1
|
Hodgetts S, Hausmann M. Sex/gender differences in hemispheric asymmetries. HANDBOOK OF CLINICAL NEUROLOGY 2025; 208:255-265. [PMID: 40074401 DOI: 10.1016/b978-0-443-15646-5.00014-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/14/2025]
Abstract
This chapter will critically review evidence across 40 years of research, covering both early and contemporary studies that have investigated sex/gender differences in hemispheric asymmetries, including both structural and functional asymmetries. We argue that small sex/gender differences in hemispheric asymmetry reliably exist, but there is significant overlap between the sexes and considerable within-sex variation. Furthermore, we argue that research to date is limited in its consideration of sex/gender-related factors, such as sex hormones and gender roles. Moreover, we highlight a critical limitation stemming from the lack of universal agreement on the definitions of "sex" and "gender," resulting in the majority of studies interested in sex/gender differences in hemispheric asymmetry involving the separation of participants into dichotomous male/female groups based solely on self-identified sex. Future research involving sex/gender should adopt a biopsychosocial approach whenever possible, to ensure that nonbinary psychologic, biologic, and environmental/social factors related to sex/gender, and their interactions, are routinely accounted for. Finally, we argue that while the human brain is not sexually dimorphic, sex/gender differences in the brain are not trivial and likely have several clinically relevant implications, including for the development of stratified treatment approaches for both neurologic and psychiatric patient populations.
Collapse
Affiliation(s)
- Sophie Hodgetts
- Department of Psychology, Durham University, England, United Kingdom
| | - Markus Hausmann
- Department of Psychology, Durham University, England, United Kingdom.
| |
Collapse
|
2
|
Abstract
There is now a significant body of literature concerning sex/gender differences in the human brain. This chapter will critically review and synthesise key findings from several studies that have investigated sex/gender differences in structural and functional lateralisation and connectivity. We argue that while small, relative sex/gender differences reliably exist in lateralisation and connectivity, there is considerable overlap between the sexes. Some inconsistencies exist, however, and this is likely due to considerable variability in the methodologies, tasks, measures, and sample compositions between studies. Moreover, research to date is limited in its consideration of sex/gender-related factors, such as sex hormones and gender roles, that can explain inter-and inter-individual differences in brain and behaviour better than sex/gender alone. We conclude that conceptualising the brain as 'sexually dimorphic' is incorrect, and the terms 'male brain' and 'female brain' should be avoided in the neuroscientific literature. However, this does not necessarily mean that sex/gender differences in the brain are trivial. Future research involving sex/gender should adopt a biopsychosocial approach whenever possible, to ensure that non-binary psychological, biological, and environmental/social factors related to sex/gender, and their interactions, are routinely accounted for.
Collapse
Affiliation(s)
- Sophie Hodgetts
- School of Psychology, University of Sunderland, Sunderland, UK
| | | |
Collapse
|
3
|
Petrus E, Dembling S, Usdin T, Isaac JTR, Koretsky AP. Circuit-Specific Plasticity of Callosal Inputs Underlies Cortical Takeover. J Neurosci 2020; 40:7714-7723. [PMID: 32913109 PMCID: PMC7531555 DOI: 10.1523/jneurosci.1056-20.2020] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2020] [Revised: 06/13/2020] [Accepted: 08/21/2020] [Indexed: 02/06/2023] Open
Abstract
Injury induces synaptic, circuit, and systems reorganization. After unilateral amputation or stroke, this functional loss disrupts the interhemispheric interaction between intact and deprived somatomotor cortices to recruit deprived cortex in response to intact limb stimulation. This recruitment has been implicated in enhanced intact sensory function. In other patients, maladaptive consequences such as phantom limb pain can occur. We used unilateral whisker denervation in male and female mice to detect circuitry alterations underlying interhemispheric cortical reorganization. Enhanced synaptic strength from the intact cortex via the corpus callosum (CC) onto deep neurons in deprived primary somatosensory barrel cortex (S1BC) has previously been detected. It was hypothesized that specificity in this plasticity may depend on to which area these neurons projected. Increased connectivity to somatomotor areas such as contralateral S1BC, primary motor cortex (M1) and secondary somatosensory cortex (S2) may underlie beneficial adaptations, while increased connectivity to pain areas like anterior cingulate cortex (ACC) might underlie maladaptive pain phenotypes. Neurons from the deprived S1BC that project to intact S1BC were hyperexcitable, had stronger responses and reduced inhibitory input to CC stimulation. M1-projecting neurons also showed increases in excitability and CC input strength that was offset with enhanced inhibition. S2 and ACC-projecting neurons showed no changes in excitability or CC input. These results demonstrate that subgroups of output neurons undergo dramatic and specific plasticity after peripheral injury. The changes in S1BC-projecting neurons likely underlie enhanced reciprocal connectivity of S1BC after unilateral deprivation consistent with the model that interhemispheric takeover supports intact whisker processing.SIGNIFICANCE STATEMENT Amputation, peripheral injury, and stroke patients experience widespread alterations in neural activity after sensory loss. A hallmark of this reorganization is the recruitment of deprived cortical space which likely aids processing and thus enhances performance on intact sensory systems. Conversely, this recruitment of deprived cortical space has been hypothesized to underlie phenotypes like phantom limb pain and hinder recovery. A mouse model of unilateral denervation detected remarkable specificity in alterations in the somatomotor circuit. These changes underlie increased reciprocal connectivity between intact and deprived cortical hemispheres. This increased connectivity may help explain the enhanced intact sensory processing detected in humans.
