1
|
Ritter Z, Oeltzschner G, Solnes LB, Liu G, Kamson DO. Diagnostic and theranostic opportunities in Neuro-oncology. ADVANCES IN ONCOLOGY 2024; 4:111-124. [PMID: 40248613 PMCID: PMC12001827 DOI: 10.1016/j.yao.2024.01.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/19/2025]
Abstract
Theranostics, the interlinking of diagnostic and therapeutic procedures, can be particularly valuable in neuro-oncology, addressing the challenges posed by the blood-brain and brain-tumor barriers. While it is traditionally associated with nuclear medicine, advances in MR imaging techniques have opened new theranostic frontiers. This review covers the present challenges in neuro-oncology and how these could be overcome utilizing radioligand-based molecular radiotherapy as well as how label-free theranostics employing methods such as chemical exchange saturation transfer (CEST) and MR spectroscopy could advance the field.
Collapse
Affiliation(s)
- Zsombor Ritter
- The Sidney Kimmel Comprehensive Cancer Center at the Johns Hopkins Hospital, Baltimore, MD
| | - Georg Oeltzschner
- Russell H. Morgan Department of Radiology and Radiological Science, Division of MR Research, The Johns Hopkins University School of Medicine, Baltimore, MD
- F. M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Institute, Baltimore, MD
| | - Lilja Bjork Solnes
- Russell H. Morgan Department of Radiology and Radiological Science, Division of Nuclear Medicine and Molecular Imaging, Johns Hopkins University School of Medicine, Baltimore, MD
| | - Guanshu Liu
- Russell H. Morgan Department of Radiology and Radiological Science, Division of MR Research, The Johns Hopkins University School of Medicine, Baltimore, MD
- F. M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Institute, Baltimore, MD
| | - David Olayinka Kamson
- The Sidney Kimmel Comprehensive Cancer Center at the Johns Hopkins Hospital, Baltimore, MD
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD
| |
Collapse
|
2
|
Ramzan F, Kiran L, Malik SN, Malik MI. Tachykinins Play a Major Role in Micro and Macrovascular Complications in Type 2 Diabetes Patients. Curr Diabetes Rev 2024; 20:e050523216590. [PMID: 37151064 DOI: 10.2174/1573399819666230505123844] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Revised: 03/02/2023] [Accepted: 03/21/2023] [Indexed: 05/09/2023]
Abstract
Diabetes Mellitus is a metabolic disorder, which is characterized by an increase in blood glucose levels. The defects in the secretion or action of insulin are the major cause of diabetes. Increase in the blood glucose level exerts a negative effect on the normal functions of the body organs and this leads to the dysfunctions of cells and tissue and causes vascular complications in diabetic patients. Several studies indicate that neuropeptides are released from the neurosensory cells which are mainly known as tachykinins which provoke major vascular complications in diabetic patients. Tachykinins are known as pro-inflammatory peptides which increase vascular complications and vascular permeability. The duration and severity of diabetes disease increase the risk of vascular complication in patients. The aim of this review is to elaborate the role of tachykinins in microvascular and macrovascular complications in diabetic patients. The study concluded that tachykinins increase micro and macrovascular complications in diabetic patients.
Collapse
Affiliation(s)
- Faiqah Ramzan
- Gomal Centre of Biochemistry and Biotechnology, Gomal University, 29050, Dera Ismail Khan, Pakistan
- Faculty of Veterinary and Animal Sciences, Gomal University, Dera Ismail Khan, Pakistan
| | - Laila Kiran
- Gomal Centre of Biochemistry and Biotechnology, Gomal University, 29050, Dera Ismail Khan, Pakistan
| | - Shumaila Noreen Malik
- Department of Gynecology and Obstetrics, District Teaching Hospital, Dera Ismail Khan, Pakistan
| | | |
Collapse
|
3
|
Vivanco PG, Taboada P, Coelho A. The Southern European Atlantic Diet and Its Supplements: The Chemical Bases of Its Anticancer Properties. Nutrients 2023; 15:4274. [PMID: 37836558 PMCID: PMC10574233 DOI: 10.3390/nu15194274] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2023] [Revised: 09/27/2023] [Accepted: 09/29/2023] [Indexed: 10/15/2023] Open
Abstract
Scientific evidence increasingly supports the strong link between diet and health, acknowledging that a well-balanced diet plays a crucial role in preventing chronic diseases such as obesity, diabetes, cardiovascular issues, and certain types of cancer. This perspective opens the door to developing precision diets, particularly tailored for individuals at risk of developing cancer. It encompasses a vast research area and involves the study of an expanding array of compounds with multilevel "omics" compositions, including genomics, transcriptomics, proteomics, epigenomics, miRNomics, and metabolomics. We review here the components of the Southern European Atlantic Diet (SEAD) from both a chemical and pharmacological standpoint. The information sources consulted, complemented by crystallographic data from the Protein Data Bank, establish a direct link between the SEAD and its anticancer properties. The data collected strongly suggest that SEAD offers an exceptionally healthy profile, particularly due to the presence of beneficial biomolecules in its foods. The inclusion of olive oil and paprika in this diet provides numerous health benefits, and scientific evidence supports the anticancer properties of dietary supplements with biomolecules sourced from vegetables of the brassica genus. Nonetheless, further research is warranted in this field to gain deeper insights into the potential benefits of the SEAD's bioactive compounds against cancer.
Collapse
Affiliation(s)
- Pablo García Vivanco
- Spanish Academy of Nutrition and Dietetics, 31006 Pamplona, Spain
- Nutrition and Digestive Working Group, Spanish Society of Clinical, Family, and Community Pharmacy (SEFAC), 28045 Madrid, Spain
| | - Pablo Taboada
- Department of Condensed Matter Physics, Faculty of Physics, University of Santiago de Compostela, 15782 Santiago de Compostela, Spain
- Institute of Materials-USC (IMATUS), University of Santiago de Compostela, 15782 Santiago de Compostela, Spain
| | - Alberto Coelho
- Institute of Materials-USC (IMATUS), University of Santiago de Compostela, 15782 Santiago de Compostela, Spain
- Department of Organic Chemistry, Faculty of Pharmacy, University of Santiago de Compostela, 15782 Santiago de Compostela, Spain
| |
Collapse
|
4
|
Ullah I, Ayaz M. A re-consideration of neural/receptor mechanisms in chemotherapy-induced nausea and vomiting: current scenario and future perspective. Pharmacol Rep 2023; 75:1126-1137. [PMID: 37584820 DOI: 10.1007/s43440-023-00514-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2023] [Revised: 07/27/2023] [Accepted: 07/27/2023] [Indexed: 08/17/2023]
Abstract
The neural mechanisms and the receptors behind the course of chemotherapy-induced nausea and vomiting (CINV) are well described and considered mechanistically multifactorial, whereas the neurobiology of nausea is not completely understood yet. Some of the anti-neoplastic medications like cisplatin result in biphasic vomiting response. The acute phase of vomiting is triggered mainly via the release of serotonin from the enterochromaffin (EC) cells in the gastrointestinal tract (GIT) and results in stimulation of dorsal vagal complex (DVC) of the vomiting center and the vomiting is initiated by downward communication to the gut via vagal efferents. Agonism of 5HT3 receptors is majorly involved in the mediation of the acute phase. Therefore, antagonists at 5HT3 receptors are effective in the management of acute-phase vomiting episodes. Likewise, Dopamine type 2 (D2) receptors, dopamine neurotransmitter, Muscarinic receptors (M3), GLP1 receptors, and histaminergic receptors (H1) are also implicated in the vomiting act as well. In continuation, Cannabinoid type 1 (CB1) receptors are also recommended and included in the guidelines as agonism of presynaptically located CB1 receptors inhibits the release of excitatory neurotransmitters responsible for vomiting initiation. The delayed phase involves the release of "Substance P" in the gut and results in the stimulation of neurokinin-1 (NK1) receptors centrally in the area postrema (AP) and nucleus tractus solitarius (NTS), subsequently the vomiting response. The current understanding is the existence of overlapping mechanisms of neurotransmitters, serotonin, dopamine, and substance P throughout the time course of CINV. Furthermore, the emetic neurotransmitters are released via calcium ion (Ca++)-dependent mechanisms, implicating the molecular targets of intracellular Ca++ signaling in emetic circuitry. The current review entails the neurobiology of nausea and vomiting induced by cancer chemotherapeutic agents and the recent approaches in the management.
Collapse
Affiliation(s)
- Ihsan Ullah
- Department of Pharmacy, Faculty of Sciences, University of Swabi, Anbar, Swabi, 23430, Khyber Pakhtunkhwa, Pakistan.
- School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, NT, Hong Kong.
| | - Muhammad Ayaz
- Department of Pharmacy, Faculty of Biological Sciences, University of Malakand, Dir (L), Chakdara, 18000, KP, Pakistan.
| |
Collapse
|
5
|
Liao Y, Du X, Fu Y, Liu L, Wei J, An Q, Luo X, Gao F, Jia S, Chang Y, Guo M, Liu H. Mechanism of traditional Chinese medicine in treating overactive bladder. Int Urol Nephrol 2023; 55:489-501. [PMID: 36479677 PMCID: PMC9957912 DOI: 10.1007/s11255-022-03434-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Accepted: 12/01/2022] [Indexed: 12/12/2022]
Abstract
Overactive bladder syndrome (OAB) has made increasing progress in mechanism and treatment research. Traditional Chinese medicine (TCM) is a common complementary therapy for OAB, and it has been found to be effective. However, the intervention mechanism of TCM in the treatment of OAB is still unclear. The aim of this review is to consolidate the current knowledge about the mechanism of TCM: acupuncture, moxibustion, herbs in treating OAB, and the animal models of OAB commonly used in TCM. Finally, we put forward the dilemma of TCM treatment of OAB and discussed the insufficiency and future direction of TCM treatment of OAB.
Collapse
Affiliation(s)
- Yuxiang Liao
- Acupuncture and Moxibustion Department, Beijing Hospital of Traditional Chinese Medicine, Beijing Key Laboratory of Acupuncture Neuromodulation, Capital Medical University, Beijing, People's Republic of China
| | - Xin Du
- Acupuncture and Moxibustion Department, Beijing Hospital of Traditional Chinese Medicine, Beijing Key Laboratory of Acupuncture Neuromodulation, Capital Medical University, Beijing, People's Republic of China
| | - Yuanbo Fu
- Acupuncture and Moxibustion Department, Beijing Hospital of Traditional Chinese Medicine, Beijing Key Laboratory of Acupuncture Neuromodulation, Capital Medical University, Beijing, People's Republic of China
| | - Lu Liu
- Acupuncture and Moxibustion Department, Beijing Hospital of Traditional Chinese Medicine, Beijing Key Laboratory of Acupuncture Neuromodulation, Capital Medical University, Beijing, People's Republic of China
| | - Jiangyan Wei
- Acupuncture and Moxibustion Department, Beijing Hospital of Traditional Chinese Medicine, Beijing Key Laboratory of Acupuncture Neuromodulation, Capital Medical University, Beijing, People's Republic of China
| | - Qi An
- Beijing University of Chinese Medicine, Beijing, People's Republic of China
| | - Xuanzhi Luo
- Beijing University of Chinese Medicine, Beijing, People's Republic of China
| | - Fan Gao
- Beijing University of Chinese Medicine, Beijing, People's Republic of China
| | - Shuhan Jia
- Beijing University of Chinese Medicine, Beijing, People's Republic of China
| | - Ying Chang
- Beijing University of Chinese Medicine, Beijing, People's Republic of China
| | - Mengxi Guo
- Beijing University of Chinese Medicine, Beijing, People's Republic of China
| | - Huilin Liu
- Acupuncture and Moxibustion Department, Beijing Hospital of Traditional Chinese Medicine, Beijing Key Laboratory of Acupuncture Neuromodulation, Capital Medical University, Beijing, People's Republic of China.
| |
Collapse
|
6
|
Di Maio G, Villano I, Ilardi CR, Messina A, Monda V, Iodice AC, Porro C, Panaro MA, Chieffi S, Messina G, Monda M, La Marra M. Mechanisms of Transmission and Processing of Pain: A Narrative Review. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2023; 20:3064. [PMID: 36833753 PMCID: PMC9964506 DOI: 10.3390/ijerph20043064] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Revised: 01/27/2023] [Accepted: 02/07/2023] [Indexed: 06/18/2023]
Abstract
Knowledge about the mechanisms of transmission and the processing of nociceptive information, both in healthy and pathological states, has greatly expanded in recent years. This rapid progress is due to a multidisciplinary approach involving the simultaneous use of different branches of study, such as systems neurobiology, behavioral analysis, genetics, and cell and molecular techniques. This narrative review aims to clarify the mechanisms of transmission and the processing of pain while also taking into account the characteristics and properties of nociceptors and how the immune system influences pain perception. Moreover, several important aspects of this crucial theme of human life will be discussed. Nociceptor neurons and the immune system play a key role in pain and inflammation. The interactions between the immune system and nociceptors occur within peripheral sites of injury and the central nervous system. The modulation of nociceptor activity or chemical mediators may provide promising novel approaches to the treatment of pain and chronic inflammatory disease. The sensory nervous system is fundamental in the modulation of the host's protective response, and understanding its interactions is pivotal in the process of revealing new strategies for the treatment of pain.
Collapse
Affiliation(s)
- Girolamo Di Maio
- Department of Experimental Medicine, University of Campania “Luigi Vanvitelli”, 80138 Naples, Italy
| | - Ines Villano
- Department of Experimental Medicine, University of Campania “Luigi Vanvitelli”, 80138 Naples, Italy
| | - Ciro Rosario Ilardi
- Department of Experimental Medicine, University of Campania “Luigi Vanvitelli”, 80138 Naples, Italy
- Department of Psychology, University of Campania “Luigi Vanvitelli”, 81100 Caserta, Italy
| | - Antonietta Messina
- Department of Experimental Medicine, University of Campania “Luigi Vanvitelli”, 80138 Naples, Italy
| | - Vincenzo Monda
- Department of Movement Sciences and Wellbeing, University of Naples “Parthenope”, 80133 Naples, Italy
| | - Ashlei Clara Iodice
- Department of Experimental Medicine, University of Campania “Luigi Vanvitelli”, 80138 Naples, Italy
| | - Chiara Porro
- Department of Clinical and Experimental Medicine, University of Foggia, Viale Pinto, 71100 Foggia, Italy
| | - Maria Antonietta Panaro
- Department of Biosciences, Biotechnologies and Biopharmaceutics, University of Bari, 70125 Bari, Italy
| | - Sergio Chieffi
- Department of Experimental Medicine, University of Campania “Luigi Vanvitelli”, 80138 Naples, Italy
| | - Giovanni Messina
- Department of Clinical and Experimental Medicine, University of Foggia, Viale Pinto, 71100 Foggia, Italy
| | - Marcellino Monda
- Department of Experimental Medicine, University of Campania “Luigi Vanvitelli”, 80138 Naples, Italy
| | - Marco La Marra
- Department of Experimental Medicine, University of Campania “Luigi Vanvitelli”, 80138 Naples, Italy
| |
Collapse
|
7
|
Cisneros E, Martínez-Padilla A, Cardenas C, Márquez J, Ortega de Mues A, Roza C. Identification of Potential Visceral Pain Biomarkers in Colon Exudates from Mice with Experimental Colitis: An Exploratory In Vitro Study. THE JOURNAL OF PAIN 2023; 24:874-887. [PMID: 36638875 DOI: 10.1016/j.jpain.2023.01.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Revised: 12/22/2022] [Accepted: 01/01/2023] [Indexed: 01/12/2023]
Abstract
Chronic visceral pain (CVP) is extremely difficult to diagnose, and available analgesic treatment options are quite limited. Identifying the proteins secreted from the colonic nociceptors, or their neighbor cells within the tube walls, in the context of disorders that course with visceral pain, might be useful to decipher the mechanism involved in the establishment of CVP. Addressing this question in human with gastrointestinal disorders entails multiple difficulties, as there is not a clear classification of disease severity, and colonic secretion is not easy to manage. We propose using of a murine model of colitis to identify new algesic molecules and pathways that could be explored as pain biomarkers or analgesia targets. Descending colons from naïve and colitis mice with visceral hyperalgesia were excised and maintained ex vivo. The proteins secreted in the perfusion fluid before and during acute noxious distension were evaluated using high-resolution mass spectrometry (MS). Haptoglobin (Hp), PZD and LIM domain protein 3 (Pdlim3), NADP-dependent malic enzyme (Me1), and Apolipoprotein A-I (Apoa1) were increased during visceral insult, whilst Triosephosphate isomerase (Tpi1), Glucose-6-phosphate isomerase (Gpi1), Alpha-enolase (Eno1), and Isoform 2 of Tropomyosin alpha-1 chain (Tpm1) were decreased. Most identified proteins have been described in the context of different chronic pain conditions and, according to gene ontology analysis, they are also involved in diverse biological processes of relevance. Thus, animal models that mimic human conditions in combination with unbiased omics approaches will ultimately help to identify new pathophysiological mechanisms underlying pain that might be useful in diagnosing and treating pain. PERSPECTIVE: Our study utilizes an unbiased proteomic approach to determine, first, the clinical relevance of a murine model of colitis and, second, to identify novel molecules/pathways involved in nociception that would be potential biomarkers or targets for chronic visceral pain.
