1
|
Takashima E, Inaoka DK, Osanai A, Nara T, Odaka M, Aoki T, Inaka K, Harada S, Kita K. Characterization of the dihydroorotate dehydrogenase as a soluble fumarate reductase in Trypanosoma cruzi. Mol Biochem Parasitol 2002; 122:189-200. [PMID: 12106873 DOI: 10.1016/s0166-6851(02)00100-7] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Trypanosoma cruzi, a protozoan causing Chagas' disease, excretes a considerable amount of succinate even though it uses the TCA cycle and the aerobic respiratory chain. For this reason, it was believed that unknown metabolic pathways participate in succinate production in this parasite. In the present study, we examined the molecular properties of dihydroorotate dehydrogenase (DHOD), the fourth enzyme of de novo pyrimidine biosynthetic pathway, as a soluble fumarate reductase (FRD) because our sequence analysis of pyr genes cluster showed that the amino acid sequence of T. cruzi DHOD is quite similar to that of type 1A DHOD of Saccharomyces cerevisiae, an enzyme that uses fumarate as an electron acceptor and produces succinate. Biochemical analyses of the cytosolic enzyme purified from the parasite and of the recombinant enzyme revealed that T. cruzi DHOD has methylviologen-fumarate reductase (MV-FRD) activity. In addition, T. cruzi DHOD was found to catalyze electron transfer from dihydroorotate to fumarate by a ping-pong Bi-Bi mechanism. The recombinant enzyme contained FMN as a prosthetic group. Dynamic light scattering analysis indicated that T. cruzi DHOD is a homodimer. These results clearly indicated that the cytosolic MV-FRD is attributable to T. cruzi DHOD. The DHOD may play an important role in succinate/fumarate metabolism as well as de novo pyrimidine biosynthesis in T. cruzi.
Collapse
Affiliation(s)
- Eizo Takashima
- Department of Biomedical Chemistry, Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
2
|
Takashima E, Takamiya S, Takeo S, Mi-ichi F, Amino H, Kita K. Isolation of mitochondria from Plasmodium falciparum showing dihydroorotate dependent respiration. Parasitol Int 2001; 50:273-8. [PMID: 11719114 DOI: 10.1016/s1383-5769(01)00085-x] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Using N2 cavitation, we established a protocol to prepare the active mitochondria from Plasmodium falciparum showing a higher succinate dehydrogenase activity than previously reported and a dihydroorotate-dependent respiration. The fact that fumarate partially inhibited the dihydroorotate dependent respiration suggests that complex II (succinate-ubiquinone reductase/quinol-fumarate reductase) in the erythrocytic stage cells of P. falciparum functions as a quinol-fumarate reductase.
Collapse
Affiliation(s)
- E Takashima
- Department of Biomedical Chemistry, Graduate School of Medicine, The University of Tokyo, Hongo 7-3-1, Bunkyo-ku, 113-0033, Tokyo, Japan
| | | | | | | | | | | |
Collapse
|
3
|
Collis CM, Grigg GW. An Escherichia coli mutant resistant to phleomycin, bleomycin, and heat inactivation is defective in ubiquinone synthesis. J Bacteriol 1989; 171:4792-8. [PMID: 2475481 PMCID: PMC210281 DOI: 10.1128/jb.171.9.4792-4798.1989] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
A mutant of Escherichia coli, selected for resistance to the antibiotic and antitumor agent phleomycin, has been characterized, and the phleomycin resistance determinant has been identified. The mutant is equally resistant to bleomycins. The resistance to phleomycin is strongly dependent on the nature of the C-terminal amine of the drug, with the greatest resistance being shown to phleomycins and bleomycins with the most basic terminal amines. The mutation also confers resistance to the lethal effects of heating at 52 degrees C. Other characteristics of the phleomycin-resistant strain include a slow growth rate, an inability to grow on succinate as the sole carbon source (Suc- phenotype), cross resistance to aminoglycoside antibiotics, and a slight sensitivity to hydrogen peroxide, methyl methanesulfonate, and gamma-irradiation. Some of these characteristics, together with mapping data, suggested that the phleomycin resistance and Suc- determinant probably lies within the ubiF gene coding for an enzyme effecting a step in the biosynthesis of ubiquinone. The phenotypes of known mutants defective in this and other steps of the ubiquinone pathway were found to be closely similar to those of the original phleomycin-resistant strain.
