1
|
Baran H, Jan Pietryja M, Kepplinger B. Importance of Modulating Kynurenic Acid Metabolism-Approaches for the Treatment of Dementia. Biomolecules 2025; 15:74. [PMID: 39858468 PMCID: PMC11764436 DOI: 10.3390/biom15010074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2024] [Revised: 12/19/2024] [Accepted: 12/31/2024] [Indexed: 01/27/2025] Open
Abstract
In this article, we focus on kynurenic acid metabolism in neuropsychiatric disorders and the biochemical processes involved in memory and cognitive impairment, followed by different approaches in the fight against dementia. Kynurenic acid-a biochemical part of L-tryptophan catabolism-is synthesized from L-kynurenine by kynurenine aminotransferases. Experimental pharmacological studies have shown that elevated levels of kynurenic acid in the brain are associated with impaired learning and that lowering kynurenic acid levels can improve these symptoms. The discovery of new compounds with the ability to block kynurenine aminotransferases opens new therapeutic avenues for the treatment of memory impairment and dementia. The newly developed Helix pomatia snail model of memory can be used for the assessment of novel pharmacological approaches. Dietary supplementation with natural molecular/herbal extracts, exercise, and physical activity have significant impacts on endogenous pharmacology by reducing kynurenic acid synthesis, and these factors are likely to significantly modulate steady-state biological conditions and delay the negative consequences of aging, including the onset of pathological processes.
Collapse
Affiliation(s)
- Halina Baran
- Karl Landsteiner Research Institute for Neurochemistry, Neuropharmacology, Neurorehabilitation and Pain Therapy, 3362 Mauer-Amstetten, Austria;
- Neurophysiology Unit, Department of Biomedical Sciences, University of Veterinary Medicine Vienna, 1210 Vienna, Austria
| | - Marcelin Jan Pietryja
- St. Francis Herbarium, Monastery of the Franciscan Friars Minor, 40-760 Katowice, Poland;
| | - Berthold Kepplinger
- Karl Landsteiner Research Institute for Neurochemistry, Neuropharmacology, Neurorehabilitation and Pain Therapy, 3362 Mauer-Amstetten, Austria;
- Department of Neurology, Neuropsychiatric Hospital, 3362 Mauer-Amstetten, Austria
| |
Collapse
|
2
|
Druga R, Mares P, Salaj M, Kubova H. Degenerative Changes in the Claustrum and Endopiriform Nucleus after Early-Life Status Epilepticus in Rats. Int J Mol Sci 2024; 25:1296. [PMID: 38279295 PMCID: PMC10816976 DOI: 10.3390/ijms25021296] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 01/07/2024] [Accepted: 01/17/2024] [Indexed: 01/28/2024] Open
Abstract
The aim of the present study was to analyze the location of degenerating neurons in the dorsal (insular) claustrum (DCL, VCL) and the dorsal, intermediate and ventral endopiriform nucleus (DEn, IEn, VEn) in rat pups following lithium-pilocarpine status epilepticus (SE) induced at postnatal days [P]12, 15, 18, 21 and 25. The presence of Fluoro-Jade B-positive neurons was evaluated at 4, 12, 24, 48 h and 1 week later. A small number of degenerated neurons was observed in the CL, as well as in the DEn at P12 and P15. The number of degenerated neurons was increased in the CL as well as in the DEn at P18 and above and was highest at longer survival intervals. The CL at P15 and 18 contained a small or moderate number of degenerated neurons mainly close to the medial and dorsal margins also designated as DCl ("shell") while isolated degenerated neurons were distributed in the VCl ("core"). In P21 and 25, a larger number of degenerated neurons occurred in both subdivisions of the dorsal claustrum. The majority of degenerated neurons in the endopiriform nucleus were found in the intermediate and caudal third of the DEn. A small number of degenerated neurons was dispersed in the whole extent of the DEn with prevalence to its medial margin. Our results indicate that degenerated neurons in the claustrum CL and endopiriform nucleus are distributed mainly in subdivisions originating from the ventral pallium; their distribution correlates with chemoarchitectonics of both nuclei and with their intrinsic and extrinsic connections.
Collapse
Affiliation(s)
- Rastislav Druga
- Institute of Anatomy, 2nd Medical Faculty, Charles University, 15006 Prague, Czech Republic;
- Laboratory of Developmental Epileptology, Institute of Physiology, Czech Academy of Sciences, 14200 Prague, Czech Republic;
- Institute of Anatomy, 1st Medical Faculty, Charles University, 12000 Prague, Czech Republic
| | - Pavel Mares
- Laboratory of Developmental Epileptology, Institute of Physiology, Czech Academy of Sciences, 14200 Prague, Czech Republic;
| | - Martin Salaj
- Institute of Anatomy, 2nd Medical Faculty, Charles University, 15006 Prague, Czech Republic;
| | - Hana Kubova
- Laboratory of Developmental Epileptology, Institute of Physiology, Czech Academy of Sciences, 14200 Prague, Czech Republic;
| |
Collapse
|
3
|
Li J, Sha L, Xu Q. Long-term outcomes of classic and novel anti-seizure medication in a kainate-induced model of chronic epilepsy. Epilepsy Res 2023; 191:107095. [PMID: 36812803 DOI: 10.1016/j.eplepsyres.2023.107095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Revised: 01/09/2023] [Accepted: 01/19/2023] [Indexed: 01/28/2023]
Abstract
OBJECTIVE Intrahippocampal injection of kainate (KA) is a reliable model of temporal lobe epilepsy (TLE) that replicates spontaneous recurrent seizures. Both electrographic seizures and electroclinical seizure (most generalized seizure) can be detected in KA model. Electrographic seizures such as high-voltage sharp waves (HVSWs) and hippocampal paroxysmal discharges (HPDs) are far more common and attracting much attention. A comprehensive study on the anticonvulsant effects of classic and novel antiseizure medications (ASMs) on spontaneous electroclinical seizures, especially during long-term treatment, is still lacking. Here, we evaluated the effects of six ASMs in this model on electroclinical seizures over eight weeks. METHODS Using 24-hour continuous electroencephalographical (EEG) monitoring in free-moving mice, we tested the effectiveness of six ASMs (valproic acid, VPA; carbamazepine, CBZ; lamotrigine, LTG; perampanel, PER; brivaracetam, BRV; and everolimus, EVL) on the electroclinical seizures over eight weeks in the intrahippocampal kainate mouse model. RESULTS VPA, CBZ, LTG, PER and BRV significantly suppressed electroclinical seizures in the early stages of treatment, but the mice gradually developed resistance to these drugs. Overall, the mean frequency of electroclinical seizures was not significantly lower during the 8-week treatment than that at baseline in any ASM-treated group. The individual responses to ASMs varied widely. CONCLUSION Long-term treatment with VPA, LTG, CBZ, PER, BRV and EVL did not relieve electroclinical seizures in this TLE model. Additionally, the window for screening new ASMs in this model should be set to at least 3 weeks to account for drug resistance.
Collapse
Affiliation(s)
- Jing Li
- State Key Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100005, China
| | - Longze Sha
- State Key Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100005, China; Neuroscience Center of Chinese Academy of Medical Sciences, China
| | - Qi Xu
- State Key Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100005, China; Neuroscience Center of Chinese Academy of Medical Sciences, China.
| |
Collapse
|
4
|
Loss of Rai1 enhances hippocampal excitability and epileptogenesis in mouse models of Smith-Magenis syndrome. Proc Natl Acad Sci U S A 2022; 119:e2210122119. [PMID: 36256819 PMCID: PMC9618093 DOI: 10.1073/pnas.2210122119] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Abstract
Smith–Magenis syndrome (SMS) is a neurodevelopmental disorder associated with autism and epileptic seizures. SMS is caused by losing one copy of the gene encoding retinoic acid induced 1 (RAI1), a ubiquitously expressed transcriptional regulator. To pinpoint brain regions and cell types contributing to neuronal hyperexcitability in SMS, we combined electrophysiology and three-dimensional imaging of Fos expression in the intact mouse brain. We found that Rai1-deficient hippocampal dentate gyrus granule cells (dGCs) show increased intrinsic excitability and enhanced glutamatergic synaptic transmission. Our findings indicate that Rai1 safeguards the hippocampal network from hyperexcitability and could help explain abnormal brain activity in SMS. Hyperexcitability of brain circuits is a common feature of autism spectrum disorders (ASDs). Genetic deletion of a chromatin-binding protein, retinoic acid induced 1 (RAI1), causes Smith–Magenis syndrome (SMS). SMS is a syndromic ASD associated with intellectual disability, autistic features, maladaptive behaviors, overt seizures, and abnormal electroencephalogram (EEG) patterns. The molecular and neural mechanisms underlying abnormal brain activity in SMS remain unclear. Here we show that panneural Rai1 deletions in mice result in increased seizure susceptibility and prolonged hippocampal seizure duration in vivo and increased dentate gyrus population spikes ex vivo. Brain-wide mapping of neuronal activity pinpointed selective cell types within the limbic system, including the hippocampal dentate gyrus granule cells (dGCs) that are hyperactivated by chemoconvulsant administration or sensory experience in Rai1-deficient brains. Deletion of Rai1 from glutamatergic neurons, but not from gamma-aminobutyric acidergic (GABAergic) neurons, was responsible for increased seizure susceptibility. Deleting Rai1 from the Emx1Cre-lineage glutamatergic neurons resulted in abnormal dGC properties, including increased excitatory synaptic transmission and increased intrinsic excitability. Our work uncovers the mechanism of neuronal hyperexcitability in SMS by identifying Rai1 as a negative regulator of dGC intrinsic and synaptic excitability.
