1
|
Hong SM, Qian X, Deshpande V, Kulkarni S. Optimization of protocols for immunohistochemical assessment of enteric nervous system in formalin fixed human tissue. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.12.15.628584. [PMID: 39763767 PMCID: PMC11702535 DOI: 10.1101/2024.12.15.628584] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/31/2025]
Abstract
Gastrointestinal (GI) motility is regulated in a large part by the cells of the enteric nervous system (ENS), suggesting that ENS dysfunctions either associate with, or drive GI dysmotility in patients. However, except for select diseases such as Hirschsprung's Disease or Achalasia that show a significant loss of all neurons or a subset of neurons, our understanding of human ENS histopathology is extremely limited. Recent endoscopic advances allow biopsying patient's full thickness gut tissues, which makes capturing ENS tissues simpler than biopsying other neuronal tissues, such as the brain. Yet, our understanding of ENS aberrations observed in GI dysmotility patients lags behind our understanding of central nervous system aberrations observed in patients with neurological disease. Paucity of optimized methods for histopathological assessment of ENS in pathological specimens represent an important bottleneck in ascertaining how the ENS is altered in diverse GI dysmotility conditions. While recent studies have interrogated ENS structure in surgically resected whole mount human gut, most pathological specimens are banked as formalin fixed paraffin embedded (FFPE) tissue blocks - suggesting that methods to interrogate ENS in FFPE tissue blocks would provide the biggest impetus for ENS histopathology in a clinical setting. In this report, we present optimized methods for immunohistochemical interrogation of the human ENS tissue on the basis of >25 important protein markers that include proteins expressed by all neurons, subset of neurons, hormones, and neurotransmitter receptors. This report provides a resource which will help pathologists and investigators assess ENS aberrations in patients with various GI dysmotility conditions.
Collapse
Affiliation(s)
- Su Min Hong
- Division of Gastroenterology, Dept of Medicine, Beth Israel Deaconess Medical Center, Boston, MA 02115
| | - Xia Qian
- Dept of Pathology, Beth Israel Deaconess Medical Center, Boston, MA 02115
| | - Vikram Deshpande
- Dept of Pathology, Beth Israel Deaconess Medical Center, Boston, MA 02115
| | - Subhash Kulkarni
- Division of Gastroenterology, Dept of Medicine, Beth Israel Deaconess Medical Center, Boston, MA 02115
- Division of Medical Sciences, Harvard Medical School, Boston, MA 02115
- Graduate program in Neuroscience, Harvard Medical School, Boston, MA 02115
| |
Collapse
|
2
|
Spencer NJ, Brookes SJH, Wattchow DA. In Memoriam: Marcello Costa (1940-2024) - a pioneer of the enteric nervous system. J Physiol 2024. [PMID: 39190319 DOI: 10.1113/jp287066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Accepted: 08/12/2024] [Indexed: 08/28/2024] Open
Affiliation(s)
- N J Spencer
- College of Medicine & Public Health, Flinders Health & Medical Research Institute, Flinders University, Adelaide, South Australia, Australia
| | - S J H Brookes
- College of Medicine & Public Health, Flinders Health & Medical Research Institute, Flinders University, Adelaide, South Australia, Australia
| | - D A Wattchow
- College of Medicine & Public Health, Flinders Health & Medical Research Institute, Flinders University, Adelaide, South Australia, Australia
| |
Collapse
|
3
|
Gomez-Frittelli J, Hamnett R, Kaltschmidt JA. Comparison of wholemount dissection methods for neuronal subtype marker expression in the mouse myenteric plexus. Neurogastroenterol Motil 2024; 36:e14693. [PMID: 37882149 PMCID: PMC10842488 DOI: 10.1111/nmo.14693] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Revised: 09/05/2023] [Accepted: 10/10/2023] [Indexed: 10/27/2023]
Abstract
BACKGROUND Accurately reporting the identity and representation of enteric nervous system (ENS) neuronal subtypes along the length of the gastrointestinal (GI) tract is critical to advancing our understanding of ENS control of GI function. Reports of varying proportions of subtype marker expression have employed different dissection techniques to achieve wholemount muscularis preparations of myenteric plexus. In this study, we asked whether differences in GI dissection methods could introduce variability into the quantification of marker expression. METHODS We compared three commonly used methods of ENS wholemount dissection: two flat-sheet preparations that differed in the order of microdissection and fixation and a third rod-mounted peeling technique. We also tested a reversed orientation variation of flat-sheet peeling, two step-by-step variations of the rod peeling technique, and whole-gut fixation as a tube. We assessed marker expression using immunohistochemistry, genetic reporter lines, confocal microscopy, and automated image analysis. KEY RESULTS AND CONCLUSIONS We found no significant differences between the two flat-sheet preparation methods in the expression of calretinin or neuronal nitric oxide synthase (nNOS) as a proportion of total neurons in ileum myenteric plexus. However, the rod-mounted peeling method resulted in decreased proportion of neurons labeled for both calretinin and nNOS. This method also resulted in decreased transgenic reporter fluorescent protein (tdTomato) for substance P in distal colon and choline acetyltransferase (ChAT) in both ileum and distal colon. These results suggest that labeling among some markers, both native protein and transgenic fluorescent reporters, is decreased by the rod-mounted mechanical method of peeling. The step-by-step variations of this method point to mechanical manipulation of the tissue as the likely cause of decreased labeling. Our study thereby demonstrates a critical variability in wholemount muscularis dissection methods.
Collapse
Affiliation(s)
- Julieta Gomez-Frittelli
- Department of Chemical Engineering, Stanford University, Stanford, CA 94305 USA
- Wu Tsai Neurosciences Institute, Stanford University, Stanford, CA, 94305 USA
| | - Ryan Hamnett
- Wu Tsai Neurosciences Institute, Stanford University, Stanford, CA, 94305 USA
- Department of Neurosurgery, Stanford University School of Medicine, Stanford, CA 94305 USA
| | - Julia A. Kaltschmidt
- Wu Tsai Neurosciences Institute, Stanford University, Stanford, CA, 94305 USA
- Department of Neurosurgery, Stanford University School of Medicine, Stanford, CA 94305 USA
| |
Collapse
|
4
|
Gomez-Frittelli J, Hamnett R, Kaltschmidt JA. Comparison of wholemount dissection methods for neuronal subtype marker expression in the mouse myenteric plexus. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.01.17.524014. [PMID: 36711933 PMCID: PMC9882214 DOI: 10.1101/2023.01.17.524014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Background Accurately reporting the identity and representation of enteric nervous system (ENS) neuronal subtypes along the length of the gastrointestinal (GI) tract is critical to advancing our understanding of ENS control of GI tract function. Reports of varying proportions of subtype marker expression have employed different dissection techniques to achieve wholemount muscularis preparations of myenteric plexus. In this study we asked whether differences in GI dissection methods could introduce variability into the quantification of marker expression. Methods We compared three commonly used methods of ENS wholemount dissection: two flat-sheet preparations that differed in the order of microdissection and fixation as well as a rod-mounted peeling technique. We assessed marker expression using immunohistochemistry, genetic reporter lines, confocal microscopy, and automated image analysis. Key Results and Conclusions We found no significant differences between the two flat-sheet preparation methods in the expression of calretinin, neuronal nitric oxide synthase (nNOS), or somatostatin (SST) in ileum myenteric plexus. However, the rod-mounted peeling method resulted in decreased marker labeling for both calretinin and nNOS. This method also resulted in decreased transgenic reporter fluorescent protein (tdTomato) for substance P in ileum and choline acetyltransferase (ChAT) in both ileum and distal colon. These results suggest that labeling among some markers, both native protein and transgenic fluorescent reporters, is decreased by the rod-mounted mechanical method of peeling, demonstrating a critical variability in wholemount muscularis dissection methods.
Collapse
Affiliation(s)
- Julieta Gomez-Frittelli
- Department of Chemical Engineering, Stanford University, Stanford, CA 94305 USA
- Wu Tsai Neurosciences Institute, Stanford University, Stanford, CA 94305 USA
| | - Ryan Hamnett
- Wu Tsai Neurosciences Institute, Stanford University, Stanford, CA 94305 USA
- Department of Neurosurgery, Stanford University School of Medicine, Stanford, CA 94305 USA
| | - Julia A. Kaltschmidt
- Wu Tsai Neurosciences Institute, Stanford University, Stanford, CA 94305 USA
- Department of Neurosurgery, Stanford University School of Medicine, Stanford, CA 94305 USA
| |
Collapse
|
5
|
Heitmann PT, Keightley L, Wiklendt L, Wattchow DA, Brookes SSJ, Spencer NJ, Costa M, Dinning PG. The effects of loperamide on excitatory and inhibitory neuromuscular function in the human colon. Neurogastroenterol Motil 2022; 34:e14442. [PMID: 36054796 DOI: 10.1111/nmo.14442] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/25/2021] [Revised: 06/15/2022] [Accepted: 07/21/2022] [Indexed: 02/08/2023]
Abstract
BACKGROUND In most animal species, opioids alter colonic motility via the inhibition of excitatory enteric motor neurons. The mechanisms by which opioids alter human colonic motility are unclear. The aim of this study was to describe the effects of loperamide on neuromuscular function in the human colon. METHODS Tissue specimens of human colon from 10 patients undergoing an anterior resection were divided into three inter-taenial circular muscle strips. Separate organ baths were used to assess: (1) excitatory transmission (selective blockade of inhibitory transmission: L-NOARG/MRS2179); (2) inhibitory transmission (selective blockade of excitatory transmission: hyoscine hydrobromide); and (3) a control bath (no drug additions). Neuromuscular function was assessed using force transducer recordings and electrical field stimulation (EFS; 20 V, 10 Hz, 0.5 ms, 10 s) prior to and following loperamide and naloxone. KEY RESULTS In human preparations with L-NOARG/MRS2179, loperamide had no significant effects on isometric contractions. In preparations with hyoscine hydrobromide, loperamide reduced isometric relaxation during EFS (median difference + 0.60 g post-loperamide, Z = -2.35, p = 0.019). CONCLUSIONS AND INFERENCES Loperamide had no effect on excitatory neuromuscular function in human colonic circular muscle. These findings suggest that loperamide alters colonic function by acting primarily on inhibitory motor neurons, premotor enteric neurons, or via alternative non-opioid receptor pathways.
Collapse
Affiliation(s)
- Paul T Heitmann
- College of Medicine and Public Health, Flinders University, Adelaide, South Australia, Australia.,Departments of Surgery and Gastroenterology, Flinders Medical Centre, Adelaide, South Australia, Australia
| | - Lauren Keightley
- College of Medicine and Public Health, Flinders University, Adelaide, South Australia, Australia
| | - Lukasz Wiklendt
- College of Medicine and Public Health, Flinders University, Adelaide, South Australia, Australia
| | - David A Wattchow
- College of Medicine and Public Health, Flinders University, Adelaide, South Australia, Australia.,Departments of Surgery and Gastroenterology, Flinders Medical Centre, Adelaide, South Australia, Australia
| | - Simon S J Brookes
- College of Medicine and Public Health, Flinders University, Adelaide, South Australia, Australia
| | - Nicholas J Spencer
- College of Medicine and Public Health, Flinders University, Adelaide, South Australia, Australia
| | - Marcello Costa
- College of Medicine and Public Health, Flinders University, Adelaide, South Australia, Australia
| | - Phil G Dinning
- College of Medicine and Public Health, Flinders University, Adelaide, South Australia, Australia.,Departments of Surgery and Gastroenterology, Flinders Medical Centre, Adelaide, South Australia, Australia
| |
Collapse
|
6
|
Hamnett R, Dershowitz LB, Sampathkumar V, Wang Z, Gomez-Frittelli J, De Andrade V, Kasthuri N, Druckmann S, Kaltschmidt JA. Regional cytoarchitecture of the adult and developing mouse enteric nervous system. Curr Biol 2022; 32:4483-4492.e5. [PMID: 36070775 PMCID: PMC9613618 DOI: 10.1016/j.cub.2022.08.030] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Revised: 07/19/2022] [Accepted: 08/11/2022] [Indexed: 11/22/2022]
Abstract
The organization and cellular composition of tissues are key determinants of their biological function. In the mammalian gastrointestinal (GI) tract, the enteric nervous system (ENS) intercalates between muscular and epithelial layers of the gut wall and can control GI function independent of central nervous system (CNS) input.1 As in the CNS, distinct regions of the GI tract are highly specialized and support diverse functions, yet the regional and spatial organization of the ENS remains poorly characterized.2 Cellular arrangements,3,4 circuit connectivity patterns,5,6 and diverse cell types7-9 are known to underpin ENS functional complexity and GI function, but enteric neurons are most typically described only as a uniform meshwork of interconnected ganglia. Here, we present a bird's eye view of the mouse ENS, describing its previously underappreciated cytoarchitecture and regional variation. We visually and computationally demonstrate that enteric neurons are organized in circumferential neuronal stripes. This organization emerges gradually during the perinatal period, with neuronal stripe formation in the small intestine (SI) preceding that in the colon. The width of neuronal stripes varies throughout the length of the GI tract, and distinct neuronal subtypes differentially populate specific regions of the GI tract, with stark contrasts between SI and colon as well as within subregions of each. This characterization provides a blueprint for future understanding of region-specific GI function and identifying ENS structural correlates of diverse GI disorders.