Collapse
Affiliation(s)
- Emily Petrus
- Laboratory of Functional and Molecular Imaging, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, Maryland 20892
| | - Sarah Dembling
- Laboratory of Functional and Molecular Imaging, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, Maryland 20892
| | - Ted Usdin
- Systems Neuroscience Imaging Resource, National Institute of Mental Health, Bethesda, Maryland 20892
| | - John T R Isaac
- Janssen Neuroscience, J&J Innovations, London W1G 0BG, United Kingdom
| | - Alan P Koretsky
- Laboratory of Functional and Molecular Imaging, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, Maryland 20892
| |
Collapse
|
4
|
Hodgetts S, Hausmann M. The Neuromodulatory Effects of Sex Hormones on Functional Cerebral Asymmetries and Cognitive Control. ZEITSCHRIFT FUR NEUROPSYCHOLOGIE 2018. [DOI: 10.1024/1016-264x/a000224] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Abstract. Nearly 20 years ago, Hausmann and Güntürkün (2000a, 2000b) published a review article in the Journal of Neuropsychology/Zeitschrift für Neuropsychologie on the influences of sex hormones on functional cerebral asymmetries (FCAs). They further presented a neuroendocrinological model (Hausmann & Güntürkün, 2000c) that could potentially explain how sex hormones modulate FCAs. Their model proposed that high levels of progesterone reduce the synaptic efficiency of cortico-cortical transmission, leading to a reduction of FCAs. However, empirical data testing their hypothesis directly were missing. Using various approaches, we have now gathered behavioral, electrophysiological, and neuroimaging data that partly support the original idea, while also pointing toward estradiol-modulating FCAs. The current review provides an update on this fascinating topic and briefly explores clinical applications.
Collapse
Affiliation(s)
- Sophie Hodgetts
- School of Psychology, Faculty of Health Sciences and Wellbeing, University of Sunderland, Shackleton House, Silksworth Row, Sunderland, UK
| | - Markus Hausmann
- Department of Psychology, Durham University, South Road, Durham, UK
| |
Collapse
|
5
|
|
6
|
Sex hormonal modulation of interhemispheric transfer time. Neuropsychologia 2013; 51:1734-41. [PMID: 23727572 DOI: 10.1016/j.neuropsychologia.2013.05.017] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2013] [Revised: 05/21/2013] [Accepted: 05/23/2013] [Indexed: 11/21/2022]
Abstract
It is still a matter of debate whether functional cerebral asymmetries (FCA) of many cognitive processes are more pronounced in men than in women. Some evidence suggests that the apparent reduction in women's FCA is a result of the fluctuating levels of gonadal steroid hormones over the course of the menstrual cycle, making their FCA less static than for men. The degree of lateralization has been suggested to depend on interhemispheric communication that may be modulated by gonadal steroid hormones. Here, we employed visual-evoked EEG potentials to obtain a direct measure of interhemispheric communication during different phases of the menstrual cycle. The interhemispheric transfer time (IHTT) was estimated from the interhemispheric latency difference of the N170 component of the visual-evoked potential from either left or right visual field presentation. Nineteen right-handed women with regular menstrual cycles were tested twice, once during the menstrual phase, when progesterone and estradiol levels are low, and once during the luteal phase when progesterone and estradiol levels are high. Plasma steroid levels were determined by blood-based immunoassay at each session. It was found that IHTT, in particular from right-to-left, was generally longer during the luteal phase relative to the menstrual phase. This effect occurred as a consequence of a slowed absolute N170 latency of the indirect pathway (i.e. left hemispheric response after LVF stimulation) and, in particular, a shortened latency of the direct pathway (i.e. right hemispheric response after LVF stimulation) during the luteal phase. These results show that cycle-related effects are not restricted to modulation of processes between hemispheres but also apply to cortical interactions, especially within the right hemisphere. The findings support the view that plastic changes in the female brain occur during relatively short-term periods across the menstrual cycle.