Collapse
|
5
|
Drexel M, Sperk G. Seizure-induced overexpression of NPY induces epileptic tolerance in a mouse model of spontaneous recurrent seizures. Front Mol Neurosci 2022; 15:974784. [PMID: 36311021 PMCID: PMC9608171 DOI: 10.3389/fnmol.2022.974784] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Accepted: 09/26/2022] [Indexed: 11/21/2022] Open
Abstract
Epileptic seizures result in pronounced over-expression of neuropeptide Y (NPY). In vivo and in vitro studies revealed that NPY exerts potent anticonvulsive actions through presynaptic Y2 receptors by suppressing glutamate release from principal neurons. We now investigated whether seizure-induced over-expression of NPY contributes to epileptic tolerance induced by preceding seizures. We used a previously established animal model based on selective inhibition of GABA release from parvalbumin (PV)-containing interneurons in the subiculum in mice. The animals present spontaneous recurrent seizures (SRS) and clusters of interictal spikes (IS). The frequency of SRS declined after five to six weeks, indicating development of seizure tolerance. In interneurons of the subiculum and sector CA1, SRS induced over-expression of NPY that persisted there for a prolonged time despite of a later decrease in SRS frequency. In contrast to NPY, somatostatin was not overexpressed in the respective axon terminals. Contrary to interneurons, NPY was only transiently expressed in mossy fibers. To demonstrate a protective function of endogenous, over-expressed NPY, we injected the selective NPY-Y2 receptor antagonist JNJ 5207787 simultaneously challenging the mice by a low dose of pentylenetetrazol (PTZ, 30 or 40 mg/kg, i.p.). In control mice, neither PTZ nor PTZ plus JNJ 5207787 induced convulsions. In mice with silenced GABA/PV neurons, PTZ alone only modestly enhanced EEG activity. When we injected JNJ 5207787 together with PTZ (either dose) the number of seizures, however, became significantly increased. In addition, in the epileptic mice CB1 receptor immunoreactivity was reduced in terminal areas of basket cells pointing to reduced presynaptic inhibition of GABA release from these neurons. Our experiments demonstrate that SRS result in overexpression of NPY in hippocampal interneurons. NPY overexpression persists for several weeks and may be related to later decreasing SRS frequency. Injection of the Y2 receptor antagonist JNJ 5207787 prevents this protective action of NPY only when release of the peptide is triggered by injection of PTZ and induces pronounced convulsions. Thus, over-expressed NPY released “on demand” by seizures may help terminating acute seizures and may prevent from recurrent epileptic activity.
Collapse
|
6
|
Aronica E, Binder DK, Drexel M, Ikonomidou C, Kadam SD, Sperk G, Steinhäuser C. A companion to the preclinical common data elements and case report forms for neuropathology studies in epilepsy research. A report of the TASK3 WG2 Neuropathology Working Group of the ILAE/AES Joint Translational Task Force. Epilepsia Open 2022. [PMID: 35938285 DOI: 10.1002/epi4.12638] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2021] [Accepted: 01/28/2022] [Indexed: 11/06/2022] Open
Abstract
The International League Against Epilepsy/American Epilepsy Society (ILAE/AES) Joint Translational Task Force initiated the TASK3 working group to create common data elements (CDEs) for various aspects of preclinical epilepsy research studies, which could help improve the standardization of experimental designs. This article addresses neuropathological changes associated with seizures and epilepsy in rodent models of epilepsy. We discuss CDEs for histopathological parameters for neurodegeneration, changes in astrocyte morphology and function, mechanisms of inflammation, and changes in the blood-brain barrier and myelin/oligodendrocytes resulting from recurrent seizures in rats and mice. We provide detailed CDE tables and case report forms (CRFs), and with this companion manuscript, we discuss the rationale and methodological aspects of individual neuropathological examinations. The CDEs, CRFs, and companion paper are available to all researchers, and their use will benefit the harmonization and comparability of translational preclinical epilepsy research. The ultimate hope is to facilitate the development of rational therapy concepts for treating epilepsies, seizures, and comorbidities and the development of biomarkers assessing the pathological state of the disease.
Collapse
Affiliation(s)
- Eleonora Aronica
- Amsterdam UMC, University of Amsterdam, Department of (Neuro) Pathology, Amsterdam Neuroscience, Amsterdam, The Netherlands
- Stichting Epilepsie Instellingen Nederland (SEIN), Heemstede, The Netherlands
| | - Devin K Binder
- Center for Glial-Neuronal Interactions, Division of Biomedical Sciences, School of Medicine, University of California, Riverside, California, USA
| | - Meinrad Drexel
- Department of Genetics and Pharmacology, Institute of Molecular and Cellular Pharmacology, Medical University Innsbruck, Innsbruck, Austria
| | | | - Shilpa D Kadam
- The Hugo Moser Research Institute at Kennedy Krieger, Baltimore, Maryland, USA
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Guenther Sperk
- Department of Pharmacology, Medical University Innsbruck, Innsbruck, Austria
| | - Christian Steinhäuser
- Institute of Cellular Neurosciences, Medical School, University of Bonn, Bonn, Germany
| |
Collapse
|
7
|
Zhou F, Ebea P, Mutai E, Wang H, Sukreet S, Navazesh S, Dogan H, Li W, Cui J, Ji P, Ramirez DMO, Zempleni J. Small Extracellular Vesicles in Milk Cross the Blood-Brain Barrier in Murine Cerebral Cortex Endothelial Cells and Promote Dendritic Complexity in the Hippocampus and Brain Function in C57BL/6J Mice. Front Nutr 2022; 9:838543. [PMID: 35600828 PMCID: PMC9121399 DOI: 10.3389/fnut.2022.838543] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Accepted: 03/29/2022] [Indexed: 12/12/2022] Open
Abstract
Human milk contains large amounts of small extracellular vesicles (sEVs) and their microRNA cargos, whereas infant formulas contain only trace amounts of sEVs and microRNAs. We assessed the transport of sEVs across the blood-brain barrier (BBB) and sEV accumulation in distinct regions of the brain in brain endothelial cells and suckling mice. We further assessed sEV-dependent gene expression profiles and effects on the dendritic complexity of hippocampal granule cells and phenotypes of EV depletion in neonate, juvenile and adult mice. The transfer of sEVs across the BBB was assessed by using fluorophore-labeled bovine sEVs in brain endothelial bEnd.3 monolayers and dual chamber systems, and in wild-type newborn pups fostered to sEV and cargo tracking (ECT) dams that express sEVs labeled with a CD63-eGFP fusion protein for subsequent analysis by serial two-photon tomography and staining with anti-eGFP antibodies. Effects of EVs on gene expression and dendritic architecture of granule cells was analyzed in hippocampi from juvenile mice fed sEV and RNA-depleted (ERD) and sEV and RNA-sufficient (ERS) diets by using RNA-sequencing analysis and Golgi-Cox staining followed by integrated neuronal tracing and morphological analysis of neuronal dendrites, respectively. Spatial learning and severity of kainic acid-induced seizures were assessed in mice fed ERD and ERS diets. bEnd.3 cells internalized sEVs by using a saturable transport mechanism and secreted miR-34a across the basal membrane. sEVs penetrated the entire brain in fostering experiments; major regions of accumulation included the hippocampus, cortex and cerebellum. Two hundred ninety-five genes were differentially expressed in hippocampi from mice fed ERD and ERS diets; high-confidence gene networks included pathways implicated in axon guidance and calcium signaling. Juvenile pups fed the ERD diet had reduced dendritic complexity of dentate granule cells in the hippocampus, scored nine-fold lower in the Barnes maze test of spatial learning and memory, and the severity of seizures was 5-fold higher following kainic acid administration in adult mice fed the ERD diet compared to mice fed the ERS diet. We conclude that sEVs cross the BBB and contribute toward optimal neuronal development, spatial learning and memory, and resistance to kainic acid-induced seizures in mice.
Collapse
Affiliation(s)
- Fang Zhou
- Department of Nutrition and Health Sciences, University of Nebraska-Lincoln, Lincoln, NE, United States
| | - Pearl Ebea
- Department of Nutrition and Health Sciences, University of Nebraska-Lincoln, Lincoln, NE, United States
| | - Ezra Mutai
- Department of Nutrition and Health Sciences, University of Nebraska-Lincoln, Lincoln, NE, United States
| | - Haichuan Wang
- Department of Nutrition and Health Sciences, University of Nebraska-Lincoln, Lincoln, NE, United States
| | - Sonal Sukreet
- Department of Nutrition and Health Sciences, University of Nebraska-Lincoln, Lincoln, NE, United States
| | - Shya Navazesh
- Department of Nutrition, University of California, Davis, Davis, CA, United States
| | - Haluk Dogan
- School of Computing, University of Nebraska-Lincoln, Lincoln, NE, United States
| | - Wenhao Li
- Department of Neurology, University of Texas Southwestern Medical Center, Dallas, TX, United States
- Peter O’Donnell Jr. Brain Institute, University of Texas Southwestern Medical Center, Dallas, TX, United States
| | - Juan Cui
- School of Computing, University of Nebraska-Lincoln, Lincoln, NE, United States
| | - Peng Ji
- Department of Nutrition, University of California, Davis, Davis, CA, United States
| | - Denise M. O. Ramirez
- Department of Neurology, University of Texas Southwestern Medical Center, Dallas, TX, United States
- Peter O’Donnell Jr. Brain Institute, University of Texas Southwestern Medical Center, Dallas, TX, United States
| | - Janos Zempleni
- Department of Nutrition and Health Sciences, University of Nebraska-Lincoln, Lincoln, NE, United States
| |
Collapse
|
8
|
Drexel M, Rahimi S, Sperk G. Silencing of hippocampal somatostatin interneurons induces recurrent spontaneous limbic seizures in mice. Neuroscience 2022; 487:155-165. [DOI: 10.1016/j.neuroscience.2022.02.007] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Revised: 01/11/2022] [Accepted: 02/08/2022] [Indexed: 12/22/2022]
|
9
|
Sandouka S, Shekh-Ahmad T. Induction of the Nrf2 Pathway by Sulforaphane Is Neuroprotective in a Rat Temporal Lobe Epilepsy Model. Antioxidants (Basel) 2021; 10:antiox10111702. [PMID: 34829573 PMCID: PMC8615008 DOI: 10.3390/antiox10111702] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Revised: 10/21/2021] [Accepted: 10/23/2021] [Indexed: 02/07/2023] Open
Abstract
Epilepsy is a chronic disease of the brain that affects over 65 million people worldwide. Acquired epilepsy is initiated by neurological insults, such as status epilepticus, which can result in the generation of ROS and induction of oxidative stress. Suppressing oxidative stress by upregulation of the transcription factor, nuclear factor erythroid 2-related factor 2 (Nrf2) has been shown to be an effective strategy to increase endogenous antioxidant defences, including in brain diseases, and can ameliorate neuronal damage and seizure occurrence in epilepsy. Here, we aim to test the neuroprotective potential of a naturally occurring Nrf2 activator sulforaphane, in in vitro epileptiform activity model and a temporal lobe epilepsy rat model. Sulforaphane significantly decreased ROS generation during epileptiform activity, restored glutathione levels, and prevented seizure-like activity-induced neuronal cell death. When given to rats after 2 h of kainic acid-induced status epilepticus, sulforaphane significantly increased the expression of Nrf2 and related antioxidant genes, improved oxidative stress markers, and increased the total antioxidant capacity in both the plasma and hippocampus. In addition, sulforaphane significantly decreased status epilepticus-induced neuronal cell death. Our results demonstrate that Nrf2 activation following an insult to the brain exerts a neuroprotective effect by reducing neuronal death, increasing the antioxidant capacity, and thus may also modify epilepsy development.