Collapse
Affiliation(s)
- Ryan Hamnett
- Department of Neurosurgery, Stanford University School of Medicine, Stanford, CA 94305, USA; Wu Tsai Neurosciences Institute, Stanford University, Stanford, CA 94305, USA
| | - Lori B Dershowitz
- Department of Neurosurgery, Stanford University School of Medicine, Stanford, CA 94305, USA; Wu Tsai Neurosciences Institute, Stanford University, Stanford, CA 94305, USA
| | - Vandana Sampathkumar
- Department of Neurobiology, University of Chicago, Chicago, IL 60637, USA; Biosciences Division, Argonne National Laboratory, Lemont, IL 60439, USA
| | - Ziyue Wang
- Department of Applied Physics, Stanford University, Stanford, CA 94305, USA; Department of Neurobiology, Stanford University, Stanford, CA 94305, USA
| | - Julieta Gomez-Frittelli
- Wu Tsai Neurosciences Institute, Stanford University, Stanford, CA 94305, USA; Department of Chemical Engineering, Stanford University, Stanford, CA 94305, USA
| | - Vincent De Andrade
- Advanced Photon Source, Argonne National Laboratory, Lemont, IL 60439, USA
| | - Narayanan Kasthuri
- Department of Neurobiology, University of Chicago, Chicago, IL 60637, USA; Biosciences Division, Argonne National Laboratory, Lemont, IL 60439, USA
| | - Shaul Druckmann
- Department of Neurobiology, Stanford University, Stanford, CA 94305, USA; Department of Psychiatry and Behavioral Sciences, Stanford University, Stanford, CA 94305, USA
| | - Julia A Kaltschmidt
- Department of Neurosurgery, Stanford University School of Medicine, Stanford, CA 94305, USA; Wu Tsai Neurosciences Institute, Stanford University, Stanford, CA 94305, USA.
| |
Collapse
|
7
|
Parker DR, Wiklendt L, Humenick A, Chen BN, Sia TC, Wattchow DA, Dinning PG, Brookes SJH. Sympathetic Pathways Target Cholinergic Neurons in the Human Colonic Myenteric Plexus. Front Neurosci 2022; 16:863662. [PMID: 35368277 PMCID: PMC8970288 DOI: 10.3389/fnins.2022.863662] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Accepted: 02/21/2022] [Indexed: 01/01/2023] Open
Abstract
Background The sympathetic nervous system inhibits human colonic motility largely by effects on enteric neurons. Noradrenergic axons, which branch extensively in the myenteric plexus, are integral to this modulatory role, but whether they contact specific types of enteric neurons is unknown. The purpose of this study was to determine the association of noradrenergic varicosities with types of enteric neurons. Methods Human colonic tissue from seven patients was fixed and dissected prior to multi-layer immunohistochemistry for human RNA binding proteins C and D (HuC/D) (pan-neuronal cell body labelling), tyrosine hydroxylase (TH, catecholaminergic labelling), Enkephalin (ENK), choline acetyltransferase (ChAT, cholinergic labelling) and/or nitric oxide synthase (NOS, nitrergic labelling) and imaged using confocal microscopy. TH-immunoreactive varicose nerve endings and myenteric cell bodies were reconstructed as three dimensional digital images. Data was exported to a purpose-built software package which quantified the density of varicosities close to the surface of each myenteric cell body. Results TH-immunoreactive varicosities had a greater mean density within 1 μm of the surface of ChAT +/NOS− nerve cell bodies compared with ChAT−/NOS + cell bodies. Similarly, ENK-immunoreactive varicosities also had a greater mean density close to ChAT +/NOS− cell bodies compared with ChAT−/NOS + cells. Conclusion A method for quantifying close associations between varicosities and nerve cell bodies was developed. Sympathetic axons in the myenteric plexus preferentially target cholinergic excitatory cells compared to nitrergic neurons (which are largely inhibitory). This connectivity is likely to be involved in inhibitory modulation of human colonic motility by the sympathetic nervous system.
Collapse
Affiliation(s)
- Dominic R. Parker
- Laboratory of Neurogastroenterology, College of Medicine and Public Health, Flinders University, Adelaide, SA, Australia
- Colorectal Surgical Unit, Division of Surgery, Flinders Medical Centre, Bedford Park, SA, Australia
| | - Lukasz Wiklendt
- Laboratory of Neurogastroenterology, College of Medicine and Public Health, Flinders University, Adelaide, SA, Australia
| | - Adam Humenick
- Laboratory of Neurogastroenterology, College of Medicine and Public Health, Flinders University, Adelaide, SA, Australia
| | - Bao Nan Chen
- Laboratory of Neurogastroenterology, College of Medicine and Public Health, Flinders University, Adelaide, SA, Australia
| | - Tiong Cheng Sia
- Colorectal Surgical Unit, Division of Surgery, Flinders Medical Centre, Bedford Park, SA, Australia
| | - David A. Wattchow
- Laboratory of Neurogastroenterology, College of Medicine and Public Health, Flinders University, Adelaide, SA, Australia
- Colorectal Surgical Unit, Division of Surgery, Flinders Medical Centre, Bedford Park, SA, Australia
| | - Phil G. Dinning
- Laboratory of Neurogastroenterology, College of Medicine and Public Health, Flinders University, Adelaide, SA, Australia
| | - Simon J. H. Brookes
- Laboratory of Neurogastroenterology, College of Medicine and Public Health, Flinders University, Adelaide, SA, Australia
- *Correspondence: Simon J. H. Brookes,
| |
Collapse
|
8
|
Wright CM, Schneider S, Smith-Edwards KM, Mafra F, Leembruggen AJL, Gonzalez MV, Kothakapa DR, Anderson JB, Maguire BA, Gao T, Missall TA, Howard MJ, Bornstein JC, Davis BM, Heuckeroth RO. scRNA-Seq Reveals New Enteric Nervous System Roles for GDNF, NRTN, and TBX3. Cell Mol Gastroenterol Hepatol 2021; 11:1548-1592.e1. [PMID: 33444816 PMCID: PMC8099699 DOI: 10.1016/j.jcmgh.2020.12.014] [Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/23/2020] [Revised: 12/24/2020] [Accepted: 12/30/2020] [Indexed: 02/07/2023]
Abstract
BACKGROUND AND AIMS Bowel function requires coordinated activity of diverse enteric neuron subtypes. Our aim was to define gene expression in these neuron subtypes to facilitate development of novel therapeutic approaches to treat devastating enteric neuropathies, and to learn more about enteric nervous system function. METHODS To identify subtype-specific genes, we performed single-nucleus RNA-seq on adult mouse and human colon myenteric plexus, and single-cell RNA-seq on E17.5 mouse ENS cells from whole bowel. We used immunohistochemistry, select mutant mice, and calcium imaging to validate and extend results. RESULTS RNA-seq on 635 adult mouse colon myenteric neurons and 707 E17.5 neurons from whole bowel defined seven adult neuron subtypes, eight E17.5 neuron subtypes and hundreds of differentially expressed genes. Manually dissected human colon myenteric plexus yielded RNA-seq data from 48 neurons, 3798 glia, 5568 smooth muscle, 377 interstitial cells of Cajal, and 2153 macrophages. Immunohistochemistry demonstrated differential expression for BNC2, PBX3, SATB1, RBFOX1, TBX2, and TBX3 in enteric neuron subtypes. Conditional Tbx3 loss reduced NOS1-expressing myenteric neurons. Differential Gfra1 and Gfra2 expression coupled with calcium imaging revealed that GDNF and neurturin acutely and differentially regulate activity of ∼50% of myenteric neurons with distinct effects on smooth muscle contractions. CONCLUSION Single cell analyses defined genes differentially expressed in myenteric neuron subtypes and new roles for TBX3, GDNF and NRTN. These data facilitate molecular diagnostic studies and novel therapeutics for bowel motility disorders.
Collapse
Affiliation(s)
- Christina M Wright
- Department of Pediatrics, Abramson Research Center, Children's Hospital of Philadelphia Research Institute, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania
| | - Sabine Schneider
- Department of Pediatrics, Abramson Research Center, Children's Hospital of Philadelphia Research Institute, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania
| | - Kristen M Smith-Edwards
- Department of Neurobiology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania; Pittsburgh Center for Pain Research, University of Pittsburgh, Pittsburgh, Pennsylvania; Center for Neuroscience at the University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Fernanda Mafra
- Center for Applied Genomics, Abramson Research Center, Children's Hospital of Philadelphia Research Institute, Philadelphia, Pennsylvania
| | | | - Michael V Gonzalez
- Center for Applied Genomics, Abramson Research Center, Children's Hospital of Philadelphia Research Institute, Philadelphia, Pennsylvania
| | - Deepika R Kothakapa
- Department of Pediatrics, Abramson Research Center, Children's Hospital of Philadelphia Research Institute, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania
| | - Jessica B Anderson
- Department of Pediatrics, Abramson Research Center, Children's Hospital of Philadelphia Research Institute, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania
| | - Beth A Maguire
- Department of Pediatrics, Abramson Research Center, Children's Hospital of Philadelphia Research Institute, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania
| | - Tao Gao
- Department of Pediatrics, Abramson Research Center, Children's Hospital of Philadelphia Research Institute, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania
| | - Tricia A Missall
- Department of Dermatology, University of Florida, Gainesville, Florida
| | - Marthe J Howard
- Department of Neurosciences, University of Toledo Health Sciences Campus, Toledo, Ohio
| | - Joel C Bornstein
- Department of Physiology, University of Melbourne, Parkville, Victoria, Australia
| | - Brian M Davis
- Department of Neurobiology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania; Pittsburgh Center for Pain Research, University of Pittsburgh, Pittsburgh, Pennsylvania; Center for Neuroscience at the University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Robert O Heuckeroth
- Department of Pediatrics, Abramson Research Center, Children's Hospital of Philadelphia Research Institute, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania.
| |
Collapse
|
9
|
Duque-Díaz E, Alvarez-Ojeda O, Coveñas R. Enkephalins and ACTH in the mammalian nervous system. VITAMINS AND HORMONES 2019; 111:147-193. [PMID: 31421699 DOI: 10.1016/bs.vh.2019.05.001] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
The pentapeptides methionine-enkephalin and leucine-enkephalin belong to the opioid family of peptides, and the non-opiate peptide adrenocorticotropin hormone (ACTH) to the melanocortin peptide family. Enkephalins/ACTH are derived from pro-enkephalin, pro-dynorphin or pro-opiomelanocortin precursors and, via opioid and melanocortin receptors, are responsible for many biological activities. Enkephalins exhibit the highest affinity for the δ receptor, followed by the μ and κ receptors, whereas ACTH binds to the five subtypes of melanocortin receptor, and is the only member of the melanocortin family of peptides that binds to the melanocortin-receptor 2 (ACTH receptor). Enkephalins/ACTH and their receptors exhibit a widespread anatomical distribution. Enkephalins are involved in analgesia, angiogenesis, blood pressure, embryonic development, emotional behavior, feeding, hypoxia, limbic system modulation, neuroprotection, peristalsis, and wound repair; as well as in hepatoprotective, motor, neuroendocrine and respiratory mechanisms. ACTH plays a role in acetylcholine release, aggressive behavior, blood pressure, bone maintenance, hyperalgesia, feeding, fever, grooming, learning, lipolysis, memory, nerve injury repair, neuroprotection, sexual behavior, sleep, social behavior, tissue growth and stimulates the synthesis and secretion of glucocorticoids. Enkephalins/ACTH are also involved in many pathologies. Enkephalins are implicated in alcoholism, cancer, colitis, depression, heart failure, Huntington's disease, influenza A virus infection, ischemia, multiple sclerosis, and stress. ACTH plays a role in Addison's disease, alcoholism, cancer, Cushing's disease, dermatitis, encephalitis, epilepsy, Graves' disease, Guillain-Barré syndrome, multiple sclerosis, podocytopathies, and stress. In this review, we provide an updated description of the enkephalinergic and ACTH systems.