Collapse
Affiliation(s)
- Elsa Cisneros
- Facultad de Ciencias de la Salud, Universidad Internacional de la Rioja (UNIR), Logroño, La Rioja, Spain
| | - Anabel Martínez-Padilla
- Canceromics Lab, Departamento de Biología Molecular y Bioquímica, Facultad de Ciencias e Instituto de Investigación Biomédica de Málaga (IBIMA-Plataforma BIONAND), Universidad de Málaga, Málaga, Spain
| | - Casimiro Cardenas
- Canceromics Lab, Departamento de Biología Molecular y Bioquímica, Facultad de Ciencias e Instituto de Investigación Biomédica de Málaga (IBIMA-Plataforma BIONAND), Universidad de Málaga, Málaga, Spain; Proteomics Unit, Central Facility of Research Infrastructures (SCAI), Universidad de Málaga, Málaga, Spain
| | - Javier Márquez
- Canceromics Lab, Departamento de Biología Molecular y Bioquímica, Facultad de Ciencias e Instituto de Investigación Biomédica de Málaga (IBIMA-Plataforma BIONAND), Universidad de Málaga, Málaga, Spain
| | | | - Carolina Roza
- Departamento de Biología de Sistemas, Facultad de Medicina, Universidad de Alcalá, Alcalá de Henares, Madrid, Spain.
| |
Collapse
|
8
|
Jia H, Qin Z, Wei B, Guo X, Xiao H, Zhang H, Li Z, Wu Q, Zheng R, Wu W. Substance P and Glucagon-like Peptide-1 7-36 Amide Mediate Anorexic Responses to Trichothecene Deoxynivalenol and Its Congeners. Toxins (Basel) 2022; 14:toxins14120885. [PMID: 36548782 PMCID: PMC9785148 DOI: 10.3390/toxins14120885] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Revised: 12/10/2022] [Accepted: 12/16/2022] [Indexed: 12/23/2022] Open
Abstract
Type B trichothecenes commonly contaminate cereal grains and include five structurally related congeners: deoxynivalenol (DON), 3-acetyldeoxynivalenol (3-ADON), 15-acetyldeoxynivalenol (15-ADON), fusarenon X (FX), and nivalenol (NIV). These toxins are known to have negative effects on human and animal health, particularly affecting food intake. However, the pathophysiological basis for anorexic effect is not fully clarified. The purpose of this study is to explore the potential roles of the brain-gut peptides substance P (SP) and glucagon-like peptide-17-36 amide (GLP-1) in anorexic responses induced by type B trichothecenes following both intraperitoneal (IP) and oral administration. SP and GLP-1 were elevated at 1 or 2 h and returned to basal levels at 6 h following exposure to DON and both ADONs. FX induced the production of both brain gut peptides with initial time at 1 or 2 h and duration > 6 h. Similar to FX, exposing IP to NIV caused elevations of SP and GLP-1 at 1 h and lasted more than 6 h, whereas oral exposure to NIV only increased both brain gut peptides at 2 h. The neurokinin-1 receptor (NK-1R) antagonist Emend® dose-dependently attenuated both SP- and DON-induced anorexic responses. Pretreatment with the GLP-1 receptor (GLP-1R) antagonist Exending9-39 induced a dose-dependent attenuation of both GLP-1- and DON-induced anorexic responses. To summarize, the results suggest that both SP and GLP-1 play important roles in anorexia induction by type B trichothecenes.
Collapse
Affiliation(s)
- Hui Jia
- School of Animal Husbandry and Veterinary Medicine, Jiangsu Vocational College of Agriculture and Forestry, Jurong 212400, China
| | - Zihui Qin
- School of Food and Biological Engineering, Hefei University of Technology, Hefei 230009, China
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China
| | - Ben Wei
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China
| | - Xinyi Guo
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China
| | - Huiping Xiao
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China
| | - Huayue Zhang
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China
| | - Zelin Li
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China
| | - Qinghua Wu
- Department of Chemistry, Faculty of Science, University of Hradec Kralove, 50003 Hradec Kralove, Czech Republic
- College of Life Science, Yangtze University, Jingzhou 434025, China
| | - Ruibo Zheng
- School of Animal Husbandry and Veterinary Medicine, Jiangsu Vocational College of Agriculture and Forestry, Jurong 212400, China
| | - Wenda Wu
- School of Food and Biological Engineering, Hefei University of Technology, Hefei 230009, China
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China
- Department of Chemistry, Faculty of Science, University of Hradec Kralove, 50003 Hradec Kralove, Czech Republic
- Correspondence:
| |
Collapse
|
9
|
Alexander DP, Nickman NA, Chhibber A, Stoddard GJ, Biskupiak JE, Munger MA. Angiotensin-converting enzyme inhibitors reduce community-acquired pneumonia hospitalization and mortality. Pharmacotherapy 2022; 42:890-897. [PMID: 36278479 DOI: 10.1002/phar.2739] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Revised: 10/14/2022] [Accepted: 10/14/2022] [Indexed: 11/13/2022]
Abstract
BACKGROUND Pneumonia is a global disorder and a common reason for prolonged hospitalization. Angiotensin-converting enzyme inhibitors (ACEi) have pleiotropic effects that support a role in modulating pneumonia, but results have been controversial. OBJECTIVES The present study was conducted to elucidate an ACEi-induced pneumonia benefit in at-risk neurologically impaired population and to determine whether a mortality benefit exists. METHODS A cohort study using a large health-system of 29,011 unique ACEi users and 1635 case patients 65 years of age or older without neurological disorders affecting swallowing who were admitted with community-acquired pneumonia hospitalization and followed up from January 1, 2015 to December 31, 2019 (5 years). The association between ACEi use and pneumonia hospitalization and mortality were determined after propensity score matching using Cox and logistic regression. RESULTS The experimental cohort was 74.9 ± 7.3 years and 51% were male. ACEi users had lower odds of acquiring pneumonia versus ACEi non-users (odds ratio) 0.72 [95% Confidence Interval (CI) 0.51 to 0.99]; p = 0.048. The risk of short-term mortality (<30 days) (HR) 0.42, p < 0.001 and long-term mortality (≥30 day) (HR) 0.83, p < 0.002 was significantly lower for ACEi users compared with the ACEi non-users. CONCLUSIONS ACEi use in patients at risk of pneumonia without neurological swallowing disorders is associated with reduction in hospitalization and lowering of short- and long-term mortality. Given the high incidence of morbidity and mortality associated with pneumonia, and the susceptibility in older populations with underlying cardiovascular or renal disease or social dependencies, our data support the prescribing of ACEi in these populations to reduce pneumonia hospitalization risk as well as short- and long-term mortality.
Collapse
Affiliation(s)
- Donald P Alexander
- Department of Pharmacotherapy, University of Utah, Salt Lake City, Utah, USA
| | - Nancy A Nickman
- Department of Pharmacotherapy, University of Utah, Salt Lake City, Utah, USA
| | - Anindit Chhibber
- Department of Pharmacotherapy, University of Utah, Salt Lake City, Utah, USA
| | - Gregory J Stoddard
- Department of Internal Medicine, University of Utah, Salt Lake City, Utah, USA
| | - Joseph E Biskupiak
- Department of Pharmacotherapy, University of Utah, Salt Lake City, Utah, USA
| | - Mark A Munger
- Department of Pharmacotherapy, University of Utah, Salt Lake City, Utah, USA.,Department of Internal Medicine, University of Utah, Salt Lake City, Utah, USA
| |
Collapse
|
10
|
Kurogochi K, Uechi M, Orito K. Involvement of neurokinin-1 receptors in the autonomic nervous system in colorectal distension-induced cardiovascular suppression in rats. Front Pharmacol 2022; 13:1020685. [PMID: 36339556 PMCID: PMC9627219 DOI: 10.3389/fphar.2022.1020685] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Accepted: 10/07/2022] [Indexed: 09/07/2024] Open
Abstract
Situational syncope, which includes rectally mediated reflexes, is defined as syncope induced by a specific situation. Its pathogenesis generally involves disorders of the autonomic nervous system. However, the mechanisms and preventive strategies are not yet well understood. Therefore, we hypothesized that a tachykinin neurokinin-1 receptor might be involved in the autonomic nervous system, and that a neurokinin-1 receptor antagonist could mitigate reflex syncope. This study used a rat model in which the reflex was induced by afferent vagal stimulation with colorectal distension (CRD). In the study, the rats were divided into three groups: non-CRD, CRD, and CRD with a neurokinin-1 receptor antagonist. First, we examined the effect of fosaprepitant, a neurokinin-1 receptor antagonist, on the circulatory response in this model. We then determined the brain regions that showed increased numbers of c-Fos immunoreactive cells in the respective groups. Our results suggest that the colorectal distension procedure reduced blood pressure and that fosaprepitant lowered this response. In addition, the number of c-Fos immunoreactive cells was increased in the caudal ventrolateral medullary region with colorectal distension, and this number was decreased by the administration of fosaprepitant. In conclusion, fosaprepitant might be involved in the vagal reflex pathway and potentially suppress the circulatory response to colorectal distension.
Collapse
Affiliation(s)
- Kentaro Kurogochi
- Laboratory of Physiology II Department of Veterinary Medicine, School of Veterinary Medicine, Azabu University, Sagamihara, Kanagawa, Japan
- JASMINE Veterinary Cardiovascular Medical Center, Yokohama, Kanagawa, Japan
| | - Masami Uechi
- JASMINE Veterinary Cardiovascular Medical Center, Yokohama, Kanagawa, Japan
| | - Kensuke Orito
- Laboratory of Physiology II Department of Veterinary Medicine, School of Veterinary Medicine, Azabu University, Sagamihara, Kanagawa, Japan
| |
Collapse
|
11
|
Boyle CA, Hu B, Quaintance KL, Mastrud MR, Lei S. Ionic signalling mechanisms involved in neurokinin-3 receptor-mediated augmentation of fear-potentiated startle response in the basolateral amygdala. J Physiol 2022; 600:4325-4345. [PMID: 36030507 PMCID: PMC9529888 DOI: 10.1113/jp283433] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Accepted: 08/15/2022] [Indexed: 09/10/2023] Open
Abstract
The tachykinin peptides include substance P (SP), neurokinin A and neurokinin B, which interact with three G-protein-coupled neurokinin receptors, NK1Rs, NK2Rs and NK3Rs, respectively. Whereas high densities of NK3Rs have been detected in the basolateral amygdala (BLA), the functions of NK3Rs in this brain region have not been determined. We found that activation of NK3Rs by application of the selective agonist, senktide, persistently excited BLA principal neurons. NK3R-elicited excitation of BLA neurons was mediated by activation of a non-selective cation channel and depression of the inwardly rectifying K+ (Kir) channels. With selective channel blockers and knockout mice, we further showed that NK3R activation excited BLA neurons by depressing the G protein-activated inwardly rectifying K+ (GIRK) channels and activating TRPC4 and TRPC5 channels. The effects of NK3Rs required the functions of phospholipase Cβ (PLCβ), but were independent of intracellular Ca2+ release and protein kinase C. PLCβ-mediated depletion of phosphatidylinositol 4,5-bisphosphate was involved in NK3R-induced excitation of BLA neurons. Microinjection of senktide into the BLA of rats augmented fear-potentiated startle (FPS) and this effect was blocked by prior injection of the selective NK3R antagonist SB 218795, suggesting that activation of NK3Rs in the BLA increased FPS. We further showed that TRPC4/5 and GIRK channels were involved in NK3R-elicited facilitation of FPS. Our results provide a cellular and molecular mechanism whereby NK3R activation excites BLA neurons and enhances FPS. KEY POINTS: Activation of NK3 receptors (NK3Rs) facilitates the excitability of principal neurons in rat basolateral amygdala (BLA). NK3R-induced excitation is mediated by inhibition of GIRK channels and activation of TRPC4/5 channels. Phospholipase Cβ and depletion of phosphatidylinositol 4,5-bisphosphate are necessary for NK3R-mediated excitation of BLA principal neurons. Activation of NK3Rs in the BLA facilitates fear-potentiated startle response. GIRK channels and TRPC4/5 channels are involved in NK3R-mediated augmentation of fear-potentiated startle.
Collapse
Affiliation(s)
- Cody A. Boyle
- Department of Biomedical Sciences, School of Medicine and Health Sciences, University of North Dakota, Grand Forks, ND58203, USA
| | - Binqi Hu
- Department of Biomedical Sciences, School of Medicine and Health Sciences, University of North Dakota, Grand Forks, ND58203, USA
| | - Kati L. Quaintance
- Department of Biomedical Sciences, School of Medicine and Health Sciences, University of North Dakota, Grand Forks, ND58203, USA
| | - Morgan R. Mastrud
- Department of Biomedical Sciences, School of Medicine and Health Sciences, University of North Dakota, Grand Forks, ND58203, USA
| | - Saobo Lei
- Department of Biomedical Sciences, School of Medicine and Health Sciences, University of North Dakota, Grand Forks, ND58203, USA
| |
Collapse
|
12
|
Haddad AN, Leyria J, Lange AB. Identification of a tachykinin receptor and its implication in carbohydrate and lipid homeostasis in Rhodnius prolixus, a chagas disease vector. Gen Comp Endocrinol 2022; 320:114010. [PMID: 35231487 DOI: 10.1016/j.ygcen.2022.114010] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Revised: 02/18/2022] [Accepted: 02/24/2022] [Indexed: 01/03/2023]
Abstract
Neuropeptides and their receptors are fundamentally important in regulating many physiological and behavioural processes in insects. In this work, we have identified, cloned, and sequenced the tachykinin receptor (Rhopr-TKR) from Rhodnius prolixus, a vector of Chagas disease. The receptor is a G protein-coupled receptor belonging to the Rhodopsin Family A. The total length of the open reading frame of the Rhopr-TKR transcript is 1110 bp, which translates into a receptor of 338 amino acids. Fluorescent in-situ RNA-hybridization (FISH) for the Rhopr-TKR transcript shows a signal in a group of six bilaterally paired neurons in the protocerebrum of the brain, localized in a similar region as the insulin producing cells. To examine the role of tachykinin signaling in lipid and carbohydrate homeostasis we used RNA interference. Downregulation of the Rhopr-TKR transcript led to a decrease in the size of blood meal consumed and a significant increase in circulating carbohydrate and lipid levels. Further investigation revealed a close relationship between tachykinin and insulin signaling since the downregulation of the Rhopr-TKR transcript negatively affected the transcript expression for insulin-like peptide 1 (Rhopr-ILP1), insulin-like growth factor (Rhopr-IGF) and insulin receptor 1 (Rhopr-InR1) in both the central nervous system and fat body. Taken together, these findings suggest that tachykinin signaling regulates lipid and carbohydrate homeostasis via the insulin signaling pathway.