Collapse
|
10
|
Augusto E, Gonçalves FQ, Real JE, Silva HB, Pochmann D, Silva TS, Matos M, Gonçalves N, Tomé ÂR, Chen JF, Canas PM, Cunha RA. Increased ATP release and CD73-mediated adenosine A 2A receptor activation mediate convulsion-associated neuronal damage and hippocampal dysfunction. Neurobiol Dis 2021; 157:105441. [PMID: 34224862 DOI: 10.1016/j.nbd.2021.105441] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2021] [Revised: 06/12/2021] [Accepted: 06/30/2021] [Indexed: 12/12/2022] Open
Abstract
Extracellular ATP is a danger signal to the brain and contributes to neurodegeneration in animal models of Alzheimer's disease through its extracellular catabolism by CD73 to generate adenosine, bolstering the activation of adenosine A2A receptors (A2AR). Convulsive activity leads to increased ATP release, with the resulting morphological alterations being eliminated by A2AR blockade. However, it is not known if upon convulsions there is a CD73-mediated coupling between ATP release and A2AR overactivation, causing neurodegeneration. We now show that kainate-induced convulsions trigger a parallel increase of ATP release and of CD73 and A2AR densities in synapses and astrocytes of the mouse hippocampus. Notably, the genetic deletion of CD73 attenuates neuronal degeneration but has no impact on astrocytic modifications in the hippocampus upon kainate-induced convulsions. Furthermore, kainate-induced convulsions cause a parallel deterioration of hippocampal long-term potentiation (LTP) and hippocampal-dependent memory performance, which is eliminated by knocking out CD73. This demonstrates the key role of the ATP release/CD73/A2AR pathway to selectively control synaptic dysfunction and neurodegeneration following an acute brain insult, paving the way to consider CD73 as a new therapeutic target to prevent neuronal damage upon acute brain damage.
Collapse
Affiliation(s)
- Elisabete Augusto
- CNC-Center for Neuroscience and Cell Biology, University of Coimbra, Portugal; Department of Neurology, Boston University School of Medicine, Boston, MA 02118, USA
| | | | - Joana E Real
- CNC-Center for Neuroscience and Cell Biology, University of Coimbra, Portugal
| | - Henrique B Silva
- CNC-Center for Neuroscience and Cell Biology, University of Coimbra, Portugal
| | - Daniela Pochmann
- CNC-Center for Neuroscience and Cell Biology, University of Coimbra, Portugal
| | - Tiago S Silva
- CNC-Center for Neuroscience and Cell Biology, University of Coimbra, Portugal
| | - Marco Matos
- CNC-Center for Neuroscience and Cell Biology, University of Coimbra, Portugal; Department of Neurology, Boston University School of Medicine, Boston, MA 02118, USA
| | - Nélio Gonçalves
- CNC-Center for Neuroscience and Cell Biology, University of Coimbra, Portugal
| | - Ângelo R Tomé
- CNC-Center for Neuroscience and Cell Biology, University of Coimbra, Portugal; Department of Life Sciences, Faculty of Sciences and Technology, University of Coimbra, Portugal
| | - Jiang-Fan Chen
- Department of Neurology, Boston University School of Medicine, Boston, MA 02118, USA; Molecular Neuropharmacology Lab, School of Optometry and Ophthalmology, Wenzhou Medical University, Wenzhou, China
| | - Paula M Canas
- CNC-Center for Neuroscience and Cell Biology, University of Coimbra, Portugal
| | - Rodrigo A Cunha
- CNC-Center for Neuroscience and Cell Biology, University of Coimbra, Portugal; Faculty of Medicine, University of Coimbra, Portugal.
| |
Collapse
|
11
|
Jalloul D, Hajjar H, Asdikian R, Maawie M, Nasrallah L, Medlej Y, Darwich M, Karnib N, Lawand N, Abdel Rassoul R, Wang KKW, Kobeissy F, Darwish H, Obeid M. Potentiating Hemorrhage in a Periadolescent Rat Model of Closed-Head Traumatic Brain Injury Worsens Hyperexcitability but Not Behavioral Deficits. Int J Mol Sci 2021; 22:6456. [PMID: 34208666 PMCID: PMC8234967 DOI: 10.3390/ijms22126456] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Revised: 06/07/2021] [Accepted: 06/11/2021] [Indexed: 12/29/2022] Open
Abstract
Post-traumatic epilepsy (PTE) and neurocognitive deficits are devastating sequelae of head injuries that are common in adolescents. Investigating desperately needed treatments is hindered by the difficulties in inducing PTE in rodents and the lack of established immature rat models of pediatric PTE. Hemorrhage is a significant risk factor for PTE, but compared to humans, rats are less prone to bleeding because of their rapid blood coagulation system. In this study, we promoted bleeding in the controlled cortical impact (CCI) closed-head injury model with a 20 min pre-impact 600 IU/kg intraperitoneal heparin injection in postnatal day 35 (P35) periadolescent rats, given the preponderance of such injuries in this age group. Temporo-parietal CCI was performed post-heparin (HTBI group) or post-saline (TBI group). Controls were subjected to sham procedures following heparin or saline administration. Continuous long-term EEG monitoring was performed for 3 months post-CCI. Sensorimotor testing, the Morris water maze, and a modified active avoidance test were conducted between P80 and P100. Glial fibrillary acidic protein (GFAP) levels and neuronal damage were also assessed. Compared to TBI rats, HTBI rats had persistently higher EEG spiking and increased hippocampal GFAP levels (p < 0.05). No sensorimotor deficits were detected in any group. Compared to controls, both HTBI and TBI groups had a long-term hippocampal neuronal loss (p < 0.05), as well as contextual and visuospatial learning deficits (p < 0.05). The hippocampal astrogliosis and EEG spiking detected in all rats subjected to our hemorrhage-promoting procedure suggest the emergence of hyperexcitable networks and pave the way to a periadolescent PTE rat model.
Collapse
Affiliation(s)
- Dounya Jalloul
- Department of Anatomy, Cell Biology and Physiological Sciences, American University of Beirut, Beirut 1107 2020, Lebanon; (D.J.); (H.H.); (R.A.); (Y.M.); (N.K.); (N.L.)
| | - Helene Hajjar
- Department of Anatomy, Cell Biology and Physiological Sciences, American University of Beirut, Beirut 1107 2020, Lebanon; (D.J.); (H.H.); (R.A.); (Y.M.); (N.K.); (N.L.)
| | - Rita Asdikian
- Department of Anatomy, Cell Biology and Physiological Sciences, American University of Beirut, Beirut 1107 2020, Lebanon; (D.J.); (H.H.); (R.A.); (Y.M.); (N.K.); (N.L.)
| | - Mariam Maawie
- Neuroscience Research Center, Faculty of Medical Sciences, Lebanese University, Hadath P.O. Box 6573/14, Lebanon; (M.M.); (R.A.R.)
| | - Leila Nasrallah
- Department of Biochemistry and Molecular Genetics, American University of Beirut, Beirut 1107 2020, Lebanon;
| | - Yasser Medlej
- Department of Anatomy, Cell Biology and Physiological Sciences, American University of Beirut, Beirut 1107 2020, Lebanon; (D.J.); (H.H.); (R.A.); (Y.M.); (N.K.); (N.L.)
| | - Mouhamad Darwich
- Division of Child Neurology, Department of Pediatrics and Adolescent Medicine, American University of Beirut Medical Center, Beirut 1107 2020, Lebanon;
| | - Nabil Karnib
- Department of Anatomy, Cell Biology and Physiological Sciences, American University of Beirut, Beirut 1107 2020, Lebanon; (D.J.); (H.H.); (R.A.); (Y.M.); (N.K.); (N.L.)
| | - Nada Lawand
- Department of Anatomy, Cell Biology and Physiological Sciences, American University of Beirut, Beirut 1107 2020, Lebanon; (D.J.); (H.H.); (R.A.); (Y.M.); (N.K.); (N.L.)
- Department of Neurology, American University of Beirut Medical Center, Beirut 1107 2020, Lebanon
| | - Ronza Abdel Rassoul
- Neuroscience Research Center, Faculty of Medical Sciences, Lebanese University, Hadath P.O. Box 6573/14, Lebanon; (M.M.); (R.A.R.)
| | - Kevin K. W. Wang
- Brain Rehabilitation Research Center, Malcom Randall VA Medical Center, Gainesville, FL 32608, USA;
- Program for Neurotrauma, Neuroproteomics & Biomarkers Research, Departments of Emergency Medicine, University of Florida, Gainesville, FL 32608, USA
| | - Firas Kobeissy
- Department of Biochemistry and Molecular Genetics, American University of Beirut, Beirut 1107 2020, Lebanon;
- Brain Rehabilitation Research Center, Malcom Randall VA Medical Center, Gainesville, FL 32608, USA;
- Program for Neurotrauma, Neuroproteomics & Biomarkers Research, Departments of Emergency Medicine, University of Florida, Gainesville, FL 32608, USA
| | - Hala Darwish
- Department of Anatomy, Cell Biology and Physiological Sciences, American University of Beirut, Beirut 1107 2020, Lebanon; (D.J.); (H.H.); (R.A.); (Y.M.); (N.K.); (N.L.)
- Rafic Hariri School of Nursing, American University of Beirut, Beirut 1107 2020, Lebanon
| | - Makram Obeid
- Department of Anatomy, Cell Biology and Physiological Sciences, American University of Beirut, Beirut 1107 2020, Lebanon; (D.J.); (H.H.); (R.A.); (Y.M.); (N.K.); (N.L.)