Collapse
Affiliation(s)
- C M Collis
- Division of Biotechnology, Commonwealth Scientific and Industrial Research Organisation, North Ryde, NSW, Australia
| | | |
Collapse
|
4
|
Lee CP, Ernster L. Energy-linked nicotinamide nucleotide transhydrogenase 1963-1988: a commentary on 'Equilibrium Studies of the Energy-Dependent and Non-Energy-Dependent Pyridine Nucleotide Transhydrogenase Reactions'. BIOCHIMICA ET BIOPHYSICA ACTA 1989; 1000:371-6. [PMID: 2673389 DOI: 10.1016/s0006-3002(89)80032-0] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Affiliation(s)
- C P Lee
- Department of Biochemistry, Wayne State University School of Medicine, Detroit, MI
| | | |
Collapse
|
5
|
Genetics of the mammalian oxidative phosphorylation system: characterization of a new oligomycin-resistant Chinese hamster ovary cell line. Mol Cell Biol 1987. [PMID: 6242755 DOI: 10.1128/mcb.2.7.772] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The properties of a new type of oligomycin-resistant Chinese hamster ovary (CHO) cell line (Olir 2.2) are described in this paper. Olir 2.2 cells were approximately 50,000-fold more resistant to oligomycin than were wild-type CHO cells when tested in glucose-containing medium, but only 10- to 100-fold more resistant when tested in galactose-containing medium. Olir 2.2 cells grew with a doubling time similar to that of wild-type cells both in the presence or absence of oligomycin. Oligomycin resistance in Olir 2.2 cells was stable in the absence of drug. In vitro assays indicated that there was approximately a 25-fold increase in the resistance of the mitochondrial ATPase to inhibition by oligomycin in Olir 2.2 cells, with little change in the total ATPase activity. The electron transport chain was shown to be functional in Olir 2.2 cells. Olir 2.2 cells were cross-resistant to other inhibitors of the mitochondrial ATPase (such as rutamycin, ossamycin, peliomycin, venturicidin, leucinostatin, and efrapeptin) and to other inhibitors of mitochondrial functions (such as chloramphenicol, rotenone, and antimycin). Oligomycin resistance was expressed codominantly in hybrids between Olir 2.2 cells and wild-type cells. Cross-resistance to ossamycin, peliomycin, chloramphenicol, antimycin, venturicidin, leucinostatin, and efrapeptin was also expressed codominantly in hybrids. Fusions of enucleated Olir 2.2 cells with wild-type cells and characterization of the resulting cybrid clones indicated that resistance to oligomycin and ossamycin results from a mutation in both a nuclear gene and a cytoplasmic gene. Cross-resistance to efrapeptin, leucinostatin, venturicidin, and antimycin results from a mutation in only a nuclear gene.
Collapse
|
6
|
McMurry LM, Hendricks M, Levy SB. Effects of toluene permeabilization and cell deenergization on tetracycline resistance in Escherichia coli. Antimicrob Agents Chemother 1986; 29:681-6. [PMID: 3010853 PMCID: PMC180466 DOI: 10.1128/aac.29.4.681] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
Resistance to tetracycline (Tcr) mediated by Tn10 and related Tcr determinants involves an inner membrane protein, TET (similar but not identical for different determinants), and a proton motive force-dependent efflux of tetracycline which keeps the drug away from its intracellular target, the ribosome (L. M. McMurry, R. E. Petrucci, Jr., and S. B. Levy, Proc. Natl. Acad. Sci. USA 77:3974-3977, 1980). However, the amount of tetracycline accumulated by bacteria does not always correlate with their resistance levels, suggesting that an additional resistance mechanism may be present. When we permeabilized susceptible and resistant Tn10-bearing cells with toluene, we found that protein synthesis in the two strains became equally sensitive to tetracycline. Therefore, the protein synthesis machinery was not a source of resistance, and an intact membrane was required for resistance. To determine whether resistance was entirely dependent on energy, we measured susceptibility to tetracycline after inhibition of proton motive force by starvation and specific inhibitors. An 80 to 90% loss of Tcr (measured by protein synthesis) resulted from partial deenergization of resistant cells. A remaining resistance (10- to 20-fold greater than that of susceptible cells) could not be eliminated by further deenergization. These findings indicated that, to a major extent, expression of Tn10 resistance required energy, presumably for tetracycline efflux. They also suggested the existence of a small component of Tcr having little or no energy dependence. Whether this component depends on tetracycline efflux or some other mechanism is not known, but presumably both high- and low-energy components of resistance reflect activity of TET protein.
Collapse
|
7
|
Jans DA, Hatch L, Fimmel AL, Gibson F, Cox GB. Complementation between uncF alleles affecting assembly of the F1F0-ATPase complex of Escherichia coli. J Bacteriol 1985; 162:420-6. [PMID: 2858470 PMCID: PMC219005 DOI: 10.1128/jb.162.1.420-426.1985] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
A mutant affected in the b subunit (coded by the uncF gene) of the F1F0-ATPase in Escherichia coli was isolated by a localized mutagenesis procedure in which a plasmid carrying the unc genes was mutagenized in vivo. The biochemical properties of cells carrying the uncF515 allele were examined in a strain carrying the allele on a multicopy plasmid and a mutator-induced polar unc mutation on the chromosome. The strain carrying the mutant unc allele was uncoupled with respect to oxidative phosphorylation. Membrane-bound ATPase activity was very low or absent, and membranes were somewhat proton permeable. It was concluded that the F0 sector was assembled. Determination of the DNA sequence of the uncF515 allele showed it differed from wild type in that a G----A substitution occurred at position 392, resulting in glycine being replaced by aspartate at position 131. Genetic complementation tests indicated that the uncF515 allele complemented the uncF476 allele (Gly 9----Asp). Two-dimensional gel electrophoresis of membrane preparations indicated that the uncF515 and uncF476 alleles interrupted assembly of the F1F0-ATPase at different stages.
Collapse
|
8
|
Fimmel AL, Jans DA, Langman L, James LB, Ash GR, Downie JA, Senior AE, Gibson F, Cox GB. The F1F0-ATPase of Escherichia coli. Substitution of proline by leucine at position 64 in the c-subunit causes loss of oxidative phosphorylation. Biochem J 1983; 213:451-8. [PMID: 6193778 PMCID: PMC1152147 DOI: 10.1042/bj2130451] [Citation(s) in RCA: 38] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
The uncE410 allele differs from the normal uncE gene in that C leads to T base changes occur at nucleotides 190 and 191, resulting in proline at position 64 in the c-subunit of the F1F0-ATPase being replaced by leucine. Two partial-revertant strains were isolated in which alanine-20 of the c-subunit was replaced by proline, owing to a G leads to C base change at nucleotide 58. These c-subunits, coded for by the uncE501 and uncE502 alleles, therefore contained two amino acid changes, namely proline-64 leads to leucine, and alanine-20 leads to proline. Membranes prepared from the partial-revertant strains lacked ATP-dependent atebrin-fluorescence-quenching activity but were able to carry out oxidative phosphorylation. The ATPase activity of the F1-ATPase was inhibited when bound to membranes from strains carrying the uncE410, uncE501 and uncE502 alleles. It is concluded that a bend in the helix axis in one of the arms of the c-subunit hairpin structure is required for integration of the c-subunit into a functional F1F0-ATPase.