Collapse
Affiliation(s)
- A N Haddad
- Department of Biology, University of Toronto Mississauga, Mississauga, ON, Canada.
| | - J Leyria
- Department of Biology, University of Toronto Mississauga, Mississauga, ON, Canada.
| | - A B Lange
- Department of Biology, University of Toronto Mississauga, Mississauga, ON, Canada.
| |
Collapse
|
13
|
Kantak KM. Rodent models of attention-deficit hyperactivity disorder: An updated framework for model validation and therapeutic drug discovery. Pharmacol Biochem Behav 2022; 216:173378. [DOI: 10.1016/j.pbb.2022.173378] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Revised: 03/22/2022] [Accepted: 03/28/2022] [Indexed: 01/21/2023]
|
14
|
Campo A, Dufour S, Rousseau K. Tachykinins, new players in the control of reproduction and food intake: A comparative review in mammals and teleosts. Front Endocrinol (Lausanne) 2022; 13:1056939. [PMID: 36589829 PMCID: PMC9800884 DOI: 10.3389/fendo.2022.1056939] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Accepted: 11/07/2022] [Indexed: 12/23/2022] Open
Abstract
In vertebrates, the tachykinin system includes tachykinin genes, which encode one or two peptides each, and tachykinin receptors. The complexity of this system is reinforced by the massive conservation of gene duplicates after the whole-genome duplication events that occurred in vertebrates and furthermore in teleosts. Added to this, the expression of the tachykinin system is more widespread than first thought, being found beyond the brain and gut. The discovery of the co-expression of neurokinin B, encoded by the tachykinin 3 gene, and kisspeptin/dynorphin in neurons involved in the generation of GnRH pulse, in mammals, put a spotlight on the tachykinin system in vertebrate reproductive physiology. As food intake and reproduction are linked processes, and considering that hypothalamic hormones classically involved in the control of reproduction are reported to regulate also appetite and energy homeostasis, it is of interest to look at the potential involvement of tachykinins in these two major physiological functions. The purpose of this review is thus to provide first a general overview of the tachykinin system in mammals and teleosts, before giving a state of the art on the different levels of action of tachykinins in the control of reproduction and food intake. This work has been conducted with a comparative point of view, highlighting the major similarities and differences of tachykinin systems and actions between mammals and teleosts.
Collapse
Affiliation(s)
- Aurora Campo
- Muséum National d’Histoire Naturelle, Research Unit Unité Mixte de Recherche Biologie des Organsimes et Ecosystèmes Aquatiques (UMR BOREA), Biology of Aquatic Organisms and Ecosystems, Centre National pour la Recherche Scientifique (CNRS), Institut de Recherche pour le Développemen (IRD), Sorbonne Université, Paris, France
- Volcani Institute, Agricultural Research Organization, Rishon LeTsion, Israel
| | - Sylvie Dufour
- Muséum National d’Histoire Naturelle, Research Unit Unité Mixte de Recherche Biologie des Organsimes et Ecosystèmes Aquatiques (UMR BOREA), Biology of Aquatic Organisms and Ecosystems, Centre National pour la Recherche Scientifique (CNRS), Institut de Recherche pour le Développemen (IRD), Sorbonne Université, Paris, France
| | - Karine Rousseau
- Muséum National d’Histoire Naturelle, Research Unit Unité Mixte de Recherche Biologie des Organsimes et Ecosystèmes Aquatiques (UMR BOREA), Biology of Aquatic Organisms and Ecosystems, Centre National pour la Recherche Scientifique (CNRS), Institut de Recherche pour le Développemen (IRD), Sorbonne Université, Paris, France
- Muséum National d’Histoire Naturelle, Research Unit PhyMA Physiologie Moléculaire et Adaptation CNRS, Paris, France
- *Correspondence: Karine Rousseau,
| |
Collapse
|
15
|
Harris JA, Faust B, Gondin AB, Dämgen MA, Suomivuori CM, Veldhuis NA, Cheng Y, Dror RO, Thal DM, Manglik A. Selective G protein signaling driven by substance P-neurokinin receptor dynamics. Nat Chem Biol 2022; 18:109-115. [PMID: 34711980 PMCID: PMC8712391 DOI: 10.1038/s41589-021-00890-8] [Citation(s) in RCA: 57] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Accepted: 08/27/2021] [Indexed: 12/20/2022]
Abstract
The neuropeptide substance P (SP) is important in pain and inflammation. SP activates the neurokinin-1 receptor (NK1R) to signal via Gq and Gs proteins. Neurokinin A also activates NK1R, but leads to selective Gq signaling. How two stimuli yield distinct G protein signaling at the same G protein-coupled receptor remains unclear. We determined cryogenic-electron microscopy structures of active NK1R bound to SP or the Gq-biased peptide SP6-11. Peptide interactions deep within NK1R are critical for receptor activation. Conversely, interactions between SP and NK1R extracellular loops are required for potent Gs signaling but not Gq signaling. Molecular dynamics simulations showed that these superficial contacts restrict SP flexibility. SP6-11, which lacks these interactions, is dynamic while bound to NK1R. Structural dynamics of NK1R agonists therefore depend on interactions with the receptor extracellular loops and regulate G protein signaling selectivity. Similar interactions between other neuropeptides and their cognate receptors may tune intracellular signaling.
Collapse
Affiliation(s)
- Julian A Harris
- Department of Pharmaceutical Chemistry, University of California, San Francisco, CA, USA
- Chemistry and Chemical Biology Graduate Program, University of California, San Francisco, CA, USA
| | - Bryan Faust
- Department of Pharmaceutical Chemistry, University of California, San Francisco, CA, USA
- Department of Biochemistry and Biophysics, University of California, San Francisco, CA, USA
- Biophysics Graduate Program, University of California, San Francisco, CA, USA
| | - Arisbel B Gondin
- Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria, Australia
- Australian Research Council Centre of Excellence in Convergent Bio-Nano Science and Technology, Monash University, Parkville, Victoria, Australia
| | - Marc André Dämgen
- Department of Computer Science, Stanford University, Stanford, CA, USA
- Department of Molecular and Cellular Physiology, Stanford University School of Medicine, Stanford, CA, USA
- Department of Structural Biology, Stanford University School of Medicine, Stanford, CA, USA
- Institute for Computational and Mathematical Engineering, Stanford University, Stanford, CA, USA
| | - Carl-Mikael Suomivuori
- Department of Computer Science, Stanford University, Stanford, CA, USA
- Department of Molecular and Cellular Physiology, Stanford University School of Medicine, Stanford, CA, USA
- Department of Structural Biology, Stanford University School of Medicine, Stanford, CA, USA
- Institute for Computational and Mathematical Engineering, Stanford University, Stanford, CA, USA
| | - Nicholas A Veldhuis
- Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria, Australia
- Australian Research Council Centre of Excellence in Convergent Bio-Nano Science and Technology, Monash University, Parkville, Victoria, Australia
| | - Yifan Cheng
- Department of Biochemistry and Biophysics, University of California, San Francisco, CA, USA.
- Howard Hughes Medical Institute, University of California, San Francisco, CA, USA.
| | - Ron O Dror
- Department of Computer Science, Stanford University, Stanford, CA, USA.
- Department of Molecular and Cellular Physiology, Stanford University School of Medicine, Stanford, CA, USA.
- Department of Structural Biology, Stanford University School of Medicine, Stanford, CA, USA.
- Institute for Computational and Mathematical Engineering, Stanford University, Stanford, CA, USA.
| | - David M Thal
- Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria, Australia.
| | - Aashish Manglik
- Department of Pharmaceutical Chemistry, University of California, San Francisco, CA, USA.
- Department of Anesthesia and Perioperative Care, University of California, San Francisco, CA, USA.
| |
Collapse
|
16
|
Shooli H, Nemati R, Ahmadzadehfar H, Aboian M, Jafari E, Jokar N, Nabipour I, Dadgar H, Gholamrezanezhad A, Larvie M, Assadi M. Theranostics in Brain Tumors. PET Clin 2021; 16:397-418. [PMID: 34053584 DOI: 10.1016/j.cpet.2021.03.005] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Theranostic nuclear oncology, mainly in neuro-oncology (neurotheranostics), aims to combine cancer imaging and therapy using the same targeting molecule. This approach tries to identify patients who are most likely to benefit from tumor molecular radionuclide therapy. The ability of radioneurotheranostic agents to interact with cancer cells at the molecular level with high specificity can significantly improve the effectiveness of cancer therapy. A variety of biologic targets are under investigation for treating brain tumors. PET-based precision imaging can substantially improve the therapeutic efficacy of radiotheranostic approach in brain tumors.
Collapse
Affiliation(s)
- Hossein Shooli
- Department of Molecular Imaging and Radionuclide Therapy (MIRT), The Persian Gulf Nuclear Medicine Research Center, Bushehr Medical University Hospital, School of Medicine, Bushehr University of Medical Sciences, Moallem St, Bushehr, Iran
| | - Reza Nemati
- Department of Neurology, Bushehr Medical University Hospital, Bushehr University of Medical Sciences, School of Medicine, Bushehr, Iran
| | | | - Mariam Aboian
- Department of Radiology, Yale University School of Medicine, New Haven, CT, USA
| | - Esmail Jafari
- Department of Molecular Imaging and Radionuclide Therapy (MIRT), The Persian Gulf Nuclear Medicine Research Center, Bushehr Medical University Hospital, School of Medicine, Bushehr University of Medical Sciences, Moallem St, Bushehr, Iran
| | - Narges Jokar
- Department of Molecular Imaging and Radionuclide Therapy (MIRT), The Persian Gulf Nuclear Medicine Research Center, Bushehr Medical University Hospital, School of Medicine, Bushehr University of Medical Sciences, Moallem St, Bushehr, Iran
| | - Iraj Nabipour
- Department of Internal Medicine (Division of Endocrinology), Bushehr Medical University Hospital, The Persian Gulf Tropical Medicine Research Center, The Persian Gulf Biomedical Sciences Research Institute, Bushehr University of Medical Sciences, Bushehr, Iran
| | - Habibollah Dadgar
- Cancer Research Center, RAZAVI Hospital, Imam Reza International University, Mashhad, Iran
| | - Ali Gholamrezanezhad
- Department of Diagnostic Radiology, Keck School of Medicine, University of Southern California (USC), 1520 San Pablo Street, Suite L1600, Los Angeles, CA 90033, USA
| | - Mykol Larvie
- Department of Radiology, Cleveland Clinic, Cleveland, OH, USA
| | - Majid Assadi
- Department of Molecular Imaging and Radionuclide Therapy (MIRT), The Persian Gulf Nuclear Medicine Research Center, Bushehr Medical University Hospital, School of Medicine, Bushehr University of Medical Sciences, Moallem St, Bushehr, Iran.
| |
Collapse
|
17
|
Takamura Y, Kakuta H. In Vivo Receptor Visualization and Evaluation of Receptor Occupancy with Positron Emission Tomography. J Med Chem 2021; 64:5226-5251. [PMID: 33905258 DOI: 10.1021/acs.jmedchem.0c01714] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
Positron emission tomography (PET) is useful for noninvasive in vivo visualization of disease-related receptors, for evaluation of receptor occupancy to determine an appropriate drug dosage, and for proof-of-concept of drug candidates in translational research. For these purposes, the specificity of the PET tracer for the target receptor is critical. Here, we review work in this area, focusing on the chemical structures of reported PET tracers, their Ki/Kd values, and the physical properties relevant to target receptor selectivity. Among these physical properties, such as cLogP, cLogD, molecular weight, topological polar surface area, number of hydrogen bond donors, and pKa, we focus especially on LogD and LogP as important physical properties that can be easily compared across a range of studies. We discuss the success of PET tracers in evaluating receptor occupancy and consider likely future developments in the field.
Collapse
Affiliation(s)
- Yuta Takamura
- Division of Pharmaceutical Sciences, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, 1-1-1, Tsushima-naka, Kita-ku, Okayama 700-8530, Japan
| | - Hiroki Kakuta
- Division of Pharmaceutical Sciences, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, 1-1-1, Tsushima-naka, Kita-ku, Okayama 700-8530, Japan
| |
Collapse
|
18
|
Torres E, Velasco I, Franssen D, Heras V, Gaytan F, Leon S, Navarro VM, Pineda R, Candenas ML, Romero-Ruiz A, Tena-Sempere M. Congenital ablation of Tacr2 reveals overlapping and redundant roles of NK2R signaling in the control of reproductive axis. Am J Physiol Endocrinol Metab 2021; 320:E496-E511. [PMID: 33427049 PMCID: PMC8828271 DOI: 10.1152/ajpendo.00346.2020] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Tachykinin (TAC) signaling is an important element in the central control of reproduction. TAC family is mainly composed of substance P (SP), neurokinin A (NKA), and NKB, which bind preferentially to NK1, NK2, and NK3 receptors, respectively. While most studies have focused on the reproductive functions of NKB/NK3R, and to a lesser extent SP/NK1R, the relevance of NK2R, encoded by Tacr2, remains poorly characterized. Here, we address the physiological roles of NK2R in regulating the reproductive axis by characterizing a novel mouse line with congenital ablation of Tacr2. Activation of NK2R evoked acute luteinizing hormone (LH) responses in control mice, similar to those of agonists of NK1R and NK3R. Despite the absence of NK2R, Tacr2-/- mice displayed only partially reduced LH responses to an NK2R agonist, which, nonetheless, were abrogated after blockade of NK3R in Tacr2-/- males. While Tacr2-/- mice displayed normal pubertal timing, LH pulsatility was partially altered in Tacr2-/- females in adulthood, with suppression of basal LH levels, but no changes in the number of LH pulses. In addition, trends for increase in breeding intervals were detected in Tacr2-/- mice. However, null animals of both sexes were fertile, with no changes in estrous cyclicity or sex preference in social behavioral tests. In conclusion, stimulation of NK2R elicited LH responses in mice, while congenital ablation of Tacr2 partially suppressed basal and stimulated LH secretion, with moderate reproductive impact. Our data support a modest, albeit detectable, role of NK2R in the control of the gonadotropic axis, with partially overlapping and redundant functions with other tachykinin receptors.NEW & NOTEWORTHY We have explored here the impact of congenital ablation of the gene (Tacr2) encoding the tachykinin receptor, NK2R, in terms of neuroendocrine control of the reproductive axis, using a novel Tacr2 KO mouse line. Our data support a modest, albeit detectable, role of NK2R in the control of the gonadotropic axis, with partially overlapping and redundant functions with other tachykinin receptors.