- Division of Child Neurology, Department of Pediatrics and Adolescent Medicine, American University of Beirut Medical Center, Beirut 1107 2020, Lebanon;
| |
Collapse
|
12
|
The Kainic Acid Models of Temporal Lobe Epilepsy. eNeuro 2021; 8:ENEURO.0337-20.2021. [PMID: 33658312 PMCID: PMC8174050 DOI: 10.1523/eneuro.0337-20.2021] [Citation(s) in RCA: 120] [Impact Index Per Article: 30.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Revised: 01/14/2021] [Accepted: 01/24/2021] [Indexed: 12/14/2022] Open
Abstract
Experimental models of epilepsy are useful to identify potential mechanisms of epileptogenesis, seizure genesis, comorbidities, and treatment efficacy. The kainic acid (KA) model is one of the most commonly used. Several modes of administration of KA exist, each producing different effects in a strain-, species-, gender-, and age-dependent manner. In this review, we discuss the advantages and limitations of the various forms of KA administration (systemic, intrahippocampal, and intranasal), as well as the histologic, electrophysiological, and behavioral outcomes in different strains and species. We attempt a personal perspective and discuss areas where work is needed. The diversity of KA models and their outcomes offers researchers a rich palette of phenotypes, which may be relevant to specific traits found in patients with temporal lobe epilepsy.
Collapse
|
13
|
Tesfaye BA, Hailu HG, Zewdie KA, Ayza MA, Berhe DF. Montelukast: The New Therapeutic Option for the Treatment of Epilepsy. J Exp Pharmacol 2021; 13:23-31. [PMID: 33505173 PMCID: PMC7829127 DOI: 10.2147/jep.s277720] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2020] [Accepted: 12/29/2020] [Indexed: 12/16/2022] Open
Abstract
Currently, there is no definitive cure for epilepsy. The available medications relieve symptoms and reduce seizure attacks. The major challenge with the available antiepileptic medication is safety and affordability. The repurposing of montelukast for epilepsy can be an alternative medication with a better safety profile. Montelukast is a leukotriene receptor antagonist that binds to the cysteinyl leukotrienes (CysLT) receptors used in the treatment of bronchial asthma and seasonal allergies. Emerging evidence suggests that montelukast's anti-inflammatory effect can help to maintain BBB integrity. The drug has also neuroprotective and anti-oxidative activities to reduce seizure incidence and epilepsy. The present review summarizes the neuropharmacological actions of montelukast in epilepsy with an emphasis on the recent findings associated with CysLT and cell-specific effects.
Collapse
Affiliation(s)
- Bekalu Amare Tesfaye
- Department of Pharmacology and Toxicology, School of Pharmacy, Mekelle University, Mekelle, Ethiopia
| | - Haftom Gebregergs Hailu
- Department of Pharmacology and Toxicology, School of Pharmacy, Mekelle University, Mekelle, Ethiopia
| | - Kaleab Alemayehu Zewdie
- Department of Pharmacology and Toxicology, School of Pharmacy, Mekelle University, Mekelle, Ethiopia
| | - Muluken Altaye Ayza
- Department of Pharmacology and Toxicology, School of Pharmacy, Mekelle University, Mekelle, Ethiopia
| | - Derbew Fikadu Berhe
- Department of Pharmacology and Toxicology, School of Pharmacy, Mekelle University, Mekelle, Ethiopia
| |
Collapse
|
14
|
Moura DMS, Brandão JA, Lentini C, Heinrich C, Queiroz CM, Costa MR. Evidence of Progenitor Cell Lineage Rerouting in the Adult Mouse Hippocampus After Status Epilepticus. Front Neurosci 2020; 14:571315. [PMID: 33071745 PMCID: PMC7530340 DOI: 10.3389/fnins.2020.571315] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2020] [Accepted: 08/20/2020] [Indexed: 12/20/2022] Open
Abstract
Cell lineage in the adult hippocampus comprises multipotent and neuron-committed progenitors. In the present work, we fate-mapped neuronal progenitors using Dcx-CreERT2 and CAG-CAT-EGFP double-transgenic mice (cDCX/EGFP). We show that 3 days after tamoxifen-mediated recombination in cDCX/EGFP adult mice, GFP+ cells in the dentate gyrus (DG) co-expresses DCX and about 6% of these cells are proliferative neuronal progenitors. After 30 days, 20% of GFP+ generated from these progenitors differentiate into GFAP+ astrocytes. Unilateral intrahippocampal administration of the chemoconvulsants kainic acid (KA) or pilocarpine (PL) triggered epileptiform discharges and led to a significant increase in the number of GFP+ cells in both ipsi and contralateral DG. However, while PL favored the differentiation of neurons in both ipsi- and contralateral sides, KA stimulated neurogenesis only in the contralateral side. In the ipsilateral side, KA injection led to an unexpected increase of astrogliogenesis in the Dcx-lineage. We also observed a small number of GFP+/GFAP+ cells displaying radial-glia morphology ipsilaterally 3 days after KA administration, suggesting that some Dcx-progenitors could regress to a multipotent stage. The boosted neurogenesis and astrogliogenesis observed in the Dcx-lineage following chemoconvulsants administration correlated, respectively, with preservation or degeneration of the parvalbuminergic plexus in the DG. Increased inflammatory response, by contrast, was observed both in the DG showing increased neurogenesis or astrogliogenesis. Altogether, our data support the view that cell lineage progression in the adult hippocampus is not unidirectional and could be modulated by local network activity and GABA-mediated signaling.
Collapse
Affiliation(s)
- Daniela M S Moura
- Brain Institute, Federal University of Rio Grande do Norte (UFRN), Natal, Brazil
| | | | - Celia Lentini
- INSERM, Stem Cell and Brain Research Institute U1208, Univ Lyon, Université Claude Bernard Lyon 1, Lyon, France
| | - Christophe Heinrich
- INSERM, Stem Cell and Brain Research Institute U1208, Univ Lyon, Université Claude Bernard Lyon 1, Lyon, France
| | - Claudio M Queiroz
- Brain Institute, Federal University of Rio Grande do Norte (UFRN), Natal, Brazil
| | - Marcos R Costa
- Brain Institute, Federal University of Rio Grande do Norte (UFRN), Natal, Brazil.,Unité INSERM 1167, RID-AGE-Risk Factors and Molecular Determinants of Aging-Related Diseases, Institut Pasteur de Lille, University of Lille, U1167-Excellence Laboratory LabEx DISTALZ, Lille, France
| |
Collapse
|
15
|
Ruan Y, Qiu X, Lv YD, Dong D, Wu XJ, Zhu J, Zheng XY. Kainic acid Induces production and aggregation of amyloid β-protein and memory deficits by activating inflammasomes in NLRP3- and NF-κB-stimulated pathways. Aging (Albany NY) 2020; 11:3795-3810. [PMID: 31182681 PMCID: PMC6594814 DOI: 10.18632/aging.102017] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2019] [Accepted: 06/03/2019] [Indexed: 01/17/2023]
Abstract
Kainic acid (KA) treatment causes neuronal degeneration, which is a feature of Alzheimer’s disease (AD) symptoms such as amyloid β-protein production and memory deficits. Inflammasomes are known to be critical for the progression of AD. However, the underlying mechanism by which inflammasomes influence AD progression remains unknown. The present study investigated the damaging effect of KA on neurons by focusing on the inflammasome-mediated signaling pathways. Assessments using cultured microglia and mouse brains demonstrated that KA treatment specifically induced inflammasome activation. Mechanistic evaluations showed that KA activated two major components of inflammasomes, nucleotide binding oligomerization domain (NOD)-like receptor (NLR) protein 3 (NLRP3) and nuclear factor (NF)-κB, which resulted in the production of interleukin-1β (IL-1β) and brain-derived neurotrophic factor (BDNF). Inhibition of NLRP3 or NF-κB by Bay11-7082 caused a reduction in the KA-induced expression of interleukin (IL)-1β and BDNF. Moreover, knockdown of the expression of KA receptors (KARs) such as Grik1 and Grik3 induced suppression of NLRP3 and NF-κB, suggesting that KARs function upstream of NLRP3 and NF-κB to mediate the effects of KA on regulation of IL-1β and BDNF expression. Notably, IL-1β was shown to exert positive effects on the expression of BACE1, which is blocked by Bay11-7082. Overall, our results revealed that Bay11-7082 acts against KA-induced neuronal degeneration, amyloid β-protein (Aβ) deposition, and memory defects via inflammasomes and further highlighted the protective role of Bay11-7082 in KA-induced neuronal defects.
Collapse
Affiliation(s)
- Yang Ruan
- Key Laboratory of Pathobiology, Ministry of Education, College of Basic Medical Sciences, Jilin University, Changchun 130021, China
| | - Xiang Qiu
- Department of Radiology, The First Hospital of Jilin University, Changchun 130021, China
| | - Yu-Dan Lv
- Department of Neurology and Neuroscience Center, The First Hospital of Jilin University, Changchun 130021, China
| | - Dong Dong
- Department of Radiology, The First Hospital of Jilin University, Changchun 130021, China
| | - Xiu-Juan Wu
- Department of Neurology and Neuroscience Center, The First Hospital of Jilin University, Changchun 130021, China
| | - Jie Zhu
- Department of Neurology and Neuroscience Center, The First Hospital of Jilin University, Changchun 130021, China.,, Department of Neurobiology, Care Sciences and Society, Karolinska Institute, Stockholm 141 86, Sweden
| | - Xiang-Yu Zheng
- Department of Neurology and Neuroscience Center, The First Hospital of Jilin University, Changchun 130021, China
| |
Collapse
|
16
|
Srivastava A, Liachenko S, Sarkar S, Paule M, Negi G, Pandey JP, Hanig JP. Quantitative Neurotoxicology: An Assessment of the Neurotoxic Profile of Kainic Acid in Sprague Dawley Rats. Int J Toxicol 2020; 39:294-306. [PMID: 32468881 DOI: 10.1177/1091581820928497] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
This study consisted of a qualitative and quantitative assessment of neuropathological changes in kainic acid (KA)-treated adult male rats. Rats were administered a single 10 mg/kg intraperitoneal injection of KA or the same volume of saline and sacrificed 24 or 48 hours posttreatment. Brains were collected, sectioned coronally (∼ 81 slices), and stained with amino cupric silver to reveal degenerative changes. For qualitative assessment of neural degeneration, sectioned material was evaluated by a board-certified pathologist, and the level of degeneration was graded based upon a 4-point scale. For measurement of quantitative neural degeneration in response to KA treatment, the HALO digital image analysis software tool was used. Quantitative measurements of specific regions within the brain were obtained from silver-stained tissue sections with quantitation based on stain color and optical density. This quantitative evaluation method identified degeneration primarily in the cerebral cortex, septal nuclei, amygdala, olfactory bulb, hippocampus, thalamus, and hypothalamus. The KA-produced neuronal degeneration in the cortex was primarily in the piriform, insular, rhinal, and cingulate areas. In the hippocampus, the dentate gyrus was found to be the most affected area. Our findings indicate global neurotoxicity due to KA treatment. Certain brain structures exhibited more degeneration than others, reflecting differential sensitivity or vulnerability of neurons to KA.