Collapse
|
9
|
|
10
|
Green GN, Gennis RB. Isolation and characterization of an Escherichia coli mutant lacking cytochrome d terminal oxidase. J Bacteriol 1983; 154:1269-75. [PMID: 6304009 PMCID: PMC217600 DOI: 10.1128/jb.154.3.1269-1275.1983] [Citation(s) in RCA: 90] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
A screening procedure was devised which permitted the isolation of a cytochrome d-deficient mutant by its failure to oxidize the artificial electron donor N,N,N',N'-tetramethyl-p-phenylenediamine. Cytochrome a1 and probably cytochrome b558 were also missing in the mutant. Growth and oxygen uptake rates were similar for both parent and mutant strains. However, the strain lacking cytochrome d had an increased sensitivity to cyanide, indicating that cytochrome d confers some resistance to this respiratory inhibitor. The gene responsible for these phenotypes has been named cyd and maps between tolA and sucB.
Collapse
|
11
|
Jans DA, Fimmel AL, Langman L, James LB, Downie JA, Senior AE, Ash GR, Gibson F, Cox GB. Mutations in the uncE gene affecting assembly of the c-subunit of the adenosine triphosphatase of Escherichia coli. Biochem J 1983; 211:717-26. [PMID: 6309138 PMCID: PMC1154419 DOI: 10.1042/bj2110717] [Citation(s) in RCA: 50] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
The amino acid substitutions in the mutant c-subunits of Escherichia coli F1F0-ATPase coded for by the uncE429, uncE408 and uncE463 alleles affect the incorporation of these proteins into the cell membrane. The DNA sequence of the uncE429 allele differed from normal in that a G leads to A base change occurred at nucleotide 68 of the uncE gene, resulting in glycine being replaced by aspartic acid at position 23 in the c-subunit. The uncE408 and uncE463 mutant DNA sequences were identical and differed from normal in that a C leads to T base change occurred at nucleotide 91 of the uncE gene, resulting in leucine being replaced by phenylalanine at position 31 in the c-subunit. An increased gene dosage of the uncE408 or uncE463 alleles resulted in the incorporation into the membranes of the mutant c-subunits. The results are discussed in terms of the 'Helical Hairpin Hypothesis' of Engelman & Steitz [(1981) Cell 23,411-422].
Collapse
|
12
|
|
13
|
Terrière C, Giordano G, Haddock B, Azoulay E. Hydroxylation of 2-octaprenylphenol in Escherichia coli K 12. Biochem Biophys Res Commun 1983; 111:830-9. [PMID: 6340678 DOI: 10.1016/0006-291x(83)91374-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
|
14
|
Ito M, Ohnishi Y, Itoh S, Nishimura M. Carbonyl cyanide-m-chlorophenyl hydrazone-resistant Escherichia coli mutant that exhibits a temperature-sensitive unc phenotype. J Bacteriol 1983; 153:310-5. [PMID: 6217194 PMCID: PMC217372 DOI: 10.1128/jb.153.1.310-315.1983] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
Two spontaneous Escherichia coli mutant strains which are resistant to an oxidative phosphorylation uncoupler, carbonyl cyanide-m-chlorophenyl hydrazone, were isolated. Strain CM22 (ccr-2) was resistant to another uncoupler, pentachlorophenol, and to the inhibitors of proton-translocating ATPase, namely tributyltin and sodium azide. Carbonyl cyanide-m-chlorophenyl hydrazone or pentachlorophenol administered to cell suspensions of strain CM22 did not cause a pH change induced by H+ influx, and a similar result was obtained with everted particles. The respiratory rate of strain CM22 with succinate was twice that of wild-type strain KH434. When carbonyl cyanide-m-chlorophenyl hydrazone was administered, a stimulation of O2 uptake was observed in wild-type strain KH434 but not in the mutant strain CM22. Strain CM22 did not grow on succinate at 42 degrees C. Isolation of a true revertant at a frequency of 10(-8) demonstrated that the pleiotropic phenotype was induced by a single mutation. P1 transduction indicated that the mutant allele, ccr-2, was cotransduced with the ilv genes at a frequency of about 55%.
Collapse
|
15
|
Bourd G, Martirosov S. The associations of membrane systems. J Electroanal Chem (Lausanne) 1983. [DOI: 10.1016/s0022-0728(83)80493-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
16
|
Ito M, Ohnishi Y. Escherichia coli mutants resistant to uncouplers of oxidative phosphorylation. Microbiol Immunol 1982; 26:1079-84. [PMID: 6762486 DOI: 10.1111/j.1348-0421.1982.tb00256.x] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
|
17
|
De Santis A, Bertoli E, Di Gioia A, Melandri BA, Baccarini Melandri A. The reconstitution of oxidative phosphorylation in mitochondria isolated from a ubiquinone-deficient mutant of Saccharomyces cerevisiae. J Bioenerg Biomembr 1982; 14:159-69. [PMID: 7047520 DOI: 10.1007/bf00745017] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
Mitochondria, isolated from the ubiquinone-deficient nuclear mutant of Saccharomyces cerevisiae E3-24, are practically unable to oxidize exogenous substrates. Respiratory activity, coupled to ATP synthesis, can, however, be reconstituted by the simple addition of ethanolic solutions of ubiquinones. A minimal length of the isoprenoid side chain (greater than or equal to 3) was required for the restoration. Saturation of the reconstitution required a large amount of exogeneous ubiquinone, in excess over the normal content present in the mitochondria of the wild type strain. A similar pattern of reconstituted activities could be also obtained using sonicated inverted particles. Mitochondria and sonicated particles are also able to carry out a dye-mediated electron flow coupled to ATP synthesis in the absence of added ubiquinone, using ascorbate or succinate as electron donor. This demonstrates that the energy conserving mechanism at the third coupling site of the respiratory chain is fully independent of the presence of the large mobile pool of ubiquinone in the membrane.