Collapse
Affiliation(s)
- Encarnacion Torres
- Department of Cell Biology, Physiology and Immunology, Instituto Maimonides de Investigación Biomédica de Córdoba (IMIBIC), University of Córdoba, Córdoba, Spain
- CIBER Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Instituto de Salud Carlos III, Córdoba, Spain
| | - Inmaculada Velasco
- Department of Cell Biology, Physiology and Immunology, Instituto Maimonides de Investigación Biomédica de Córdoba (IMIBIC), University of Córdoba, Córdoba, Spain
- CIBER Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Instituto de Salud Carlos III, Córdoba, Spain
| | - Delphine Franssen
- Department of Cell Biology, Physiology and Immunology, Instituto Maimonides de Investigación Biomédica de Córdoba (IMIBIC), University of Córdoba, Córdoba, Spain
- CIBER Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Instituto de Salud Carlos III, Córdoba, Spain
| | - Violeta Heras
- Department of Cell Biology, Physiology and Immunology, Instituto Maimonides de Investigación Biomédica de Córdoba (IMIBIC), University of Córdoba, Córdoba, Spain
- CIBER Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Instituto de Salud Carlos III, Córdoba, Spain
| | - Francisco Gaytan
- Department of Cell Biology, Physiology and Immunology, Instituto Maimonides de Investigación Biomédica de Córdoba (IMIBIC), University of Córdoba, Córdoba, Spain
- CIBER Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Instituto de Salud Carlos III, Córdoba, Spain
| | - Silvia Leon
- Department of Cell Biology, Physiology and Immunology, Instituto Maimonides de Investigación Biomédica de Córdoba (IMIBIC), University of Córdoba, Córdoba, Spain
- CIBER Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Instituto de Salud Carlos III, Córdoba, Spain
- Division of Endocrinology, Department of Medicine, Diabetes, and Hypertension, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts
| | - Victor M Navarro
- Division of Endocrinology, Department of Medicine, Diabetes, and Hypertension, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts
| | - Rafael Pineda
- Department of Cell Biology, Physiology and Immunology, Instituto Maimonides de Investigación Biomédica de Córdoba (IMIBIC), University of Córdoba, Córdoba, Spain
- CIBER Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Instituto de Salud Carlos III, Córdoba, Spain
| | - M Luz Candenas
- Instituto de Investigaciones Químicas, CSIC, Seville, Spain
| | - Antonio Romero-Ruiz
- Department of Cell Biology, Physiology and Immunology, Instituto Maimonides de Investigación Biomédica de Córdoba (IMIBIC), University of Córdoba, Córdoba, Spain
- CIBER Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Instituto de Salud Carlos III, Córdoba, Spain
| | - Manuel Tena-Sempere
- Department of Cell Biology, Physiology and Immunology, Instituto Maimonides de Investigación Biomédica de Córdoba (IMIBIC), University of Córdoba, Córdoba, Spain
- CIBER Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Instituto de Salud Carlos III, Córdoba, Spain
- Research Centre for Integrative Physiology and Pharmacology, Institute of Biomedicine and Turku Center for Disease Modeling, University of Turku, Turku, Finland
| |
Collapse
|
19
|
Dudás B, Merchenthaler I. Morphology and distribution of hypothalamic peptidergic systems. HANDBOOK OF CLINICAL NEUROLOGY 2021; 179:67-85. [PMID: 34225984 DOI: 10.1016/b978-0-12-819975-6.00002-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Neuropeptides participate in the regulation of numerous hypothalamic functions that are aimed for sustaining the homeostasis of the organism. These neuropeptides can act in two different levels. They can influence the release of hormones from the adenohypophysis via the portal circulation; in addition, they can act as neurotransmitters/neuromodulators modulating the functioning of numerous hypothalamic neurotransmitter systems. Indeed, most of these peptidergic systems form a complex network in the infundibular and periventricular nuclei of the human hypothalamus, communicating with each other by synaptic connections that may control fundamental physiologic functions. In the present chapter, we provide an overview of the distribution of neuropeptides in the human hypothalamus using immunohistochemistry and high-resolution, three-dimensional mapping.
Collapse
Affiliation(s)
- Bertalan Dudás
- Neuroendocrine Organization Laboratory, Lake Erie College of Osteopathic Medicine, Erie, PA, United States; Department of Anatomy, Histology and Embryology, University of Szeged, Szeged, Hungary.
| | - István Merchenthaler
- Department of Epidemiology and Public Health and of Anatomy and Neurobiology, University of Maryland Baltimore, Baltimore, MD, United States
| |
Collapse
|
20
|
Rodionova K, Hilgers KF, Paulus EM, Tiegs G, Ott C, Schmieder R, Schiffer M, Amann K, Veelken R, Ditting T. Neurogenic tachykinin mechanisms in experimental nephritis of rats. Pflugers Arch 2020; 472:1705-1717. [PMID: 33070237 PMCID: PMC7691313 DOI: 10.1007/s00424-020-02469-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2020] [Revised: 08/07/2020] [Accepted: 09/30/2020] [Indexed: 01/24/2023]
Abstract
We demonstrated earlier that renal afferent pathways combine very likely “classical” neural signal transduction to the central nervous system and a substance P (SP)–dependent mechanism to control sympathetic activity. SP content of afferent sensory neurons is known to mediate neurogenic inflammation upon release. We tested the hypothesis that alterations in SP-dependent mechanisms of renal innervation contribute to experimental nephritis. Nephritis was induced by OX-7 antibodies in rats, 6 days later instrumented for recording of blood pressure (BP), heart rate (HR), drug administration, and intrarenal administration (IRA) of the TRPV1 agonist capsaicin to stimulate afferent renal nerve pathways containing SP and electrodes for renal sympathetic nerve activity (RSNA). The presence of the SP receptor NK-1 on renal immune cells was assessed by FACS. IRA capsaicin decreased RSNA from 62.4 ± 5.1 to 21.6 ± 1.5 mV s (*p < 0.05) in controls, a response impaired in nephritis. Suppressed RSNA transiently but completely recovered after systemic administration of a neurokinin 1 (NK1-R) blocker. NK-1 receptors occurred mainly on CD11+ dendritic cells (DCs). An enhanced frequency of CD11c+NK1R+ cell, NK-1 receptor+ macrophages, and DCs was assessed in nephritis. Administration of the NK-1R antagonist aprepitant during nephritis reduced CD11c+NK1R+ cells, macrophage infiltration, renal expression of chemokines, and markers of sclerosis. Hence, SP promoted renal inflammation by weakening sympathoinhibitory mechanisms, while at the same time, substance SP released intrarenally from afferent nerve fibers aggravated immunological processes i.e. by the recruitment of DCs.
Collapse
Affiliation(s)
- Kristina Rodionova
- Department of Internal Medicine 4 (Nephrology und Hypertension), Friedrich-Alexander University Erlangen, Loschgestraße 8, 91054, Erlangen, Germany
| | - Karl F Hilgers
- Department of Internal Medicine 4 (Nephrology und Hypertension), Friedrich-Alexander University Erlangen, Loschgestraße 8, 91054, Erlangen, Germany
| | - Eva-Maria Paulus
- Department of Internal Medicine 4 (Nephrology und Hypertension), Friedrich-Alexander University Erlangen, Loschgestraße 8, 91054, Erlangen, Germany
| | - Gisa Tiegs
- Center of Internal Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Christian Ott
- Department of Internal Medicine 4 (Nephrology und Hypertension), Friedrich-Alexander University Erlangen, Loschgestraße 8, 91054, Erlangen, Germany.,Department of Internal Medicine 4 (Nephrology und Hypertension), Paracelsus Private Medical School, Klinikum Nuremberg, Nuremberg, Germany
| | - Roland Schmieder
- Department of Internal Medicine 4 (Nephrology und Hypertension), Friedrich-Alexander University Erlangen, Loschgestraße 8, 91054, Erlangen, Germany
| | - Mario Schiffer
- Department of Internal Medicine 4 (Nephrology und Hypertension), Friedrich-Alexander University Erlangen, Loschgestraße 8, 91054, Erlangen, Germany
| | - Kerstin Amann
- Department of Nephropathology, University of Erlangen, Erlangen, Germany
| | - Roland Veelken
- Department of Internal Medicine 4 (Nephrology und Hypertension), Friedrich-Alexander University Erlangen, Loschgestraße 8, 91054, Erlangen, Germany. .,Department of Internal Medicine 4 (Nephrology und Hypertension), Paracelsus Private Medical School, Klinikum Nuremberg, Nuremberg, Germany.
| | - Tilmann Ditting
- Department of Internal Medicine 4 (Nephrology und Hypertension), Friedrich-Alexander University Erlangen, Loschgestraße 8, 91054, Erlangen, Germany.,Department of Internal Medicine 4 (Nephrology und Hypertension), Paracelsus Private Medical School, Klinikum Nuremberg, Nuremberg, Germany
| |
Collapse
|
21
|
Vadhan JD, Speth RC. The role of the brain renin-angiotensin system (RAS) in mild traumatic brain injury (TBI). Pharmacol Ther 2020; 218:107684. [PMID: 32956721 DOI: 10.1016/j.pharmthera.2020.107684] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/04/2020] [Indexed: 02/07/2023]
Abstract
There is considerable interest in traumatic brain injury (TBI) induced by repeated concussions suffered by athletes in sports, military personnel from combat-and non-combat related activities, and civilian populations who suffer head injuries from accidents and domestic violence. Although the renin-angiotensin system (RAS) is primarily a systemic cardiovascular regulatory system that, when dysregulated, causes hypertension and cardiovascular pathology, the brain contains a local RAS that plays a critical role in the pathophysiology of several neurodegenerative diseases. This local RAS includes receptors for angiotensin (Ang) II within the brain parenchyma, as well as on circumventricular organs outside the blood-brain-barrier. The brain RAS acts primarily via the type 1 Ang II receptor (AT1R), exacerbating insults and pathology. With TBI, the brain RAS may contribute to permanent brain damage, especially when a second TBI occurs before the brain recovers from an initial injury. Agents are needed that minimize the extent of injury from an acute TBI, reducing TBI-mediated permanent brain damage. This review discusses how activation of the brain RAS following TBI contributes to this damage, and how drugs that counteract activation of the AT1R including AT1R blockers (ARBs), renin inhibitors, angiotensin-converting enzyme (ACE) inhibitors, and agonists at type 2 Ang II receptors (AT2) and at Ang (1-7) receptors (Mas) can potentially ameliorate TBI-induced brain damage.
Collapse
Affiliation(s)
- Jason D Vadhan
- College of Osteopathic Medicine, Nova Southeastern University, Fort Lauderdale, FL, United States of America
| | - Robert C Speth
- Department of Pharmaceutical Sciences, College of Pharmacy, Nova Southeastern University, Fort Lauderdale, FL, United States of America; School of Medicine, Georgetown University, Washington, DC, United States of America.
| |
Collapse
|
22
|
Jain AR, Britton ZT, Markwalter CE, Robinson AS. Improved ligand-binding- and signaling-competent human NK2R yields in yeast using a chimera with the rat NK2R C-terminus enable NK2R-G protein signaling platform. Protein Eng Des Sel 2020; 32:459-469. [PMID: 32400863 DOI: 10.1093/protein/gzaa009] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2019] [Revised: 03/09/2020] [Accepted: 04/16/2020] [Indexed: 02/07/2023] Open
Abstract
The tachykinin 2 receptor (NK2R) plays critical roles in gastrointestinal, respiratory and mental disorders and is a well-recognized target for therapeutic intervention. To date, therapeutics targeting NK2R have failed to meet regulatory agency approval due in large part to the limited characterization of the receptor-ligand interaction and downstream signaling. Herein, we report a protein engineering strategy to improve ligand-binding- and signaling-competent human NK2R that enables a yeast-based NK2R signaling platform by creating chimeras utilizing sequences from rat NK2R. We demonstrate that NK2R chimeras incorporating the rat NK2R C-terminus exhibited improved ligand-binding yields and downstream signaling in engineered yeast strains and mammalian cells, where observed yields were better than 4-fold over wild type. This work builds on our previous studies that suggest exchanging the C-termini of related and well-expressed family members may be a general protein engineering strategy to overcome limitations to ligand-binding and signaling-competent G protein-coupled receptor yields in yeast. We expect these efforts to result in NK2R drug candidates with better characterized signaling properties.
Collapse
Affiliation(s)
- Abhinav R Jain
- Department of Chemical and Biomolecular Engineering, Tulane University, 6823 St Charles Ave, New Orleans, LA, 70118, USA
| | - Zachary T Britton
- Department of Chemical and Biomolecular Engineering, University of Delaware, 150 Academy St, Newark, DE, 19716, USA.,AstraZeneca, Antibody Discovery and Protein Engineering, Gaithersburg, MD 20878, USA
| | - Chester E Markwalter
- Department of Chemical and Biomolecular Engineering, University of Delaware, 150 Academy St, Newark, DE, 19716, USA.,Department of Chemical and Biological Engineering, Princeton University, Princeton, NJ 08544, USA
| | - Anne S Robinson
- Department of Chemical and Biomolecular Engineering, Tulane University, 6823 St Charles Ave, New Orleans, LA, 70118, USA.,Department of Chemical and Biomolecular Engineering, University of Delaware, 150 Academy St, Newark, DE, 19716, USA.,Department of Chemical Engineering, Carnegie Mellon University, Pittsburgh, PA 15213, USA
| |
Collapse
|
23
|
Zhang J, Ma C, Wang R, He C, Li H, Dong S. Endokinin A/B stimulates rat gastric motility through myogenic NK1 receptors located in the fundus. Can J Physiol Pharmacol 2020; 98:691-699. [PMID: 32365302 DOI: 10.1139/cjpp-2019-0522] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Endokinin A/B (EKA/B), the common C-terminal decapeptide in endokinins A and B, is a preferred ligand of the NK1 receptor and regulates pain and itch. The study focused on the effects of EKA/B on rat gastric motility in vivo and in vitro. Gastric emptying was measured to evaluate gastric motility in vivo. Intragastric pressure and the contraction of gastric muscle strips were measured to evaluate gastric motility in vitro. Moreover, various neural blocking agents and neurokinin receptor antagonists were applied to explore the mechanisms. TAC4 and TACR1 mRNAs were expressed throughout rat stomach. EKA/B promoted gastric emptying by intraperitoneal injection in vivo. Correspondingly, EKA/B also increased intragastric pressure in vitro. Additionally, EKA/B contracted the gastric muscle strips from the fundus but not from the corpus or antrum. Further studies revealed that the contraction induced by EKA/B on muscle strips from the fundus could be significantly reduced by NK1 receptor antagonist SR140333 but not by NK2 receptor antagonist, NK3 receptor antagonist, or the neural blocking agents used. Our results suggested that EKA/B might stimulate gastric motility mainly through the direct activation of myogenic NK1 receptors located in the fundus.