Collapse
Affiliation(s)
| | - Serguei Liachenko
- National Center for Toxicological Research, NCTR/DNT, Jefferson, AR, USA
| | - Sumit Sarkar
- National Center for Toxicological Research, NCTR/DNT, Jefferson, AR, USA
| | - Merle Paule
- National Center for Toxicological Research, NCTR/DNT, Jefferson, AR, USA
| | - Geeta Negi
- US Food and Drug Administration, CDER/OPQ, Silver Spring, MD, USA
| | - Jai P Pandey
- US Food and Drug Administration, CDER/OPQ, Silver Spring, MD, USA
| | - Joseph P Hanig
- US Food and Drug Administration, CDER/OPQ, Silver Spring, MD, USA
| |
Collapse
|
17
|
Giorgi FS, Galgani A, Gaglione A, Ferese R, Fornai F. Effects of Prolonged Seizures on Basal Forebrain Cholinergic Neurons: Evidence and Potential Clinical Relevance. Neurotox Res 2020; 38:249-265. [PMID: 32319018 DOI: 10.1007/s12640-020-00198-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2020] [Revised: 03/11/2020] [Accepted: 03/16/2020] [Indexed: 10/24/2022]
Abstract
Seizures originating from limbic structures, especially when prolonged for several minutes/hours up to status epilepticus (SE), can cause specific neurodegenerative phenomena in limbic and subcortical structures. The cholinergic nuclei belonging to the basal forebrain (BF) (namely, medial septal nucleus (MSN), diagonal band of Broca (DBB), and nucleus basalis of Meynert (NBM)) belong to the limbic system, while playing a pivotal role in cognition and sleep-waking cycle. Given the strong interconnections linking these limbic nuclei with limbic cortical structures, a persistent effect of SE originating from limbic structures on cBF morphology is plausible. Nonetheless, only a few experimental studies have addressed this issue. In this review, we describe available data and discuss their significance in the scenario of seizure-induced brain damage. In detail, the manuscript moves from a recent study in a model of focally induced limbic SE, in which the pure effects of seizure spreading through the natural anatomical pathways towards the cholinergic nuclei of BF were tracked by neuronal degeneration. In this experimental setting, a loss of cholinergic neurons was measured in all BF nuclei, to various extents depending on the specific nucleus. These findings are discussed in the light of the effects on the very same nuclei following SE induced by systemic injections of kainate or pilocarpine. The various effects including discrepancies among different studies are discussed. Potential implications for human diseases are included.
Collapse
Affiliation(s)
- Filippo Sean Giorgi
- Department of Translational Research and of New Surgical and Medical Technologies, University of Pisa, Pisa, Italy.
| | - Alessandro Galgani
- Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | | | | | - Francesco Fornai
- Department of Translational Research and of New Surgical and Medical Technologies, University of Pisa, Pisa, Italy.,IRCCS INM Neuromed, Pozzilli, Italy
| |
Collapse
|
18
|
Zheng XY, Lv YD, Jin FY, Wu XJ, Zhu J, Ruan Y. Kainic acid hyperphosphorylates tau via inflammasome activation in MAPT transgenic mice. Aging (Albany NY) 2019; 11:10923-10938. [PMID: 31789603 PMCID: PMC6932880 DOI: 10.18632/aging.102495] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2019] [Accepted: 11/17/2019] [Indexed: 01/26/2023]
Abstract
The excitotoxicity induced by kainic acid (KA) is thought to contribute to the development of Alzheimer’s disease (AD); however, the mechanisms underlying this excitotoxicity remain unknown. In the current study, we investigated the dynamic changes in tau phosphorylation and their associations with the excitotoxicity induced by intraperitoneal injection of KA in the mouse brain. We found that KA-induced excitotoxicity led to sustained hyperphosphorylation of tau in MAPT transgenic (Tg) mice. By using cultured microglia and mouse brains, we showed that KA treatment specifically induced endoplasmic reticulum (ER) stress, which was characterized by activation of the major biomarkers of ER, such as ATF6, GRP78, and IRE1, and resulted in stimulation of inflammasomes. KA receptors (KARs), such as Girk1, were determined to be involved in this KA-induced ER stress. ER stress was also shown to activate inflammasomes by stimulating the expression of the two major components of inflammasomes, nucleotide binding oligomerization domain (NOD)-like receptor (NLR) protein 3 (NLRP3) and nuclear factor (NF)-κB, and eventually causing the production of interleukin-1β (IL-1β). Inhibition of NLRP3 or NF-κB by Bay11-7082 resulted in reduction of KA-induced IL-1β production. Our results also revealed the positive effects of IL-1β on tau phosphorylation, which was blocked by Bay11-7082. Notably, the results indicate that Bay11-7082 acts against KA-induced neuronal degeneration, tau phosphorylation, and memory defects via inflammasomes, which further highlight the protective role of Bay11-7082 in KA-induced neuronal defects.
Collapse
Affiliation(s)
- Xiang-Yu Zheng
- Department of Neurology and Neuroscience Center, The First Hospital of Jilin University, Changchun 130021, China
| | - Yu-Dan Lv
- Department of Neurology and Neuroscience Center, The First Hospital of Jilin University, Changchun 130021, China
| | - Feng-Yan Jin
- Department of Hematology, Cancer Center, The First Hospital of Jilin University, Changchun 130021, China
| | - Xiu-Juan Wu
- Department of Neurology and Neuroscience Center, The First Hospital of Jilin University, Changchun 130021, China
| | - Jie Zhu
- Department of Neurology and Neuroscience Center, The First Hospital of Jilin University, Changchun 130021, China.,Department of Neurobiology, Care Sciences and Society, Karolinska Institute, Stockholm 141 86, Sweden
| | - Yang Ruan
- Key Laboratory of Pathobiology, Ministry of Education, College of Basic Medical Sciences, Jilin University, Changchun 130021, China
| |
Collapse
|
19
|
Hörtnagl H, Pifl C, Hörtnagl E, Reiner A, Sperk G. Distinct gradients of various neurotransmitter markers in caudate nucleus and putamen of the human brain. J Neurochem 2019; 152:650-662. [PMID: 31608979 PMCID: PMC7078952 DOI: 10.1111/jnc.14897] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2019] [Revised: 10/07/2019] [Accepted: 10/10/2019] [Indexed: 01/23/2023]
Abstract
The caudate nucleus (CN) and the putamen (PUT) as parts of the human striatum are distinguished by a marked heterogeneity in functional, anatomical, and neurochemical patterns. Our study aimed to document in detail the regional diversity in the distribution of dopamine (DA), serotonin, γ‐aminobuturic acid, and choline acetyltransferase within the CN and PUT. For this purpose we dissected the CN as well as the PUT of 12 post‐mortem brains of human subjects with no evidence of neurological and psychiatric disorders (38–81 years old) into about 80 tissue parts. We then investigated rostro‐caudal, dorso‐ventral, and medio‐lateral gradients of these neurotransmitter markers. All parameters revealed higher levels, turnover rates, or activities in the PUT than in the CN. Within the PUT, DA levels increased continuously from rostral to caudal. In contrast, the lowest molar ratio of homovanillic acid to DA, a marker of DA turnover, coincided with highest DA levels in the caudal PUT, the part of the striatum with the highest loss of DA in Parkinson’s disease (N. Engl. J. Med., 318, 1988, 876). Highest DA concentrations were found in the most central areas both in the PUT and CN. We observed an age‐dependent loss of DA in the PUT and CN that did not correspond to the loss described for Parkinson’s disease indicating different mechanisms inducing the deficit of DA. Our data demonstrate a marked heterogeneity in the anatomical distribution of neurotransmitter markers in the human dorsal striatum indicating anatomical and functional diversity within this brain structure. ![]()
Collapse
Affiliation(s)
- Heide Hörtnagl
- Department of Pharmacology, Innsbruck Medical University, Innsbruck, Austria
| | - Christian Pifl
- Centre for Brain Research, Medical University of Vienna, Vienna, Austria
| | - Erik Hörtnagl
- ipsum, interkultureller Kunstverein, Müllerstr. 28, Innsbruck, Austria
| | | | - Günther Sperk
- Department of Pharmacology, Innsbruck Medical University, Innsbruck, Austria
| |
Collapse
|
20
|
Anatomical imaging of the piriform cortex in epilepsy. Exp Neurol 2019; 320:113013. [DOI: 10.1016/j.expneurol.2019.113013] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2019] [Revised: 06/08/2019] [Accepted: 07/15/2019] [Indexed: 11/23/2022]
|
21
|
Zhang J, Han Y, Zhao Y, Li Q, Jin H, Qin J. Inhibition of TRIB3 Protects Against Neurotoxic Injury Induced by Kainic Acid in Rats. Front Pharmacol 2019; 10:585. [PMID: 31191318 PMCID: PMC6538922 DOI: 10.3389/fphar.2019.00585] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2019] [Accepted: 05/06/2019] [Indexed: 11/13/2022] Open
Abstract
Epilepsy refers to a group of neurological disorders of varying etiologies characterized by recurrent seizures, resulting in brain dysfunction. Endoplasmic reticulum (ER) stress is highly activated in the process of epilepsy-related brain injury. However, the mechanisms by which ER stress triggers neuronal apoptosis remain to be fully elucidated. Tribbles pseudokinase 3 (TRIB3) is a pseudokinase that affects a number of cellular functions, and its expression is increased during ER stress. Here, we sought to clarify the role of TRIB3 in neuronal apoptosis mediated by ER stress. In the kainic acid (KA) (10 mg/kg)-induced rat seizure model, we characterized neuronal injury and apoptosis after KA injection. KA induced an ER stress response, as indicated by elevated expression of glucose-regulated protein 78 (GRP78) and C/EBP homologous protein (CHOP). TRIB3 protein was upregulated concomitantly with the downregulation of phosphorylated-protein kinase B (p-AKT) in rats following KA administration. In rat cortical neurons treated with KA, TRIB3 knockdown by siRNA reduced the number of dying neurons, decreased the induction of GRP78 and CHOP and the activation of caspase-3, and blocked the dephosphorylation of AKT after KA treatment. Our findings indicate that TRIB3 is involved in neuronal apoptosis occurring after KA-induced seizure. The knockdown of TRIB3 effectively protects against neuronal apoptosis in vitro, suggesting that TRIB3 may be a potential therapeutic target for the treatment of epilepsy.