Collapse
|
18
|
Ito M, Ohnishi Y. Isolation of Escherichia coli mutants which are resistant to an inhibitor of H+-ATPase, tributyltin and also to uncouplers of oxidative phosphorylation. FEBS Lett 1981; 136:225-30. [PMID: 6459956 DOI: 10.1016/0014-5793(81)80623-0] [Citation(s) in RCA: 26] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
|
19
|
Martirosov S, Petrosian L, Trchounian A, Vartanian A. 427 — An electrochemical study of energy-dependent potassium accumulation in E. coli. ACTA ACUST UNITED AC 1981. [DOI: 10.1016/0302-4598(81)87004-3] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
20
|
Martirosov S, Trchounian A. 406 — An electrochemical study of energy-dependent potassium accumulation in E. coli. ACTA ACUST UNITED AC 1981. [DOI: 10.1016/0302-4598(81)87003-1] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
21
|
|
22
|
Hansen FG, Nielsen J, Riise E, von Meyenburg K. The genes for the eight subunits of the membrane bound ATP synthase of Escherichia coli. MOLECULAR & GENERAL GENETICS : MGG 1981; 183:463-72. [PMID: 6460910 DOI: 10.1007/bf00268766] [Citation(s) in RCA: 38] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
The genes for the eight subunits of the membrane bound ATP synthase of Escherichia coli (Ca++, Mg++ dependent ATPase, EC 3.6.1.3) were mapped through genetic, physical and functional analysis of specialized transducing phages lambda asn (von Meyenburg et al. 1978). The ATP synthase genes, designated atp1, are located at 83.2 min in a segment of the chromosome between 3.5 and 11.3 kb left (counterclockwise) of the origin of replication oriC. The counterclockwise order of the genes for the eight subunits, the expression of which starts from a control region at 3.5 kb-L, was found to be: a, (c, b, delta), alpha, gamma, (epsilon, beta) which in the notation of Downie el al. (1981) reads atp B (EFH) A G (C D). The analysis was in part based on the isolation of new types of atp (unc, Suc-) mutations. We made use of the fact that specialized transducing phages lambda asn carrying oriC can establish themselves as minichromosomes rendering asnA cells Asn+, and that the resulting Asn+ cells grow slowly if the lambda asn carries part or all of the atp operon. Selecting for fast growing strains mutations were isolated on the lambda asn which either eliminated atp genes or affected their expression ("promoter" mutations). The relationship between these atp mutations and the cop mutations of Ogura et al. (1980), which also appear to map in front of or within the atp genes, is discussed.
Collapse
|
23
|
Kovatchev S, Vaz W, Eibl H. Lipid dependence of the membrane-bound D-lactate dehydrogenase of Escherichia coli. J Biol Chem 1981. [DOI: 10.1016/s0021-9258(19)68628-x] [Citation(s) in RCA: 37] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
|
24
|
Kell DB, Clarke DJ, Morris JG. On proton-coupled information transfer along the surface of biological membranes and the mode of action of certain colicins. FEMS Microbiol Lett 1981. [DOI: 10.1111/j.1574-6968.1981.tb06924.x] [Citation(s) in RCA: 37] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
|
25
|
Newman EB, Morris JF, Walker C, Kapoor V. A mutation affecting L-serine and energy metabolism in E. coli K12. MOLECULAR & GENERAL GENETICS : MGG 1981; 182:143-7. [PMID: 6455588 DOI: 10.1007/bf00422781] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
The effects of a pleiotropic mutation ssd are described. This mutation results in decreased efficiency in the use of glucose and fructose as carbon source, inability to use succinate or to grow anaerobically, an alteration in the activity of enzymes responsible for the synthesis and degradation of L-serine, increased resistance to certain antibiotics, and a deficiency in proline transport. This mutation resembles various previously described mutations thought to affect' energy coupling factor' and is located in the same region of the chromosome. While the gene product affected by this mutation is still unidentified, it is clear that L-serine metabolism cannot be understood merely in terms of providing L-serine and its derivatives.
