for therapeutic manipulation.
Collapse
Affiliation(s)
- E C Cooper
- Department of Neurology, Northern California Comprehensive Epilepsy Center, University of California, San Francisco 94143-0725, USA.
| |
Collapse
|
33
|
Abstract
Great progress has been made in the last 150 years in the pharmacological management of epilepsy, and, despite the increasing number of technological advances available, antiepileptic drugs (AEDs) remain the mainstay of treatment for the vast majority of patients with epilepsy. This review looks at possible avenues of development in the drug treatment of epilepsy. The strengths and weaknesses of those AEDs which are currently licensed are examined, and ways in which their use may be improved are discussed (e.g. rational combinations, use of new formulations). Potentially new targets that may allow the development of effective treatments are highlighted (neuroimmunological manipulation, decreasing inherent drug resistance mechanisms, and modification of adenosine neurotransmission), and a summary of the most promising AEDs currently in development is provided [e.g. carabersat, ganaxolone, harkoseride, MDL 27192, safinamide (NW 1015), pregabalin, retigabine, talampanel, valrocemide, losigamone and BIA 2093].
Collapse
Affiliation(s)
- A Nicolson
- Walton Centre for Neurology and Neurosurgery, Liverpool, UK
| | | |
Collapse
|
34
|
Abstract
gamma-Aminobutyric acid (GABA) is considered to be the major inhibitory neurotransmitter in the brain and loss of GABA inhibition has been clearly implicated in epileptogenesis. GABA interacts with 3 types of receptor: GABAA, GABAB and GABAC. The GABAA receptor has provided an excellent target for the development of drugs with an anticonvulsant action. Some clinically useful anticonvulsants, such as the benzodiazepines and barbiturates and possibly valproic acid (sodium valproate), act at this receptor. In recent years 4 new anticonvulsants, namely vigabatrin, tiagabine, gabapentin and topiramate, with a mechanism of action considered to be primarily via an effect on GABA, have been licensed. Vigabatrin elevates brain GABA levels by inhibiting the enzyme GABA transaminase which is responsible for intracellular GABA catabolism. In contrast, tiagabine elevates synaptic GABA levels by inhibiting the GABA uptake transporter, GAT1, and preventing the uptake of GABA into neurons and glia. Gabapentin, a cyclic analogue of GABA, acts by enhancing GABA synthesis and also by decreasing neuronal calcium influx via a specific subunit of voltage-dependent calcium channels. Topiramate acts, in part, via an action on a novel site of the GABAA receptor. Although these drugs are useful in some patients, overall, they have proven to be disappointing as they have had little impact on the prognosis of patients with intractable epilepsy. Despite this, additional GABA enhancing anticonvulsants are presently under development. Ganaxolone, retigabine and pregabalin may prove to have a more advantageous therapeutic profile than the presently licensed GABA enhancing drugs. This anticipation is based on 2 characteristics. First, they act by hitherto unique mechanisms of action in enhancing GABA-induced neuronal inhibition. Secondly, they act on additional antiepileptogenic mechanisms. Finally, CGP 36742, a GABAB receptor antagonist, may prove to be particularly useful in the management of primary generalised absence seizures. The exact impact of these new GABA-enhancing drugs in the treatment of epilepsy will have to await their licensing and a period of postmarketing surveillance. As to clarification of their role in the management of epilepsy, this will have to await further clinical trials, particularly direct comparative trials with other anticonvulsants.