Collapse
Affiliation(s)
- Jing Zhang
- Department of Pediatrics, Peking University First Hospital, Beijing, China
| | - Ying Han
- Department of Pediatrics, Peking University First Hospital, Beijing, China
| | - Yang Zhao
- Department of Pediatrics, Peking University First Hospital, Beijing, China
| | - Qinrui Li
- Department of Pediatrics, Peking University First Hospital, Beijing, China
| | - Hongfang Jin
- Department of Pediatrics, Peking University First Hospital, Beijing, China
| | - Jiong Qin
- Department of Pediatrics, Peking University People's Hospital, Beijing, China
| |
Collapse
|
22
|
Partial restoration of physiological UP-state activity by GABA pathway modulation in an acute brain slice model of epilepsy. Neuropharmacology 2019; 148:394-405. [DOI: 10.1016/j.neuropharm.2018.11.032] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2018] [Revised: 10/13/2018] [Accepted: 11/21/2018] [Indexed: 01/31/2023]
|
23
|
Neuronal Adenosine A2A Receptors Are Critical Mediators of Neurodegeneration Triggered by Convulsions. eNeuro 2018; 5:eN-NWR-0385-18. [PMID: 30627646 PMCID: PMC6325550 DOI: 10.1523/eneuro.0385-18.2018] [Citation(s) in RCA: 63] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2018] [Accepted: 10/07/2018] [Indexed: 12/20/2022] Open
Abstract
Neurodegeneration is a process transversal to neuropsychiatric diseases and the understanding of its mechanisms should allow devising strategies to prevent this irreversible step in brain diseases. Neurodegeneration caused by seizures is a critical step in the aggravation of temporal lobe epilepsy, but its mechanisms remain undetermined. Convulsions trigger an elevation of extracellular adenosine and upregulate adenosine A2A receptors (A2AR), which have been associated with the control of neurodegenerative diseases. Using the rat and mouse kainate model of temporal lobe epilepsy, we now tested whether A2AR control convulsions-induced hippocampal neurodegeneration. The pharmacological or genetic blockade of A2AR did not affect kainate-induced convulsions but dampened the subsequent neurotoxicity. This neurotoxicity began with a rapid A2AR upregulation within glutamatergic synapses (within 2 h), through local translation of synaptic A2AR mRNA. This bolstered A2AR-mediated facilitation of glutamate release and of long-term potentiation (LTP) in CA1 synapses (4 h), triggered a subsequent synaptotoxicity, heralded by decreased synaptic plasticity and loss of synaptic markers coupled to calpain activation (12 h), that predated overt neuronal loss (24 h). All modifications were prevented by the deletion of A2AR selectively in forebrain neurons. This shows that synaptic A2AR critically control synaptic excitotoxicity, which underlies the development of convulsions-induced neurodegeneration.
Collapse
|
24
|
Lévesque M, Avoli M. High-frequency oscillations and focal seizures in epileptic rodents. Neurobiol Dis 2018; 124:396-407. [PMID: 30590178 DOI: 10.1016/j.nbd.2018.12.016] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2018] [Revised: 11/26/2018] [Accepted: 12/22/2018] [Indexed: 01/09/2023] Open
Abstract
High-pass filtering (> 80 Hz) of EEG signals has enabled neuroscientists to analyze high-frequency oscillations (HFOs; i.e., ripples: 80-200 Hz and fast ripples: 250-500 Hz) in epileptic patients presenting with focal seizures and in animal models mimicking this condition. Evidence obtained from these studies indicate that HFOs mirror pathological network activity that may initiate and sustain ictogenesis and epileptogenesis. HFOs are observed in temporal lobe regions of epileptic animals during interictal periods but they also occur before seizure onset and during the ictal period, suggesting that they can pinpoint to the mechanisms of seizure generation. Accordingly, ripples and fast ripples predominate during two specific seizure onset patterns termed low-voltage fast and hypersynchronous, respectively. In this review we will: (i) summarize these experimental studies; (ii) consider the evolution of HFOs over time during epileptogenesis; (iii) address data obtained with optogenetic stimulating procedures both in vitro and in vivo, and (iv) take into account the impact of anti-epileptic drugs on HFOs. We expect these findings to contribute to understanding the neuronal mechanisms leading to ictogenesis and epileptogenesis thus leading to the development of mechanistically targeted anti-epileptic strategies.
Collapse
Affiliation(s)
| | - Massimo Avoli
- Montreal Neurological Institute, Canada; Departments of Neurology & Neurosurgery, and of Physiology, McGill University, Montréal, H3A 2B4 Québec, Canada; Department of Experimental Medicine, Facoltà di Medicina e Odontoiatria, Sapienza University of Rome, 00185 Roma, Italy
| |
Collapse
|
25
|
Apurinic endonuclease-1 preserves neural genome integrity to maintain homeostasis and thermoregulation and prevent brain tumors. Proc Natl Acad Sci U S A 2018; 115:E12285-E12294. [PMID: 30538199 DOI: 10.1073/pnas.1809682115] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Frequent oxidative modification of the neural genome is a by-product of the high oxygen consumption of the nervous system. Rapid correction of oxidative DNA lesions is essential, as genome stability is a paramount determinant of neural homeostasis. Apurinic/apyrimidinic endonuclease 1 (APE1; also known as "APEX1" or "REF1") is a key enzyme for the repair of oxidative DNA damage, although the specific role(s) for this enzyme in the development and maintenance of the nervous system is largely unknown. Here, using conditional inactivation of murine Ape1, we identify critical roles for this protein in the brain selectively after birth, coinciding with tissue oxygenation shifting from a placental supply to respiration. While mice lacking APE1 throughout neurogenesis were viable with little discernible phenotype at birth, rapid and pronounced brain-wide degenerative changes associated with DNA damage were observed immediately after birth leading to early death. Unexpectedly, Ape1 Nes-cre mice appeared hypothermic with persistent shivering associated with the loss of thermoregulatory serotonergic neurons. We found that APE1 is critical for the selective regulation of Fos1-induced hippocampal immediate early gene expression. Finally, loss of APE1 in combination with p53 inactivation resulted in a profound susceptibility to brain tumors, including medulloblastoma and glioblastoma, implicating oxidative DNA lesions as an etiologic agent in these diseases. Our study reveals APE1 as a major suppressor of deleterious oxidative DNA damage and uncovers specific and broad pathogenic consequences of respiratory oxygenation in the postnatal nervous system.
Collapse
|
26
|
Drexel M, Locker F, Kofler B, Sperk G. Effects of galanin receptor 2 and receptor 3 knockout in mouse models of acute seizures. Epilepsia 2018; 59:e166-e171. [PMID: 30298565 PMCID: PMC6282553 DOI: 10.1111/epi.14573] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2018] [Revised: 09/07/2018] [Accepted: 09/10/2018] [Indexed: 12/04/2022]
Abstract
There exists solid evidence that endogenous galanin and galanin agonists exert anticonvulsive actions mediated both by galanin 1 receptor (GAL1‐R) and galanin 2 receptor (GAL2‐R). We have now investigated whether depletion of the recently identified third galanin receptor, GAL3‐R, and that of GAL2‐R, alters the threshold to the systemically applied γ‐aminobutyric acid (GABA) antagonist pentylenetetrazole (PTZ) or to intrahippocampally administered kainic acid (KA). In neither model, GAL3‐KO mice differed in their latency to the first seizure, mean seizure duration, total number of seizures, or time spent in seizures compared to wild‐type controls. In addition, consistent with previous data, the response to PTZ was not altered in GAL2‐KO mice. In contrast, intrahippocampal KA resulted in a significantly increased number of seizures and time spent in seizures in GAL2‐KO mice, although the latency to the first seizure and the duration of individual seizures was not altered. These results are consistent with the previous data showing that GAL2‐R knockdown does not affect the number of perforant path stimulations required for initiating status epilepticus but significantly increases the seizure severity during the ongoing status. In conclusion, our data support a specific role of GAL2‐R but not of GAL3‐R in mediating the anticonvulsive actions of endogenous galanin.