Collapse
|
26
|
Thomson J, Shapiro B. The respiratory chain NADH dehydrogenase of Escherichia coli. Isolation of an NADH:quinone oxidoreductase from membranes and comparison with the membrane-bound NADH:dichlorophenolindophenol oxidoreductase. J Biol Chem 1981. [DOI: 10.1016/s0021-9258(19)69726-7] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
|
27
|
Martirosov S, Petrosian L, Trchounian A, Vartanian A. An electrochemical study of energy-dependent potassium accumulation in E. coli. J Electroanal Chem (Lausanne) 1981. [DOI: 10.1016/s0022-0728(81)80261-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
28
|
An electrochemical study of energy-dependent potassium accumulation in E. coli. J Electroanal Chem (Lausanne) 1981. [DOI: 10.1016/s0022-0728(81)80260-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
29
|
Martirosov S, Trchounian A. An electrochemical study of energy-dependent potassium accumulation in E. coli. J Electroanal Chem (Lausanne) 1981. [DOI: 10.1016/s0022-0728(81)80259-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
30
|
Miller MH, Edberg SC, Mandel LJ, Behar CF, Steigbigel NH. Gentamicin uptake in wild-type and aminoglycoside-resistant small-colony mutants of Staphylococcus aureus. Antimicrob Agents Chemother 1980; 18:722-9. [PMID: 7447428 PMCID: PMC284082 DOI: 10.1128/aac.18.5.722] [Citation(s) in RCA: 74] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
Gentamicin uptake and killing were studied in aminoglycoside-susceptible wild-type Staphylococcus aureus strains and aminoglycoside-resistant small-colony mutants selected by gentamicin from these strains. In wild-type S. aureus three phases of gentamicin accumulation were noted, and killing occurred during the last and most rapid phase of uptake. Uptake and killing were abolished by anaerobic growth and sodium azide, suggesting that energy-dependent active drug transport required respiration. Treatment of wild-type strains with the uncouplers N,N'-dicyclohexyl carbodiimide (DCCD) and carbonyl cyanide-m-chlorophenyl hydrazone showed disparate effects on gentamicin uptake, producing enhanced and diminished accumulations, respectively. Small-colony mutants demonstrated markedly deficient uptake compared with the wild-type strains and were not killed by gentamicin in concentrations up to 10 mug/ml. Several classes of aminoglycoside-resistant mutant strains are described. One mutant strain was a menadione auxotroph which, when grown in the presence of menadione, exhibited normal gentamicin uptake and killing. Gentamicin uptake and killing in this strain were abolished by KCN when the strain was grown in a medium supplemented with menadione. The membrane adenosine triphosphatase inhibitor DCCD was lethal for this mutant but not for other mutants or wild-type strains. Preincubation with menadione prevented the lethal effect of DCCD, and this strain demonstrated normal gentamicin accumulation when exposed to both DCCD and menadione. A second mutant strain demonstrated both gentamicin uptake and killing in the presence but not the absence of DCCD. Studies with small-colony mutants of S. aureus indicated that the defect in aminoglycoside uptake is very likely related to an inability to generate or maintain energized membranes from respiration. These studies suggest that the membrane energization associated with active aminoglycoside accumulation requires electron transport for the generation of a protonmotive force.
Collapse
|
31
|
The genetic analysis of Rhizobium in relation to symbiotic nitrogen fixation. Heredity (Edinb) 1980. [DOI: 10.1038/hdy.1980.59] [Citation(s) in RCA: 64] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
|
32
|
Jones RW, Lamont A, Garland PB. The mechanism of proton translocation driven by the respiratory nitrate reductase complex of Escherichia coli. Biochem J 1980; 190:79-94. [PMID: 6255943 PMCID: PMC1162066 DOI: 10.1042/bj1900079] [Citation(s) in RCA: 53] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Low concentrations (1-50mum) of ubiquinol(1) were rapidly oxidized by spheroplasts of Escherichia coli derepressed for synthesis of nitrate reductase using either nitrate or oxygen as electron acceptor. Oxidation of ubiquinol(1) drove an outward translocation of protons with a corrected -->H(+)/2e(-) stoichiometry [Scholes & Mitchell (1970) J. Bioenerg.1, 309-323] of 1.49 when nitrate was the acceptor and 2.28 when oxygen was the acceptor. Proton translocation driven by the oxidation of added ubiquinol(1) was also observed in spheroplasts from a double quinone-deficient mutant strain AN384 (ubiA(-)menA(-)), whereas a haem-deficient mutant, strain A1004a, did not oxidize ubiquinol(1). Proton translocation was not observed if either the protonophore carbonyl cyanide m-chlorophenylhydrazone or the respiratory inhibitor 2-n-heptyl-4-hydroxyquinoline N-oxide was present. When spheroplasts oxidized Diquat radical (DQ(+)) to the oxidized species (DQ(++)) with nitrate as acceptor, nitrate was reduced to nitrite according to the reaction: [Formula: see text] and nitrite was further reduced in the reaction: [Formula: see text] Nitrite reductase activity (2) was inhibited by CO, leaving nitrate reductase activity (1) unaffected. Benzyl Viologen radical (BV(+)) is able to cross the cytoplasmic membrane and is oxidized directly by nitrate reductase to the divalent cation, BV(++). In the presence of CO, this reaction consumes two protons: [Formula: see text] The consumption of these protons could not be detected by a pH electrode in the extra-cellular bulk phase of a suspension of spheroplasts unless the cytoplasmic membrane was made permeable to protons by the addition of nigericin or tetrachlorosalicylanilide. It is concluded that the protons of eqn. (3) are consumed at the cytoplasmic aspect of the cytoplasmic membrane. Diquat radical, reduced N-methylphenazonium methosulphate and its sulphonated analogue N-methylphenazonium-3-sulphonate (PMSH) and ubiquinol(1) are all oxidized by nitrate reductase via a haem-dependent, endogenous quinone-independent, 2-n-heptyl-4-hydroxyquinoline N-oxide-sensitive pathway. Approximate-->H(+)/2e(-) stoichiometries were zero with Diquat radical, an electron donor, 1.0 with reduced N-methylphenazonium methosulphate or its sulphonated analogue, both hydride donors, and 2.0 with ubiquinol(1) (QH(2)), a hydrogen donor. It is concluded that the protons appearing in the medium are derived from the reductant and the observed-->H(+)/2e(-) stoichiometries are accounted for by the following reactions occurring at the periplasmic aspect of the cytoplasmic membrane.: [Formula: see text]
Collapse
|
33
|