Collapse
Affiliation(s)
- S J Czuczwar
- Department of Pathophysiology, Medical University, Lublin, and Isotope Laboratory, Institute of Agricultural Medicine, Lublin, Poland
| | | |
Collapse
|
35
|
Yi BA, Minor DL, Lin YF, Jan YN, Jan LY. Controlling potassium channel activities: Interplay between the membrane and intracellular factors. Proc Natl Acad Sci U S A 2001; 98:11016-23. [PMID: 11572962 PMCID: PMC58676 DOI: 10.1073/pnas.191351798] [Citation(s) in RCA: 62] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Neural signaling is based on the regulated timing and extent of channel opening; therefore, it is important to understand how ion channels open and close in response to neurotransmitters and intracellular messengers. Here, we examine this question for potassium channels, an extraordinarily diverse group of ion channels. Voltage-gated potassium (Kv) channels control action-potential waveforms and neuronal firing patterns by opening and closing in response to membrane-potential changes. These effects can be strongly modulated by cytoplasmic factors such as kinases, phosphatases, and small GTPases. A Kv alpha subunit contains six transmembrane segments, including an intrinsic voltage sensor. In contrast, inwardly rectifying potassium (Kir) channels have just two transmembrane segments in each of its four pore-lining alpha subunits. A variety of intracellular second messengers mediate transmitter and metabolic regulation of Kir channels. For example, Kir3 (GIRK) channels open on binding to the G protein betagamma subunits, thereby mediating slow inhibitory postsynaptic potentials in the brain. Our structure-based functional analysis on the cytoplasmic N-terminal tetramerization domain T1 of the voltage-gated channel, Kv1.2, uncovered a new function for this domain, modulation of voltage gating, and suggested a possible means of communication between second messenger pathways and Kv channels. A yeast screen for active Kir3.2 channels subjected to random mutagenesis has identified residues in the transmembrane segments that are crucial for controlling the opening of Kir3.2 channels. The identification of structural elements involved in potassium channel gating in these systems highlights principles that may be important in the regulation of other types of channels.
Collapse
Affiliation(s)
- B A Yi
- Department of Physiology and Biochemistry, Howard Hughes Medical Institute, University of California, San Francisco, CA 94143, USA
| | | | | | | | | |
Collapse
|
36
|
Straub H, Köhling R, Höhling J, Rundfeldt C, Tuxhorn I, Ebner A, Wolf P, Pannek H, Speckmann E. Effects of retigabine on rhythmic synchronous activity of human neocortical slices. Epilepsy Res 2001; 44:155-65. [PMID: 11325571 DOI: 10.1016/s0920-1211(01)00193-0] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
The antiepileptic effects of the novel antiepileptic drug retigabine (D-23129) [N-(2-amino-4-(4-flurobenzylamino)phenyl) carbamid acid ethyl ester] were tested in neocortical slice preparations (n=23) from 17 patients (age, 3-42 years) who underwent surgery for the treatment of intractable epilepsy. Epileptiform events consisted of spontaneously occurring rhythmic sharp waves, as well as of epileptiform field potentials (EFP) elicited by superfusion with Mg(2+)-free solution without or with addition of 10 micromol/l bicuculline. (1) Spontaneous rhythmic sharp waves (n=6), with retigabine application, the repetition rate was decreased down to 12-47% of initial value (10 micromol/l, n=3) after 180 min or suppressed completely within 12 min (50 micromol/l, n=3). (2) Low Mg(2+) EFP (n=9), with retigabine application, the repetition rate was decreased down to 50 and 65% of initial value (10 micromol/l; n=2) after 180 min or suppressed completely after 9-55 min (10, 50 and 100 micromol/l; n=2 in each case). In one slice only a transient reduction of the repetition rate was seen with 10 micromol/l retigabine. (3) Low Mg(2+) EFP with addition of bicuculline (n=8), with retigabine application, the repetition rate was decreased down to 12-55% of initial value (10 micromol/l; n=4) after 180 min or suppressed completely after 6-30 min (50 and 100 micromol/l; n=2 in each case). The depressive effect of retigabine was reversible in all but one slice. The results show a clear antiepileptic effect of retigabine in human neocortical slices on spontaneously occurring rhythmic sharp waves and different types of induced seizure activity.