Collapse
Affiliation(s)
- Meinrad Drexel
- Department of Pharmacology, Medical University of Innsbruck, Innsbruck, Austria
| | - Felix Locker
- Laura Bassi Centre of Expertise-THERAPEP, Research Program for Receptor Biochemistry and Tumor Metabolism, Department of Pediatrics, Paracelsus Medical University, Salzburg, Austria
| | - Barbara Kofler
- Laura Bassi Centre of Expertise-THERAPEP, Research Program for Receptor Biochemistry and Tumor Metabolism, Department of Pediatrics, Paracelsus Medical University, Salzburg, Austria
| | - Günther Sperk
- Department of Pharmacology, Medical University of Innsbruck, Innsbruck, Austria
| |
Collapse
|
27
|
Joshi S, Rajasekaran K, Hawk KM, Chester SJ, Goodkin HP. Status epilepticus: Role for etiology in determining response to benzodiazepines. Ann Neurol 2018; 83:830-841. [PMID: 29572918 DOI: 10.1002/ana.25213] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2017] [Revised: 03/15/2018] [Accepted: 03/16/2018] [Indexed: 11/08/2022]
Abstract
OBJECTIVE Clinical factors contributing to benzodiazepine failure in treating status epilepticus (SE) include suboptimal dosing and seizure duration. As many benzodiazepine-refractory episodes of SE arise from acute etiologies, we sought to determine whether etiology impacts SE treatment. METHODS The potency of diazepam to terminate SE induced by lithium-pilocarpine (LiPilo-SE) or kainic acid (KA-SE) in 3-week-old rats was studied by video-electroencephalography. Synaptic γ-aminobutyric acid type A receptor (GABAR)-mediated currents were recorded from dentate granule cells using voltage-clamp electrophysiology. Surface expression of γ2 subunit-containing GABARs and Kv4.2 potassium channels in hippocampal slices was determined using a biotinylation assay. Expression of phosphorylated forms of β2/3 and γ2 subunits was determined using phosphospecific antibodies and Western blotting. RESULTS Diazepam failed to terminate late SE in LiPilo-SE animals but was successful in terminating KA-SE of 1- and 3-hour duration. One hour after SE onset, GABAR-mediated synaptic inhibition and γ2 subunit-containing GABAR surface expression were reduced in LiPilo-SE animals. These were unchanged in KA-SE animals at 1 and 3 hours. Phosphorylation of γ2 subunit residue S327 was unchanged in both models, although GABAR β3 subunit S408/409 residues were dephosphorylated in the LiPilo-SE animals. Kv4.2 potassium channel surface expression was increased in LiPilo-SE animals but reduced in KA-SE animals. INTERPRETATION SE-model-dependent differences support a novel hypothesis that the development of benzodiazepine pharmacoresistance may be etiologically predetermined. Further studies are required to investigate the mechanisms that underlie such etiological differences during SE and whether etiology-dependent protocols for the treatment of SE need to be developed. Ann Neurol 2018;83:830-841.
Collapse
Affiliation(s)
- Suchitra Joshi
- Department of Neurology, University of Virginia, Charlottesville, VA
| | | | - Kyle M Hawk
- Department of Neurology, University of Virginia, Charlottesville, VA
| | - Stephen J Chester
- Department of Neurology, University of Virginia, Charlottesville, VA
| | - Howard P Goodkin
- Department of Pediatrics, University of Virginia, Charlottesville, VA
| |
Collapse
|
28
|
Naderali E, Nikbakht F, Ofogh SN, Rasoolijazi H. The role of rosemary extract in degeneration of hippocampal neurons induced by kainic acid in the rat: A behavioral and histochemical approach. J Integr Neurosci 2018. [DOI: 10.3233/jin-170035] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Affiliation(s)
- Elahe Naderali
- Anatomy Department, Medical school, Iran University of Medical Sciences, Tehran, Iran
| | - Farnaz Nikbakht
- Physiology Department, Medical School, Iran University of Medical Sciences, Tehran, Iran
| | - Sattar Norouzi Ofogh
- Neuroscience Department, School of Advanced Technologies in Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Homa Rasoolijazi
- Anatomy Department, Medical school, Iran University of Medical Sciences, Tehran, Iran
- Cellular and Molecular Research Center, Iran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
29
|
Kumar Thota G, Tamilarasan D, Balamurugan R. Synthesis of Highly Functionalized Pyrrolidine Derivatives from Easily Accessible Diethyl (E
)-4-Oxohex-2-enedioate. European J Org Chem 2017. [DOI: 10.1002/ejoc.201700997] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Affiliation(s)
- Ganesh Kumar Thota
- School of Chemistry; University of Hyderabad; 500046 Gauchibowli, Hyderabad Telangana India
| | | | - Rengarajan Balamurugan
- School of Chemistry; University of Hyderabad; 500046 Gauchibowli, Hyderabad Telangana India
| |
Collapse
|
30
|
Whitmire LE, Ling L, Bugay V, Carver CM, Timilsina S, Chuang HH, Jaffe DB, Shapiro MS, Cavazos JE, Brenner R. Downregulation of KCNMB4 expression and changes in BK channel subtype in hippocampal granule neurons following seizure activity. PLoS One 2017; 12:e0188064. [PMID: 29145442 PMCID: PMC5690595 DOI: 10.1371/journal.pone.0188064] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2017] [Accepted: 10/31/2017] [Indexed: 11/25/2022] Open
Abstract
A major challenge is to understand maladaptive changes in ion channels that sets neurons on a course towards epilepsy development. Voltage- and calcium-activated K+ (BK) channels contribute to early spike timing in neurons, and studies indicate that the BK channel plays a pathological role in increasing excitability early after a seizure. Here, we have investigated changes in BK channels and their accessory β4 subunit (KCNMB4) in dentate gyrus (DG) granule neurons of the hippocampus, key neurons that regulate excitability of the hippocampus circuit. Two days after pilocarpine-induced seizures, we found that the predominant effect is a downregulation of the β4 accessory subunit mRNA. Consistent with reduced expression, single channel recording and pharmacology indicate a switch in the subtype of channels expressed; from iberiotoxin-resistant, type II BK channels (BK α/β4) that have higher channel open probability and slow gating, to iberiotoxin-sensitive type I channels (BK α alone) with low open probability and faster gating. The switch to a majority of type I channel expression following seizure activity is correlated with a loss of BK channel function on spike threshold while maintaining the channel’s contribution to increased early spike frequency. Using heterozygous β4 knockout mice, we find reduced expression is sufficient to increase seizure sensitivity. We conclude that seizure-induced downregulation of KCNMB4 is an activity dependent mechanism that increases the excitability of DG neurons. These novel findings indicate that BK channel subtypes are not only defined by cell-specific expression, but can also be plastic depending on the recent history of neuronal excitability.
Collapse
Affiliation(s)
- Luke E. Whitmire
- Department of Cell and Integrative Physiology, University of Texas Health Science Center at San Antonio, San Antonio, Texas, United States of America
| | - Ling Ling
- Department of Cell and Integrative Physiology, University of Texas Health Science Center at San Antonio, San Antonio, Texas, United States of America
| | - Vladslav Bugay
- Department of Cell and Integrative Physiology, University of Texas Health Science Center at San Antonio, San Antonio, Texas, United States of America
| | - Chase M. Carver
- Department of Cell and Integrative Physiology, University of Texas Health Science Center at San Antonio, San Antonio, Texas, United States of America
| | - Santosh Timilsina
- Department of Cell and Integrative Physiology, University of Texas Health Science Center at San Antonio, San Antonio, Texas, United States of America
| | - Hui-Hsiu Chuang
- Department of Cell and Integrative Physiology, University of Texas Health Science Center at San Antonio, San Antonio, Texas, United States of America
| | - David B. Jaffe
- Department of Biology, University of Texas at San Antonio, San Antonio, Texas, United States of America
| | - Mark S. Shapiro
- Department of Cell and Integrative Physiology, University of Texas Health Science Center at San Antonio, San Antonio, Texas, United States of America
| | - Jose E. Cavazos
- Neurology, University of Texas Health Science Center at San Antonio, San Antonio, Texas, United States of America
| | - Robert Brenner
- Department of Cell and Integrative Physiology, University of Texas Health Science Center at San Antonio, San Antonio, Texas, United States of America
- * E-mail:
| |
Collapse
|
31
|
Kálmán M, Tóth L, Szöllosi D, Oszwald E, Mahalek J, Sadeghian S. Correlation Between Extravasation and Alterations of Cerebrovascular Laminin and β-Dystroglycan Immunoreactivity Following Cryogenic Lesions in Rats. J Neuropathol Exp Neurol 2017; 76:929-941. [PMID: 29044412 DOI: 10.1093/jnen/nlx081] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
The blood-brain barrier becomes "leaky" following lesions. Former studies revealed that following lesions the immunoreactivity of cerebrovascular laminin becomes detectable whereas that of β-dystroglycan disappears. These alterations may be indicators of glio-vascular decoupling that may result in the impairment of the blood-brain-barrier. This study investigates correlation between the post-lesion extravasation and the above-mentioned immunohistochemical alterations. Following cryogenic lesions, the survival periods lasted 5, 10, 30 minutes, 1 or 12 hours, or 1 day. Some brains were fixed immediately post-lesion. Immunofluorescent reactions were performed in floating sections. The extravasation was detected with immunostaining for plasma fibronectin and rat immunoglobulins. When the survival period was 30 minutes or longer, the area of extravasation corresponded to the area of altered laminin and β-dystroglycan immunoreactivities. Following immediate fixation some laminin immunoreactivity was already detected. The extravasation seemed to precede this early appearance of laminin immunoreactivity. The β-dystroglycan immunoreactivity disappeared later. When the extravasation spread into the corpus callosum, vascular laminin immunoreactivity appeared but the β-dystroglycan immunoreactivity persisted. It seems that extravasation separates the glial and vascular basal laminae, which results in the appearance of laminin immunoreactivity. The disappearance of β-dystroglycan immunoreactivity is neither a condition nor an inevitable consequence of the 2 other phenomena.