Collapse
Affiliation(s)
- Jing Zhang
- Institute of Biochemistry and Molecular Biology, School of Life Sciences, Lanzhou University, 222 Tianshui South Road, Lanzhou 730000, People's Republic of China
| | - Chan Ma
- Institute of Biochemistry and Molecular Biology, School of Life Sciences, Lanzhou University, 222 Tianshui South Road, Lanzhou 730000, People's Republic of China
| | - Ruijia Wang
- Institute of Biochemistry and Molecular Biology, School of Life Sciences, Lanzhou University, 222 Tianshui South Road, Lanzhou 730000, People's Republic of China
| | - Chunbo He
- Institute of Biochemistry and Molecular Biology, School of Life Sciences, Lanzhou University, 222 Tianshui South Road, Lanzhou 730000, People's Republic of China
| | - Hailan Li
- Institute of Biochemistry and Molecular Biology, School of Life Sciences, Lanzhou University, 222 Tianshui South Road, Lanzhou 730000, People's Republic of China
| | - Shouliang Dong
- Institute of Biochemistry and Molecular Biology, School of Life Sciences, Lanzhou University, 222 Tianshui South Road, Lanzhou 730000, People's Republic of China.,Key Laboratory of Preclinical Study for New Drugs of Gansu Province, Lanzhou University, 222 Tianshui South Road, Lanzhou 730000, People's Republic of China
| |
Collapse
|
24
|
The Role of Tachykinins in the Initiation and Progression of Gastrointestinal Cancers: A Review. INTERNATIONAL JOURNAL OF CANCER MANAGEMENT 2020. [DOI: 10.5812/ijcm.100717] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
|
25
|
Khorasani S, Boroumand N, Lavi Arab F, Hashemy SI. The immunomodulatory effects of tachykinins and their receptors. J Cell Biochem 2020; 121:3031-3041. [PMID: 32115751 DOI: 10.1002/jcb.29668] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2019] [Accepted: 01/16/2020] [Indexed: 12/26/2022]
Abstract
Tachykinins (TKs) are a family of neuropeptides mainly expressed by neuronal and non-neuronal cell types, especially immune cells. Expression of TKs receptors on immune cell surfaces, their involvement in immune-related disorders, and therefore, understanding their immunomodulatory roles have become of particular interest to researchers. In fact, the precise understanding of TKs intervention in the immune system would help to design novel therapeutic approaches for patients suffering from immune disorders. The present review summarizes studies on TKs function as modulators of the immune system by reviewing their roles in generation, activation, development, and migration of immune cells. Also, it discusses TKs involvement in three main cellular mechanisms including inflammation, apoptosis, and proliferation.
Collapse
Affiliation(s)
- Sahar Khorasani
- Ferdows Paramedical School, Birjand University of Medical Sciences, Birjand, Iran
| | - Nadia Boroumand
- Student Research Committee, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran.,Department of Clinical Biochemistry, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Fahimeh Lavi Arab
- Immunology Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Seyed Isaac Hashemy
- Surgical Oncology Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
26
|
Gholamrezanezhad A, Shooli H, Jokar N, Nemati R, Assadi M. Radioimmunotherapy (RIT) in Brain Tumors. Nucl Med Mol Imaging 2019; 53:374-381. [PMID: 31867072 PMCID: PMC6898703 DOI: 10.1007/s13139-019-00618-6] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2019] [Revised: 10/02/2019] [Accepted: 10/11/2019] [Indexed: 12/27/2022] Open
Abstract
Annually, the incidence of brain tumors has slightly increased and also the patient prognosis is still disappointing, especially for high-grade neoplasms. So, researchers seek methods to improve therapeutic index as a critical aim of treatment. One of these new challenging methods is radioimmunotherapy (RIT) that involves recruiting a coupling of radionuclide component with monoclonal antibody (mAb) which are targeted against cell surface tumor-related antigens or antigens of cells within the tumor microenvironment. In the context of cancer care, precision medicine is exemplified by RIT; precision medicine can offer a tailored treatment to meet the needs for treatment of brain tumors. This review aims to discuss the molecular targets used in radioimmunotherapy of brain tumors, available and future radioimmunopharmaceutics, clinical trials of radioimmunotherapy in brain neoplasms, and eventually, conclusion and future perspective of application of radioimmunotherapy in neurooncology cancer care.
Collapse
Affiliation(s)
- Ali Gholamrezanezhad
- Department of Diagnostic Radiology, Keck School of Medicine, University of Southern California (USC), 1520 San Pablo Street, Suite L1600, Los Angeles, CA 90033 USA
| | - Hossein Shooli
- Department of Molecular Imaging and Radionuclide Therapy (MIRT), The Persian Gulf Nuclear Medicine Research Center, Bushehr Medical University Hospital, Faculty of Medicine, Bushehr University of Medical Sciences, Bushehr, Iran
| | - Narges Jokar
- Department of Molecular Imaging and Radionuclide Therapy (MIRT), The Persian Gulf Nuclear Medicine Research Center, Bushehr Medical University Hospital, Faculty of Medicine, Bushehr University of Medical Sciences, Bushehr, Iran
| | - Reza Nemati
- Department of Neurology, Bushehr Medical University Hospital, Faculty of Medicine, Bushehr University of Medical Sciences, Bushehr, Iran
| | - Majid Assadi
- Department of Molecular Imaging and Radionuclide Therapy (MIRT), The Persian Gulf Nuclear Medicine Research Center, Bushehr Medical University Hospital, Faculty of Medicine, Bushehr University of Medical Sciences, Bushehr, Iran
| |
Collapse
|
27
|
Dér B, Molnár PJ, Ruisanchez É, Őrsy P, Kerék M, Faragó B, Nyirády P, Offermanns S, Benyó Z. NK2 receptor-mediated detrusor muscle contraction involves G q/11-dependent activation of voltage-dependent Ca 2+ channels and the RhoA-Rho kinase pathway. Am J Physiol Renal Physiol 2019; 317:F1154-F1163. [PMID: 31461351 DOI: 10.1152/ajprenal.00106.2019] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
Tachykinins (TKs) are involved in both the physiological regulation of urinary bladder functions and development of overactive bladder syndrome. The aim of the present study was to investigate the signal transduction pathways of TKs in the detrusor muscle to provide potential pharmacological targets for the treatment of bladder dysfunctions related to enhanced TK production. Contraction force, intracellular Ca2+ concentration, and RhoA activity were measured in the mouse urinary bladder smooth muscle (UBSM). TKs and the NK2 receptor (NK2R)-specific agonist [β-Ala8]-NKA(4-10) evoked contraction, which was inhibited by the NKR2 antagonist MEN10376. In Gαq/11-deficient mice, [β-Ala8]-NKA(4-10)-induced contraction and the intracellular Ca2+ concentration increase were abolished. Although Gq/11 proteins are linked principally to phospholipase Cβ and inositol trisphosphate-mediated Ca2+ release from intracellular stores, we found that phospholipase Cβ inhibition and sarcoplasmic reticulum Ca2+ depletion failed to have any effect on contraction induced by [β-Ala8]-NKA(4-10). In contrast, lack of extracellular Ca2+ or blockade of voltage-dependent Ca2+ channels (VDCCs) suppressed contraction. Furthermore, [β-Ala8]-NKA(4-10) increased RhoA activity in the UBSM in a Gq/11-dependent manner and inhibition of Rho kinase with Y-27632 decreased contraction force, whereas the combination of Y-27632 with either VDCC blockade or depletion of extracellular Ca2+ resulted in complete inhibition of [β-Ala8]-NKA(4-10)-induced contractions. In summary, our results indicate that NK2Rs are linked exclusively to Gq/11 proteins in the UBSM and that the intracellular signaling involves the simultaneous activation of VDCC and the RhoA-Rho kinase pathway. These findings may help to identify potential therapeutic targets of bladder dysfunctions related to upregulation of TKs.
Collapse
Affiliation(s)
- Bálint Dér
- Institute of Translational Medicine, Semmelweis University, Budapest, Hungary
| | - Péter József Molnár
- Institute of Translational Medicine, Semmelweis University, Budapest, Hungary.,Department of Urology, Semmelweis University, Budapest, Hungary
| | - Éva Ruisanchez
- Institute of Translational Medicine, Semmelweis University, Budapest, Hungary
| | - Petra Őrsy
- Institute of Translational Medicine, Semmelweis University, Budapest, Hungary
| | - Margit Kerék
- Institute of Translational Medicine, Semmelweis University, Budapest, Hungary
| | - Bernadett Faragó
- Institute of Translational Medicine, Semmelweis University, Budapest, Hungary
| | - Péter Nyirády
- Department of Urology, Semmelweis University, Budapest, Hungary
| | - Stefan Offermanns
- Department of Pharmacology, Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany
| | - Zoltán Benyó
- Institute of Translational Medicine, Semmelweis University, Budapest, Hungary
| |
Collapse
|
28
|
Peng L, Agogo GO, Guo J, Yan M. Substance P and fibrotic diseases. Neuropeptides 2019; 76:101941. [PMID: 31256921 DOI: 10.1016/j.npep.2019.101941] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/12/2018] [Revised: 06/20/2019] [Accepted: 06/20/2019] [Indexed: 02/06/2023]
Abstract
Substance P (SP) is an undecapeptide encoding the tachykinin 1 (TAC1) gene and belongs to the tachykinin family. SP is widely distributed in the central nervous system and the peripheral nervous system. SP is also produced by nonneuronal cells, such as inflammatory cells and endothelial cells. The biological activities of SP are mainly regulated through the high-affinity neurokinin 1 receptor (NK-1R). The SP/NK-1R system plays an important role in the molecular bases of many human pathophysiologic processes, such as pain, infectious and inflammatory diseases, and cancer. In addition, this system has been implicated in fibrotic diseases and processes such as wound healing, myocardial fibrosis, bowel fibrosis, myelofibrosis, renal fibrosis, and lung fibrosis. Recently, studies have shown that SP plays an important role in liver fibrosis and that NK-1R antagonists can inhibit the progression of fibrosis. NK-1R receptor antagonists could provide clinical solutions for fibrotic diseases. This review summarizes the structure and function of SP and its involvement in fibrotic diseases.
Collapse
Affiliation(s)
- Lei Peng
- Department of Gastroenterology, The Second Hospital of Shandong University, Jinan, Shandong Province, China.
| | - George O Agogo
- Department of Internal Medicine, Medical School of Yale University, New Haven, CT 06511, USA.
| | - Jianqiang Guo
- Department of Gastroenterology, The Second Hospital of Shandong University, Jinan, Shandong Province, China.
| | - Ming Yan
- Department of Hepatology and Gastroenterology, Qilu Hospital of Shandong University, Jinan, Shandong Province, China.
| |
Collapse
|
29
|
|
30
|
He ZX, Liu TY, Yin YY, Song HF, Zhu XJ. Substance P plays a critical role in synaptic transmission in striatal neurons. Biochem Biophys Res Commun 2019; 511:369-373. [PMID: 30803756 DOI: 10.1016/j.bbrc.2019.02.055] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2019] [Accepted: 02/10/2019] [Indexed: 01/03/2023]
Abstract
Substance P is one of the major neuropeptides released by striatal neurons; however, its function in the striatum remains unclear. In this study, we found substance P triggers spontaneous neurotransmitter release and rapid synaptic vesicle exocytosis in cultured striatal neurons, as substance P knockdown in these neurons impaired spontaneous neurotransmitter release and calcium-dependent rapid synaptic neurotransmission. Furthermore, treatment with exogenous substance P completely rescued the synaptic dysfunction phenotype in striatal neurons lacking this neuropeptide. On the other hand, substance P knockdown had no effect on the size of the readily releasable pool of synaptic vesicles, but decreased the probability of presynaptic release of synaptic vesicles in cultured striatal neurons. Treatment with CP96345, a NK1 receptor antagonist, also resulted in synaptic defects in cultured striatal neurons. In summary, we propose substance P is critical for synaptic transmission in striatal neurons.
Collapse
Affiliation(s)
- Zi-Xuan He
- Key Laboratory of Molecular Epigenetics Ministry of Education, Institute of Genetics and Cytology, Northeast Normal University, Changchun, 130021, China.
| | - Ting-Yu Liu
- Key Laboratory of Molecular Epigenetics Ministry of Education, Institute of Genetics and Cytology, Northeast Normal University, Changchun, 130021, China
| | - Yue-Yue Yin
- Key Laboratory of Molecular Epigenetics Ministry of Education, Institute of Genetics and Cytology, Northeast Normal University, Changchun, 130021, China
| | - Hui-Fang Song
- Key Laboratory of Molecular Epigenetics Ministry of Education, Institute of Genetics and Cytology, Northeast Normal University, Changchun, 130021, China
| | - Xiao-Juan Zhu
- Key Laboratory of Molecular Epigenetics Ministry of Education, Institute of Genetics and Cytology, Northeast Normal University, Changchun, 130021, China
| |
Collapse
|
31
|
Role of neurotransmitters 5-hydroxytryptamine and substance P in anorexia induction following oral exposure to the trichothecene T-2 toxin. Food Chem Toxicol 2019; 123:1-8. [DOI: 10.1016/j.fct.2018.10.041] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2018] [Revised: 10/07/2018] [Accepted: 10/15/2018] [Indexed: 12/14/2022]
|
32
|
Farjadian F, Ghasemi A, Gohari O, Roointan A, Karimi M, Hamblin MR. Nanopharmaceuticals and nanomedicines currently on the market: challenges and opportunities. Nanomedicine (Lond) 2019; 14:93-126. [PMID: 30451076 PMCID: PMC6391637 DOI: 10.2217/nnm-2018-0120] [Citation(s) in RCA: 327] [Impact Index Per Article: 54.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2018] [Accepted: 10/15/2018] [Indexed: 12/23/2022] Open
Abstract
There has been a revolution in nanotechnology and nanomedicine. Since 1980, there has been a remarkable increase in approved nano-based pharmaceutical products. These novel nano-based systems can either be therapeutic agents themselves, or else act as vehicles to carry different active pharmaceutical agents into specific parts of the body. Currently marketed nanostructures include nanocrystals, liposomes and lipid nanoparticles, PEGylated polymeric nanodrugs, other polymers, protein-based nanoparticles and metal-based nanoparticles. A range of issues must be addressed in the development of these nanostructures. Ethics, market size, possibility of market failure, costs and commercial development, are some topics which are on the table to be discussed. After passing all the ethical and biological assessments, and satisfying the investors as to future profitability, only a handful of these nanoformulations, successfully obtained marketing approval. We survey the range of nanomedicines that have received regulatory approval and are marketed. We discuss ethics, costs, commercial development and possible market failure. We estimate the global nanomedicine market size and future growth. Our goal is to summarize the different approved nanoformulations on the market, and briefly cover the challenges and future outlook.
Collapse
Affiliation(s)
- Fatemeh Farjadian
- Pharmaceutical Sciences Research Center, Shiraz University of Medical Sciences, Shiraz 71468-64685, Iran
| | - Amir Ghasemi
- Department of Materials Science & Engineering, Sharif University of Technology, Tehran 11365-9466, Iran
- Advances Nanobiotechnology & Nanomedicine Research Group (ANNRG), Iran University of Medical Sciences, Tehran 14496-4535, Iran
| | - Omid Gohari
- Department of Materials Science & Engineering, Sharif University of Technology, Tehran 11365-9466, Iran
| | - Amir Roointan
- Department of Medical Biotechnology, School of Advanced Medical Sciences & Technologies, Shiraz University of Medical Science, Shiraz 71348-14336, Iran
| | - Mahdi Karimi
- Cellular & Molecular Research Center, Iran University of Medical Sciences, Tehran 14496-14535, Iran
- Department of Medical Nanotechnology, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences, Tehran 14496-14535, Iran
- Wellman Center for Photomedicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
| | - Michael R Hamblin
- Wellman Center for Photomedicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
- Department of Dermatology, Harvard Medical School, Boston, MA 02115, USA
- Harvard – MIT Division of Health Sciences & Technology, Cambridge, MA 02139, USA
| |
Collapse
|
33
|
Li Q, Wu X, Yang Y, Zhang Y, He F, Xu X, Zhang Z, Tao L, Luo C. Tachykinin NK1 receptor antagonist L-733,060 and substance P deletion exert neuroprotection through inhibiting oxidative stress and cell death after traumatic brain injury in mice. Int J Biochem Cell Biol 2018; 107:154-165. [PMID: 30593954 DOI: 10.1016/j.biocel.2018.12.018] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2018] [Revised: 12/22/2018] [Accepted: 12/25/2018] [Indexed: 01/16/2023]
Abstract
Substance P (SP) is believed to play a role in traumatic brain injury (TBI), and the inhibition of binding of SP to the tachykinin neurokinin-1 receptor (NK1R) using NK1R antagonists had made favorable effects on TBI. Our current study addresses the functional roles and underlying mechanisms of SP and NK1R antagonist L-733,060 following TBI. Adult male wild type C57BL/6 J and SP knock out (SPKO) mice received a controlled cortical impact and outcome parameters were assessed. The results showed that TBI-induced motor and spatial memory deficits, lesion volume, brain water content and blood-brain barrier disruption were alleviated both in L-733,060-treated C57BL/6 J mice and vehicle-treated SPKO mice. L-733,060 treatment and SP deletion inhibited TBI-induced the release of cytochrome c from mitochondria to cytoplasm, activation of caspase-3, oxidative stress and neuroinflammation. Higher SP levels in serum and cortex were observed in wild type mice undergoing TBI relative to wild type sham group, but very little expression of cortical SP was detected in the SP-/- mice either TBI or not. Upregulation of NK1R expression after TBI was observed, and there was no significant difference between wild type and SPKO groups. in vitro, L-733,060 and SP deletion inhibited scratch injury-induced cell death, loss of mitochondrial membrane potential and reactive oxygen species (ROS) production following TBI. Together, the results of this study implicate a functional role for NK1-R antagonist L-733,060 and deletion of SP in TBI-induced neurological outcome, oxidative damage, neuroinflammation and cell death. Upregulation of NK1R maybe a consequence of TBI, independent of the levels of substance P. This study raises the possibility that targeting SP through its receptor NK1R or genetic deletion may have therapeutic efficacy in TBI.