Collapse
|
7
|
Bayer U, Hausmann M. Hormone therapy in postmenopausal women affects hemispheric asymmetries in fine motor coordination. Horm Behav 2010; 58:450-6. [PMID: 20580722 DOI: 10.1016/j.yhbeh.2010.05.008] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/01/2010] [Revised: 05/11/2010] [Accepted: 05/17/2010] [Indexed: 10/19/2022]
Abstract
Evidence exists that the functional differences between the left and right cerebral hemispheres are affected by age. One prominent hypothesis proposes that frontal activity during cognitive task performance tends to be less lateralized in older than in younger adults, a pattern that has also been reported for motor functioning. Moreover, functional cerebral asymmetries (FCAs) have been shown to be affected by sex hormonal manipulations via hormone therapy (HT) in older women. Here, we investigate whether FCAs in fine motor coordination, as reflected by manual asymmetries (MAs), are susceptible to HT in older women. Therefore, sixty-two postmenopausal women who received hormone therapy either with estrogen (E) alone (n=15), an E-gestagen combination (n=21) or without HT (control group, n=26) were tested. Saliva levels of free estradiol and progesterone (P) were analyzed using chemiluminescence assays. MAs were measured with a finger tapping paradigm consisting of two different tapping conditions. As expected, postmenopausal controls without HT showed reduced MAs in simple (repetitive) finger tapping. In a more demanding sequential condition involving four fingers, however, they revealed enhanced MAs in favour of the dominant hand. This finding suggests an insufficient recruitment of critical motor brain areas (especially when the nondominant hand is used), probably as a result of age-related changes in corticocortical connectivity between motor areas. In contrast, both HT groups revealed reduced MAs in sequential finger tapping but an asymmetrical tapping performance related to estradiol levels in simple finger tapping. A similar pattern has previously been found in younger participants. The results suggest that, HT, and E exposure in particular, exerts positive effects on the motor system thereby counteracting an age-related reorganization.
Collapse
Affiliation(s)
- Ulrike Bayer
- Department of Psychology, Durham University, Durham, UK
| | | |
Collapse
|
8
|
Bayer U, Kessler N, Güntürkün O, Hausmann M. Interhemispheric interaction during the menstrual cycle. Neuropsychologia 2008; 46:2415-22. [DOI: 10.1016/j.neuropsychologia.2008.02.028] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2007] [Revised: 02/27/2008] [Accepted: 02/29/2008] [Indexed: 10/22/2022]
|
9
|
Chowdhury SA, Matsunami KI. GABA-B-related activity in processing of transcallosal response in cat motor cortex. J Neurosci Res 2002; 68:489-95. [PMID: 11992476 DOI: 10.1002/jnr.10223] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
GABA-ergic characteristics of transcallosal (TC) responses were studied with specific antagonists of both GABA-A and GABA-B receptor subtypes. We used a paired-pulse paradigm to get insight into the role of GABA in interhemispheric interactions between motor cortices. 3-Amino-2-(4-chlorophenyl)-propylphosphonic acid (phaclofen) and 3-aminopropyl-diethoxymethyl-phosphinic acid (CGP 35348) were used as GABA-B antagonists and bicuculline methiodide (BMI) was used to block the GABA-A receptor. Although both GABA-A and GABA-B antagonists increased spike discharge upon transcallosal stimulation, in both pyramidal tract and non-pyramidal tract neurons, they had different effects on the responses to the first and second stimuli of paired-pulse stimulation (200 msec interval). Although the inhibition seen with the second stimulus was greatly attenuated by antagonists of the GABA-B receptor, it was maintained in the presence of the GABA-A antagonist. These finding support a presynaptic regulation of callosal transmission by GABA-B receptors in the callosal synapse of the cat motor cortex.
Collapse
Affiliation(s)
- Syed A Chowdhury
- Institute of Equilibrium Research, School of Medicine, Gifu University, Gifu, Japan.
| | | |
Collapse
|
10
|
Hausmann M, Güntürkün O. Steroid fluctuations modify functional cerebral asymmetries: the hypothesis of progesterone-mediated interhemispheric decoupling. Neuropsychologia 2000; 38:1362-74. [PMID: 10869579 DOI: 10.1016/s0028-3932(00)00045-2] [Citation(s) in RCA: 156] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
This study examines the modulation of functional cerebral asymmetries by gonadal hormones in three distinct groups. Young, normally cycling women performed a prototypical left (lexical decision) and two prototypical right-hemispheric tasks (figural comparison and face discrimination) during the low steroid menses and the high steroid midluteal phase. Saliva progesterone levels were measured with radioimmunoassay (RIA). Parallel to younger females, young men, and postmenopausal women were tested at matching time intervals. Results revealed significant interactions between cycle phase and visual half-field in the accuracy of all three tasks for the younger women; stronger lateralization patterns occurring during menses, while a more bilateral or at least less asymmetric cerebral organization predominated the midluteal phase, when highest levels of progesterone appear. Progesterone seemed to have a significant influence on lateralization in the figural comparison task, with high hormone levels enhancing the performance of the left hemisphere (for this task subdominant), thereby decreasing asymmetry. After menopause, when the levels of gonadal hormones are lower and more stable, the lateralization patterns for all three tasks were similar to those of men and normally cycling women during menses. These results make it likely that steroids and especially progesterone are able to reduce cerebral asymmetries. We hypothesize that progesterone attenuates the effect of glutamate on non-NMDA receptors. This could diminish cortico-cortical transmission which is mostly dependent on a glutamate-induced initial EPSP in pyramidal neurons which receive transcallosal input. The reduction in callosal transfer could then suppress the functional asymmetries.