Collapse
Affiliation(s)
- H Straub
- Institut für Physiologie, Universität Münster, Robert-Koch-Str. 27a, D-48149, Münster, Germany.
| | | | | | | | | | | | | | | | | |
Collapse
|
37
|
Bialer M, Johannessen SI, Kupferberg HJ, Levy RH, Loiseau P, Perucca E. Progress report on new antiepileptic drugs: a summary of the Fifth Eilat Conference (EILAT V). Epilepsy Res 2001; 43:11-58. [PMID: 11137386 DOI: 10.1016/s0920-1211(00)00171-6] [Citation(s) in RCA: 117] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
The Fifth Eilat Conference on New Antiepileptic Drugs (AEDs) took place at the Dan Hotel, Eilat, Israel, 25-29 June 2000. Basic scientists, clinical pharmacologists and neurologists from 20 countries attended the conference, whose main themes included recognition of unexpected adverse effects, new indications of AEDs, and patient-tailored AED therapy. According to tradition, the central part of the conference was devoted to a review of AEDs in development, as well to updates on AEDs that have been marketed in recent years. This article summarizes the information presented on drugs in preclinical and clinical development, including AWD 131-138, DP-valproate, harkoseride, LY300164, NPS 1776, NW 1015, pregabalin, remacemide, retigabine, rufinamide and valrocemide. The potential value of an innovative strategy, porcine embryonic GABAergic cell transplants, is also discussed. Finally, updates on felbamate, fosphenytoin, gabapentin, lamotrigine, levetiracetam, oxcarbazepine, tiagabine, topiramate, vigabatrin, zonisamide, and the antiepileptic vagal stimulator device are presented.
Collapse
Affiliation(s)
- M Bialer
- School of Pharmacy and David R. Bloom Centre for Pharmacy, Faculty of Medicine, The Hebrew University of Jerusalem, 91120, Jerusalem, Israel.
| | | | | | | | | | | |
Collapse
|
38
|
Sills GJ, Rundfeldt C, Butler E, Forrest G, Thompson GG, Brodie MJ. A neurochemical study of the novel antiepileptic drug retigabine in mouse brain. Pharmacol Res 2000; 42:553-7. [PMID: 11058408 DOI: 10.1006/phrs.2000.0738] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The novel antiepileptic drug, retigabine, has been reported to have multiple mechanisms of action, including potentiation of gamma -aminobutyric acid (GABA) and glutamate synthesis. We have investigated its effects on several GABA- and glutamate-related neurochemical parameters in mouse brain. Mice were administered retigabine either as a single dose or daily for 5 days. At 4 h after dosing, brains were removed and analysed for GABA, glutamate, and glutamine concentrations and for the activities of GABA-transaminase and glutamic acid decarboxylase. Single doses of retigabine significantly lowered brain concentrations of glutamate and glutamine. Repeated treatment significantly reduced the activity of GABA-transaminase. The drug was essentially without effect on all other parameters investigated. These results suggest that retigabine blocks GABA metabolism rather than enhancing GABA synthesis. In addition, the drug may also lower brain concentrations of the excitatory neurotransmitter glutamate and its precursor, glutamine. These effects may contribute to the antiepileptic action of retigabine.
Collapse
Affiliation(s)
- G J Sills
- Epilepsy Unit, University Department of Medicine and Therapeutics, Western Infirmary, Glasgow, Scotland.
| | | | | | | | | | | |
Collapse
|
39
|
Knebel NG, Grieb S, Leisenheimer S, Locher M. Determination of retigabine and its acetyl metabolite in biological matrices by on-line solid-phase extraction (column switching) liquid chromatography with tandem mass spectrometry. JOURNAL OF CHROMATOGRAPHY. B, BIOMEDICAL SCIENCES AND APPLICATIONS 2000; 748:97-111. [PMID: 11092590 DOI: 10.1016/s0378-4347(00)00272-3] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
A HPLC assay with tandem mass spectrometric detection in the positive-ion atmospheric pressure chemical ionisation (APCI) mode for the sensitive determination of retigabine [(I), D-23129] and its acetyl metabolite [(II), ADW 21-360] in plasma was developed, utilising the structural analogue (D-10328), (III), as internal standard. Automated on-line solid-phase extraction of diluted plasma samples, based on 200-microl plasma aliquots, at pH 6.5, allowed a reliable quantification of retigabine and the acetyl metabolite down to 1 ng/ml. Injection of 500 microl of diluted plasma onto a C2 stationary phase-based column switching system in combination with a 75 mm x 4 mm reversed-phase analytical column at a flow-rate of 0.5 ml/min provided cycle times of 4 min per sample. The standard curves were linear from 1 to 1000 ng/ml using weighted linear regression analysis (1/x2). The method is accurate (mean accuracy < or = +/- 10%), precise (RSD < +/- 15%) and sensitive, providing lower limits of quantification in plasma of 1 ng/ml for retigabine (I), and 2.5 ng/ml for the metabolite (II) with limits of detection of 0.5 ng/ml for both analytes. Up to 200 unknowns may be analysed each 24 h per analyst.