Collapse
Affiliation(s)
- Qianqian Li
- School of Forensic Medicine, Wannan Medical College, Wuhu, 241002, Anhui, China
| | - Xiao Wu
- School of Forensic Medicine, Wannan Medical College, Wuhu, 241002, Anhui, China
| | - Yanyan Yang
- School of Forensic Medicine, Wannan Medical College, Wuhu, 241002, Anhui, China
| | - Yue Zhang
- School of Forensic Medicine, Wannan Medical College, Wuhu, 241002, Anhui, China
| | - Fang He
- School of Forensic Medicine, Wannan Medical College, Wuhu, 241002, Anhui, China
| | - Xiang Xu
- School of Forensic Medicine, Wannan Medical College, Wuhu, 241002, Anhui, China
| | - Ziwei Zhang
- School of Forensic Medicine, Wannan Medical College, Wuhu, 241002, Anhui, China
| | - Luyang Tao
- Department of Forensic Medicine, Medical College of Soochow University, Suzhou, 215123, Jiangsu, China
| | - Chengliang Luo
- Department of Forensic Medicine, Medical College of Soochow University, Suzhou, 215123, Jiangsu, China.
| |
Collapse
|
34
|
Gadais C, Ballet S. The Neurokinins: Peptidomimetic Ligand Design and Therapeutic Applications. Curr Med Chem 2018; 27:1515-1561. [PMID: 30209994 DOI: 10.2174/0929867325666180913095918] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2018] [Revised: 08/09/2018] [Accepted: 08/13/2018] [Indexed: 12/15/2022]
Abstract
The neurokinins are indisputably essential neurotransmitters in numerous pathoand physiological events. Being widely distributed in the Central Nervous System (CNS) and peripheral tissues, their discovery rapidly promoted them to drugs targets. As a necessity for molecular tools to understand the biological role of this class, endogenous peptides and their receptors prompted the scientific community to design ligands displaying either agonist and antagonist activity at the three main neurokinin receptors, called NK1, NK2 and NK3. Several strategies were implemented for this purpose. With a preference to small non-peptidic ligands, many research groups invested efforts in synthesizing and evaluating a wide range of scaffolds, but only the NK1 antagonist Aprepitant (EMENDT) and its prodrug Fosaprepitant (IVEMENDT) have been approved by the Food Drug Administration (FDA) for the treatment of Chemotherapy-Induced and Post-Operative Nausea and Vomiting (CINV and PONV, respectively). While non-peptidic drugs showed limitations, especially in side effect control, peptidic and pseudopeptidic compounds progressively regained attention. Various strategies were implemented to modulate affinity, selectivity and activity of the newly designed ligands. Replacement of canonical amino acids, incorporation of conformational constraints, and fusion with non-peptidic moieties gave rise to families of ligands displaying individual or dual NK1, NK2 and NK3 antagonism, that ultimately were combined with non-neurokinin ligands (such as opioids) to target enhanced biological impact.
Collapse
Affiliation(s)
- Charlène Gadais
- Research Group of Organic Chemistry, Departments of Chemistry and Bioengineering Sciences, Vrije Universiteit Brussels, Pleinlaan 2, B-1050 Brussels, Belgium
| | - Steven Ballet
- Research Group of Organic Chemistry, Departments of Chemistry and Bioengineering Sciences, Vrije Universiteit Brussels, Pleinlaan 2, B-1050 Brussels, Belgium
| |
Collapse
|
35
|
Ożegowska K, Dyszkiewicz-Konwińska M, Celichowski P, Nawrocki MJ, Bryja A, Jankowski M, Kranc W, Brązert M, Knap S, Jeseta M, Skowroński MT, Bukowska D, Antosik P, Brüssow KP, Bręborowicz A, Bruska M, Nowicki M, Pawelczyk L, Zabel M, Kempisty B. Expression pattern of new genes regulating female sex differentiation and in vitro maturational status of oocytes in pigs. Theriogenology 2018; 121:122-133. [PMID: 30145542 DOI: 10.1016/j.theriogenology.2018.08.019] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2018] [Revised: 08/16/2018] [Accepted: 08/17/2018] [Indexed: 02/07/2023]
Abstract
The processes underlying maturation of mammalian oocytes are considered crucial for the oocytes ability to undergo monospermic fertilization. The same factors of influence are suggested to impact the development of sex associated characteristics, allowing sex differentiation to progress during embryonic growth. The primary aim of the study was to analyze the gene ontology groups involved in regulation of porcine oocytes' response to endogenous stimuli. The results obtained would indicate potential genes influencing sex differentiation. Additionally, they could help to determine new genetic markers, expression profile of which is substantially regulated during porcine oocytes' in vitro maturation. To achieve that, porcine oocytes were collected for analysis before and after in vitro maturation. Pigs were used as they are a readily available model that presents significant similarity to humans in terms of physiology and anatomy. Microarray analysis of oocytes, before and after in vitro maturation was performed and later validated by RT-qPCR. We have particularly detected and analyzed genes belonging to gene ontology groups associated with hormonal stimulation during maturation of the oocytes, that exhibited significant change in expression (fold change ≥ |2|; p < 0.05) namely "Female sex differentiation" (CCND2, MMP14, VEGFA, FST, INHBA, NR5A1), "Response to endogenous stimulus" (INSR, ESR1, CCND2, TXNIP, TACR3, MMP14, FOS, AR, EGR2, IGFBP7, TGFBR3, BTG2, PLD1, PHIP, UBE2B) and "Response to estrogen stimulus" (INSR, ESR1, CCND2, IHH, TXNIP, TACR3, MMP14). Some of them were characteristic for just one of the described ontologies, while some belonged into multiple ontological terms. The genes were analyzed, with their relation to the processes of interest explained. Overall, the study provides us with a range of genes that might serve as molecular markers of in vitro maturation associated processes of the oocytes. This knowledge might serve as a reference for further studies and, after further validation, as a potentially useful knowledge in assessment of the oocytes during assisted reproduction processes.
Collapse
Affiliation(s)
- Katarzyna Ożegowska
- Division of Infertility and Reproductive Endocrinology, Department of Gynecology, Obstetrics and Gynecological Oncology, Poznan University of Medical Sciences, Poznan, Poland
| | - Marta Dyszkiewicz-Konwińska
- Department of Biomaterials and Experimental Dentistry, Poznań University of Medical Sciences, Poznań, Poland; Department of Anatomy, Poznan University of Medical Sciences, Poznan, Poland
| | - Piotr Celichowski
- Department of Histology and Embryology, Poznan University of Medical Sciences, Poznan, Poland
| | - Mariusz J Nawrocki
- Department of Anatomy, Poznan University of Medical Sciences, Poznan, Poland
| | - Artur Bryja
- Department of Anatomy, Poznan University of Medical Sciences, Poznan, Poland
| | - Maurycy Jankowski
- Department of Anatomy, Poznan University of Medical Sciences, Poznan, Poland
| | - Wiesława Kranc
- Department of Anatomy, Poznan University of Medical Sciences, Poznan, Poland
| | - Maciej Brązert
- Division of Infertility and Reproductive Endocrinology, Department of Gynecology, Obstetrics and Gynecological Oncology, Poznan University of Medical Sciences, Poznan, Poland
| | - Sandra Knap
- Department of Histology and Embryology, Poznan University of Medical Sciences, Poznan, Poland; Department of Anatomy, Poznan University of Medical Sciences, Poznan, Poland
| | - Michal Jeseta
- Department of Obstetrics and Gynecology, University Hospital and Masaryk University, Czech Republic
| | - Mariusz T Skowroński
- Department of Animal Physiology University of Warmia and Mazury, Olsztyn, Poland
| | - Dorota Bukowska
- Veterinary Center, Nicolaus Copernicus University in Torun, Torun, Poland
| | - Paweł Antosik
- Veterinary Center, Nicolaus Copernicus University in Torun, Torun, Poland
| | - Klaus P Brüssow
- Veterinary Center, Nicolaus Copernicus University in Torun, Torun, Poland
| | - Andrzej Bręborowicz
- Department of Pathophysiology, Poznań University of Medical Sciences, Poznan, Poland
| | - Małgorzata Bruska
- Department of Anatomy, Poznan University of Medical Sciences, Poznan, Poland
| | - Michał Nowicki
- Department of Histology and Embryology, Poznan University of Medical Sciences, Poznan, Poland
| | - Leszek Pawelczyk
- Division of Infertility and Reproductive Endocrinology, Department of Gynecology, Obstetrics and Gynecological Oncology, Poznan University of Medical Sciences, Poznan, Poland
| | - Maciej Zabel
- Department of Histology and Embryology, Poznan University of Medical Sciences, Poznan, Poland; Department of Histology and Embryology, Wroclaw Medical University, Wroclaw, Poland
| | - Bartosz Kempisty
- Department of Histology and Embryology, Poznan University of Medical Sciences, Poznan, Poland; Department of Anatomy, Poznan University of Medical Sciences, Poznan, Poland; Department of Obstetrics and Gynecology, University Hospital and Masaryk University, Czech Republic.
| |
Collapse
|
36
|
A historical perspective on the role of sensory nerves in neurogenic inflammation. Semin Immunopathol 2018; 40:229-236. [PMID: 29616309 PMCID: PMC5960476 DOI: 10.1007/s00281-018-0673-1] [Citation(s) in RCA: 54] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2017] [Accepted: 03/06/2018] [Indexed: 01/25/2023]
Abstract
The term ‘neurogenic inflammation’ is commonly used, especially with respect to the role of sensory nerves within inflammatory disease. However, despite over a century of research, we remain unclear about the role of these nerves in the vascular biology of inflammation, as compared with their interacting role in pain processing and of their potential for therapeutic manipulation. This chapter attempts to discuss the progress in understanding, from the initial discovery of sensory nerves until the present day. This covers pioneering findings that these nerves exist, are involved in vascular events and act as important sensors of environmental changes, including injury and infection. This is followed by discovery of the contents they release such as the established vasoactive neuropeptides substance P and CGRP as well as anti-inflammatory peptides such as the opioids and somatostatin. The more recent emergence of the importance of the transient receptor potential (TRP) channels has revealed some of the mechanisms by which these nerves sense environmental stimuli. This knowledge enables a platform from which to learn of the potential role of neurogenic inflammation in disease and in turn of novel therapeutic targets.
Collapse
|
37
|
Salem JB, Nkambeu B, Beaudry F. Characterization of neuropeptide K processing in rat spinal cord S9 fractions using high-resolution quadrupole-Orbitrap mass spectrometry. Biomed Chromatogr 2018; 32:e4204. [DOI: 10.1002/bmc.4204] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2017] [Revised: 01/15/2018] [Accepted: 01/26/2018] [Indexed: 12/13/2022]
Affiliation(s)
- Jennifer Ben Salem
- Groupe de Recherche en Pharmacologie Animal du Québec, Département de Biomédecine Vétérinaire, Faculté de Médecine Vétérinaire; Université de Montréal; Québec Canada
| | - Bruno Nkambeu
- Groupe de Recherche en Pharmacologie Animal du Québec, Département de Biomédecine Vétérinaire, Faculté de Médecine Vétérinaire; Université de Montréal; Québec Canada
| | - Francis Beaudry
- Groupe de Recherche en Pharmacologie Animal du Québec, Département de Biomédecine Vétérinaire, Faculté de Médecine Vétérinaire; Université de Montréal; Québec Canada
| |
Collapse
|
38
|
Roelse M, Henquet MGL, Verhoeven HA, de Ruijter NCA, Wehrens R, van Lenthe MS, Witkamp RF, Hall RD, Jongsma MA. Calcium Imaging of GPCR Activation Using Arrays of Reverse Transfected HEK293 Cells in a Microfluidic System. SENSORS 2018; 18:s18020602. [PMID: 29462903 PMCID: PMC5855233 DOI: 10.3390/s18020602] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/06/2017] [Revised: 02/06/2018] [Accepted: 02/12/2018] [Indexed: 11/16/2022]
Abstract
Reverse-transfected cell arrays in microfluidic systems have great potential to perform large-scale parallel screening of G protein-coupled receptor (GPCR) activation. Here, we report the preparation of a novel platform using reverse transfection of HEK293 cells, imaging by stereo-fluorescence microscopy in a flowcell format, real-time monitoring of cytosolic calcium ion fluctuations using the fluorescent protein Cameleon and analysis of GPCR responses to sequential sample exposures. To determine the relationship between DNA concentration and gene expression, we analyzed cell arrays made with variable concentrations of plasmid DNA encoding fluorescent proteins and the Neurokinin 1 (NK1) receptor. We observed pronounced effects on gene expression of both the specific and total DNA concentration. Reverse transfected spots with NK1 plasmid DNA at 1% of total DNA still resulted in detectable NK1 activation when exposed to its ligand. By varying the GPCR DNA concentration in reverse transfection, the sensitivity and robustness of the receptor response for sequential sample exposures was optimized. An injection series is shown for an array containing the NK1 receptor, bitter receptor TAS2R8 and controls. Both receptors were exposed 14 times to alternating samples of two ligands. Specific responses remained reproducible. This platform introduces new opportunities for high throughput screening of GPCR libraries.
Collapse
Affiliation(s)
- Margriet Roelse
- BU Bioscience, Wageningen University and Research, Droevendaalsesteeg 1, 6708 PB Wageningen, The Netherlands.
- Laboratory of Plant Physiology, Wageningen University and Research, 6708 PB Wageningen, The Netherlands.
| | - Maurice G L Henquet
- BU Bioscience, Wageningen University and Research, Droevendaalsesteeg 1, 6708 PB Wageningen, The Netherlands.
| | - Harrie A Verhoeven
- BU Bioscience, Wageningen University and Research, Droevendaalsesteeg 1, 6708 PB Wageningen, The Netherlands.
| | - Norbert C A de Ruijter
- Laboratory of Cell Biology, Wageningen University and Research, 6708 PB Wageningen, The Netherlands.
| | - Ron Wehrens
- BU Bioscience, Wageningen University and Research, Droevendaalsesteeg 1, 6708 PB Wageningen, The Netherlands.