Collapse
Affiliation(s)
- M Hausmann
- AE Biopsychologie, Fakultät für Psychologie, Ruhr-Universität Bochum, D-44780, Bochum, Germany.
| | | |
Collapse
|
11
|
Chowdhury SA, Kawashima T, Konishi T, Matsunami K. GABAergic characteristics of transcallosal activity of cat motor cortical neurons. Neurosci Res 1996; 26:323-33. [PMID: 9004270 DOI: 10.1016/s0168-0102(96)01112-1] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
GABAergic characteristics of transcallosal activity of cat pyramidal tract neurons (PTNs) and non-PTNs (nPTNs) were studied with stressing on GABAB receptors. PTNs and nPTNs were further classified into group 1 (< 10 ms) and group 2 (> 10 ms) based on the latency upon transcallosal stimulation. However, mainly the results of group 1 neurons were presented here, due to the small number of group 2 neurons. GABA, bicuculline, CGP 35348 and phaclofen were iontophoretically applied. The spike number to 20 trials of transcallosal stimulation was 8.9 +/- 4.3 (mean +/- S.D.) for group 1 PTNs (n = 14) and 10.4 +/- 4.5 for group 1 nPTNs (n = 38) under the control conditions. CGP 35348, phaclofen and bicuculline significantly increased the spike numbers in both cases. The increase was greater for nPTNs than for PTNs. GABA decreased them. The transcallosal latency was 3.9 +/- 1.1 ms for PTNs under the control conditions. CGP 35348, phaclofen and bicuculline significantly shortened the latency, and GABA elongated it. The transcallosal latency for nPTNs under the control conditions was 2.7 +/- 1.2 ms. This was significantly shortened by application of CGP 35348, phaclofen or bicuculline. GABA restored it. In conclusion, CGP 35348, phaclofen and bicuculline increased spike discharge and shortened the latency upon transcallosal stimulation for both group 1 PTNs and nPTNs.
Collapse
Affiliation(s)
- S A Chowdhury
- Department of Neurophysiology, Gifu University School of Medicine, Japan
| | | | | | | |
Collapse
|
12
|
Conti F, Manzoni T. The neurotransmitters and postsynaptic actions of callosally projecting neurons. Behav Brain Res 1994; 64:37-53. [PMID: 7840891 DOI: 10.1016/0166-4328(94)90117-1] [Citation(s) in RCA: 99] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Affiliation(s)
- F Conti
- Istituto di Fisiologia Umana, Università di Ancona, Italy
| | | |
Collapse
|
13
|
Abstract
The representation of the visual field in the part of area 17 containing neurons that project axons across the corpus callosum to the contralateral hemisphere was defined in the cat. Of 1424 sites sampled along 77 electrode tracks, 768 proved to be in the callosal sending zone, which was identified by retrograde transport of horseradish peroxidase that had been deposited in the opposite hemisphere. The results show that the callosal sending zone has a fairly constant width of between 3 and 4 mm at most levels in area 17. However, the representation of the contralateral field at the different elevations of the visual field is not equal in this zone. The zone represents positions within 4 deg of the midline at the 0-deg horizontal meridian, and positions out to 15-deg azimuths in the upper hemifield and out to positions of 25-deg azimuth in the lower hemifield. The shape of the representation is approximately mirror-symmetric about the horizontal meridian, although there is a greater extent in the lower hemifield, which can be accounted for by the greater range of elevations (greater than 60 deg) represented there compared with the upper hemifield (approximately 40 deg). The representation in the sending zone of one hemisphere matches that present in the area 17/18 transition zone, which receives the bulk of transcallosal projections, in the opposite hemisphere. The observations on the sending zone show that callosal connections of area 17 are concerned with a vertical hour-glass-shaped region of the visual field centered on the midline. The observations suggest that in addition to interactions between neurons concerned with positions immediately adjacent to the midline, there are positions, especially high and low in the visual field, where interactions can occur between neurons that have receptive fields displaced some distance from the midline.