Collapse
Affiliation(s)
- N G Knebel
- Department of Biological Research Biochemistry, ASTA Medica AG, Frankfurt, Germany.
| | | | | | | |
Collapse
|
40
|
Wickenden AD, Yu W, Zou A, Jegla T, Wagoner PK. Retigabine, a novel anti-convulsant, enhances activation of KCNQ2/Q3 potassium channels. Mol Pharmacol 2000; 58:591-600. [PMID: 10953053 DOI: 10.1124/mol.58.3.591] [Citation(s) in RCA: 244] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Retigabine [N-(2-amino-4-[fluorobenzylamino]-phenyl) carbamic acid; D-23129] is a novel anticonvulsant, unrelated to currently available antiepileptic agents, with activity in a broad range of seizure models. In the present study, we sought to determine whether retigabine could enhance current through M-like currents in PC12 cells and KCNQ2/Q3 K(+) channels expressed in Chinese hamster ovary cells (CHO-KCNQ2/Q3). In differentiated PC12 cells, retigabine enhanced a linopirdine-sensitive current. The effect of retigabine was associated with a slowing of M-like tail current deactivation in these cells. Retigabine (0.1 to 10 microM) induced a potassium current and hyperpolarized CHO cells expressing KCNQ2/Q3 cells but not in wild-type cells. Retigabine-induced currents in CHO-KCNQ2/Q3 cells were inhibited by 60.6 +/- 11% (n = 4) by the KCNQ2/Q3 blocker, linopirdine (10 microM), and 82.7 +/- 5.4% (n = 4) by BaCl(2) (10 mM). The mechanism by which retigabine enhanced KCNQ2/Q3 currents involved large, drug-induced, leftward shifts in the voltage dependence of channel activation (-33.1 +/- 2.6 mV, n = 4, by 10 microM retigabine). Retigabine shifted the voltage dependence of channel activation with an EC(50) value of 1.6 +/- 0.3 microM (slope factor was 1.2 +/- 0.1, n = 4 to 5 cells per concentration). Retigabine (0.1 to 10 microM) also slowed the rate of channel deactivation, predominantly by increasing the contribution of a slowly deactivating tail current component. Our findings identify KCNQ2/Q3 channels as a molecular target for retigabine and suggest that activation of KCNQ2/Q3 channels may be responsible for at least some of the anticonvulsant activity of this agent.
Collapse
|
41
|
Main MJ, Cryan JE, Dupere JR, Cox B, Clare JJ, Burbidge SA. Modulation of KCNQ2/3 potassium channels by the novel anticonvulsant retigabine. Mol Pharmacol 2000; 58:253-62. [PMID: 10908292 DOI: 10.1124/mol.58.2.253] [Citation(s) in RCA: 229] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
Retigabine is a novel anticonvulsant with an unknown mechanism of action. It has recently been reported that retigabine modulates a potassium channel current in nerve growth factor-differentiated PC12 cells (), however, to date the molecular correlate of this current has not been identified. In the present study we have examined the effects of retigabine on recombinant human KCNQ2 and KCNQ3 potassium channels, expressed either alone or in combination in Xenopus oocytes. Application of 10 microM retigabine to oocytes expressing the KCNQ2/3 heteromeric channel shifted both the activation threshold and voltage for half-activation by approximately 20 mV in the hyperpolarizing direction, leading to an increase in current amplitude at test potentials between -80 mV and +20 mV. Retigabine also had a marked effect on KCNQ current kinetics, increasing the rate of channel activation but slowing deactivation at a given test potential. Similar effects of retigabine were observed in oocytes expressing KCNQ2 alone, suggesting that KCNQ2 may be the molecular target of retigabine. Membrane potential recordings in oocytes expressing the KCNQ2/3 heteromeric channel showed that application of retigabine leads to a concentration-dependent hyperpolarization of the oocyte, from a resting potential of -63 mV under control conditions to -85 mV in the presence of 100 microM retigabine (IC(50) = 5.2 microM). In control experiments retigabine had no effect on either resting membrane potential or endogenous oocyte membrane currents. In conclusion, we have shown that retigabine acts as a KCNQ potassium channel opener. Because the heteromeric KCNQ2/3 channel has recently been reported to underlie the M-current, it is likely that M-current modulation can explain the anticonvulsant actions of retigabine in animal models of epilepsy.