Collapse
Affiliation(s)
- Ewing Duque-Díaz
- Universidad de Santander UDES, Laboratory of Neurosciences, School of Medicine, Bucaramanga, Colombia.
| | - Olga Alvarez-Ojeda
- Universidad Industrial de Santander, Department of Pathology, School of Medicine, Bucaramanga, Colombia
| | - Rafael Coveñas
- Laboratory of Neuroanatomy of the Peptidergic Systems, Institute of Neurosciences of Castilla y León (INCYL), University of Salamanca, Salamanca, Spain
| |
Collapse
|
10
|
The influence of experimental inflammation and axotomy on leucine enkephalin (leuENK) distribution in intramural nervous structures of the porcine descending colon. BMC Vet Res 2018; 14:169. [PMID: 29793486 PMCID: PMC5968568 DOI: 10.1186/s12917-018-1496-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2016] [Accepted: 05/14/2018] [Indexed: 12/13/2022] Open
Abstract
Background The enteric nervous system (ENS), located in the intestinal wall and characterized by considerable independence from the central nervous system, consists of millions of cells. Enteric neurons control the majority of functions of the gastrointestinal tract using a wide range of substances, which are neuromediators and/or neuromodulators. One of them is leucine–enkephalin (leuENK), which belongs to the endogenous opioid family. It is known that opioids in the gastrointestinal tract have various functions, including visceral pain conduction, intestinal motility and secretion and immune processes, but many aspects of distribution and function of leuENK in the ENS, especially during pathological states, remain unknown. Results During this experiment, the distribution of leuENK – like immunoreactive (leuENK-LI) nervous structures using the immunofluorescence technique were studied in the porcine colon in physiological conditions, during chemically-induced inflammation and after axotomy. The study included the circular muscle layer, myenteric (MP), outer submucous (OSP) and inner submucous plexus (ISP) and the mucosal layer. In control animals, the number of leuENK-LI neurons amounted to 4.86 ± 0.17%, 2.86 ± 0.28% and 1.07 ± 0.08% in the MP, OSP and ISP, respectively. Generally, both pathological stimuli caused an increase in the number of detected leuENK-LI cells, but the intensity of the observed changes depended on the factor studied and part of the ENS. The percentage of leuENK-LI perikarya amounted to 11.48 ± 0.96%, 8.71 ± 0.13% and 9.40 ± 0.76% during colitis, and 6.90 ± 0.52% 8.46 ± 12% and 4.48 ± 0.44% after axotomy in MP, OSP and ISP, respectively. Both processes also resulted in an increase in the number of leuENK-LI nerves in the circular muscle layer, whereas changes were less visible in the mucosa during inflammation and axotomy did not change the number of leuENK-LI mucosal fibers. Conclusions LeuENK in the ENS takes part in intestinal regulatory processes not only in physiological conditions, but also under pathological factors. The observed changes are probably connected with the participation of leuENK in sensory and motor innervation and the neuroprotective effects of this substance. Differences in the number of leuENK-LI neurons during inflammation and after axotomy may suggest that the exact functions of leuENK probably depend on the type of pathological factor acting on the intestine.
Collapse
|
11
|
Sun X, Tang L, Winesett S, Chang W, Cheng SX. Calcimimetic R568 inhibits tetrodotoxin-sensitive colonic electrolyte secretion and reduces c-fos expression in myenteric neurons. Life Sci 2017; 194:49-58. [PMID: 29247746 DOI: 10.1016/j.lfs.2017.12.019] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2017] [Revised: 12/08/2017] [Accepted: 12/12/2017] [Indexed: 12/13/2022]
Abstract
AIMS Calcium-sensing receptor (CaSR) is expressed on neurons of both submucosal and myenteric plexuses of the enteric nervous system (ENS) and the CaSR agonist R568 inhibited Cl- secretion in intestine. The purpose of this study was to localize the primary site of action of R568 in the ENS and to explore how CaSR regulates secretion through the ENS. MATERIALS AND METHODS Two preparations of rat proximal and distal colon were used. The full-thickness preparation contained both the submucosal and myenteric plexuses, whereas for the "stripped" preparation the myenteric plexus with the muscle layers was removed. Both preparations were mounted onto Ussing chambers and Cl- secretory responses were compared by measuring changes in short circuit current (Isc). Two tissue-specific CaSR knockouts (i.e., neuron-specific vs. enterocyte-specific) were generated to compare the effect of R568 on expression of c-fos protein in myenteric neurons by immunocytochemistry. KEY FINDINGS In full-thickness colons, tetrodotoxin (TTX) inhibited Isc, both in proximal and distal colons. A nearly identical inhibition was produced by R568. However, in stripped preparations, while the effect of TTX on Isc largely remained, the effect of R568 was nearly completely eliminated. In keeping with this, R568 reduced c-fos protein expression only in myenteric neurons of wild type mice and mutant mice that contained CaSR in neurons (i.e., villinCre/Casrflox/flox mice), but not in myenteric neurons of nestinCre/Casrflox/flox mice in which neuronal cell CaSR was eliminated. SIGNIFICANCE These results indicate that R568 exerts its anti-secretory effects predominantly via CaSR-mediated inhibition of neuronal activity in the myenteric plexus.
Collapse
Affiliation(s)
- Xiangrong Sun
- Department of Physiology and Pathophysiology, School of Basic Medicine, Qingdao University, Qingdao, China; Department of Pediatrics, University of Florida, Gainesville, FL, USA
| | - Lieqi Tang
- Department of Pediatrics, University of Florida, Gainesville, FL, USA
| | - Steven Winesett
- Department of Pediatrics, University of Florida, Gainesville, FL, USA
| | - Wenhan Chang
- Endocrine Research, VA Medical Center, University of California at San Francisco, San Francisco, CA, USA
| | - Sam Xianjun Cheng
- Division of Gastroenterology, Nutrition and Hepatology, Department of Pediatrics, University of Florida, Gainesville, FL, USA.
| |
Collapse
|
12
|
Hughes PA, Costello SP, Bryant RV, Andrews JM. Opioidergic effects on enteric and sensory nerves in the lower GI tract: basic mechanisms and clinical implications. Am J Physiol Gastrointest Liver Physiol 2016; 311:G501-13. [PMID: 27469369 DOI: 10.1152/ajpgi.00442.2015] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/15/2015] [Accepted: 07/21/2016] [Indexed: 01/31/2023]
Abstract
Opioids are one of the most prescribed drug classes for treating acute pain. However, chronic use is often associated with tolerance as well as debilitating side effects, including nausea and dependence, which are mediated by the central nervous system, as well as constipation emerging from effects on the enteric nervous system. These gastrointestinal (GI) side effects limit the usefulness of opioids in treating pain in many patients. Understanding the mechanism(s) of action of opioids on the nervous system that shows clinical benefit as well as those that have unwanted effects is critical for the improvement of opioid drugs. The opioidergic system comprises three classical receptors (μ, δ, κ) and a nonclassical receptor (nociceptin), and each of these receptors is expressed to varying extents by the enteric and intestinal extrinsic sensory afferent nerves. The purpose of this review is to discuss the role that the opioidergic system has on enteric and extrinsic afferent nerves in the lower GI tract in health and diseases of the lower GI tract, particularly inflammatory bowel disease and irritable bowel syndrome, and the implications of opioid treatment on clinical outcomes. Consideration is also given to emerging developments in our understanding of the immune system as a novel source of endogenous opioids and the mechanisms underlying opioid tolerance, including the potential influence of opioid receptor splice variants and heteromeric complexes.
Collapse
Affiliation(s)
- Patrick A Hughes
- Centre for Nutrition and Gastrointestinal Disease, Department of Medicine, University of Adelaide and South Australian Health and Medical Research Institute, Adelaide, South Australia, Australia; School of Medicine, Faculty of Health Sciences, University of Adelaide, Adelaide, South Australia, Australia;
| | - Samuel P Costello
- School of Medicine, Faculty of Health Sciences, University of Adelaide, Adelaide, South Australia, Australia; Department of Gastroenterology and Hepatology, Royal Adelaide Hospital, Adelaide, South Australia, Australia; and Department of Gastroenterology, The Queen Elizabeth Hospital, Woodville, South Australia, Australia
| | - Robert V Bryant
- School of Medicine, Faculty of Health Sciences, University of Adelaide, Adelaide, South Australia, Australia; Department of Gastroenterology and Hepatology, Royal Adelaide Hospital, Adelaide, South Australia, Australia; and
| | - Jane M Andrews
- School of Medicine, Faculty of Health Sciences, University of Adelaide, Adelaide, South Australia, Australia; Department of Gastroenterology and Hepatology, Royal Adelaide Hospital, Adelaide, South Australia, Australia; and
| |
Collapse
|
13
|
Thompson GL, Canals M, Poole DP. Biological redundancy of endogenous GPCR ligands in the gut and the potential for endogenous functional selectivity. Front Pharmacol 2014; 5:262. [PMID: 25506328 PMCID: PMC4246669 DOI: 10.3389/fphar.2014.00262] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2014] [Accepted: 11/12/2014] [Indexed: 01/27/2023] Open
Abstract
This review focuses on the existence and function of multiple endogenous agonists of the somatostatin and opioid receptors with an emphasis on their expression in the gastrointestinal tract. These agonists generally arise from the proteolytic cleavage of prepropeptides during peptide maturation or from degradation of peptides by extracellular or intracellular endopeptidases. In other examples, endogenous peptide agonists for the same G protein-coupled receptors can be products of distinct genes but contain high sequence homology. This apparent biological redundancy has recently been challenged by the realization that different ligands may engender distinct receptor conformations linked to different intracellular signaling profiles and, as such the existence of distinct ligands may underlie mechanisms to finely tune physiological responses. We propose that further characterization of signaling pathways activated by these endogenous ligands will provide invaluable insight into the mechanisms governing biased agonism. Moreover, these ligands may prove useful in the design of novel therapeutic tools to target distinct signaling pathways, thereby favoring desirable effects and limiting detrimental on-target effects. Finally we will discuss the limitations of this area of research and we will highlight the difficulties that need to be addressed when examining endogenous bias in tissues and in animals.
Collapse
Affiliation(s)
- Georgina L Thompson
- Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences Parkville, VIC, Australia
| | - Meritxell Canals
- Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences Parkville, VIC, Australia
| | - Daniel P Poole
- Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences Parkville, VIC, Australia ; Department of Anatomy and Neuroscience, The University of Melbourne Parkville, VIC, Australia
| |
Collapse
|
14
|
Marini P, Romanelli L, Valeri D, Cascio MG, Tucci P, Valeri P, Palmery M. The NOP receptor involvement in both withdrawal- and CCk-8-induced contracture responses of guinea pig isolated ileum after acute activation of κ-opioid receptor. Peptides 2012; 38:418-26. [PMID: 23059394 DOI: 10.1016/j.peptides.2012.09.028] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/18/2012] [Revised: 09/27/2012] [Accepted: 09/27/2012] [Indexed: 02/06/2023]
Abstract
In isolated guinea-pig ileum (GPI), the κ-opioid acute withdrawal response is under the control of several neuronal signaling systems, including the μ-opioid, the A(1)-adenosine and the CB(1) receptors, which are involved in the inhibitory control of the κ-withdrawal response. After κ-opioid system stimulation, indirect activation of μ-opioid, A(1)-adenosine and CB(1) systems is prevented by the peptide cholecystokinin-8 (CCk-8). In the present study, we have investigated whether the NOP system is also involved in the regulation of the acute κ-withdrawal response. Interestingly, we found that in GPI preparation, the NOP system is not indirectly activated by the κ-opioid receptor stimulation, but instead this system is able by itself to directly regulate the acute κ-withdrawal response. Specifically, our results clearly highlight first the existence of an endogenous tone of the NOP system in GPI, and second that it behaves as a functional anti-opioid system. We also found that, the NOP receptor system is involved in the regulation of the CCk-8-induced contracture intensity, only when in the presence of the κ-opioid receptor stimulation. This effect seems to be regulated by an activation threshold mechanism. In conclusion, the NOP system could act as neuromodulatory system, whose action is strictly related to the modulation of both excitatory and inhibitory neurotransmitters released in GPI enteric nervous system.
Collapse
Affiliation(s)
- Pietro Marini
- School of Medical Sciences, Institute of Medical Sciences, University of Aberdeen, Aberdeen, UK.
| | | | | | | | | | | | | |
Collapse
|
15
|
Marini P, Romanelli L, Valeri D, Cascio MG, Tucci P, Valeri P, Palmery M. Biphasic regulation of the acute μ-withdrawal and CCk-8 contracture responses by the ORL-1 system in guinea pig ileum. Pharmacol Res 2012; 65:100-10. [PMID: 21875667 DOI: 10.1016/j.phrs.2011.08.004] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/21/2011] [Revised: 07/26/2011] [Accepted: 08/12/2011] [Indexed: 10/17/2022]
Abstract
The cloning of the opioid-receptor-like receptor (ORL-1) and the identification of the orphaninFQ/nociceptin (OFQ/N) as its endogenous agonist has revealed a new G-protein-coupled receptor signalling system. The structural and functional homology of ORL-1 to the opioid receptor systems has posed a number of challenges in the understanding the often competing physiological responses elicited by these G-protein-coupled receptors. We had previously shown that in guinea pig ileum (GPI), the acute μ-withdrawal response is under the inhibitory control of several systems. Specifically, we found that the exposure to a μ-opioid receptor agonist activates indirectly the κ-opioid, the A(1)-adenosine and the cannabinoid CB(1) systems, that in turn inhibit the withdrawal response. The indirect activation of these systems is prevented by the peptide cholecystokinin-8 (CCk-8). In the present study, we have investigated whether the ORL-1 system is also involved in the regulation of the acute μ-withdrawal response. Interestingly, we found that in GPI preparation, the ORL-1 system is not indirectly activated by the μ-opioid receptor stimulation, but instead the system is able by itself to directly regulate the acute μ-withdrawal response. Moreover, we have demonstrated that the ORL-1 system behaves both as anti-opioid or opioid-like system based on the level of activation. The same behaviour has also been observed in presence of CCk-8. Furthermore, in GPI, the existence of an endogenous tone of the ORL-1 system has been demonstrated. We concluded that the ORL-1 system acts as a neuromodulatory system, whose action is strictly related to the modulation of excitatory neurotrasmitters released in GPI enteric nervous system.