Collapse
Affiliation(s)
- B R Payne
- Department of Anatomy and Neurobiology, Boston University School of Medicine
| |
Collapse
|
14
|
Peters A, Payne BR, Josephson K. Transcallosal non-pyramidal cell projections from visual cortex in the cat. J Comp Neurol 1990; 302:124-42. [PMID: 2086610 DOI: 10.1002/cne.903020110] [Citation(s) in RCA: 55] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Non-pyramidal cells with transcallosal projections were identified in the area 17/18 border region of the cat by retrograde transport of horseradish peroxidase injected into border region of the opposite hemisphere. From several hundred neurons filled with a Golgi-like diaminobenzidine (DAB) reaction product, seven cells were identified by their radially oriented smooth dendrites as possible non-pyramidal cells. Following thin-sectioning and examination with the electron microscope, four of the neurons proved to be layer IV spiny stellate cells with incompletely filled dendritic spines, and two proved to be layer III pyramidal cells with an incompletely labelled apical dendrite and dendritic spines. The remaining neuron was a non-pyramidal cell whose essentially smooth dendrites were covered with synapses, and whose cell body formed both symmetric and asymmetric synapses with presynaptic terminals. To better assess how many non-pyramidal cells might be labelled, thin sections of the area 17/18 border were surveyed using material processed with tetramethylbenzidine (TMB), and another five labelled non-pyramidal cells with transcallosal projections were identified by the needle-like crystals of TMB reaction product they contained. During the study it became evident that both the DAB and TMB reaction products in the lightly labelled neurons tended to be associated with granules that are 0.5 microns or larger in diameter and that had the characteristics of lysosomes. These granules are also visible in the light microscope as dark puncta. The numbers of puncta in profiles of pyramidal and of non-pyramidal cells in layers II/III and IVa of the area 17/18 border region and in the control acallosal region of area 17 were counted and compared. These comparisons revealed that labelled transcallosally projecting non-pyramidal cells may constitute 10-32% of the non-pyramidal cell population at the area 17/18 border region. Similar values were also obtained for pyramidal cells in this region. Consequently, it is concluded that significant numbers of non-pyramidal cells have axons that project through the corpus callosum to the contralateral hemisphere.
Collapse
Affiliation(s)
- A Peters
- Department of Anatomy, Boston University School of Medicine, Massachusetts 02118
| | | | | |
Collapse
|
15
|
Gould HJ, Whitworth RH, LeDoux MS. Thalamic and extrathalamic connections of the dysgranular unresponsive zone in the grey squirrel (Sciurus carolinensis). J Comp Neurol 1989; 287:38-63. [PMID: 2477399 DOI: 10.1002/cne.902870105] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
The connections of the cortical dysgranular "unresponsive zone" (UZ) (Sur et al.: J. Comp. Neurol. 179:425-450, '78) in the grey squirrel were studied with horseradish peroxidase and autoradiographic techniques. The results of these experiments show that the major subcortical connections of the unresponsive zone are in large part reciprocal. Connections are distributed within the thalamus in a poorly defined region including restricted portions of several nuclei that lie along the rostral, dorsal, and caudal borders of the ventral posterior nucleus. Additional thalamic connections of the UZ terminate in the reticular nucleus and are reciprocally related to the paralaminar and central median nuclei. Extrathalamic terminations were observed in the zona incerta, the intermediate and deep layers of the superior colliculus, the red nucleus, and several subdivisions of the pontine nuclei. The similarity between the pattern of subcortical connections of the UZ in the grey squirrel and patterns reported for the parietal septal region in rats (Chapin and Lin: J. Comp. Neurol. 229:199-213, '84) and for area 3a in primates (Friedman and Jones: J. Neurophysiol. 45:59-85, '81), suggests that the UZ in the grey squirrel may represent a counterpart of at least part of area 3a as described in primates. The results are further discussed with respect to a possible role of the thalamus in control or modulation of interhemispheric circuits and of the UZ in the modulation of nociceptive and kinesthetic pathways through the thalamus. Finally, the term parietal dysgranular cortex (PDC) is proposed as an alternative to denote the region currently called the unresponsive zone.