Collapse
Affiliation(s)
- M J Main
- Molecular Pharmacology, Neuroscience, Glaxo-Wellcome Research & Development, Stevenage, Hertfordshire, United Kingdom.
| | | | | | | | | | | |
Collapse
|
42
|
Rundfeldt C, Netzer R. The novel anticonvulsant retigabine activates M-currents in Chinese hamster ovary-cells tranfected with human KCNQ2/3 subunits. Neurosci Lett 2000; 282:73-6. [PMID: 10713399 DOI: 10.1016/s0304-3940(00)00866-1] [Citation(s) in RCA: 189] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Retigabine (D-23129) is a novel antiepileptic compound with broad spectrum and potent anticonvulsant properties, both in vitro and in vivo. The compound was shown to activate a K(+) current in neuronal cells. The pharmacology of the induced current displays concordance with the published pharmacology of the M-channel, which recently was correlated to the KCNQ2/3 K(+) channel heteromultimere. We examined the effect of retigabine on KCNQ2/3 expressed in Chinese hamster ovary cells. The compound concentration-dependently activated a K(+) current in transfected cells clamped at -50 mV. The activation was induced by a shift of the opening threshold to more negative potentials. The effect was not mediated by an interaction with the cAMP modulatory site and could be partially blocked by the M-channel antagonist linopirdine. The data display that retigabine is the first described M-channel agonist and support the hypothesis that M-channel agonism is a new mode of action for anticonvulsant drugs. Since the function of this channel is reduced in a hereditary epilepsy syndrome, retigabine may be the first anticonvulsant to directly target the deficit observed in a channelopathy.
Collapse
Affiliation(s)
- C Rundfeldt
- Department of Pharmacology, Arzneimittelwerk Dresden GmbH, Corporate R&D, ASTA Medica Group, Meibetaner Strasse 35, D-01445, Radebeul, Germany.
| | | |
Collapse
|
43
|
Armand V, Rundfeldt C, Heinemann U. Effects of retigabine (D-23129) on different patterns of epileptiform activity induced by low magnesium in rat entorhinal cortex hippocampal slices. Epilepsia 2000; 41:28-33. [PMID: 10643920 DOI: 10.1111/j.1528-1157.2000.tb01501.x] [Citation(s) in RCA: 48] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
PURPOSE The objective of this study was to evaluate the effect of a new antiseizure drug, retigabine (D-23129; N-(2-amino-4-[fluorobenzylamino]-phenyl) carbamic acid ethyl ester) on low-Mg2+-induced epileptiform discharges in rat in vitro. METHODS Three types of epileptiform discharges (recurrent short discharges in the hippocampus, seizure-like events, and late recurrent discharges in the entorhinal cortex) were elicited in rat combined entorhinal cortex-hippocampal slices by perfusion with low-Mg2+-artificial cerebrospinal fluid (ACSF). The antiepileptic properties of retigabine were evaluated as effect on the frequency and amplitude of the epileptiform activities as well as time of onset of the effect in the entorhinal cortex (EC) and in hippocampal area CA1 (CA1) by using extracellular recording techniques. RESULTS Retigabine (20 microM) reversibly suppressed the recurrent short discharges otherwise sensitive only to high doses of valproate (VPA) but insensitive to standard antiepileptic drugs (AEDs) in CA1, whereas 10 microM reduced the frequency of discharges by 34+/-18.8%, with no significant effect on the amplitude. In EC, retigabine (50 microM) reversibly suppressed the seizure-like events, whereas 20 microM blocked seizure-like events in 71.5% of the slices. The seizure-like events were also sensitive to standard AEDs. Late recurrent discharges in EC that are not blocked by standard AEDs were reversibly suppressed by retigabine (100 microM), whereas 50 microM reduced the frequency of the discharges by 94.4+/-7.7%, and 20 microM, by 74.2+/-18.0%, with no significant effect on the amplitude. CONCLUSIONS Retigabine is an effective AED with suppressive effects on recurrent short discharges and on late recurrent discharges normally insensitive to standard AEDs.