Collapse
Affiliation(s)
- Pietro Marini
- School of Medical Sciences, Institute of Medical Sciences, University of Aberdeen, Aberdeen, UK.
| | | | | | | | | | | | | |
Collapse
|
16
|
Poole DP, Pelayo JC, Scherrer G, Evans CJ, Kieffer BL, Bunnett NW. Localization and regulation of fluorescently labeled delta opioid receptor, expressed in enteric neurons of mice. Gastroenterology 2011; 141:982-991.e18. [PMID: 21699782 PMCID: PMC4429902 DOI: 10.1053/j.gastro.2011.05.042] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/14/2011] [Revised: 04/19/2011] [Accepted: 05/20/2011] [Indexed: 12/31/2022]
Abstract
BACKGROUND & AIMS Opioids and opiates inhibit gastrointestinal functions via μ, δ, and κ receptors. Although agonists of the δ opioid receptor (DOR) suppress motility and secretion, little is known about the localization and regulation of DOR in the gastrointestinal tract. METHODS We studied mice in which the gene that encodes the enhanced green fluorescent protein (eGFP) was inserted into Oprd1, which encodes DOR, to express an approximately 80-kilodalton product (DOReGFP). We used these mice to localize DOR and to determine how agonists regulate the subcellular distribution of DOR. RESULTS DOReGFP was expressed in all regions but was confined to enteric neurons and fibers within the muscularis externa. In the submucosal plexus, DOReGFP was detected in neuropeptide Y-positive secretomotor and vasodilator neurons of the small intestine, but rarely was observed in the large bowel. In the myenteric plexus of the small intestine, DOReGFP was present in similar proportions of excitatory motoneurons and interneurons that expressed choline acetyltransferase and substance P, and in inhibitory motoneurons and interneurons that contained nitric oxide synthase. DOReGFP was present mostly in nitrergic myenteric neurons of colon. DOReGFP and μ opioid receptors often were co-expressed. DOReGFP-expressing neurons were associated with enkephalin-containing varicosities, and enkephalin-induced clathrin- and dynamin-mediated endocytosis and lysosomal trafficking of DOReGFP. DOReGFP replenishment at the plasma membrane was slow, requiring de novo synthesis, rather than recycling. CONCLUSIONS DOR localizes specifically to submucosal and myenteric neurons, which might account for the ability of DOR agonists to inhibit gastrointestinal secretion and motility. Sustained down-regulation of DOReGFP at the plasma membrane of activated neurons could induce long-lasting tolerance to DOR agonists.
Collapse
Affiliation(s)
- Daniel P. Poole
- Department of Surgery, University of California, San Francisco
,Department of Physiology, University of California, San Francisco
| | | | - Gregory Scherrer
- Department of Physiology and Cellular Biophysics, Columbia University, New York, NY 10032
| | - Christopher J. Evans
- Shirley and Stefan Hatos Center for Neuropharmacology, University of California, Los Angeles
| | - Brigitte L. Kieffer
- Département de Neurobiologie, Institut de Génétique et de Biologie Moléculaire et Cellulaire, INSERM U596, CNRS UMR7104, Université Louis Pasteur, Illkirch, France.
| | - Nigel W. Bunnett
- Department of Surgery, University of California, San Francisco
,Department of Physiology, University of California, San Francisco
| |
Collapse
|
17
|
Brown DR, Miller RJ. Neurohormonal Control of Fluid and Electrolyte Transport in Intestinal Mucosa. Compr Physiol 2011. [DOI: 10.1002/cphy.cp060424] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
|
18
|
Costa M, Furness JB. Structure and Neurochemical Organization of the Enteric Nervous System. Compr Physiol 2011. [DOI: 10.1002/cphy.cp060205] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
19
|
|
20
|
|
21
|
|
22
|
|
23
|
Miller RJ, Brown DR, Chang EB, Friel DD. The pharmacological modification of secretory responses. CIBA FOUNDATION SYMPOSIUM 2008; 112:155-74. [PMID: 2408831 DOI: 10.1002/9780470720936.ch9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Electrolyte transport across the intestinal mucosa can be modulated by several neurotransmitters, hormones and drugs. Opiate agonists and endogenous opioid peptides inhibit electrolyte secretion both in vitro and in vivo. These drugs appear to act at several levels. Thus, opioid effects can be elicited at the local mucosal level. Secondly, antisecretory effects can be demonstrated when opioids are administered into the brain. These central effects appear to involve activation of the sympathetic innervation of the intestine. Thirdly, some antidiarrhoeal drugs such as loperamide may have ancillary non-opiate-like actions that contribute to their effectiveness. In cases of inflammatory bowel disease where local concentrations of inflammatory mediators such as kinins and eicosanoids may be high, non-steroidal anti-inflammatory drugs may be effective in treating diarrhoeal symptoms. The existence of many types of receptors on mucosal cells indicates that several pharmacological approaches exist for the potential modulation of electrolyte transport.
Collapse
|
24
|
Abstract
Polarized outputs of myenteric interneurons in guinea-pig small intestine have been well studied. However, the variety of motility patterns exhibited suggests that some interneuron targets remain unknown. We used antisera selected to distinguish interneuron varicosities and known myenteric neuron types to investigate outputs of three interneuron classes in guinea-pig jejunum; two classes of descending interneurons immunoreactive (IR) for somatostatin (SOM) or nitric oxide synthase (NOS)/vasoactive intestinal peptide (VIP), and one class of ascending interneurons [calretinin/enkephalin (ENK)-IR]. Varicosities apposed to immunohistochemically identified cell bodies were quantified by confocal microscopy. Intrinsic sensory neurons (calbindin-IR) were apposed by few varicosities. Cholinergic secretomotor neurons (neuropeptide Y-IR) were apposed by many SOM-IR varicosities. Longitudinal muscle excitatory motor neurons (calretinin-IR) were apposed by some VIP- and ENK-IR varicosities, but few SOM-IR varicosities. Ascending interneurons (calretinin-IR) were apposed by many varicosities of all types. NOS-IR interneurons and inhibitory motor neurons were apposed by numerous VIP-IR and SOM-IR varicosities. NOS-IR short inhibitory motor neurons were apposed by significantly fewer ENK-IR varicosities than other NOS-IR neurons. Based on the specific chemical coding of ascending (ENK) and descending (SOM) interneurons, we conclude that cholinergic secretomotor neurons and short inhibitory neurons are located in descending reflex pathways, while ascending interneurons and NOS-IR descending interneurons are focal points at which ascending and descending pathways converge.
Collapse
Affiliation(s)
- K B Neal
- Department of Physiology, The University of Melbourne, Melbourne, Vic., Australia.
| | | |
Collapse
|
25
|
Patierno S, Zellalem W, Ho A, Parsons CG, Lloyd KCK, Tonini M, Sternini C. N-methyl-D-aspartate receptors mediate endogenous opioid release in enteric neurons after abdominal surgery. Gastroenterology 2005; 128:2009-19. [PMID: 15940633 DOI: 10.1053/j.gastro.2005.03.042] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/02/2022]
Abstract
BACKGROUND & AIMS We tested the hypothesis that N-methyl-D-aspartate (NMDA) receptors mediate surgery-induced opioid release in enteric neurons. METHODS We used mu opioid receptor (muOR) internalization as a measure of opioid release with immunohistochemistry and confocal microscopy. MuOR internalization was quantified in enteric neurons from nondenervated and denervated ileal segments of guinea pig after abdominal laparotomy with and without pretreatment with NMDA-receptor antagonists acting at different recognition sites (+)-5-methyl-10,11-dihydro-5H-dibenzo [a,b] cyclohepten-5,10-imine (MK-801) or (D) 2-amino-5-phosphopenoic acid (AP-5) at .5, 1 mg/kg; 8-chloro-4-hydroxy-1-oxo-1,2-dihydropyridazinol [4,5-]quinoline-5-oxide choline (MRZ 2/576) or 8-chloro-1,4-dioxo-1,2,3,4-tetrahydropyridazinol [4,5-]quinoline choline salt (MRZ 2/596) at .3, 1 mg/kg, or with an antagonist for the alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) receptors, 6-cyano-7-nitroquinoxaline-2,3-dione (1, 3 mg/kg). To determine whether NMDA stimulation induces opioid release, (1) ilea were exposed to NMDA (100 micromol/L) and D-serine (10 micromol/L) with or without the antagonist MK-801 or AP-5 (50 micromol/L); and (2) neuromuscular preparations of the ileum were stimulated electrically (20 Hz, 20 min) with or without MK-801 or AP-5 (50 micromol/L). RESULTS MuOR endocytosis induced by abdominal laparotomy was inhibited significantly by NMDA-receptor antagonists in nondenervated and denervated ileal segments, but not by the AMPA-receptor antagonist. MuOR endocytosis in neurons exposed to NMDA or electrical stimulation was prevented by NMDA-R antagonists. CONCLUSIONS Abdominal laparotomy evokes local release of glutamate that results in endogenous opioid release through the activation of peripheral NMDA receptors. This suggests an interaction between the glutamatergic and opioid systems in response to the noxious and perhaps mechanosensory stimulation of surgery.
Collapse
Affiliation(s)
- Simona Patierno
- CURE Digestive Diseases Research Center, Digestive Diseases Division, Department of Medicine, David Geffen School of Medicine, University of California Los Angeles, 90073, USA.
| | | | | | | | | | | | | |
Collapse
|
26
|
Abstract
Alterations in gastrointestinal motility and secretion underlie the constipating action of therapeutically administered opiates. The prototype opiate is morphine, which acts to delay gastric emptying and intestinal transit, to suppress intestinal secretion of water and electrolytes and to suppress transport of bile into the duodenum. The effects of opiates, synthetic opioids and endogenously released opioid peptides on these organ-level gastrointestinal functions reflect actions on electrical and synaptic behaviour of neurones in the enteric nervous system. Adverse effects and positive therapeutic effects of administration of opioid-receptor-blocking drugs on the digestive tract must be understood in the context of the neurophysiology of the enteric nervous system and mechanisms of neural control of gastrointestinal smooth muscle, secretory glands and blood-lymphatic vasculature. We review here the integrated systems of physiology and cellular neurobiology that are basic to understanding the actions of opioid agonists and antagonists in the digestive tract.
Collapse
Affiliation(s)
- J D Wood
- Department of Physiology and Cell Biology, Ohio State University, Columbus, OH 43210, USA.
| | | |
Collapse
|
27
|
Abstract
Mu-, delta- and kappa-opioid receptors (ORs) mediate the effects of endogenous opioids and opiate drugs. Here we report (1) the distribution of muOR in the guinea-pig and human gastrointestinal tract in relation to endogenous ligands, to functionally distinct structures in the gut and to deltaOR and kappaOR; and (2) the ligand-induced muOR endocytosis in enteric neurones using in vitro and in vivo models. In the guinea pig, muOR immunoreactivity is confined mainly to the myenteric plexus. MuOR myenteric neurones are most numerous in the small intestine, followed by the stomach and the proximal colon. MuOR immunoreactive fibres are dense in the muscle layer and the deep muscular plexus, where they are in close association with interstitial cells of Cajal. This distribution closely matches the pattern of enkephalin. MuOR enteric neurones comprise functionally distinct populations of neurones of the ascending and descending pathways of the peristaltic reflex. In human gut, muOR immunoreactivity is localized to myenteric and submucosal neurones and to immune cells of the lamina propria. DeltaOR immunoreactivity is located in both plexuses where it is predominantly in varicose fibres in the plexuses, muscle and mucosa, whereas kappaOR immunoreactivity appears to be confined to the myenteric plexus and to bundles of fibres in the muscle. MuOR undergoes endocytosis in a concentration-dependent manner, in vitro and in vivo. Pronounced muOR endocytosis is observed in neurones from animals that underwent abdominal surgery that has been shown to induce delay in gastrointestinal transit. We can conclude that all three ORs are localized to the enteric nervous system with differences among species, and that muOR endocytosis can be utilized as a means to visualize enteric neurones activated by opioids and sites of opioid release.
Collapse
Affiliation(s)
- C Sternini
- CURE Digestive Diseases Research Center, Division of Digestive Diseases, Departments of Medicine and Neurobiology, David Geffen School of Medicine, University of California, Los Angeles, CA, USA.
| | | | | | | |
Collapse
|
28
|
Patierno S, Raybould HE, Sternini C. Abdominal surgery induces μ opioid receptor endocytosis in enteric neurons of the guinea-pig ileum. Neuroscience 2004; 123:101-9. [PMID: 14667445 DOI: 10.1016/j.neuroscience.2003.08.052] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
Immunohistochemistry and confocal microscopy were used to investigate mu opioid receptor (muOR) internalization in enteric neurons of the guinea-pig ileum following abdominal surgery. The following surgical procedures were performed under halothane or isofluorane anesthesia: a) midline abdominal skin incision, b) laparotomy or c) laparotomy with intestinal manipulation. Gastrointestinal transit was evaluated by using a non-absorbable marker and measuring fecal pellet output. In neurons from normal and control (anesthesia alone) animals, muOR was predominantly at the cell surface. muOR endocytosis following skin incision was not significantly different from controls (21.2+/-3.5% vs. 13.7+/-2.1%, mean+/-S.E.M.), whereas it was significantly increased by laparotomy (46.5+/-6.1%; P<0.01 vs. controls) or laparotomy plus intestinal manipulation (40.5+/-6.1%; P<0.01 vs. controls) 30 min following surgery compared with controls. muOR endocytosis remained elevated at 4 h (38.6+/-1.2%; P<0.01 vs. controls), whereas it was similar to controls at 6 and 12 h (17.5+/-5.8% and 11.2+/-3.0%). muOR endocytosis occurred in cholinergic and nitrergic neurons. Gastrointestinal transit was significantly delayed by laparotomy or laparotomy plus intestinal manipulation (12.8+/-1.2 and 13.8+/-0.6 h vs. 7.0+/-0.5 in controls; P<0.01), but was not significantly changed by skin incision (8.2+/-0.6 h). The findings of the present study support the concept that the noxious stimulation caused by abdominal surgery induces release of endogenous opioids thus resulting in muOR endocytosis in neurochemically distinct enteric neurons. muOR internalization can serve as indirect evidence of opioid release and as a means to visualize neuronal pathways activated by opioids.