Collapse
Affiliation(s)
- H J Gould
- Department of Anatomy, Louisiana State University Medical Center, New Orleans 70112
| | | | | |
Collapse
|
16
|
|
17
|
Code RA, Winer JA. Commissural neurons in layer III of cat primary auditory cortex (AI): pyramidal and non-pyramidal cell input. J Comp Neurol 1985; 242:485-510. [PMID: 2418078 DOI: 10.1002/cne.902420404] [Citation(s) in RCA: 68] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
The types of layer III neurons in cat primary auditory cortex (AI) projecting to the contralateral AI were studied with horseradish peroxidase or horseradish peroxidase conjugated to wheat germ agglutinin. Injections between the anterior and posterior ectosylvian sulci retrogradely labeled both pyramidal and non-pyramidal somata in contralateral cortical layers III, V, and VI in AI, and in the ventral nucleus of the ipsilateral medial geniculate body. Three-quarters (72%) of the retrogradely labeled cells were found in layer III and one-quarter (28%) lay in layers V and VI. Every part of AI was innervated by commissural neurons. The topographical distribution of the labeled cells varied systematically. Injections in the caudal part of AI labeled cells in the caudal part of the opposite AI, while more rostral injections labeled cells in the contralateral, rostral AI. Injections covering the rostro-caudal extent of AI labeled cells throughout the opposite AI. Each part of AI thus projects most strongly to a contralateral, homotypic area, and less strongly to other, adjacent sectors of AI. The types of labeled cells were distinguished from one another on the basis of size, somatic and dendritic morphology, laminar distribution, and nuclear membrane morphology. Their somatodendritic profiles were compared to, and correlated with, those in Golgi-impregnated material from adult animals. Among the pyramidal cells of origin were small, medium-sized, and large neurons, and star pyramidal cells. The non-pyramidal cells of origin included bipolar and multipolar cells. Thus, at least six of the 12 kinds of neurons, as defined by morphological methods, participate in the interhemispheric pathway. Pyramidal cells comprised 65% of the cells of origin, 14% of the labeled cells in layer III were non-pyramidal, and 21% of the neurons could not be classified. It is unknown if these different types of commissural neurons have the same laminar or cytological targets in AI, or if they represent more than one functional or parallel pathway within AI. In any case, cytologically diverse layer III neurons contribute to the commissural system.
Collapse
|
18
|
Somogyi P, Kisvárday ZF, Martin KA, Whitteridge D. Synaptic connections of morphologically identified and physiologically characterized large basket cells in the striate cortex of cat. Neuroscience 1983; 10:261-94. [PMID: 6633861 DOI: 10.1016/0306-4522(83)90133-1] [Citation(s) in RCA: 329] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Neurons were studied in the striate cortex of the cat following intracellular recording and iontophoresis of horseradish peroxidase. The three selected neurons were identified as large basket cells on the basis that (i) the horizontal extent of their axonal arborization was three times or more than the extent of the dendritic arborization; (ii) some of their varicose terminal segments surrounded the perikarya of other neurons. The large elongated perikarya of the first two basket cells were located around the border of layers III and IV. The radially-elongated dendritic field, composed of beaded dendrites without spines, had a long axis of 300-350 microns, extending into layers III and IV, and a short axis of 200 microns. Only the axon, however, was recovered from the third basket cell. The lateral spread of the axons of the first two basket cells was 900 microns or more in layer III and, for the third cell, was over 1500 microns in the antero-posterior dimension, a value indicating that the latter neuron probably fulfills the first criterion above. The axon collaterals of all three cells often branched at approximately 90 degrees to the parent axon. The first two cells also had axon collaterals which descended to layers IV and V and had less extensive lateral spreads. The axons of all three cells formed clusters of boutons which could extend up a radial column of their target cells. Electron microscopic examination of the second basket cell showed a large lobulated nucleus and a high density of mitochondria in both the perikarya and dendrites. The soma and dendrites were densely covered by synaptic terminals. The axons of the second and third cells were myelinated up to the terminal segments. A total of 177 postsynaptic elements was analysed, involving 66 boutons of the second cell and 89 boutons of the third cell. The terminals contained pleomorphic vesicles and established symmetrical synapses with their postsynaptic targets. The basket cell axons formed synapses principally on pyramidal cell perikarya (approximately 33% of synapses), spines (20% of synapses) and the apical and basal dendrites of pyramidal cells (24% of synapses). Also contacted were the perikarya and dendrites of non-pyramidal cells, an axon, and an axon initial segment. A single pyramidal cell may receive input on its soma, apical and basal dendrites and spines from the same large basket cell.(ABSTRACT TRUNCATED AT 400 WORDS)
Collapse
|
19
|
Somogyi P, Freund TF, Wu JY, Smith AD. The section-Golgi impregnation procedure. 2. Immunocytochemical demonstration of glutamate decarboxylase in Golgi-impregnated neurons and in their afferent synaptic boutons in the visual cortex of the cat. Neuroscience 1983; 9:475-90. [PMID: 6194475 DOI: 10.1016/0306-4522(83)90167-7] [Citation(s) in RCA: 110] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Sections of the cat's visual cortex were stained by an antiserum to glutamate decarboxylase using the peroxidase-antiperoxidase method; they were then impregnated by the section Golgi procedure and finally the Golgi deposit was replaced by gold. Neurons containing glutamate decarboxylase immunoreactivity were found in all layers of the visual cortex, without any obvious pattern of distribution. Fifteen immunoreactive neurons were also Golgi-impregnated and gold-toned, which enabled us to study the morphology and synaptic input of identified GABAergic neurons. These neurons were found to be heterogeneous both with respect to the sizes and shapes of their perikarya and the branching patterns of their dendrites. All the immunoreactive, Golgi-impregnated neurons had smooth dendrites, with only occasional protrusions. The synaptic input of glutamate decarboxylase-immunoreactive neurons was studied in the electron microscope. Immunoreactive neurons received immunoreactive boutons forming symmetrical synapses on their cell bodies. The Golgi-impregnation made it possible to study the input along the dendrites of immunoreactive neurons. One of the large neurons in layer III whose soma was immunoreactive was also Golgi-impregnated: it received numerous non-immunoreactive asymmetrical synaptic contacts along its dendrites and occasional ones on its soma. The same neuron also received a few boutons forming symmetrical synaptic contacts along its Golgi-impregnated dendrites; most of these boutons were immunoreactive for glutamate decarboxylase. Glutamate decarboxylase-immunoreactive boutons were also found in symmetrical synaptic contact with non-immunoreactive neurons that were Golgi-impregnated. A small pyramidal cell in layer III was shown to receive several such boutons along its somatic membrane. It is concluded that the combination of immunoperoxidase staining and Golgi impregnation is technically feasible and that it can provide new information. The present study has shown that there are many morphologically distinct kinds of aspiny GABAergic neurons in the visual cortex; that the predominant type of synaptic input to the dendrites of such neurons is from boutons forming asymmetrical synapses, but that some of the GABAergic neurons also receive a dense symmetrical synaptic input on their cell bodies, and occasional synapses along their dendrites, from the boutons of other GABAergic neurons. These findings provide a morphological basis, firstly, for a presumed powerful excitatory input to GABAergic interneurons and, secondly, for the disinhibition which has been postulated from electrophysiological studies to occur in the cat's visual cortex.