Collapse
Affiliation(s)
- V Armand
- Department of Neurophysiology, Institute of Physiology, Universitätsklinikum Charité, Humboldt University Berlin, Germany.
| | | | | |
Collapse
|
44
|
Dost R, Rundfeldt C. The anticonvulsant retigabine potently suppresses epileptiform discharges in the low Ca ++ and low Mg++ model in the hippocampal slice preparation. Epilepsy Res 2000; 38:53-66. [PMID: 10604606 DOI: 10.1016/s0920-1211(99)00065-0] [Citation(s) in RCA: 45] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Retigabine (N-(2-amino-4-(4-fluorobenzylamino)-phenyl) carbamic acid ethyl ester, D-23129) is a broad acting anticonvulsant currently undergoing phase II clinical trials. An opening effect on leakage conductance K+ channels, potentiation of GABA induced currents and a weak blocking effect on Na+ and Ca++ channels were previously reported. The goal of this study was to investigate whether retigabine is capable of blocking epileptiform discharges in the low Ca++ and low Mg++ model in the hippocampal slice preparations and whether the anti-burst activity can be related to the K+ channel opening effect. In the low Ca++ model, synaptic transmission is blocked and discharges evolve from ephaptically-coupled neurons. Compounds which directly interfere with the threshold for action potential induction via alteration of ion channel function (i.e. Na+ channel blocker) may alter the discharges, while compounds interfering with synaptic transmission are not active. Retigabine suppressed the discharges in a concentration-dependent manner. A significant reduction in frequency without effect on amplitude was observed after application of 1 microM, and a full block of all discharges after application of 25 microM. The opener of the ATP sensitive K+ channels cromakalim was also active. Application of 300 microM cromakalim yielded to a lower frequency with no effects on the amplitude of discharges. Treatment with phenytoin and carbamazepine resulted in a marked reduction in amplitude accompanied by a rise in frequency; only at higher concentrations was a full block observed. The effect of retigabine therefore differs from sodium channel blockers and can be related to the K+ channel opening effect. In the low Mg++ model, excitatory neurotransmission is augmented by reducing the Mg++ block of NMDA channels. This results in development of interictal-like epileptiform activity in area CA1 in isolated hippocampal slices. Treatment with retigabine 10 microM resulted in a significant reduction of the discharges, and discharges were fully blocked after application of 25 microM. Qualitatively similar effects were observed with cromakalim and valproate, albeit at higher concentrations. The data indicate that retigabine exerts potent broad spectrum activity making it an interesting candidate for treatment of drug resistant patients.