Collapse
Affiliation(s)
- S Patierno
- CURE Digestive Diseases Research Center, Building 115, Room 224, Veterans Administration Greater Los Angeles Healthcare System, Digestive Diseases Division, 11301 Wilshire Boulevard, Los Angeles, CA 90073, USA.
| | | | | |
Collapse
|
29
|
Minnis JG, Patierno S, Kohlmeier SE, Brecha NC, Tonini M, Sternini C. Ligand-induced mu opioid receptor endocytosis and recycling in enteric neurons. Neuroscience 2003; 119:33-42. [PMID: 12763066 DOI: 10.1016/s0306-4522(03)00135-0] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Immunohistochemistry and confocal microscopy were used to investigate endocytosis and recycling of the native mu opioid receptor (muOR) in enteric neurons. Isolated segments of the guinea-pig ileum were exposed to increasing concentrations of muOR agonists at 4 degrees C to allow ligand binding and warming to 37 degrees C for 0 min (baseline) to 6 h in ligand-free medium to allow receptor internalization and recycling. The endogenous ligand, [Met]enkephalin, and [D-Ala(2),MePhe(4),Gly-ol(5)] enkephalin (DAMGO), an opioid analog, and the alkaloids, etorphine and fentanyl, induced rapid internalization of muOR immunoreactivity in enteric neurons, whereas morphine did not. muOR internalization was prevented by muOR antagonists. Basal levels of muOR immunoreactivity in the cytoplasm were 10.52+/-2.05%. DAMGO (1 nM-100 microM) induced a concentration-dependent increase of muOR immunofluorescence density in the cytoplasm to a maximum of 84.37+/-2.26%. Translocation of muOR immunoreactivity in the cytoplasm was detected at 2 min, reached the maximum at 15-30 min, remained at similar levels for 2 h, began decreasing at 4 h, and was at baseline values at 6 h. A second exposure to DAMGO (100 nM) following recovery of internalized muOR immunoreactivity at the cell surface induced a translocation of muOR immunoreactivity in the cytoplasm comparable to the one observed following the first exposure (46.89+/-3.11% versus 43.31+/-3.80%). muOR internalization was prevented by hyperosmolar sucrose, phenylarsine oxide or potassium depletion, which inhibit clathrin-mediated endocytosis. muOR recycling was prevented by pre-treatment with bafilomycin A1, an acidotropic agent that inhibits endosomal acidification, but not by the protein synthesis inhibitor, cycloheximide. This study shows that native muOR in enteric neurons undergoes ligand-selective endocytosis, which is primarily clathrin-mediated, and recycles following endosomal acidification. Following recycling, muOR is activated and internalized by DAMGO indicating that recycled receptors are functional.
Collapse
Affiliation(s)
- J G Minnis
- CURE Digestive Diseases Research Center, Building 115, Veterans Administration Greater Los Angeles Healthcare System, Digestive Diseases Division, 11301 Wilshire Boulevard, Los Angeles, CA 90073, USA
| | | | | | | | | | | |
Collapse
|
30
|
Ho A, Lievore A, Patierno S, Kohlmeier SE, Tonini M, Sternini C. Neurochemically distinct classes of myenteric neurons express the mu-opioid receptor in the guinea pig ileum. J Comp Neurol 2003; 458:404-11. [PMID: 12619074 DOI: 10.1002/cne.10606] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
The mu-opioid receptor (muOR), which mediates many of the opioid effects in the nervous system, is expressed by enteric neurons. The aims of this study were to determine whether 1) different classes of myenteric neurons in the guinea pig ileum contain muOR immunoreactivity by using double- and triple-labeling immunofluorescence and confocal microscopy, 2) muOR immunoreactivity is localized to enteric neurons immunoreactive for the endogenous opioid enkephalin, and 3) muOR immunoreactivity is localized to interstitial cells of Cajal visualized by c-kit. In the myenteric plexus, 50% of muOR-immunoreactive neurons contained choline acetyltransferase (ChAT) immunoreactivity, whereas about 43% of ChAT-immunoreactive neurons were muOR immunoreactive. Approximately 46% of muOR myenteric neurons were immunoreactive for vasoactive intestinal polypeptide (VIP), and about 31% were immunoreactive for nitric oxide synthase (NOS). MuOR immunoreactivity was found in about 68% of VIP-containing neurons and 60% of NOS-immunoreactive neurons. Triple labeling showed that about 32% of muOR neurons contained VIP and ChAT immunoreactivities. The endogenous opioid enkephalin (ENK) was observed in about 30% of muOR neurons; conversely, 48% of ENK neurons contained muOR immunoreactivity. MuOR was not detected in neurons containing calbindin, nor in interstitial cells of Cajal. MuOR-immunoreactive fibers formed a dense network around interstitial cells of Cajal in the deep muscular plexus. This study demonstrates that muOR is expressed by neurochemically distinct classes of myenteric neurons that are likely to differ functionally, is colocalized with the endogenous opioid ENK, and is not expressed by interstitial cells of Cajal.
Collapse
Affiliation(s)
- Anthony Ho
- Division of Digestive Diseases, CURE Digestive Diseases Research Center, Los Angeles, CA 90073, USA
| | | | | | | | | | | |
Collapse
|
31
|
Ivancheva C, Radomirov R. Control of non-adrenergic non-cholinergic reflex motor responses in circular muscle of guinea-pig small intestine by Met-enkephalin. AUTONOMIC & AUTACOID PHARMACOLOGY 2002; 22:199-207. [PMID: 12656945 DOI: 10.1046/j.1474-8673.2002.00260.x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
1 A triple organ bath method allowing the synchronous recording of the motor activity of the circular muscle layer belonging to the oral and anal segments of guinea-pig small intestine adjacent to an electrically stimulated middle segment was developed to study the ascending and descending reflex motor responses. 2 Electrical field stimulation (0.8 ms, 40 V, 5 Hz, 10 s) applied to the middle part of the segments elicited tetrodotoxin (1 microm)-sensitive ascending and descending contractile responses of the nonstimulated parts, oral and anal, respectively. The ascending contraction was more pronounced as compared with the descending contraction. 3 In the presence of phentolamine (5 microm), propranolol (5 microm) and atropine (3 microm) a significant decrease in the amplitude of the ascending contraction was seen and a descending relaxation, instead of a contraction was observed. 4 Met-enkephalin applied at a single concentration (0.1 microm) or cumulatively (0.001-1 microm) inhibited both non-adrenergic non-cholinergic (NANC) descending relaxation and ascending contraction with similar efficacy but different potency, IC50 being 5.9 +/- 0.3 and 39.0 +/- 4 nm, respectively. Naloxone (0.5 microm) prevented the effects of Met-enkephalin. 5 L-NNA (0.5 mm), an inhibitor of nitric oxide synthesis, increased the ascending contraction and strongly reduced but not abolished the descending relaxation. l-Arginine (0.5 mm) restored the motor responses to the initial level in l-NNA-pretreated preparations, d-Arginine (0.5 nm) had no effects. 6 Met-enkephalin (0.1 microm) depressed the l-NNA-dependent increase of the ascending contraction and failed to change the l-NNA-resistant part of the descending relaxation. 7 Met-enkephalin did not alter spontaneous NANC mechanical activity. SNP (1 or 10 microm), an exogenous donor of nitric oxide, caused a concentration-dependent relaxation. The effects of SNP persisted in Met-enkephalin (0.1 microm)-pretreated preparations. 8 NANC reflex ascending contraction and descending relaxation were synchronously induced by a local nerve stimulation indicating a functional coactivation of NANC orally projected excitatory and anally directed inhibitory pathways. Acting prejunctionally, Met-enkephalin provided a negative controlling mechanism inhibiting both ascending and descending, mainly nitric oxide mediated, reflex responses. A higher sensitivity of the descending relaxation to Met-enkephalin was observed suggesting an essential role of opioid(s) in reducing the efficacy of descending motor activity.
Collapse
Affiliation(s)
- Chr Ivancheva
- Institute of Physiology, Bulgarian Academy of Sciences, Acad. G. Bonchev str., bl.23, 1113 Sofia, Bulgaria
| | | |
Collapse
|
32
|
Guarraci FA, Pozo MJ, Palomares SM, Firth TA, Mawe GM. Opioid agonists inhibit excitatory neurotransmission in ganglia and at the neuromuscular junction in Guinea pig gallbladder. Gastroenterology 2002; 122:340-51. [PMID: 11832449 DOI: 10.1053/gast.2002.31037] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/02/2022]
Abstract
BACKGROUND & AIMS Opiates administered therapeutically could have an inhibitory effect on the neuromuscular axis of the gallbladder, and thus contribute to biliary stasis and acalculous cholecystitis. METHODS Intracellular recordings were made from gallbladder neurons and smooth muscle, and tension measurements were made from muscle strips. Opioid receptor-specific agonists tested: delta, DPDPE; kappa, U-50488H; and mu, DAMGO. RESULTS Opioid agonists had no effect on gallbladder neurons or smooth muscle. Each of the opioid agonists potently suppressed the fast excitatory synaptic input to gallbladder neurons, in a concentration-dependent manner with half-maximal effective concentration values of about 1 pmol/L. Also, each agonist caused a concentration-dependent reduction in the amplitude of the neurogenic contractile response (half-maximal effective concentration values: DPDPE, 189 pmol/L; U-50488H, 472 pmol/L; and DAMGO, 112 pmol/L). These ganglionic and neuromuscular effects were attenuated by the highly selective opioid-receptor antagonist, naloxone. Opioid-receptor activation also inhibited the presynaptic facilitory effect of cholecystokinin in gallbladder ganglia. Immunohistochemistry with opioid receptor-specific antisera revealed immunostaining for all 3 receptor subtypes in nerve bundles and neuronal cell bodies within the gallbladder, whereas opiate-immunoreactive nerve fibers are sparse in the gallbladder. CONCLUSIONS These results show that opiates can cause presynaptic inhibition of excitatory neurotransmission at 2 sites within the wall of the gallbladder: vagal preganglionic terminals in ganglia and neuromuscular nerve terminals. These findings support the concept that opiates can contribute to gallbladder stasis by inhibiting ganglionic activity and neurogenic contractions.
Collapse
MESH Headings
- 3,4-Dichloro-N-methyl-N-(2-(1-pyrrolidinyl)-cyclohexyl)-benzeneacetamide, (trans)-Isomer/pharmacology
- Analgesics, Non-Narcotic/pharmacology
- Analgesics, Opioid/pharmacology
- Animals
- Autonomic Fibers, Preganglionic/chemistry
- Autonomic Fibers, Preganglionic/drug effects
- Autonomic Fibers, Preganglionic/physiology
- Cholecystokinin/antagonists & inhibitors
- Cholecystokinin/pharmacology
- Enkephalin, Ala(2)-MePhe(4)-Gly(5)-/pharmacology
- Enkephalin, D-Penicillamine (2,5)-/pharmacology
- Excitatory Postsynaptic Potentials/drug effects
- Female
- Gallbladder/innervation
- Guinea Pigs
- Immunohistochemistry
- Male
- Muscle Contraction/drug effects
- Muscle, Smooth/drug effects
- Muscle, Smooth/physiology
- Neural Inhibition/drug effects
- Neuromuscular Junction/chemistry
- Neuromuscular Junction/physiology
- Receptors, Opioid, delta/analysis
- Receptors, Opioid, kappa/analysis
- Receptors, Opioid, mu/analysis
- Synaptic Transmission/drug effects
- Vagus Nerve/cytology
Collapse
Affiliation(s)
- Fay A Guarraci
- Division of Gastroenterology and Hepatology, Department of Anatomy and Neurobiology, The University of Vermont College of Medicine, Burlington, Vermont 05405, USA
| | | | | | | | | |
Collapse
|
33
|
Sternini C. Receptors and transmission in the brain-gut axis: potential for novel therapies. III. Mu-opioid receptors in the enteric nervous system. Am J Physiol Gastrointest Liver Physiol 2001; 281:G8-15. [PMID: 11408250 DOI: 10.1152/ajpgi.2001.281.1.g8] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
G protein-coupled receptors are cell surface signal-transducing proteins, which elicit a variety of biological functions by the activation of different intracellular effector systems. Many of these receptors, including the mu-opioid receptor (mu OR), have been localized in the gastrointestinal tract. mu OR is the target of opioids and alkaloids, potent analgesic drugs with high potential for abuse. mu OR is expressed by enteric neurons, and it undergoes ligand-selective endocytosis. It is of clinical importance because it mediates tolerance and other major side effects of opiate analgesics, including impairment of gastrointestinal propulsion. An important observation of mu OR is its differential trafficking and desensitization properties in response to individual agonists, which might have long-term physiological consequences and be involved in the development of opiate side effects. Receptor activation by agonists is the basis for signaling, and alterations of the mechanisms controlling cellular responses of G protein-coupled receptors to agonists might be the basis of several diseases, including gastrointestinal diseases. Therefore, understanding these basic cellular mechanisms is important for developing appropriate therapeutic agents.