Collapse
|
20
|
Hendry SH, Jones EG. Thalamic inputs to identified commissural neurons in the monkey somatic sensory cortex. JOURNAL OF NEUROCYTOLOGY 1983; 12:299-316. [PMID: 6302232 DOI: 10.1007/bf01148466] [Citation(s) in RCA: 30] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Commissurally projecting neurons were identified in the monkey first somatic sensory area (SI) by the retrograde axonal transport of horseradish peroxidase (HRP) injected into the contralateral cortex. Neurons identified in this way have large pyramidal somata primarily in layer IIIB of the SI area. Their basal dendrites lie within the terminal plexus of thalamocortical afferents. Electron microscopy was used to examine the synaptic relations of the labelled commissural cells, in particular to determine whether they receive monosynaptic thalamic connections. To do this, retrogradely labelled commissural cells and Golgi-impregnated large pyramidal neurons from layer IIIB were examined ultrastructurally in material in which thalamocortical terminals were degenerating due to a prior lesion of the thalamus. In a significant number of cases degenerating terminals were found to make synapses on the spines or shafts of labelled dendrites. Injections of HRP into SI or into the white matter adjacent to the corpus callosum labelled callosal axons and terminals in the opposite SI. These axons terminated mainly near the somata of the layer IIIB pyramidal cells. Some of their terminals were found to synapse with dendrites receiving synaptic contacts from thalamocortical axon terminals.
Collapse
|
21
|
Eccles JC. The modular operation of the cerebral neocortex considered as the material basis of mental events. Neuroscience 1981; 6:1839-56. [PMID: 7301112 DOI: 10.1016/0306-4522(81)90027-0] [Citation(s) in RCA: 119] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
|
22
|
Peters A, Proskauer CC. Smooth or sparsely spined cells with myelinated axons in rat visual cortex. Neuroscience 1980; 5:2079-92. [PMID: 7465047 DOI: 10.1016/0306-4522(80)90126-8] [Citation(s) in RCA: 46] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
|
23
|
Ronner SF, Foote WE, Feldon SE. Activation of single cells in cat visual cortex by electrical stimulation of the cortical surface. Exp Neurol 1980; 70:47-64. [PMID: 7418773 DOI: 10.1016/0014-4886(80)90005-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
|
24
|
Harvey AR. A physiological analysis of subcortical and commissural projections of areas 17 and 18 of the cat. J Physiol 1980; 302:507-34. [PMID: 7411467 PMCID: PMC1282863 DOI: 10.1113/jphysiol.1980.sp013258] [Citation(s) in RCA: 125] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
1. The corticotectal, corticothalamic and commissural projections of areas 17 and 18 of the cat have been examined using electrical stimulation techniques. 2. In both area 17 and area 18, almost all corticotectal neurones are C cells and have binocular receptive fields. Some of these cells respond equally well to both small moving spots and elongated stimuli, while others only respond to stimuli of restricted length (cf. Palmer & Rosenquist, 1974). Both types are highly direction-selective. A third type of corticotectal C cell responds optimally to long edges or bars and shows only weak direction selectivity. Corticotectal cells generally have fast conducting axons and the majority are encountered in lamina V. About 25% of all cells recorded in lamina V can be antidromically activated from the superior colliculus. 3. Striate and parastriate cells efferent to the thalamus can have either S or C type receptive fields. Corticothalamic S cells are the most common type of efferent cell in lamina VI and have more slowly conducting axons than C cells. Efferent S cells are almost always direction-selective and about half have binocular receptive fields. 4. It is suggested that there may be at least three subgroups within the corticothalamic cells: lamina V C cells project to the pulvinare complex (the same cells may also send axons to the superior colliculus), lamina VI C cells project to the perigeniculate nucleus and lamina VI S cells provide the cortical input to neurones within the lateral geniculate nucleus. 5. In contrast to the corticotectal and corticothalamic projections, the receptive fields of cells projecting through the corpus callosum forth a heterogenous group. All major striate and parastriate receptive field classes are efferent to the contralateral cortex. Their receptive field centres are located close to the vertical mid line and most cells respond best to stimuli moving towards the ipsilateral visual hemifield. Efferent neurones are mostly encountered in lamina III, within about 1mm either side of the 17-18 border zone. 6. Cells orthodromically excited after commissural stimulation have mostly C or B type receptive fields. Unlike efferent callosal neurones, orthodromically activated cells are encountered up to 3 mm into area 18 and can have receptive fields located up to 9 degrees from the vertical mid line. 7. The results are discussed with regard to the possible functional significance of each of the corticofugal pathways.