- BU Biometris, Wageningen University and Research, 6708 PB Wageningen, The Netherlands.
| | - Marco S van Lenthe
- BU Biometris, Wageningen University and Research, 6708 PB Wageningen, The Netherlands.
| | - Renger F Witkamp
- Human Nutrition and Health, Wageningen University and Research, Stippeneng 4, 6708 WE Wageningen, The Netherlands.
| | - Robert D Hall
- BU Bioscience, Wageningen University and Research, Droevendaalsesteeg 1, 6708 PB Wageningen, The Netherlands.
- Laboratory of Plant Physiology, Wageningen University and Research, 6708 PB Wageningen, The Netherlands.
| | - Maarten A Jongsma
- BU Bioscience, Wageningen University and Research, Droevendaalsesteeg 1, 6708 PB Wageningen, The Netherlands.
| |
Collapse
|
39
|
Spitsin S, Pappa V, Douglas SD. Truncation of neurokinin-1 receptor-Negative regulation of substance P signaling. J Leukoc Biol 2018; 103:1043-1051. [PMID: 29345372 DOI: 10.1002/jlb.3mir0817-348r] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2017] [Revised: 11/22/2017] [Accepted: 12/07/2017] [Indexed: 12/21/2022] Open
Abstract
Substance P (SP) is a tachykinin peptide, which triggers intracellular signaling in the nervous and immune systems, as well as, other local and systemic events. The interaction between SP and its receptor, neurokinin-1 receptor (NK1R), results in major downstream cellular actions, which include changes in calcium fluxes, ERK, and p21-activated kinase phosphorylation and NFκB activation. Two naturally occurring variants of the NK1R, the full-length, 407 aa receptor (NK1R-F) and the truncated, 311 aa isoform (NK1R-T), mediate the actions of SP. Receptor truncation partially disrupts signaling motifs of the carboxyl tail, a critical site for mediating NK1R signaling, resulting in a "less-efficient" receptor. Although NK1R-F is the predominant isoform in the central and peripheral nervous systems, NK1R-T is expressed in several tissues and cells, which include monocytes, NK cells, and T-cells. The SP binding domain is not affected by truncation and this site is identical in both NK1R receptor isoforms. However, while cells expressing NK1R-F respond to nanomolar concentrations of SP, monocyte and macrophage activation, mediated through NK1R-T, requires micromolar concentrations of SP in order to elicit signaling responses. Elevated plasma levels of SP are associated with increased inflammatory responses and NK1R antagonists reduce inflammation and cytokine production in vivo. This mini review presents and discusses the novel hypothesis that the expression of NK1R-T on immune system cells prevents immune activation in a milieu, which usually contains low concentrations of SP and, thus, maintains immune homeostasis. In contrast, in the activated neuronal microenvironment, when SP levels reach the threshold at tissue sites, SP promotes immune activation and modulates monocyte/macrophage polarization.
Collapse
Affiliation(s)
- Sergei Spitsin
- Department of Pediatrics, Division of Allergy and Immunology, Children's Hospital of Philadelphia Research Institute, Philadelphia, Pennsylvania, USA
| | - Vasiliki Pappa
- Department of Pediatrics, Division of Allergy and Immunology, Children's Hospital of Philadelphia Research Institute, Philadelphia, Pennsylvania, USA
| | - Steven D Douglas
- Department of Pediatrics, Division of Allergy and Immunology, Children's Hospital of Philadelphia Research Institute, Philadelphia, Pennsylvania, USA
- Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| |
Collapse
|
40
|
Campo A, Lafont AG, Lefranc B, Leprince J, Tostivint H, Kamech N, Dufour S, Rousseau K. Tachykinin-3 Genes and Peptides Characterized in a Basal Teleost, the European Eel: Evolutionary Perspective and Pituitary Role. Front Endocrinol (Lausanne) 2018; 9:304. [PMID: 29942283 PMCID: PMC6004781 DOI: 10.3389/fendo.2018.00304] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/19/2018] [Accepted: 05/23/2018] [Indexed: 12/20/2022] Open
Abstract
In mammals, neurokinin B (NKB) is a short peptide encoded by the gene tac3. It is involved in the brain control of reproduction by stimulating gonadotropin-releasing hormone (GnRH) neurons, mainly via kisspeptin. We investigated tac3 genes and peptides in a basal teleost, the European eel, which shows an atypical blockade of the sexual maturation at a prepubertal stage. Two tac3 paralogous genes (tac3a and tac3b) were identified in the eel genome, each encoding two peptides (NKBa or b and NKB-related peptide NKB-RPa or b). Amino acid sequence of eel NKBa is identical to human NKB, and the three others are novel peptide sequences. The four eel peptides present the characteristic C-terminal tachykinin sequence, as well as a similar alpha helix 3D structure. Tac3 genes were identified in silico in 52 species of vertebrates, and a phylogeny analysis was performed on the predicted TAC3 pre-pro-peptide sequences. A synteny analysis was also done to further assess the evolutionary history of tac3 genes. Duplicated tac3 genes in teleosts likely result from the teleost-specific whole genome duplication (3R). Among teleosts, TAC3b precursor sequences are more divergent than TAC3a, and a loss of tac3b gene would have even occurred in some teleost lineages. NKB-RP peptide, encoded beside NKB by tac3 gene in actinopterygians and basal sarcopterygians, would have been lost in ancestral amniotes. Tissue distribution of eel tac3a and tac3b mRNAs showed major expression of both transcripts in the brain especially in the diencephalon, as analyzed by specific qPCRs. Human NKB has been tested in vitro on primary culture of eel pituitary cells. Human NKB dose-dependently inhibited the expression of lhβ, while having no effect on other glycoprotein hormone subunits (fshβ, tshβ, and gpα) nor on gh. Human NKB also dose-dependently inhibited the expression of GnRH receptor (gnrh-r2). The four eel peptides have been synthesized and also tested in vitro. They all inhibited the expression of both lhβ and of gnrh-r2. This reveals a potential dual inhibitory role of the four peptides encoded by the two tac3 genes in eel reproduction, exerted at the pituitary level on both luteinizing hormone and GnRH receptor.
Collapse
Affiliation(s)
- Aurora Campo
- Muséum National d’Histoire Naturelle, Research Unit BOREA (Biology of Aquatic Organisms and Ecosystems), CNRS 7208, IRD 207, Sorbonne Université, Université de Caen Normandie, Université des Antilles, Paris, France
| | - Anne-Gaëlle Lafont
- Muséum National d’Histoire Naturelle, Research Unit BOREA (Biology of Aquatic Organisms and Ecosystems), CNRS 7208, IRD 207, Sorbonne Université, Université de Caen Normandie, Université des Antilles, Paris, France
| | - Benjamin Lefranc
- Laboratory of Neuronal and Neuroendocrine Differentiation and Communication, INSERM U1239, Normandy University, Rouen, France
| | - Jérôme Leprince
- Laboratory of Neuronal and Neuroendocrine Differentiation and Communication, INSERM U1239, Normandy University, Rouen, France
| | - Hervé Tostivint
- Muséum National d’Histoire Naturelle, UMR7221 CNRS/MNHN Evolution des Régulations Endocriniennes, Paris, France
| | - Nédia Kamech
- Muséum National d’Histoire Naturelle, Research Unit BOREA (Biology of Aquatic Organisms and Ecosystems), CNRS 7208, IRD 207, Sorbonne Université, Université de Caen Normandie, Université des Antilles, Paris, France
| | - Sylvie Dufour
- Muséum National d’Histoire Naturelle, Research Unit BOREA (Biology of Aquatic Organisms and Ecosystems), CNRS 7208, IRD 207, Sorbonne Université, Université de Caen Normandie, Université des Antilles, Paris, France
| | - Karine Rousseau
- Muséum National d’Histoire Naturelle, Research Unit BOREA (Biology of Aquatic Organisms and Ecosystems), CNRS 7208, IRD 207, Sorbonne Université, Université de Caen Normandie, Université des Antilles, Paris, France
- *Correspondence: Karine Rousseau,
| |
Collapse
|
41
|
Sorby-Adams AJ, Marcoionni AM, Dempsey ER, Woenig JA, Turner RJ. The Role of Neurogenic Inflammation in Blood-Brain Barrier Disruption and Development of Cerebral Oedema Following Acute Central Nervous System (CNS) Injury. Int J Mol Sci 2017; 18:E1788. [PMID: 28817088 PMCID: PMC5578176 DOI: 10.3390/ijms18081788] [Citation(s) in RCA: 90] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2017] [Revised: 08/07/2017] [Accepted: 08/15/2017] [Indexed: 12/13/2022] Open
Abstract
Acute central nervous system (CNS) injury, encompassing traumatic brain injury (TBI) and stroke, accounts for a significant burden of morbidity and mortality worldwide, largely attributable to the development of cerebral oedema and elevated intracranial pressure (ICP). Despite this, clinical treatments are limited and new therapies are urgently required to improve patient outcomes and survival. Originally characterised in peripheral tissues, such as the skin and lungs as a neurally-elicited inflammatory process that contributes to increased microvascular permeability and tissue swelling, neurogenic inflammation has now been described in acute injury to the brain where it may play a key role in the secondary injury cascades that evolve following both TBI and stroke. In particular, release of the neuropeptides substance P (SP) and calcitonin gene-related peptide (CGRP) appear to be critically involved. In particular, increased SP expression is observed in perivascular tissue following acute CNS injury, with the magnitude of SP release being related to both the frequency and degree of the insult. SP release is associated with profound blood-brain barrier disruption and the subsequent development of vasogenic oedema, as well as neuronal injury and poor functional outcomes. Inhibition of SP through use of a neurokinin 1 (NK1) antagonist is highly beneficial following both TBI and ischaemic stroke in pre-clinical models. The role of CGRP is more unclear, especially with respect to TBI, with both elevations and reductions in CGRP levels reported following trauma. However, a beneficial role has been delineated in stroke, given its potent vasodilatory effects. Thus, modulating neuropeptides represents a novel therapeutic target in the treatment of cerebral oedema following acute CNS injury.
Collapse
Affiliation(s)
- Annabel J Sorby-Adams
- Adelaide Medical School and Adelaide Centre for Neuroscience Research, Faculty of Health and Medical Sciences, The University of Adelaide, Adelaide SA 5005, Australia.
| | - Amanda M Marcoionni
- Adelaide Medical School and Adelaide Centre for Neuroscience Research, Faculty of Health and Medical Sciences, The University of Adelaide, Adelaide SA 5005, Australia.
| | - Eden R Dempsey
- Adelaide Medical School and Adelaide Centre for Neuroscience Research, Faculty of Health and Medical Sciences, The University of Adelaide, Adelaide SA 5005, Australia.
| | - Joshua A Woenig
- Adelaide Medical School and Adelaide Centre for Neuroscience Research, Faculty of Health and Medical Sciences, The University of Adelaide, Adelaide SA 5005, Australia.
| | - Renée J Turner
- Adelaide Medical School and Adelaide Centre for Neuroscience Research, Faculty of Health and Medical Sciences, The University of Adelaide, Adelaide SA 5005, Australia.
| |
Collapse
|
42
|
Vink R, Gabrielian L, Thornton E. The Role of Substance P in Secondary Pathophysiology after Traumatic Brain Injury. Front Neurol 2017; 8:304. [PMID: 28701994 PMCID: PMC5487380 DOI: 10.3389/fneur.2017.00304] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2017] [Accepted: 06/13/2017] [Indexed: 12/20/2022] Open
Abstract
It has recently been shown that substance P (SP) plays a major role in the secondary injury process following traumatic brain injury (TBI), particularly with respect to neuroinflammation, increased blood–brain barrier (BBB) permeability, and edema formation. Edema formation is associated with the development of increased intracranial pressure (ICP) that has been widely associated with increased mortality and morbidity after neurotrauma. However, a pharmacological intervention to specifically reduce ICP is yet to be developed, with current interventions limited to osmotic therapy rather than addressing the cause of increased ICP. Given that previous publications have shown that SP, NK1 receptor antagonists reduce edema after TBI, more recent studies have examined whether these compounds might also reduce ICP and improve brain oxygenation after TBI. We discuss the results of these studies, which demonstrate that NK1 antagonists reduce posttraumatic ICP to near normal levels within 4 h of drug administration, as well as restoring brain oxygenation to near normal levels in the same time frame. The improvements in these parameters occurred in association with an improvement in BBB integrity to serum proteins, suggesting that SP-mediated increases in vascular permeability significantly contribute to the development of increased ICP after acute brain injury. NK1 antagonists may therefore provide a novel, mechanistically targeted approach to the management of increased ICP.
Collapse
Affiliation(s)
- Robert Vink
- Sansom Institute for Health Research, University of South Australia, Adelaide, SA, Australia
| | - Levon Gabrielian
- Discipline of Anatomy and Pathology, Adelaide Medical School, University of Adelaide, Adelaide, SA, Australia
| | - Emma Thornton
- Discipline of Anatomy and Pathology, Adelaide Medical School, University of Adelaide, Adelaide, SA, Australia
| |
Collapse
|
43
|
Skogh A, Lesniak A, Gaugaz FZ, Svensson R, Lindeberg G, Fransson R, Nyberg F, Hallberg M, Sandström A. Importance of N- and C-terminal residues of substance P 1-7 for alleviating allodynia in mice after peripheral administration. Eur J Pharm Sci 2017; 106:345-351. [PMID: 28587787 DOI: 10.1016/j.ejps.2017.06.004] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2017] [Revised: 05/30/2017] [Accepted: 06/02/2017] [Indexed: 02/08/2023]
Abstract
The heptapeptide SP1-7 (1, Arg1-Pro2-Lys3-Pro4-Gln5-Gln6-Phe7) is the major bioactive metabolite formed after proteolytic processing of the neuropeptide substance P (SP, Arg1-Pro2-Lys3-Pro4-Gln5-Gln6-Phe7-Phe8-Gly9-Leu10-Met11-NH2). The heptapeptide 1 frequently exhibits opposite effects to those induced by SP, such as exerting antinociception, or attenuating thermal hyperalgesia and mechanical allodynia. The heptapeptide SP1-7 amide (2, Arg1-Pro2-Lys3-Pro4-Gln5-Gln6-Phe7-NH2) is often more efficacious than 1 in experimental pain models. We have now assessed the anti-allodynic outcome after systemic administration of 2 and a series of Ala-substituted and truncated analogues of 2, in the spared nerve injury (SNI) mice model and the results obtained were correlated with in vitro plasma stability and permeability measurements. It is herein demonstrated that an intact Arg1 in SP1-7 amide analogues is fundamental for retaining a potent in vivo effect, while Lys3 of 2 is less important. A displacement with Ala1 or truncation rendered the peptide analogues either inactive or with a significantly attenuated in vivo activity. Thus, the pentapeptide SP3-7 amide (7, t1/2=11.1 min) proven to be the major metabolite of 2, demonstrated an in vivo effect itself although considerably less significant than 2 in the SNI model. Intraperitoneal administration of 2 in a low dose furnished the most powerful anti-allodynic effect in the SNI model of all the analogous evaluated, despite a fast proteolysis of 2 in plasma (t1/2=6.4 min). It is concluded that not only the C-terminal residue, that we previously demonstrated, but also the N-terminal with its basic side chain, are important for achieving effective pain relief. This information is of value for the further design process aimed at identifying more drug-like SP1-7 amide related peptidomimetics with pronounced anti-allodynic effects.