Collapse
Affiliation(s)
- C Sternini
- CURE Digestive Diseases Research Center, Department of Veterans Affairs Greater Los Angeles Healthcare System, Digestive Diseases Division, Department of Medicine, University of California, Los Angeles, California 90095, USA.
| |
Collapse
|
34
|
Abstract
Neuroanatomical tracing techniques, and retrograde labelling in particular, are widely used tools for the analysis of neuronal pathways in the central and peripheral nervous system. Over the last 10 years, these techniques have been used extensively to identify enteric neuronal pathways. In combination with multiple-labelling immunohistochemistry, quantitative data about the projections and neurochemical profile of many functional classes of cells have been acquired. These data have revealed a high degree of organization of the neuronal plexuses, even though the different classes of nerve cell bodies appear to be randomly assorted in ganglia. Each class of neurone has a predictable target, length and polarity of axonal projection, a particular combination of neurochemicals in its cell body and distinctive morphological characteristics. The combination of retrograde labelling with targeted intracellular recording has made it possible to target small populations of cells that would rarely be sampled during random impalements. These neuroanatomical techniques have also been applied successfully to human tissue and are gradually unravelling the complexity of the human enteric nervous system.
Collapse
Affiliation(s)
- S Brookes
- Department of Human Physiology and Centre for Neuroscience, Flinders University, South Australia.
| |
Collapse
|
35
|
Sternini C, Brecha NC, Minnis J, D'Agostino G, Balestra B, Fiori E, Tonini M. Role of agonist-dependent receptor internalization in the regulation of mu opioid receptors. Neuroscience 2000; 98:233-41. [PMID: 10854754 DOI: 10.1016/s0306-4522(00)00118-4] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Abstract
Organotypic cultures and ileal neuromuscular preparations were used to determine (i) whether endogenous release of opioids by electrical stimulation induces mu receptor endocytosis, and (ii) whether and under which conditions ligand-induced mu receptor endocytosis influences the responsiveness of neurons expressing native mu receptors. In longitudinal muscle-myenteric plexus preparations, electrical stimulation at 20 Hz induced a prominent endocytosis of mu receptors in enteric neurons, indicating endogenous release of opioids. A similar massive endocytosis was triggered by exogenous application of the mu receptor agonist, [D-Ala(2),MePhe(4), Gly-ol(5)] enkephalin, whereas exogenous application of morphine was ineffective. [D-Ala(2),MePhe(4),Gly-ol(5)] enkephalin and morphine induced a concentration-dependent inhibition of neurogenic cholinergic twitch contractions to electrical stimulation at 0.1 Hz. beta-Chlornaltrexamine shifted to the right the inhibitory curve of both agonists with a concentration-dependent reduction of the maximum agonist response, which is consistent with the existence of spare mu opioid receptors. Under these conditions, the induction of mu receptor endocytosis by exogenously applied [D-Ala(2), MePhe(4),Gly-ol(5)] enkephalin diminished the inhibitory effect of this agonist on twitch contractions and tritiated acetylcholine release. In contrast, there was no reduction of the inhibitory effect of morphine, which failed to induce mu receptor endocytosis, on neurogenic cholinergic response. These results provide the first evidence for the occurrence of mu receptor endocytosis in neurons by endogenously released opioids and show that agonist-dependent mu receptor endocytosis could serve as a mechanism to regulate mu opioid receptor responsiveness to ligand stimulation when the opioid receptor reserve is reduced.
Collapse
Affiliation(s)
- C Sternini
- CURE Digestive Diseases Research Center, Veterans Administration Greater Los Angeles Healthcare System, Digestive Diseases Division, Departments of Medicine and Neurobiology, Los Angeles, CA 90095, USA.
| | | | | | | | | | | | | |
Collapse
|
36
|
Porcher C, Julé Y, Henry M. A qualitative and quantitative study on the enkephalinergic innervation of the pig gastrointestinal tract. J Histochem Cytochem 2000; 48:333-44. [PMID: 10681387 DOI: 10.1177/002215540004800303] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Enkephalins are involved in neural control of digestive functions such as motility, secretion, and absorption. To better understand their role in pigs, we analyzed the qualitative and quantitative distribution of enkephalin immunoreactivity (ENK-IR) in components of the intestinal wall from the esophagus to the anal sphincter. Immunohistochemical labelings were analyzed using conventional fluorescence and confocal microscopy. ENK-IR was compared with the synaptophysin immunoreactivity (SYN-IR). The results show that maximal ENK-IR levels in the entire digestive tract are reached in the myenteric plexuses and, to a lesser extent, in the external submucous plexus and the circular muscle layer. In the longitudinal muscle layer, ENK-IR was present in the esophagus, stomach, rectum, and anal sphincter, whereas it was absent from the duodenum to the distal colon. In the ENK-IR plexuses and muscle layers, more than 60% of the nerve fibers identified by SYN-IR expressed ENK-IR. No ENK-IR was observed in the internal submucous plexus and the mucosa; the latter was found to contain ENK-IR endocrine cells. These results strongly suggest that, in pigs, enkephalins play a major role in the regulatory mechanisms that underlie the neural control of digestive motility.
Collapse
Affiliation(s)
- C Porcher
- Département de Physiologie et Neurophysiologie, Laboratoire de Neurobiologie des Fonctions Végétatives, CNRS-ESA 6034, Faculté des Sciences de Saint-Jérôme, Marseille, France
| | | | | |
Collapse
|
37
|
Allescher HD, Storr M, Brechmann C, Hahn A, Schusdziarra V. Modulatory effect of endogenous and exogenous opioids on the excitatory reflex pathway of the rat ileum. Neuropeptides 2000; 34:62-8. [PMID: 10688971 DOI: 10.1054/npep.1999.0789] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
The ascending excitatory reflex is part of the peristaltic reflex, an important participant in intestinal propulsion. The aim of this study was to characterize the role of different opioid receptors in the ascending reflex through exogenous application of non-selective (Met-enkephalin) and selective opioid agonists (mu-PLO17, delta-DPDPE, kappa-U-50, 488) as well as selective opioid receptor antagonists (mu: CTOP-NH(2), delta: ICI-174,864, kappa: Nor-Binaltorphimine). Metenkephalin (IC(50): 0.06 microM) and morphine (IC(50): 1.8 microM) inhibited the ascending reflex response concentration-dependently. Both the mu-selective agonist PLO17 (IC(50): 0.83 microM, n =11) and the kappa-selective agonist U-50,488 (IC(50): 0.68 microM, n =8) concentration-dependently inhibited the magnitude of the ascending contractile reflex response, whereas the delta-agonist DPDPE (10(-10)-10(-6)M) had no significant effect. In contrast, the latency of the response (time interval between start of the stimulus and onset of the contraction) was significantly prolonged by PLO17 > morphine > Met-enkephalin > DPDPE, whereas U-50,488 showed no effect. When the effect of the receptor-specific antagonists was tested, only CTOP-NH(2)and Nor-BNI caused a significant increase of the contractile response, whereas ICI-174 864 was ineffective. On the other hand, CTOP-NH(2)> ICI-174 864 decreased the latency significantly but the kappa-receptor agonist Nor-BNI had no influence. Thus, mu- and kappa-receptors seem to be involved in regulating the contraction strength of the ascending reflex, whereas both mu- and delta-receptors seem to be involved in the timing of the reflex response.
Collapse
MESH Headings
- 3,4-Dichloro-N-methyl-N-(2-(1-pyrrolidinyl)-cyclohexyl)-benzeneacetamide, (trans)-Isomer/pharmacology
- Animals
- Endorphins/pharmacology
- Enkephalin, D-Penicillamine (2,5)-/pharmacology
- Enkephalin, Leucine/analogs & derivatives
- Enkephalin, Leucine/pharmacology
- Enkephalin, Methionine/pharmacology
- Ileum/drug effects
- Ileum/physiology
- In Vitro Techniques
- Male
- Morphine/pharmacology
- Muscle, Smooth/drug effects
- Muscle, Smooth/physiology
- Naltrexone/analogs & derivatives
- Naltrexone/pharmacology
- Narcotic Antagonists
- Narcotics/pharmacology
- Peristalsis/drug effects
- Peristalsis/physiology
- Rats
- Rats, Wistar
- Receptors, Opioid/agonists
- Receptors, Opioid/physiology
- Somatostatin/analogs & derivatives
- Somatostatin/pharmacology
Collapse
Affiliation(s)
- H D Allescher
- Department of Internal Medicine II, Technical University of Munich, Munich, Germany.
| | | | | | | | | |
Collapse
|
38
|
Moore BA, Vanner S. Properties of synaptic inputs from myenteric neurons innervating submucosal S neurons in guinea pig ileum. Am J Physiol Gastrointest Liver Physiol 2000; 278:G273-80. [PMID: 10666052 DOI: 10.1152/ajpgi.2000.278.2.g273] [Citation(s) in RCA: 23] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
This study examined synaptic inputs from myenteric neurons innervating submucosal neurons. Intracellular recordings were obtained from submucosal S neurons in guinea pig ileal preparations in vitro, and synaptic inputs were recorded in response to electrical stimulation of exposed myenteric plexus. Most S neurons received synaptic inputs [>80% fast (f) excitatory postsynaptic potentials (EPSP), >30% slow (s) EPSPs] from the myenteric plexus. Synaptic potentials were recorded significant distances aboral (fEPSPs, 25 mm; sEPSPs, 10 mm) but not oral to the stimulating site. When preparations were studied in a double-chamber bath that chemically isolated the stimulating "myenteric chamber" from the recording side "submucosal chamber," all fEPSPs were blocked by hexamethonium in the submucosal chamber, but not by a combination of nicotinic, purinergic, and 5-hydroxytryptamine-3 receptor antagonists in the myenteric chamber. In 15% of cells, a stimulus train elicited prolonged bursts of fEPSPs (>30 s duration) that were blocked by hexamethonium. These findings suggest that most submucosal S neurons receive synaptic inputs from predominantly anally projecting myenteric neurons. These inputs are poised to coordinate intestinal motility and secretion.
Collapse
Affiliation(s)
- B A Moore
- Gastrointestinal Diseases Research Unit, Departments of Medicine, Physiology, and Biology, Queen's University, Kingston, Ontario, Canada K7L 5G2
| | | |
Collapse
|
39
|
Lomax AE, Sharkey KA, Bertrand PP, Low AM, Bornstein JC, Furness JB. Correlation of morphology, electrophysiology and chemistry of neurons in the myenteric plexus of the guinea-pig distal colon. JOURNAL OF THE AUTONOMIC NERVOUS SYSTEM 1999; 76:45-61. [PMID: 10323306 DOI: 10.1016/s0165-1838(99)00008-9] [Citation(s) in RCA: 59] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Intracellular recordings were made from myenteric neurons of the guinea-pig distal colon to determine their electrical behaviour in response to intracellular current injection and stimulation of synaptic inputs. The recording microelectrode contained the intracellular marker biocytin, which was injected into impaled neurons so that electrophysiology, shape and immunohistochemistry could be correlated. Myenteric neurons in the distal colon were divided into four morphological groups based on their shapes and projections. One group (29 of the 78 that were characterized electrophysiologically, morphologically and immunohistochemically) was the multiaxonal Dogiel type II neurons, the majority (25/29) of which were calbindin immunoreactive. Each of these neurons had an inflection on the falling phase of the action potential that, in 24/29 neurons, was followed by a late afterhyperpolarizing potential (AHP). Slow excitatory postsynaptic potentials were recorded in 20 of 29 Dogiel type II neurons in response to high frequency internodal strand stimulation and two neurons responded with slow inhibitory postsynaptic potentials. Low amplitude fast excitatory postsynaptic potentials occurred in 3 of 29 Dogiel type II neurons. Neurons of the other three groups were all uniaxonal: neurons with Dogiel type I morphology, filamentous ascending interneurons and small filamentous neurons with local projections to the longitudinal or circular muscle or to the tertiary plexus. Dogiel type I neurons were often immunoreactive for nitric oxide synthase or calretinin, as were some small filamentous neurons, while all filamentous ascending interneurons tested were calretinin immunoreactive. All uniaxonal neurons exhibited prominent fast excitatory postsynaptic potentials and did not have a late AHP following a single action potential, that is, all uniaxonal neurons displayed S type electrophysiological characteristics. However, in 6/19 Dogiel type I neurons and 2/8 filamentous ascending interneurons, a prolonged hyperpolarizing potential ensued when more than one action potential was evoked. Slow depolarizing postsynaptic potentials were observed in 20/29 Dogiel type I neurons, 6/8 filamentous ascending interneurons and 8/12 small filamentous neurons. Six of 29 Dogiel type I neurons displayed slow inhibitory postsynaptic potentials, as did 2/8 filamentous ascending interneurons and 4/12 small filamentous neurons. These results indicate that myenteric neurons in the distal colon of the guinea-pig are electrophysiologically similar to myenteric neurons in the ileum, duodenum and proximal colon. Also, the correlation of AH electrophysiological characteristics with Dogiel type II morphology and S electrophysiological characteristics with uniaxonal morphology is preserved in this region. However, filamentous ascending interneurons have not been encountered in other regions of the gastrointestinal tract and there are differences between the synaptic properties of neurons in this region compared to other regions studied, including the presence of slow depolarizing postsynaptic potentials that appear to involve conductance increases and frequent slow inhibitory postsynaptic potentials.