Hernandez-Asensio M, Del Campo FF. Enhancement of alpha-methylglucoside efflux by respiration in respiratory mutants of Escherichia coli K-12. Arch Biochem Biophys 1980; 200:309-18. [PMID: 7002039 DOI: 10.1016/0003-9861(80)90360-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
|
34
|
FUTAI MASAMITSU, KANAZAWA HIROSHI. Role of Subunits in Proton-Translocating ATPase (F0–F1). CURRENT TOPICS IN BIOENERGETICS 1980. [DOI: 10.1016/b978-0-12-152510-1.50011-0] [Citation(s) in RCA: 68] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/09/2023]
|
35
|
Kell D, John P. Studying Mitochondria by Using Bacteria. Altern Lab Anim 1979. [DOI: 10.1177/026119297900702s05] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Affiliation(s)
- D Kell
- Botany School, South Parks Road, Oxford, OX1 3RA
| | - P John
- Botany School, South Parks Road, Oxford, OX1 3RA
| |
Collapse
|
36
|
Muir ME, Wallace BJ. Isolation of mutants of Escherichia coli uncoupled in oxidative phosphorylation using hypersensitivity to streptomycin. BIOCHIMICA ET BIOPHYSICA ACTA 1979; 547:218-29. [PMID: 380650 DOI: 10.1016/0005-2728(79)90005-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Mutants of Escherichia coli, harbouring the uncA401 or uncB402 alleles, were found to take up streptomycin more rapidly than the coupled parent strains. The increased rate of uptake results in greater sensitivity of the uncoupled strains, compared to the parent strains, to low concentrations of streptomycin. Studies with unc+ revertants showed that hypersensitivity to streptomycin is attributable to the mutation causing uncoupling. The uptake of streptomycin in an unc- strain is abolished by addition of the chemical uncoupler carbonylcyanide m-chlorophenylhydrazone. The phenotype of hypersensitivity to streptomycin can be used as a selection procedure for the isolation of uncoupled strains. In an experiment reported here, nine out of 12 strains isolated as being sensitive to streptomycin (at 2.5 micrograms/ml), were found to be unable to grow on succinate as a sole source of carbon. Five of the nine Suc- strains were found to be uncoupled in oxidative phosphorylation, and two of the five uncoupled strains lacked Mg2+-ATPase activity. The mutations causing uncoupling were cotransducible with the ilv genes.
Collapse
|
37
|
Brookman JJ, Downie JA, Gibson F, Cox GB, Rosenberg H. Proton translocation in cytochrome-deficient mutants of Escherichia coli. J Bacteriol 1979; 137:705-10. [PMID: 154508 PMCID: PMC218346 DOI: 10.1128/jb.137.2.705-710.1979] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Cytochrome-deficient cells of a strain of Escherichia coli lacking 5-amino-levulinate synthetase have been used to study proton translocation associated with the reduced nicotinamide adenine dinucleotide (NADH) dehydrogenase region of the electron transport chain. Menadione was used as electron acceptor, and mannitol was used as the substrate for the generation of intracellular NADH. The effects of iron deficiency on NADH- and D-lactate-menadione reductase activities were studied in iron-deficient cells of a mutant strain unable to synthesize the iron chelator enterochelin; both activities were reduced. The NADH- menadione reductase activity in cytochrome-deficient cells was associated with proton translocation and could be coupled to the uptake of proline. However proton translocation associated with the NADH-menadione reductase activity was prevented by a mutation in an unc gene. It was concluded that there is no proton translocation associated with the NADH-dehydrogenase region of the electron transport chain in E. coli and that the proton translocation obtained with mannitol as substrate is due to the activity of membrane-bound adenosine triphosphatase.
Collapse
|
38
|
Bragg PD. Reconstitution of an energy-linked reaction (reduced pyridine nucleotide transhydrogenation) in fractionated Escherichia coli membranes with purified ATPase. Methods Enzymol 1979; 55:787-800. [PMID: 156859 DOI: 10.1016/0076-6879(79)55087-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
39
|
Hammond SM. Inhibitors of enzymes of microbial membranes; agents affecting Mg2+-activated adenosine triphosphatase. PROGRESS IN MEDICINAL CHEMISTRY 1979; 16:223-56. [PMID: 162480 DOI: 10.1016/s0079-6468(08)70189-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
40
|
Boonstra J, Downie JA, Konings WN. Energy supply for active transport in anaerobically grown Escherichia coli. J Bacteriol 1978; 136:844-53. [PMID: 363696 PMCID: PMC218517 DOI: 10.1128/jb.136.3.844-853.1978] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Escherichia coli K-12, grown under anaerobic conditions with glucose as the sole source of carbon and energy without any terminal electron acceptor added, contains a fumarate reductase system in which electrons are transferred from formate or reduced nicotinamide adenine dinucleotide via menaquinone and cytochromes to fumarate reductase. This fumarate reductase system plays an important role in the metabolic energy supply of E. coli, grown under so-called "glycolytic conditions," as is indicated by the growth yields and maximal growth rates of mutants impaired in electron transfer or adenosine triphosphatase (uncB). In mutants deficient in menaquinone, cytochromes, or fumarate reductase, these values are considerably lower than in mutants deficient in ubiquinone or a functional adenosine triphosphatase. Electron transfer in this fumarate reductase system leads to the generation of a membrane potential, as is indicated by the uptake of the lipophilic cation triphenylmethylphosphonium by membrane vesicles prepared from cytochrome-sufficient and uncB cells. The generation of a proton-motive force by the fumarate reductase system was also demonstrated by the uptake of amino acids under anaerobic conditions in membrane vesicles of cytochrome containing and uncB cells grown under glycolytic conditions. Membrane vesicles of cytochrome-deficient cells failed to accumulate triphenyl-methylphosphonium and amino acids under these conditions, indicating that cytochromes are essential for the generation of a proton-motive force. Using glutamine uptake as an indication of the generation of ATP and proline uptake as an indication of the generation of a proton-motive force, it was demonstrated in whole cells that the proton-motive force is formed by ATP hydrolysis in cytochrome-deficient cells and by electron transfer in the uncB cells. In cytochrome-containing cells it was not possible to distinguish between these two possibilities, but the growth parameters suggest that, under glycolytic conditions, the proton-motive force is generated via electron transfer in the fumarate reductase system rather than via ATP hydrolysis.