Collapse
|
25
|
Peters A, Proskauer CC, Feldman ML, Kimerer L. The projection of the lateral geniculate nucleus to area 17 of the rat cerebral cortex. V. Degenerating axon terminals synapsing with Golgi impregnated neurons. JOURNAL OF NEUROCYTOLOGY 1979; 8:331-57. [PMID: 490186 DOI: 10.1007/bf01236125] [Citation(s) in RCA: 113] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The sites of termination of afferents from the lateral geniculate nucleus to layer IV and lower layer III in area 17 of the rat visual cortex have been determined by use of a combined degeneration--Golgi/EM technique. Degeneration of geniculocortical axon terminals was produced by making lesions in the lateral geniculate body. After the animals had been allowed to survive for two days, the ipsilateral visual cortex was removed and impregnated by the Golgi technique. Suitably impregnated neurons and their processes in layer IV and lower layer III were then gold-toned and deimpregnated for examination in the electron microscope. A search was made for synapses between degenerating axon terminals and the gold-labelled postsynaptic neurons. Geniculocortical synapses were found to involve: (1) the spines of basal dendrites as well as those of proximal shafts and collaterals of apical dendrites of layer III pyramidal neurons; (2) the spines of the apical dendritic shafts and collaterals of layer V pyramidal neurons; (3) the perikaryon and dendritic spines of a sparsely-spined stellate cell; and (4) the perikaryon and dendrites of a smooth, bitufted stellate cell. In view of this variety of postsynaptic elements it is suggested that all parts of the perikarya and dendrites of neurons contained in layer IV and lower layer III which are capable of forming asymmetric synapses can be postsynaptic to the thalamic input. Finally, an analysis of the known neuronal interrelations within the rat visual cortex is presented.
Collapse
|
26
|
Peters A, Fairén A. Smooth and sparsely-spined stellate cells in the visual cortex of the rat: a study using a combined Golgi-electron microscopic technique. J Comp Neurol 1978; 181:129-71. [PMID: 681555 DOI: 10.1002/cne.901810108] [Citation(s) in RCA: 193] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
27
|
Toyama K, Maekawa K, Takeda T. Convergence of retinal inputs into visual cortical cells: I. A study of the cells monosynaptically excited from the lateral geniculate body. Brain Res 1977; 137:207-20. [PMID: 589451 DOI: 10.1016/0006-8993(77)90334-1] [Citation(s) in RCA: 29] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
28
|
Toyama K, Kimura M, Shiida T, Takeda T. Convergence of retinal inputs onto visual cortical cells: II. A study of the cells disynaptically excited from the lateral geniculate body. Brain Res 1977; 137:221-31. [PMID: 589452 DOI: 10.1016/0006-8993(77)90335-3] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Spike discharges were recorded extracellularly from cells located in the superficial layer of cat's visual cortex. These cells were disynaptically excited and trisynaptically inhibited from the lateral geniculate cells. The vast majority of them responded to stationary and moving light stimuli. Their ON and OFF responses to a flash of light slit consisted of three components: (1) initial excitation, (2) depression and (3) later rebound. The three components were evoked from a broad area of the retinal receptive field. In one group of these cells, exploration of the receptive field with light slits of different lengths revealed a strong depressant zone at one or both ends of the excitatory receptive area, the characteristics property of 'hypercomplex' cell of Hubel and Wiesel. Another population of cells, however, did not show such length-specificity, and apparently correspond to 'complex' cell. In both groups of cells electrical stimulation at the excitatory receptive area produced a sequence of excitation, depression and later rebound, but only depression was evoked from the depressant zones. The latency of the excitation (6 msec) and the depression (7 msec) are in accordance with the view that the excitation is transmitted through disynaptic pathway and the depression through trisynaptic pathway after being mediated by the lateral geniculate cells.
Collapse
|