Collapse
Affiliation(s)
- A E Lomax
- Department of Anatomy, University of Melbourne, Parkville, Victoria, Australia.
| | | | | | | | | | | |
Collapse
|
40
|
McConalogue K, Grady EF, Minnis J, Balestra B, Tonini M, Brecha NC, Bunnett NW, Sternini C. Activation and internalization of the mu-opioid receptor by the newly discovered endogenous agonists, endomorphin-1 and endomorphin-2. Neuroscience 1999; 90:1051-9. [PMID: 10218804 PMCID: PMC4472477 DOI: 10.1016/s0306-4522(98)00514-4] [Citation(s) in RCA: 72] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
The multiple effects of opiate alkaloids, important therapeutic drugs used for pain control, are mediated by the neuronal miro-opioid receptor. Among the side effects of these drugs is a profound impairment of gastrointestinal transit. Endomorphins are opioid peptides recently isolated from the nervous system, which have high affinity and selectivity for micro-opioid receptors. Since the miro-opioid receptor undergoes ligand-induced receptor endocytosis in an agonist-dependent manner, we compared the ability of endomorphin-1, endomorphin-2 and the micro-opioid receptor peptide agonist, [D-Ala2,MePhe4,Gly-ol5]-enkephalin (DAMGO), to induce receptor endocytosis in cells transfected with epitope-tagged micro-opioid receptor complementary DNA, and in myenteric neurons of the guinea-pig ileum, which naturally express this receptor. Immunohistochemistry with antibodies to the FLAG epitope or to the native receptor showed that the micro-opioid receptor was mainly located at the plasma membrane of unstimulated cells. Endomorphins and DAMGO induced micro-opioid receptor endocytosis into early endosomes, a process that was inhibited by naloxone. Quantification of surface receptors by flow cytometry indicated that endomorphins' and DAMGO stimulated endocytosis with similar time-course and potency. They inhibited with similar potency electrically induced cholinergic contractions in the longitudinal muscle-myenteric plexus preparation through an action antagonized by naloxone. The apparent affinity estimate of naloxone (pA2 approximately 8.4) is consistent with antagonism at the micro-opioid receptor in myenteric neurons. These results indicate that endomorphins directly activate the micro-opioid receptor in neurons, thus supporting the hypothesis that they are ligands mediating opioid actions in the nervous system. Endomorphin-induced micro-opioid receptor activation can be visualized by receptor endocytosis.
Collapse
Affiliation(s)
- K McConalogue
- Department of Surgery, University of California, San Francisco 94143-0660, USA
| | | | | | | | | | | | | | | |
Collapse
|
41
|
Clerc N, Furness JB, Li ZS, Bornstein JC, Kunze WA. Morphological and immunohistochemical identification of neurons and their targets in the guinea-pig duodenum. Neuroscience 1998; 86:679-94. [PMID: 9881879 DOI: 10.1016/s0306-4522(98)00025-6] [Citation(s) in RCA: 42] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Nerve circuits within the proximal duodenum were investigated using a combination of immunohistochemistry for individual neuron markers and lesion of intrinsic nerve pathways to determine axon projections. Cell shapes and axonal projections were also studied in cells that had been injected with a marker substance. Several major neuron populations were identified. Calbindin immunoreactivity occurred in a population of myenteric nerve cells with Dogiel type II morphology. These had axons that projected to other myenteric ganglia, to the circular muscle and to the mucosa. All were immunoreactive for the synthesizing enzyme for acetylcholine, choline acetyltransferase, and some were also immunoreactive for calretinin. Myenteric neurons with nitric oxide synthase immunoreactivity projected anally to the circular muscle. These were also immunoreactive for vasoactive intestinal peptide, and proportions of them had enkephalin and/or neuropeptide Y immunoreactivity. It is suggested that they are inhibitory motor neurons to the circular muscle. A very few (about 2%) of nitric oxide synthase-immunoreactive neurons had choline acetyltransferase immunoreactivity. Tachykinin (substance P)-immunoreactive nerve cells were numerous in the myenteric plexus. Some of these projected orally to the circular muscle and are concluded to be excitatory motor neurons. Others projected to the tertiary plexus which innervates the longitudinal muscle and others provided terminals in the myenteric plexus. Two groups of descending interneurons were identified, one with somatostatin immunoreactivity and one with vasoactive intestinal peptide immunoreactivity. The two most common nerve cells in submucous ganglia were neuropeptide Y- and vasoactive intestinal peptide-immunoreactive nerve cells. Both provided innervation of the mucosa. There was also a population of calretinin-immunoreactive submucous neurons that innervated the mucosal glands, but not the villi. Comparison with the ileum reveals similarities in the chemistries and projections of neurons. Differences include the almost complete absence of nitric oxide synthase immunoreactivity from vasoactive intestinal peptide-immunoreactive interneurons in the duodenum, the projection of calbindin-immunoreactive Dogiel type II neurons to the circular muscle and the absence of tachykinin-immunoreactivity from these neurons.
Collapse
Affiliation(s)
- N Clerc
- Laboratoire de Neurobiologie, CNRS, Marseille, France
| | | | | | | | | |
Collapse
|
42
|
Nishiwaki H, Saitoh N, Nishio H, Takeuchi T, Hata F. Relationship between muscarinic autoinhibition and the inhibitory effect of morphine on acetylcholine release from myenteric plexus of guinea pig ileum. JAPANESE JOURNAL OF PHARMACOLOGY 1998; 77:271-8. [PMID: 9749927 DOI: 10.1254/jjp.77.271] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
The relationship between muscarinic autoinhibition and the inhibitory effect of morphine on acetylcholine (ACh) release was investigated in a longitudinal muscle with myenteric plexus (LMMP) preparation of guinea pig ileum. Morphine (10 microM) inhibited spontaneous and evoked ACh release by electrical field stimulation (EFS) at 1 Hz but not at 10 Hz. Atropine (1 microM) did not affect the resting ACh release, but it significantly increased EFS-evoked release, suggesting activation of muscarinic autoreceptors by ACh released during EFS. Only when the autoinhibition was weakened by atropine, morphine exhibited an inhibitory effect on the EFS-evoked release at 10 Hz. Bethanechol (300 microM) inhibited the EFS-evoked release at 1 Hz but not 10 Hz, suggesting that muscarinic autoreceptors are partially or almost fully activated at 1 or 10 Hz stimulation, respectively. After bethanechol treatment, morphine did not exhibit its inhibitory effect on the EFS-evoked release at 1 Hz. Naloxone (1 microM) increased spontaneous and EFS-evoked ACh release at 1 Hz but not at 10 Hz. Following treatment with atropine, naloxone also increased ACh release at 10-Hz stimulation. These results suggest that morphine and an endogenous opioid inhibit ACh release from LMMP preparations when muscarinic autoinhibition mechanism does not fully work. This inhibitory effect of morphine is discussed in relation to the calcium sensitivity of the preparations in ACh release.
Collapse
Affiliation(s)
- H Nishiwaki
- Department of Veterinary Pharmacology, College of Agriculture, Osaka Prefecture University, Sakai, Japan
| | | | | | | | | |
Collapse
|
43
|
Nishiwaki H, Saitoh N, Nishio H, Takeuchi T, Hata F. Relationship between inhibitory effect of endogenous opioid via mu-receptors and muscarinic autoinhibition in acetylcholine release from myenteric plexus of guinea pig ileum. JAPANESE JOURNAL OF PHARMACOLOGY 1998; 77:279-86. [PMID: 9749928 DOI: 10.1254/jjp.77.279] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Relationship between activation of opioid receptors and muscarinic autoinhibition in acetylcholine (ACh) release from the myenteric plexus was studied in longitudinal muscle myenteric plexus (LMMP) preparations of guinea pig ileum. A mu-receptor agonist, [D-Ala2, N-Me-Phe4, Gly5-ol] enkephalin (DAMGO), at a concentration of 1 microM inhibited the ACh release evoked by electrical field stimulation (EFS) at 1 Hz but not at 10 Hz. After the muscarinic autoreceptors were blocked with atropine (1 microM), DAMGO inhibited EFS-evoked ACh release also at 10 Hz. After the autoreceptors were potently activated with muscarine (200 microM), the inhibitory effect of DAMGO at 1 Hz was abolished. A kappa-receptor agonist, U-50,488, at 1 microM inhibited the EFS-evoked ACh release both at 1 and 10 Hz. U-50,488 inhibited ACh release regardless of the presence of atropine or muscarine. A delta-agonist, enkephalin [D-PEN2.5] (PDPDE), did not show any significant effect. On the other hand, a selective mu-receptor antagonist, cyprodime, increased ACh release evoked by EFS at 1 Hz, but not at 10 Hz. After the autoreceptors were blocked, cyprodime increased EFS-evoked ACh release also at 10 Hz. The selective kappa-receptor antagonist, nor-binaltorphimine, did not affect ACh release in the absence or presence of atropine. The results suggest that endogenous opioid(s) inhibits ACh release by activating mu-, but not kappa- and delta-receptors in the LMMP of guinea pig ileum and that the inhibitory effect of endogenous opioid(s) in the ACh release is important when muscarinic autoinhibition mechanism does not fully work.
Collapse
MESH Headings
- 3,4-Dichloro-N-methyl-N-(2-(1-pyrrolidinyl)-cyclohexyl)-benzeneacetamide, (trans)-Isomer/pharmacology
- Acetylcholine/metabolism
- Analgesics, Non-Narcotic/pharmacology
- Analgesics, Opioid/pharmacology
- Animals
- Atropine/pharmacology
- Electric Stimulation
- Enkephalin, Ala(2)-MePhe(4)-Gly(5)-
- Enkephalins/pharmacology
- Guinea Pigs
- Ileum/drug effects
- Ileum/metabolism
- In Vitro Techniques
- Male
- Morphinans/pharmacology
- Muscarine/pharmacology
- Muscarinic Agonists/pharmacology
- Muscarinic Antagonists/pharmacology
- Muscle, Smooth/drug effects
- Muscle, Smooth/metabolism
- Myenteric Plexus/drug effects
- Myenteric Plexus/metabolism
- Naltrexone/analogs & derivatives
- Naltrexone/pharmacology
- Narcotic Antagonists/pharmacology
- Opioid Peptides/pharmacology
- Receptors, Muscarinic/drug effects
- Receptors, Muscarinic/physiology
- Receptors, Opioid, delta/agonists
- Receptors, Opioid, kappa/agonists
- Receptors, Opioid, mu/agonists
Collapse
Affiliation(s)
- H Nishiwaki
- Department of Veterinary Pharmacology, College of Agriculture, Osaka Prefecture University, Sakai, Japan
| | | | | | | | | |
Collapse
|
44
|
Wessler I, Kirkpatrick CJ, Racké K. Non-neuronal acetylcholine, a locally acting molecule, widely distributed in biological systems: expression and function in humans. Pharmacol Ther 1998; 77:59-79. [PMID: 9500159 DOI: 10.1016/s0163-7258(97)00085-5] [Citation(s) in RCA: 292] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Acetylcholine acts as a neurotransmitter in the central and peripheral nervous systems in humans. However, recent experiments demonstrate a widespread expression of the cholinergic system in non-neuronal cells in humans. The synthesizing enzyme choline acetyltransferase, the signalling molecule acetylcholine, and the respective receptors (nicotinic or muscarinic) are expressed in epithelial cells (human airways, alimentary tract, epidermis). Acetylcholine is also found in mesothelial, endothelial, glial, and circulating blood cells (platelets, mononuclear cells), as well as in alveolar macrophages. The existence of non-neuronal acetylcholine explains the widespread expression of muscarinic and nicotinic receptors in cells not innervated by cholinergic neurons. Non-neuronal acetylcholine appears to be involved in the regulation of important cell functions, such as mitosis, trophic functions, automaticity, locomotion, ciliary activity, cell-cell contact, cytoskeleton, as well as barrier and immune functions. The most important tasks for the future will be to clarify the multiple biological roles of non-neuronal acetylcholine in detail and to identify pathological conditions in which this system is up- or down-regulated. This could provide the basis for the development of new therapeutic strategies to target the non-neuronal cholinergic system.