Collapse
Affiliation(s)
- R Dost
- Department of Pharmacology, Arzneimittelwerk Dresden GmbH, Corporate R&D, ASTA Medica Group, Radebeul, Germany
| | | |
Collapse
|
45
|
Hetka R, Rundfeldt C, Heinemann U, Schmitz D. Retigabine strongly reduces repetitive firing in rat entorhinal cortex. Eur J Pharmacol 1999; 386:165-71. [PMID: 10618466 DOI: 10.1016/s0014-2999(99)00786-4] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Retigabine (D-23129) [N-(2-amino-4-(4-fluorobenzylamino)phenyl) carbamic acid ethyl ester] is a novel antiepileptic drug. The compound was shown to possess anticonvulsant properties both in vivo and in vitro. We investigated the effects of retigabine on neurones in the rat medial entorhinal cortex using conventional intracellular recordings in combined hippocampal-entorhinal cortex slices. Retigabine strongly reduced the number of action potentials elicited by 1 s long depolarising current injections. Both the amplitudes of monosynaptic inhibitory postsynaptic potentials/currents (IPSP/Cs) and the amplitudes of excitatory postsynaptic potentials (EPSPs) remained unaffected. The drug increased outward rectification and induced a membrane-potential hyperpolarisation in most of the tested neurones. The findings suggest that retigabine exerts its anticonvulsant effects by activation of a K(+)conductance, however it cannot be excluded from our experiments that other mechanisms may be involved in the effect of retigabine on membrane properties.
Collapse
Affiliation(s)
- R Hetka
- Department of Pharmacology, Corporate R&D, ASTA Medica Group, Arzneimittelwerk Dresden, Meissner Strasse 35, D-01445, Radebeul, Germany
| | | | | | | |
Collapse
|
46
|
Abstract
Epilepsy represents the most common serious neurological disorder, with a prevalence of 0.4 - 1%. Approximately 30% of patients are resistant to currently available drugs. New anti-epileptic drugs are needed to treat refractory epilepsy, improve upon current therapies, improve the prognosis of epilepsy and to prevent the epileptogenic process. Designing compounds with specific physiological targets would seem the most rational method of anti-epileptic drug development, but results from this approach have been disappointing; the widespread screening of compounds in animal models has been much more fruitful. Older methods of animal screening have used acute seizure models, which bear scant relationship to the human condition. More modern methods have included the development of animal models of chronic epilepsy; although more expensive, it is likely that these models will be more sensitive and more specific in determining anti-epileptic efficacy. In this review, we consider the possible physiological targets for anti-epileptic drugs, the animal models of epilepsy, problems with clinical trials and ten promising anti-epileptic drugs in development (AWD 131-138, DP16 (DP-VPA), ganaxolone, levetiracetam, losigamone, pregabalin, remacemide, retigabine, rufinamide and soretolide). Perhaps the most important advances will come about from the realisation that epilepsy is a symptom, not a disease. Preclinical testing should be used to determine the spectrum of epilepsies that a drug can treat, and to direct later clinical trials, which need to select patients based on carefully defined epilepsy syndromes and aetiologies. Not only will such an approach improve the sensitivity of clinical trials, but also will lead to a more rational basis on which to treat.
Collapse
|
47
|
Rundfeldt C. Characterization of the K+ channel opening effect of the anticonvulsant retigabine in PC12 cells. Epilepsy Res 1999; 35:99-107. [PMID: 10372563 DOI: 10.1016/s0920-1211(98)00131-4] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Retigabine (D-23129) is a new anticonvulsant compound which acts as a K+ channel opener in neuronal cells. The aim of the present study was to further characterize the retigabine induced K+ current. In nerve growth factor treated PC12 cells and in rat cortical neurones the application of retigabine activated a K+ current. In contrast, however, no K+ current activation was observed in untreated PC12 and in glial cells which were cultivated together with the neuronal cells. To characterise the retigabine activated K+ current, K+ channel blockers were used. The retigabine induced current was not affected by 1 and 10 mM 4-aminopyridine (4AP). Ba2+ 1 mM resulted in a reduction of 88.6+/-3.0% (n = 5); 10 mM abolished the current. Tetraetylamonium (TEA), 1 and 10 mM, reduced the current by 23.6+/-3.1 and 61.6+/-3.7%, respectively. To investigate the current/voltage (I/V) relation of the current initiated by retigabine (10 microM), cells were clamped to a holding potential of -80 mV and a ramp stimulation protocol (-120 to +60 mV in 5 s) was applied prior to and during application of retigabine. Subtraction of the two traces yielded the current induced by retigabine. A nearly linear relationship was determined between - 120 and -40 mV. At potentials positive to - 40 mV, the response was variable. This was due to the additionally observed weak blocking effect of retigabine on delayed rectifier (Kdr) currents. If the ramp was applied in the presence of 10 mM 4AP to block Kdr, a nearly linear I/V-relationship was present from -120 to +60 mV. The comparison of the I/V relation and pharmacology with published K+ channel subtypes gives evidence that an unknown neuronal K+ channel subtype may be involved.