Collapse
|
41
|
Fillingame RH, Knoebel K, Wopat AE. Method for isolation of Escherichia coli mutants with defects in the proton-translocating sector of the membrane adenosine triphosphatase complex. J Bacteriol 1978; 136:570-81. [PMID: 152309 PMCID: PMC218581 DOI: 10.1128/jb.136.2.570-581.1978] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
A technique for selecting mutants of Escherichia coli in which the proton-translocating sector of the adenosine triphosphatase (ATPase) complex has been inactivated is reported. The procedure uses a strain of E. coli (NR-70) lacking the extrinsic (F1) sector of the ATPase complex and which in consequently permeable to protons (B. P. Rosen, J. Bacteriol. 116:1124--1129, 1973). After growing strain NR-70 under noninducing conditions for the lac operon, cells were mutagenized and plated on minimal medium containing low concentrations of lactose. Several mutants of strain NR-70 were isolated as large colonies on these plates, apparently because they could concentrate lactose more efficiently. A description of one of the mutants, strain KW-1, is reported here. The most distinguishing difference in growth properties of the two strains was that, when transferred to medium containing low concentrations of lactose, strain KW-1 induced the lac operon with a shorter lag time than strain NR-70. The mutation in strain KW-1 leading to more rapid growth on lactose was cotransducible with the asn and unc loci, at 83 min on the E. coli genetic map. Intact cells of strain KW-1 actively transported L-proline as well as did wild-type cells, whereas cells of strain NR-70 were markedly deficient in L-proline transport. The improvement in the transport capacity of strain KW-1 correlated with a marked decrease in proton permeability relative to that of strain NR-70. Based on an acid-base pulse technique that measured the proton conductance of the membranes of intact cells, strain NR-70 was at least 10 times more permeable to protons than was the wild type, whereas strain KW-1 was only 2 times more permeable. The transport properties and proton conductance were also compared with membrane vesicles prepared by osmotic shock. With either D-lactate or ascorbate-N-methylphenazonium methosulfate as respiratory substrates, vesicles of strain KW-1 transported L-proline much more rapidly than did vesicles of strain NR-70, but still at rates less rapid than those of the wild type. The passive proton conductance of the membrane vesicles was quantitated by measuring the rate of H+ influx into vesicles in response to a valinomycin-generated K+ diffusion potential. The proton permeability of vesicles of strain KW-1 was reduced 1.5-fold relative to vesicles of strain NR-70, but these vesicles were still four times more permeable to protons than was the wild type. Vesicles of strain KW-1 corresponded to wild-type vesicles treated with 0.5 micrometer carbonylcyanide m-chlorophenylhydrazone (CCCP) and vesicles of strain NR-70 corresponded to wild-type vesicles treated with 1.4 micrometer CCCP. Treatment of wild-type vesicles with these concentrations of CCCP caused decreases in transport comparable to those observed in the mutants. Strain KW-1 lacked ATPase activity. Cross-reacting material to F1-ATPase was not found in strain KW-1 by double immunodiffusion analysis.
Collapse
|
42
|
Rosen BP, Brey RN, Hasan SM. Energy transduction in Escherichia coli: new mutation affecting the Fo portion of the ATP synthetase complex. J Bacteriol 1978; 134:1030-8. [PMID: 149108 PMCID: PMC222352 DOI: 10.1128/jb.134.3.1030-1038.1978] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
A mutation affecting the intrinsic membrane portion (BFo) of the ATP synthetase complex is described. The phenotype is different from previously reported BFo mutants. This mutation results in the ability of membranes lacking the extrinsic membrane portion (BF1) of the ATP synthetase complex to maintain a transmembrane pH gradient. Unlike other BFo mutants, this strain, NR71, is capable of utilizing ATP hydrolysis for the formation of a transmembrane pH gradient.
Collapse
|
43
|
Gibson F, Downie JA, Cox GB, Radik J. Mu-induced polarity in the unc operon of Escherichia coli. J Bacteriol 1978; 134:728-36. [PMID: 149112 PMCID: PMC222317 DOI: 10.1128/jb.134.3.728-736.1978] [Citation(s) in RCA: 80] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Mutant strains of Escherichia coli were isolated in which mutator (Mu) phage was inserted into various unc genes. Partial diploid strains were prepared from each of the Mu-induced unc mutants by using F-plasmids carrying mutations in one of the known unc genes (uncA, uncB, uncC, or uncD). The partial diploid strains and the corresponding segregant strains were examined for their ability to grow on succinate. The aerobic growth yields on limiting concentrations of glucose were also determined. Magnesium-stimulated adenosine triphosphatase activities, ATP-dependent transhydrogenase activities, and Atebrin fluorescence quenching activities were determined by using membrane preparations from each strain. Genetic complementation was assessed from the results obtained, and it was concluded that the four unc genes examined are part of a single transcriptional unit and that they are transcribed in the order uncBADC.
Collapse
|
44
|
Vogel G, Schairer HU, Steinhart R. Complementation in vitro of mutant and wild-type ATPase of Escherichia coli using isolated subunits. EUROPEAN JOURNAL OF BIOCHEMISTRY 1978; 87:155-60. [PMID: 78846 DOI: 10.1111/j.1432-1033.1978.tb12362.x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
1. The inactive ATPases of four different mutant strains of Escherichia coli have been purified to homogeneity. 2. Molecular weights, subunit patterns in sodium dodecylsulfate electrophoresis and immunological properties of mutant and wild-type proteins are identical. The mutant enzymes compete with the wild-type enzyme for the binding sites on the membrane. 3. On freezing and thawing in salt solutions, the ATPase is split into subunits IA (alpha, gamma, epsilon), IB (delta; alpha, gamma, epsilon), and II (beta). By complementation in vitro of the isolated subunits, it is shown that subcomplex IA (alpha, gamma, epsilon) is altered in the mutant strains described here.