Collapse
Affiliation(s)
- I Wessler
- Department of Pharmacology, University of Mainz, Germany
| | | | | |
Collapse
|
45
|
Brookes SJ, Meedeniya AC, Jobling P, Costa M. Orally projecting interneurones in the guinea-pig small intestine. J Physiol 1997; 505 ( Pt 2):473-91. [PMID: 9423187 PMCID: PMC1160078 DOI: 10.1111/j.1469-7793.1997.473bb.x] [Citation(s) in RCA: 58] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
1. Orally projecting, cholinergic interneurones are important in mediating ascending excitatory reflexes in the small intestine. We have shown that there is just one major class of orally projecting interneurone, which we have characterized using retrograde labelling in organ culture, combined with immunohistochemistry, intracellular recording and dye filling. 2. Orally projecting interneurones, previously shown to be immunoreactive for choline acetyltransferase, tachykinins, enkephalin, calretinin and neurofilament protein triplet, have axons up to 14 mm long and are the only class of cells with orally directed axons more than 8.5 mm long. 3. They are all small Dogiel type I neurones with short dendrites, usually lamellar in form, and a single axon which sometimes bifurcates. Their axons give rise to short varicose collaterals in myenteric ganglia more than 3 mm oral to their cell bodies. 4. Orally projecting interneurones receive prominent fast excitatory post synaptic potentials (fast EPSPs). A major source of fast EPSPs is other ascending interneurones located further aborally. They also receive fast EPSPs from circumferential pathways. 5. In the stretched preparations used in this study, orally projecting interneurones were highly excitable, firing repeatedly to depolarizing current pulses and had negligible long after-hyperpolarizations following their action potentials. They did not receive measurable non-cholinergic slow excitatory synaptic inputs. 6. Ascending interneurones had a characteristic inflection in their membrane responses to depolarizing current pulses and their first action potential was typically delayed by approximately 30 ms. Under single electrode voltage clamp, ascending interneurones had a transient outward current when depolarized above -70 mV from more hyperpolarized holding potentials. Ascending interneurones also consistently showed marked inward rectification under both current clamp and voltage clamp conditions. 7. This class of cells has consistent morphological, neurochemical and electrophysiological characteristics and are important in mediating orally directed enteric reflexes.
Collapse
Affiliation(s)
- S J Brookes
- Department of Physiology, Flinders University of South Australia, Adelaide, Australia.
| | | | | | | |
Collapse
|
46
|
Bagnol D, Henry M, Cupo A, Julé Y. Distribution of enkephalin-like immunoreactivity in the cat digestive tract. JOURNAL OF THE AUTONOMIC NERVOUS SYSTEM 1997; 64:1-11. [PMID: 9188079 DOI: 10.1016/s0165-1838(97)00008-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Immunohistochemical investigations were carried out to determine the pattern of distribution of methionine- and leucine-enkephalin-like materials in the cat pylorus, duodenum, ileum and proximal and distal colon. The present results indicate that leucine-enkephalin-like materials are less densely distributed than methionine-enkephalin-like materials, but that the two patterns of distribution show some similarities. Considerable regional differences exist however in the distribution of these enkephalin-like materials in the muscular layers. In the duodenum, ileum and proximal colon, the immunoreactivity was mainly confined to the myenteric plexus and the circular muscle layer, where it was present in nerve cell bodies and in numerous fibres. In the longitudinal muscle and submucous layers, a few immunoreactive fibres were observed which sometimes surrounded blood vessels. In the pylorus and the distal colon, however, numerous immunoreactive fibres were observed in the longitudinal and circular muscle layers; the immunoreactivity was detected in the cell bodies of numerous myenteric plexus neurons but those of only a few submucous plexus neurons. In addition, the pylorus tissues contained immunoreactive plexi which were localized either within the longitudinal muscle or between the serosa and the longitudinal muscle layer. These plexi were connected to the myenteric plexus by immunoreactive nerve strands. In all the small intestinal segments studied, numerous immunoreactive varicosities were present in the deep muscular plexus, in the inner part of the circular muscle layer. Our results suggest that in cats, the nervous control of external muscular layers mediated by enkephalins shows regional differences. In the pylorus and the distal colon, it involves both the longitudinal and circular muscle layers, whereas in other intestinal segments, only the circular muscle layer is involved.
Collapse
Affiliation(s)
- D Bagnol
- Université d'Aix-Marseille III, Faculté des Sciences et Techniques de Saint Jérôme, France.
| | | | | | | |
Collapse
|
47
|
Pauza DH, Skripkiene G, Skripka V, Pauziene N, Stropus R. Morphological study of neurons in the nerve plexus on heart base of rats and guinea pigs. JOURNAL OF THE AUTONOMIC NERVOUS SYSTEM 1997; 62:1-12. [PMID: 9021644 DOI: 10.1016/s0165-1838(96)00102-6] [Citation(s) in RCA: 23] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
The paper describes the morphological pattern of neurons in the nerve plexus on the heart base of rats and guinea pigs. The nerve plexus, containing the investigated neurons, lies beneath the pulmonary arteries on the myocardium of the left atrium. This plexus is not covered by the epicardium. Therefore, contrary to the subepicardiac nerve plexus the investigated plexus was termed the nerve plexus of the cardiac hilum (NPCH). The morphology of neurons in the NPCH was revealed by ionophoretic injection of Lucifer Yellow via an intracellular microelectrode in vitro. A total of 139 neurons in 31 rats and 15 guinea pigs were labeled with dye and examined without chemical fixation with a fluorescent microscope. In the NPCH of both species, two types of neuron were revealed: unipolar and multipolar. The unipolar predominated (61.2% of the labeled nerve cells), whereas the multipolar were encountered less frequently (38.8% of the sampled neurons). Morphometrically, both types were similar and there was no significant difference in their length or width. The dyed neurons of both types were divided into separate groups according to indentations on the surface of their soma. Most of the unipolar nerve cells were encompassed into a group of "smooth' neurons because the surface of their soma was without noticeable prominences or grooves. The rest of the unipolar neurons were distinguished from the 'smooth' by various types of unevenness of the surface of their body, such as spine-like sprouts and grooves of different depth. The latter were attached to another group, the 'unsmooths', which made up 22.4% of all the labeled cells. The multipolar neurons were subdivided into two groups according to the number of long processes. The first group included neurons with a single long process, whereas the other group encompassed the nerve cells with two or more processes. The latter groups made up 31.6% and 7.2%, respectively, of the total number of labeled nerve cells. The obtained data have shown that the neurons in the NPCH of the rats and guinea pigs are morphologically different, and therefore it is proposed that the function of the neurons in the diverse groups may also be different.
Collapse
Affiliation(s)
- D H Pauza
- Department of Human Anatomy, Kaunas Medical Academy, Lithuania.
| | | | | | | | | |
Collapse
|
48
|
Costa M, Brookes SJ, Steele PA, Gibbins I, Burcher E, Kandiah CJ. Neurochemical classification of myenteric neurons in the guinea-pig ileum. Neuroscience 1996; 75:949-67. [PMID: 8951887 DOI: 10.1016/0306-4522(96)00275-8] [Citation(s) in RCA: 337] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
A strategy has been developed to identify and quantify the different neurochemical populations of myenteric neurons in the guinea-pig ileum using double-labelling fluorescence immunohistochemistry of whole-mount preparations. First, six histochemical markers were used to identify exclusive, non-overlapping populations of nerve cell bodies. They included immunoreactivity for the calcium binding proteins calbindin and calretinin, the neuropeptides vasoactive intestinal polypeptide, substance P and somatostatin, and the amine, 5-hydroxytryptamine. The sizes of these populations of neurons were established directly or indirectly in double-labelling experiments using a marker for all nerve cell bodies. Each of these exclusive populations was further subdivided into classes by other markers, including immunoreactivity for enkephalins and neurofilament protein triplet. The size of each class was then established directly or by calculation. These distinct, neurochemically-identified classes were related to other published work on the histochemistry, electrophysiology and retrograde labelling of enteric neurons and to the simple Dogiel morphological classification. A classification scheme, consistent with previous studies, is proposed. It includes 14 distinct classes of myenteric neurons and accounts for nearly all neurons in the myenteric plexus of the guinea-pig ileum.
Collapse
Affiliation(s)
- M Costa
- Department of Human Physiology, Flinders University of South Australia, Adelaide, Australia
| | | | | | | | | | | |
Collapse
|
49
|
Giuliani S, Lecci A, Tramontana M, Maggi CA. Role of kappa opioid receptors in modulating cholinergic twitches in the circular muscle of guinea-pig colon. Br J Pharmacol 1996; 119:985-9. [PMID: 8922749 PMCID: PMC1915931 DOI: 10.1111/j.1476-5381.1996.tb15768.x] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
1. Single pulse electrical field stimulation (EFS, 0.5 ms pulse width, 60 V at a frequency of 0.05 Hz) induced twitch contractions of mucosa-free circular muscle strips from the guinea-pig proximal colon which were abolished by atropine (0.3 microM), tetrodotoxin (0.3 microM) or omega-conotoxin GVIA (0.1 microM). 2. Various opioid receptor agonist concentration-dependently inhibited twitches with the following rank order of potency (EC50 values in brackets): U 50488 (0.31 nM) > dermorphin (4.3 nM) = dynorphin A (1-13) (6.2 nM) > [D-Ala2, N-MePhe4, Gly5-ol]-enkephalin (DAMGO, 33.5 nM) = [D-Ala2, D-Leu5]-enkephalin (DADLE, 60 nM) > [D-Pen2, D-Pen2, D-Pen5]-enkepahlin (DPDPE, 1144 nM). 3. Peptidase inhibitors (captopril, thiorphan and bestatin, 1 microM each) did not modify the amplitude of twitches. In the presence of peptidase inhibitors the concentration-response curve to dynorphin A (1-13) was displaced to the left to yield an EC50 of 0.35 nM, comparable to that of the selective kappa receptor agonist, U50488. The curves to the other opioid receptor agonist were unaffected by peptidase inhibitors. 4. DPDPE, DADLE, dermorphin and DAMGO consistently induced a concentration-unrelated transient increase in basal tone and a small and transient facilitation of twitches before development of their inhibitory effect. These transient excitatory effects were not observed upon application of dynorphin A (1-13) or U 50488. The contraction produced by DPDPE (30 nM) was largely inhibited (> 80%) by 1 microM atropine. 5. Twitches suppression induced by dynorphin A (1-13) (30 nM) was partly reversed (46 +/- 8%, n = 6) by naloxone (0.3 microM). The potent and selective kappa opioid receptor antagonist nor-binaltorphimine (Nor-BNI, 3-100 nM)) did not affect the amplitude of twitches and potently antagonized (pKB 9.83 +/- 0.09, n = 10) the inhibitory effect of dynorphin. 6. Naloxone (1-300 nM) concentration-dependently depressed the cholinergic twitches: this depressant effect was largely counteracted in the presence of apamin (0.1 microM) and NG-nitro-L-arginine (30 microM) which potentiated cholinergic twitches on their own. 7. Dynorphin A (1-13) (10 nM, n = 6) did not affect the contractile response to exogenous acetylcholine (1 microM), indicating that depression of evoked twitches occurs prejunctionally. 8. We conclude that multiple opioid receptors modulate cholinergic twitches in the circular muscle of guinea-pig proximal colon. While mu and delta opioid receptor agonists produced mixed excitatory and inhibitory effects, kappa opioid receptors, activated by sub-nanomolar concentrations of dynorphin A (1-13), mediate a powerful and pure prejunctional inhibition of acetylcholine release.
Collapse
MESH Headings
- Acetylcholine/pharmacology
- Animals
- Colon/drug effects
- Colon/physiology
- Dynorphins/pharmacology
- Electric Stimulation
- Enkephalin, Ala(2)-MePhe(4)-Gly(5)-
- Enkephalin, D-Penicillamine (2,5)-
- Enkephalin, Leucine-2-Alanine/pharmacology
- Enkephalins/pharmacology
- Guinea Pigs
- In Vitro Techniques
- Male
- Muscle, Smooth/drug effects
- Muscle, Smooth/physiology
- Naloxone/pharmacology
- Oligopeptides/pharmacology
- Opioid Peptides
- Receptors, Cholinergic/drug effects
- Receptors, Cholinergic/physiology
- Receptors, Opioid, kappa/antagonists & inhibitors
- Receptors, Opioid, kappa/physiology
Collapse
Affiliation(s)
- S Giuliani
- Pharmacology Department, Menarini Ricerche, Florence, Italy
| | | | | | | |
Collapse
|
50
|
Atanassova E, Papasova M. Effect of substance P and met-enkephalin on cat colonic smooth muscle activity. GENERAL PHARMACOLOGY 1996; 27:1053-1056. [PMID: 8909990 DOI: 10.1016/0306-3623(95)02132-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
1. The effects of substance P (2.5 x 10(-8)M) (SP) and met-enkephalin (10(-7)M) (ME), when administered alone or in combination (SP + ME), on the contractile activity of cat colonic muscle strips were compared. 2. SP evoked powerful contractions of the circular muscle strips (2.30 +/- 0.36 g) (background 0.65 +/- 0.10 g). 3. In the majority of cases, ME significantly increased the background activity (1.88 +/- 0.34 g and 0.70 +/- 0.10 g, respectively). 4. The two substances administered together produced the most pronounced contractile activity (3.86 +/- 0.44 g). 5. The longitudinal muscle strips showed higher spontaneous and evoked contractions. 6. Thus ME contributes to the increase in the effect of SP on colonic contractile activity.
Collapse
Affiliation(s)
- E Atanassova
- Institute of Physiology, Bulgarian Academy of Sciences, Sofia, Bulgaria
| | | |
Collapse
|