Collapse
Affiliation(s)
- C Rundfeldt
- Department of Pharmacology, Arzneimittelwerk Dresden GmbH, Corporate R&D, Radebeul, Germany
| |
Collapse
|
48
|
Graumlich JF, McLaughlin RG, Birkhahn D, Shah N, Burk A, Jobe PC, Dailey JW. Carbamazepine pharmacokinetics-pharmacodynamics in genetically epilepsy-prone rats. Eur J Pharmacol 1999; 369:305-11. [PMID: 10225367 DOI: 10.1016/s0014-2999(99)00083-7] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Carbamazepine produces dose-related anticonvulsant effects in epilepsy models including the genetically epilepsy-prone rat (GEPR) model and the rat maximal electroshock model. Dose-response relationships are quantitatively different among the models. Against electroshock seizures in Sprague-Dawley rats the ED50 dose is 7.5 mg/kg whereas the ED50 against audiogenic seizures in severe seizure GEPRs (GEPR-9s) is 3 mg/kg. In contrast, the ED50 in moderate seizure GEPRs (GEPR-3s) is 25 mg/kg. The present study was designed to ascribe dose-response differences among the three rat strains to pharmacokinetic or pharmacodynamic factors. After systemic carbamazepine, pharmacokinetic studies revealed differences in area under the concentration-vs.-time curve. In other experiments, carbamazepine-induced serotonin release from hippocampus was used as a pharmacodynamic marker. In a concentration-controlled design using intracerebral microdialysis, hippocampal carbamazepine infusions produced similar concentration-response relations for the three rat strains. These data support the hypothesis that dose-response differences among the three rat strains are primarily pharmacokinetic in nature.
Collapse
Affiliation(s)
- J F Graumlich
- Department of Biomedical and Therapeutic Sciences and Medicine, University of Illinois, College of Medicine at Peoria, 61656, USA.
| | | | | | | | | | | | | |
Collapse
|
49
|
Dailey JW, Reith ME, Yan QS, Li MY, Jobe PC. Anticonvulsant doses of carbamazepine increase hippocampal extracellular serotonin in genetically epilepsy-prone rats: dose response relationships. Neurosci Lett 1997; 227:13-6. [PMID: 9178847 DOI: 10.1016/s0304-3940(97)00288-7] [Citation(s) in RCA: 55] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
The antiepileptic drug carbamazepine produces dose related anticonvulsant effects in genetically epilepsy-prone rats (GEPRs) and most other animal seizure models. Carbamazepine releases serotonin as part of the pharmacodynamic action by which it suppresses convulsions in GEPRs and it releases serotonin in non-epileptic Sprague-Dawley rats. The two strains which make up the GEPR seizure model (moderate seizure GEPR-3s and severe seizure GEPR-9s) experience anticonvulsant effects in response to different doses of carbamazepine (GEPR-3 ED50 = 25 mg/kg; GEPR-9 ED50 = 3 mg/kg). The present study determined that carbamazepine produces a dose related increase in extracellular serotonin in each of the two GEPR strains. The doses of carbamazepine required to increase extracellular serotonin are similar to the doses required for an anticonvulsant effect in each of the strains. This result provides further support for the hypothesis that release of serotonin by carbamazepine is an important part of the pharmacodynamic action by which this drug suppresses seizures.
Collapse
Affiliation(s)
- J W Dailey
- Department of Biomedical and Therapeutic Sciences, University of Illinois College of Medicine at Peoria, 61656, USA.
| | | | | | | | | |
Collapse
|
50
|
|