Collapse
Affiliation(s)
- Anna Skogh
- Department of Medicinal Chemistry, Uppsala University, BMC, Box 574, SE-751 23 Uppsala, Sweden
| | - Anna Lesniak
- The Beijer Laboratory, Department of Pharmaceutical Bioscience, Uppsala University, BMC, Box 591, SE-751 24 Uppsala, Sweden
| | - Fabienne Z Gaugaz
- Uppsala Drug Optimization and Pharmaceutical Profiling Platform (UDOPP), Science for Life Laboratory Drug Discovery and Development Platform, Department of Pharmacy, Uppsala University, BMC, Box 580, SE-751 23 Uppsala, Sweden
| | - Richard Svensson
- Uppsala Drug Optimization and Pharmaceutical Profiling Platform (UDOPP), Science for Life Laboratory Drug Discovery and Development Platform, Department of Pharmacy, Uppsala University, BMC, Box 580, SE-751 23 Uppsala, Sweden
| | - Gunnar Lindeberg
- Department of Medicinal Chemistry, Uppsala University, BMC, Box 574, SE-751 23 Uppsala, Sweden
| | - Rebecca Fransson
- Department of Medicinal Chemistry, Uppsala University, BMC, Box 574, SE-751 23 Uppsala, Sweden
| | - Fred Nyberg
- The Beijer Laboratory, Department of Pharmaceutical Bioscience, Uppsala University, BMC, Box 591, SE-751 24 Uppsala, Sweden
| | - Mathias Hallberg
- The Beijer Laboratory, Department of Pharmaceutical Bioscience, Uppsala University, BMC, Box 591, SE-751 24 Uppsala, Sweden
| | - Anja Sandström
- Department of Medicinal Chemistry, Uppsala University, BMC, Box 574, SE-751 23 Uppsala, Sweden.
| |
Collapse
|
44
|
Charron CL, Hickey JL, Nsiama TK, Cruickshank DR, Turnbull WL, Luyt LG. Molecular imaging probes derived from natural peptides. Nat Prod Rep 2017; 33:761-800. [PMID: 26911790 DOI: 10.1039/c5np00083a] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Covering: up to the end of 2015.Peptides are naturally occurring compounds that play an important role in all living systems and are responsible for a range of essential functions. Peptide receptors have been implicated in disease states such as oncology, metabolic disorders and cardiovascular disease. Therefore, natural peptides have been exploited as diagnostic and therapeutic agents due to the unique target specificity for their endogenous receptors. This review discusses a variety of natural peptides highlighting their discovery, endogenous receptors, as well as their derivatization to create molecular imaging agents, with an emphasis on the design of radiolabelled peptides. This review also highlights methods for discovering new and novel peptides when knowledge of specific targets and endogenous ligands are not available.
Collapse
Affiliation(s)
- C L Charron
- Department of Chemistry, The University of Western Ontario, London, Canada.
| | - J L Hickey
- Department of Chemistry, The University of Western Ontario, London, Canada.
| | - T K Nsiama
- London Regional Cancer Program, Lawson Health Research Institute, London, Canada
| | - D R Cruickshank
- Department of Chemistry, The University of Western Ontario, London, Canada.
| | - W L Turnbull
- Department of Chemistry, The University of Western Ontario, London, Canada.
| | - L G Luyt
- Department of Chemistry, The University of Western Ontario, London, Canada. and Departments of Oncology and Medical Imaging, The University of Western Ontario, London, Canada and London Regional Cancer Program, Lawson Health Research Institute, London, Canada
| |
Collapse
|
45
|
Chi G, Huang Z, Li X, Zhang K, Li G. Substance P Regulation in Epilepsy. Curr Neuropharmacol 2017; 16:43-50. [PMID: 28474564 PMCID: PMC5771382 DOI: 10.2174/1570159x15666170504122410] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2017] [Revised: 06/19/2017] [Accepted: 04/27/2017] [Indexed: 11/25/2022] Open
Abstract
Background: Epilepsy is a common neurological disease characterized by abnormal temporary discharge of neurons in the central nervous system. In recent years, studies have revealed the localization and changes in the density of neuropeptides, such as substance P (SP) in the pathogenesis of epilepsy. This review is a concise overview of SP and their physiologic and pathologic functions on regulating epilepsy, and the underline mechanisms. Methods: We research and collect relative online content for reviewing the effects of SP in Epilepsy. Results: The SP/NK-1 receptor system may induce seizures and play an important role in status epilepticus and in experimental animal models of epilepsy. Newest studies show that several mechanisms may explain the excitatory effects of the SP/NK-1 receptor signaling pathway in epilepsy. By binding to the NK-1 receptor, NK-1 receptor antagonists may block the pathophysiological effects of SP, and further studies are needed to confirm the possible anti-epileptic activity of NK-1 receptor antagonists. Conclusion: SP plays crucial roles on through binding with NK-1 receptor during epilepsy pathologic processing, and the NK-1 receptor is receiving a great attention as a therapeutic target for treating epilepsy. Thus, the use of NK-1 receptor antagonists for the treatment of epilepsy should be investigated in further studies.
Collapse
Affiliation(s)
- Guangfan Chi
- The Key Laboratory of Pathobiology, Ministry of Education, Norman Bethune College of Medicine, Jilin University, Changchun 130021, Jilin, China
| | - Zhehao Huang
- China-Japan Union Hospital of Jilin University, Changchun 130031, Jilin, China
| | - Xianglan Li
- China-Japan Union Hospital of Jilin University, Changchun 130031, Jilin, China
| | - Kun Zhang
- Jilin Provincial Key Laboratory on Molecular and Chemical Genetic, The Second Hospital of Jilin University, 218 Ziqiang Street, Changchun 130041, China
| | - Guangquan Li
- Jilin Provincial Key Laboratory on Molecular and Chemical Genetic, The Second Hospital of Jilin University, 218 Ziqiang Street, Changchun 130041, China
| |
Collapse
|
46
|
Johnson MB, Young AD, Marriott I. The Therapeutic Potential of Targeting Substance P/NK-1R Interactions in Inflammatory CNS Disorders. Front Cell Neurosci 2017; 10:296. [PMID: 28101005 PMCID: PMC5209380 DOI: 10.3389/fncel.2016.00296] [Citation(s) in RCA: 64] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2016] [Accepted: 12/13/2016] [Indexed: 12/27/2022] Open
Abstract
The inflammatory responses of resident central nervous system (CNS) cells are now known to play a critical role in the initiation and progression of an array of infectious and sterile neuroinflammatory disorders such as meningitis, encephalitis, Parkinson's disease, Alzheimer's disease and multiple sclerosis (MS). Regulating glial inflammatory responses in a timely manner is therefore critical in preserving normal CNS functions. The neuropeptide substance P is produced at high levels within the CNS and its selective receptor, the neurokinin 1 receptor (NK-1R), is abundantly expressed by neurons and is present on glial cell types including microglia and astrocytes. In addition to its functions as a neurotransmitter in the perception of pain and its essential role in gut motility, this tachykinin is widely recognized to exacerbate inflammation at peripheral sites including the skin, gastrointestinal tract and the lungs. Recently, a number of studies have identified a role for substance P and NK-1R interactions in neuroinflammation and described the ability of this neuropeptide to alter the immune functions of activated microglia and astrocytes. In this review article, we describe the expression of substance P and its receptor by resident CNS cells, and we discuss the ability of this neuropeptide to exacerbate the inflammatory responses of glia and immune cells that are recruited to the brain during neurodegenerative diseases. In addition, we discuss the available data indicating that the NK-1R-mediated augmentation of such responses appears to be detrimental during microbial infection and some sterile neurodegenerative disorders, and propose the repurposed use of NK-1R antagonists, of a type that are currently approved as anti-emetic and anti-anxiolytic agents, as an adjunct therapy to ameliorate the inflammatory CNS damage in these conditions.
Collapse
Affiliation(s)
- M Brittany Johnson
- Department of Biological Sciences, The University of North Carolina at Charlotte Charlotte, NC, USA
| | - Ada D Young
- Department of Biological Sciences, The University of North Carolina at Charlotte Charlotte, NC, USA
| | - Ian Marriott
- Department of Biological Sciences, The University of North Carolina at Charlotte Charlotte, NC, USA
| |
Collapse
|
47
|
MCRT, a chimeric peptide based on morphiceptin and PFRTic-NH2, regulates the depressor effects induced by endokinin A/B. Eur J Pharmacol 2016; 792:33-37. [DOI: 10.1016/j.ejphar.2016.10.028] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2016] [Revised: 10/21/2016] [Accepted: 10/21/2016] [Indexed: 01/13/2023]
|
48
|
Fergani C, Navarro VM. Expanding the Role of Tachykinins in the Neuroendocrine Control of Reproduction. Reproduction 2016; 153:R1-R14. [PMID: 27754872 DOI: 10.1530/rep-16-0378] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2016] [Accepted: 10/17/2016] [Indexed: 11/08/2022]
Abstract
Reproductive function is driven by the hormonal interplay between the gonads and brain-pituitary axis. Gonadotropin-releasing hormone (GnRH) is released in a pulsatile manner, which is critical for the attainment and maintenance of fertility, however, GnRH neurons lack the ability to directly respond to most regulatory factors, and a hierarchical upstream neuronal network governs its secretion. We and others proposed a model in which Kiss1 neurons in the arcuate nucleus (ARC), so called KNDy neurons, release kisspeptin (a potent GnRH secretagogue) in a pulsatile manner to drive GnRH pulses under the coordinated autosynaptic action of its cotransmitters, the tachykinin neurokinin B (NKB, stimulatory) and dynorphin (inhibitory). Numerous genetic and pharmacological studies support this model; however, additional regulatory mechanisms (upstream of KNDy neurons) and alternative pathways of GnRH secretion (kisspeptin-independent) exist, but remain ill defined. In this aspect, attention to other members of the tachykinin family, namely substance P (SP) and neurokinin A (NKA), has recently been rekindled. Even though there are still major gaps in our knowledge about the functional significance of these systems, substantial evidence, as discussed below, is placing tachykinin signaling as an important pathway for the awakening of the reproductive axis and the onset of puberty to physiological GnRH secretion and maintenance of fertility in adulthood.
Collapse
Affiliation(s)
- Chrysanthi Fergani
- C Fergani, Endocrinology, Diabetes and Hypertension, Brigham and Women's Hospital, Boston, 02115, United States
| | - Victor M Navarro
- V Navarro, Endocrinology, Diabetes and Hypertension, Brigham and Women\'s Hospital, Boston, United States
| |
Collapse
|
49
|
Saidi M, Kamali S, Beaudry F. Characterization of Substance P processing in mouse spinal cord S9 fractions using high-resolution Quadrupole-Orbitrap mass spectrometry. Neuropeptides 2016; 59:47-55. [PMID: 27344070 DOI: 10.1016/j.npep.2016.06.002] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/12/2016] [Revised: 06/13/2016] [Accepted: 06/16/2016] [Indexed: 11/17/2022]
Abstract
Tachykinins are a family of pronociceptive neuropeptides with a specific role in pain and inflammation. Several mechanisms regulate endogenous tachykinins and Substance P (SP) levels, including the differential expression of protachykinin mRNA and the controlled secretion of tachykinins from neurons. Proteolysis is suspected to regulate extracellular SP concentrations but few studies were conducted on the metabolism of proneuropeptides and neuropeptides. Here, we provide evidence that proteolysis controls SP levels in the spinal cord leading to the formation of active C-terminal fragments. Using high-resolution mass spectrometry, specific tachykinins fragments were characterized and quantified. The metabolic stability of β-Tachykinin58-71 and SP were very short resulting in half-life of 5.7 and 3.5min respectively. Several C-terminal fragments were identified, including SP3-11, SP5-11 and SP8-11, which conserve affinity for the Neurokinin 1 receptor. Interestingly, the metabolic stability of C-terminal fragments was significantly superior. Two specific Prolyl endopeptidase inhibitors were used and showed a significant reduction in the rate of formation of SP3-11 and SP5-11 providing strong evidence that Prolyl endopeptidase is involved into N-terminal processing of SP in the spinal cord.
Collapse
Affiliation(s)
- Mouna Saidi
- Groupe de Recherche en Pharmacologie Animal du Québec (GREPAQ), Département de Biomédecine Vétérinaire, Faculté de Médecine Vétérinaire, Université de Montréal, Saint-Hyacinthe, Québec, Canada
| | - Soufiane Kamali
- Groupe de Recherche en Pharmacologie Animal du Québec (GREPAQ), Département de Biomédecine Vétérinaire, Faculté de Médecine Vétérinaire, Université de Montréal, Saint-Hyacinthe, Québec, Canada
| | - Francis Beaudry
- Groupe de Recherche en Pharmacologie Animal du Québec (GREPAQ), Département de Biomédecine Vétérinaire, Faculté de Médecine Vétérinaire, Université de Montréal, Saint-Hyacinthe, Québec, Canada.
| |
Collapse
|
50
|
He C, Gong J, Yang L, Zhang H, Dong S, Zhou L. Pain regulation of endokinin A/B or endokinin C/D on chimeric peptide MCRT in mice. Can J Physiol Pharmacol 2016; 94:955-60. [PMID: 27285300 DOI: 10.1139/cjpp-2015-0554] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The present study focused on the interactive pain regulation of endokinin A/B (EKA/B, the common C-terminal decapeptide in EKA and EKB) or endokinin C/D (EKC/D, the common C-terminal duodecapeptide in EKC and EKD) on chimeric peptide MCRT (YPFPFRTic-NH2, based on YPFP-NH2 and PFRTic-NH2) at the supraspinal level in mice. Results demonstrated that the co-injection of nanomolar EKA/B and MCRT showed moderate regulation, whereas 30 pmol EKA/B had no effect on MCRT. The combination of EKC/D and MCRT produced enhanced antinociception, which was nearly equal to the sum of the mathematical values of single EKC/D and MCRT. Mechanism studies revealed that pre-injected naloxone attenuated the combination significantly compared with the equivalent analgesic effects of EKC/D alone, suggesting that EKC/D and MCRT might act on two totally independent pathways. Moreover, based on the above results and previous reports, we made two reasonable hypotheses to explain the cocktail-induced analgesia, which may potentially pave the way to explore the respective regulatory mechanisms of EKA/B, EKC/D, and MCRT and to better understand the complicated pain regulation of NK1 and μ opioid receptors, as follows: (1) MCRT and endomorphin-1 possibly activated different μ subtypes; and (2) picomolar EKA/B might motivate the endogenous NPFF system after NK1 activation.
Collapse
Affiliation(s)
- Chunbo He
- Institute of Biochemistry and Molecular Biology, School of Life Sciences, 222 Tianshui South Road, Lanzhou 730000, China
| | - Junbin Gong
- Institute of Biochemistry and Molecular Biology, School of Life Sciences, 222 Tianshui South Road, Lanzhou 730000, China
| | - Lixia Yang
- Institute of Biochemistry and Molecular Biology, School of Life Sciences, 222 Tianshui South Road, Lanzhou 730000, China
| | - Hongwei Zhang
- Institute of Biochemistry and Molecular Biology, School of Life Sciences, 222 Tianshui South Road, Lanzhou 730000, China
| | - Shouliang Dong
- Institute of Biochemistry and Molecular Biology, School of Life Sciences, 222 Tianshui South Road, Lanzhou 730000, China
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, 222 Tianshui South Road, Lanzhou 730000, China
| | - Lanxia Zhou
- The Core Laboratory of the First Affiliated Hospital, Lanzhou University, 1 Donggang West Road, Lanzhou 730000, China
- Key Laboratory for Gastrointestinal Diseases of Gansu Province, Lanzhou 730000, China
| |
Collapse
|