Collapse
|
45
|
Satre M, Klein G, Vignais PV. Isolation of Escherichia coli mutants with an adenosine triphosphatase insensitive to aurovertin. J Bacteriol 1978; 134:17-23. [PMID: 148459 PMCID: PMC222212 DOI: 10.1128/jb.134.1.17-23.1978] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Energy-transducing adenosine triphosphatase (ATPase) from Escherichia coli is inhibited by aurovertin. Aurovertin-resistant mutants were generated by nitrosoguanidine mutagenesis of E. coli AN180, whose growth on a nonfermentable carbon source was blocked by aurovertin. The ATPase activity of cell extracts from 15 different mutants (designated MA1, MA2, MA3, etc.) was found to be at least 20 times less sensitive to aurovertin than that from the parent strain. The aurovertin-resistant mutants did not show cross-resistance towards a number of ATPase inhibitors including azide, dicyclohexylcarbodiimide, quercetin, 7-chloro-4-nitrobenzofurazan, and N-ethoxycarbonyl-2-ethoxy-1,2-dihydroquinoline. Aurovertin inhibited the energization brought about by addition of ATP to E. coli AN180 membrane vesicles; it was without effect on MA1 and MA2 membrane vesicles energized by ATP. The mutation in MA1, like other mutations of the ATPase complex, maps in the unc region of the bacterial chromosome.
Collapse
|
46
|
Colicins and bacterial membranes: structures and functions. II. Studies on reconstituted homologous and hybrid membranes prepared from cytoplasmic membranes of untreated and colicin K-treated bacteria. J Biol Chem 1978. [DOI: 10.1016/s0021-9258(17)38201-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
|
47
|
Hasan SM, Tsuchiya T, Rosen BP. Energy transduction in Escherichia coli: physiological and biochemical effects of mutation in the uncB locus. J Bacteriol 1978; 133:108-13. [PMID: 145432 PMCID: PMC221983 DOI: 10.1128/jb.133.1.108-113.1978] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
The transduction of energy through biological membranes was investigated in Escherichia coli strains defective in the ATP synthetase complex. Everted vesicles prepared from strains containing an uncA or uncB mutation were compared with those of the parental strain for their ability to couple energy derived from the oxidation of substrates by the electron transport chain or from the hydrolysis of ATP by the Mg2+-adenosine triphosphatase, as measured by the energy-dependent quenching of quinacrine fluorescence or the active transport of 45Ca2+. Removal of the Mg2+-adenosine triphosphatase from membranes derived from the parental or an uncA strain caused a loss of energy-linked functions and a concomitant increase in the permeability of the membrane for protons. Proton impermeability was restored by treatment with N,N'-dicyclohexylcarbodiimide. When membranes of the uncB strain were treated in a similar manner, there was no loss of respiratory-driven functions, nor was there a change in proton permeability. These observations suggest that the uncB mutation specifically results in alteration of an intrinsic membrane protein channel necessary for the generation of utilzation of the electrochemical gradient of protons by that complex. Loss of the function of the proton channel is believed to prevent the transduction of energy through the ATP synthetase complex.
Collapse
|
48
|
Calcott PH, Bhatti AR. ATP hydrolysis in a marine bacterium. J Bacteriol 1978; 133:392-5. [PMID: 145434 PMCID: PMC222019 DOI: 10.1128/jb.133.1.392-395.1978] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
The membrane-bound adenosine triphosphatase of marine pseudomonad B-16, when solubilized, is able to rebind to depleted membrane residues of the bacterium and to those of Escherichia coli.
Collapse
|
49
|
Maloney PC. Obligatory coupling between proton entry and the synthesis of adenosine 5'-triphosphate in Streptococcus lactis. J Bacteriol 1977; 132:564-75. [PMID: 21165 PMCID: PMC221897 DOI: 10.1128/jb.132.2.564-575.1977] [Citation(s) in RCA: 64] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Proton influx was measured after imposition of an electrochemical potential difference for protons (delta muH+) across the cell membrane of the anaerobe, Streptococcus lactis. As delta muH+ was increased, there was an approximately parallel increase in proton entry, until delta muH+ attained 175 to 200 mV. At this point, a new pathway became available for proton entry, allowing an abrupt increase in both the rate and extent of H+ influx. This gated response depended upon the value of delta muH+ itself, and not upon the value of either the membrane potential or the pH gradient. For delta muH+ above 175 to 200 mV, elevated proton entry occurred only in cells having a functional membrane-bound Ca2+-stimulated, Mg2+stimulated adenosine 5'-triphosphatase (EC 3.6.1.3). When present, elevated proton entry coincided with the appearance of net synthesis of adenosine 5'-triphosphate catalyzed by this adenosine 5'-triphosphatase. These observations demonstrate that membrane-bound adenosine 5'-triphosphatase catalyzes an obligatory coupling between the inward movement of protons and synthesis of adenosine 5'-triphosphate.
Collapse
|
50
|
Lancaster J, Hinkle P. Studies of the beta-galactoside transporter in inverted membrane vesicles of Escherichia coli. I. Symmetrical facilitated diffusion and proton gradient-coupled transport. J Biol Chem 1977. [DOI: 10.1016/s0021-9258(17)41017-9] [Citation(s) in RCA: 24] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
|