Collapse
Affiliation(s)
- Mihály Kálmán
- Department of Anatomy, Histology and Embryology, Semmelweis University, Budapest, Hungary
| | - László Tóth
- Department of Anatomy, Histology and Embryology, Semmelweis University, Budapest, Hungary
| | - Dávid Szöllosi
- Department of Anatomy, Histology and Embryology, Semmelweis University, Budapest, Hungary
| | - Erzsébet Oszwald
- Department of Anatomy, Histology and Embryology, Semmelweis University, Budapest, Hungary
| | - Judit Mahalek
- Department of Anatomy, Histology and Embryology, Semmelweis University, Budapest, Hungary
| | - Sam Sadeghian
- Department of Anatomy, Histology and Embryology, Semmelweis University, Budapest, Hungary
| |
Collapse
|
32
|
Selective Silencing of Hippocampal Parvalbumin Interneurons Induces Development of Recurrent Spontaneous Limbic Seizures in Mice. J Neurosci 2017; 37:8166-8179. [PMID: 28733354 DOI: 10.1523/jneurosci.3456-16.2017] [Citation(s) in RCA: 66] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2016] [Revised: 07/10/2017] [Accepted: 07/14/2017] [Indexed: 12/11/2022] Open
Abstract
Temporal lobe epilepsy (TLE) is the most frequent form of focal epilepsies and is generally associated with malfunctioning of the hippocampal formation. Recently, a preferential loss of parvalbumin (PV) neurons has been observed in the subiculum of TLE patients and in animal models of TLE. To demonstrate a possible causative role of defunct PV neurons in the generation of TLE, we permanently inhibited GABA release selectively from PV neurons of the ventral subiculum by injecting a viral vector expressing tetanus toxin light chain in male mice. Subsequently, mice were subjected to telemetric EEG recording and video monitoring. Eighty-eight percent of the mice presented clusters of spike-wave discharges (C-SWDs; 40.0 ± 9.07/month), and 64% showed spontaneous recurrent seizures (SRSs; 5.3 ± 0.83/month). Mice injected with a control vector presented with neither C-SWDs nor SRSs. No neurodegeneration was observed due to vector injection or SRS. Interestingly, mice that presented with only C-SWDs but no SRSs, developed SRSs upon injection of a subconvulsive dose of pentylenetetrazole after 6 weeks. The initial frequency of SRSs declined by ∼30% after 5 weeks. In contrast to permanent silencing of PV neurons, transient inhibition of GABA release from PV neurons through the designer receptor hM4Di selectively expressed in PV-containing neurons transiently reduced the seizure threshold of the mice but induced neither acute nor recurrent seizures. Our data demonstrate a critical role for perisomatic inhibition mediated by PV-containing interneurons, suggesting that their sustained silencing could be causally involved in the development of TLE.SIGNIFICANCE STATEMENT Development of temporal lobe epilepsy (TLE) generally takes years after an initial insult during which maladaptation of hippocampal circuitries takes place. In human TLE and in animal models of TLE, parvalbumin neurons are selectively lost in the subiculum, the major output area of the hippocampus. The present experiments demonstrate that specific and sustained inhibition of GABA release from parvalbumin-expressing interneurons (mostly basket cells) in sector CA1/subiculum is sufficient to induce hyperexcitability and spontaneous recurrent seizures in mice. As in patients with nonlesional TLE, these mice developed epilepsy without signs of neurodegeneration. The experiments highlight the importance of the potent inhibitory action mediated by parvalbumin cells in the hippocampus and identify a potential mechanism in the development of TLE.
Collapse
|
33
|
Kawata M, Morikawa S, Shiosaka S, Tamura H. Ablation of neuropsin-neuregulin 1 signaling imbalances ErbB4 inhibitory networks and disrupts hippocampal gamma oscillation. Transl Psychiatry 2017; 7:e1052. [PMID: 28267150 PMCID: PMC5416666 DOI: 10.1038/tp.2017.20] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/05/2015] [Revised: 01/19/2017] [Accepted: 01/25/2017] [Indexed: 12/11/2022] Open
Abstract
Parvalbumin-expressing interneurons are pivotal for the processing of information in healthy brain, whereas the coordination of these functions is seriously disrupted in diseased brain. How these interneurons in the hippocampus participate in pathological functions remains unclear. We previously reported that neuregulin 1 (NRG1)-ErbB4 signaling, which is actuated by neuropsin, is important for coordinating brain plasticity. Neuropsin cleaves mature NRG1 (bound to extracellular glycosaminoglycans) in response to long-term potentiation or depression, liberating a soluble ligand that activates its receptor, ErbB4. Here, we show in mice that kainate-induced status epilepticus transiently elevates the proteolytic activity of neuropsin and stimulates cFos expression with a time course suggesting that activation of ErbB4- and parvalbumin-expressing interneurons follows the excitation and subsequent silencing of pyramidal neurons. In neuropsin-deficient mice, kainate administration impaired signaling and disrupted the neuronal excitation-inhibition balance (E/I balance) in hippocampal networks, by decreasing the activity of parvalbumin-positive interneurons while increasing that of pyramidal neurons, resulting in the progression of status epilepticus. Slow, but not fast, gamma oscillations in neuropsin-deficient mice showed reduced power. Intracerebroventricular infusion of the soluble NRG1 ligand moiety restored the E/I balance, status epilepticus and gamma oscillations to normal levels. These results suggest that the neuropsin-NRG1 signaling system has a role in pathological processes underlying temporal lobe epilepsy by regulating the activity of parvalbumin-expressing interneurons, and that neuropsin regulates E/I balance and gamma oscillations through NRG1-ErbB4 signaling toward parvalbumin-expressing interneurons. This neuronal system may be a useful target of pharmacological therapies against cognitive disorders.
Collapse
Affiliation(s)
- M Kawata
- Laboratory of Functional Neuroscience, Graduate School of Biological Sciences, Nara Institute of Science and Technology (NAIST), Nara, Japan,Department of Pharmacology, Hoshi University School of Pharmacy and Pharmaceutical Sciences, Tokyo, Japan
| | - S Morikawa
- Laboratory of Functional Neuroscience, Graduate School of Biological Sciences, Nara Institute of Science and Technology (NAIST), Nara, Japan,Life Science Tokyo Advanced Research Center (L-StaR), Hoshi University School of Pharmacy and Pharmaceutical Sciences, Tokyo, Japan
| | - S Shiosaka
- Laboratory of Functional Neuroscience, Graduate School of Biological Sciences, Nara Institute of Science and Technology (NAIST), Nara, Japan
| | - H Tamura
- Life Science Tokyo Advanced Research Center (L-StaR), Hoshi University School of Pharmacy and Pharmaceutical Sciences, Tokyo, Japan,Life Science Tokyo Advanced Research Center (L-StaR), Hoshi University School of Pharmacy and Pharmaceutical Sciences, 2-4-41, Ebara, Shinagawa-ku, Tokyo 142-8501, Japan. E-mail:
| |
Collapse
|
34
|
Xue F, Shi C, Chen Q, Hang W, Xia L, Wu Y, Tao SZ, Zhou J, Shi A, Chen J. Melatonin Mediates Protective Effects against Kainic Acid-Induced Neuronal Death through Safeguarding ER Stress and Mitochondrial Disturbance. Front Mol Neurosci 2017; 10:49. [PMID: 28293167 PMCID: PMC5329003 DOI: 10.3389/fnmol.2017.00049] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2016] [Accepted: 02/13/2017] [Indexed: 11/13/2022] Open
Abstract
Kainic acid (KA)-induced neuronal death is linked to mitochondrial dysfunction and ER stress. Melatonin is known to protect hippocampal neurons from KA-induced apoptosis, but the exact mechanisms underlying melatonin protective effects against neuronal mitochondria disorder and ER stress remain uncertain. In this study, we investigated the sheltering roles of melatonin during KA-induced apoptosis by focusing on mitochondrial dysfunction and ER stress mediated signal pathways. KA causes mitochondrial dynamic disorder and dysfunction through calpain activation, leading to neuronal apoptosis. Ca2+ chelator BAPTA-AM and calpain inhibitor calpeptin can significantly restore mitochondrial morphology and function. ER stress can also be induced by KA treatment. ER stress inhibitor 4-phenylbutyric acid (PBA) attenuates ER stress-mediated apoptosis and mitochondrial disorder. It is worth noting that calpain activation was also inhibited under PBA administration. Thus, we concluded that melatonin effectively inhibits KA-induced calpain upregulation/activation and mitochondrial deterioration by alleviating Ca2+ overload and ER stress.
Collapse
Affiliation(s)
- Feixiao Xue
- Department of Biochemistry and Molecular Biology, School of Basic Medicine and the Collaborative Innovation Center for Brain Science, Tongji Medical College, Huazhong University of Science and TechnologyWuhan, China; Department of Clinical Laboratory, Xi'an Third HospitalXi'an, China
| | - Cai Shi
- Department of Biochemistry and Molecular Biology, School of Basic Medicine and the Collaborative Innovation Center for Brain Science, Tongji Medical College, Huazhong University of Science and Technology Wuhan, China
| | - Qingjie Chen
- Department of Biochemistry and Molecular Biology, School of Basic Medicine and the Collaborative Innovation Center for Brain Science, Tongji Medical College, Huazhong University of Science and Technology Wuhan, China
| | - Weijian Hang
- Department of Biochemistry and Molecular Biology, School of Basic Medicine and the Collaborative Innovation Center for Brain Science, Tongji Medical College, Huazhong University of Science and Technology Wuhan, China
| | - Liangtao Xia
- Department of Biochemistry and Molecular Biology, School of Basic Medicine and the Collaborative Innovation Center for Brain Science, Tongji Medical College, Huazhong University of Science and Technology Wuhan, China
| | - Yue Wu
- Department of Biochemistry and Molecular Biology, School of Basic Medicine and the Collaborative Innovation Center for Brain Science, Tongji Medical College, Huazhong University of Science and Technology Wuhan, China
| | - Sophia Z Tao
- Department of Molecular, Cellular, and Developmental Biology, University of California Santa Barbara, Santa Barbara CA, USA
| | - Jie Zhou
- Department of Biochemistry and Molecular Biology, School of Basic Medicine and the Collaborative Innovation Center for Brain Science, Tongji Medical College, Huazhong University of Science and Technology Wuhan, China
| | - Anbing Shi
- Department of Biochemistry and Molecular Biology, School of Basic Medicine and the Collaborative Innovation Center for Brain Science, Tongji Medical College, Huazhong University of Science and TechnologyWuhan, China; Institute for Brain Research, Huazhong University of Science and TechnologyWuhan, China; Key Laboratory of Neurological Disease of National Education Ministry, Tongji Medical College, Huazhong University of Science and TechnologyWuhan, China
| | - Juan Chen
- Department of Biochemistry and Molecular Biology, School of Basic Medicine and the Collaborative Innovation Center for Brain Science, Tongji Medical College, Huazhong University of Science and TechnologyWuhan, China; Institute for Brain Research, Huazhong University of Science and TechnologyWuhan, China
| |
Collapse
|
35
|
Distinct mechanisms of Up state maintenance in the medial entorhinal cortex and neocortex. Neuropharmacology 2017; 113:543-555. [PMID: 27838344 PMCID: PMC5154331 DOI: 10.1016/j.neuropharm.2016.11.009] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2016] [Revised: 11/02/2016] [Accepted: 11/08/2016] [Indexed: 02/02/2023]
Abstract
The medial entorhinal cortex (mEC) is a key structure which controls the communication between the hippocampus and the neocortex. During slow-wave sleep, it stands out from other cortical regions by exhibiting persistent activity that outlasts neocortical Up states, decoupling the entorhinal cortex-hippocampal interaction from the neocortex. Here, we compared the mechanisms involved in the maintenance of the Up state in the barrel cortex (BC) and mEC using whole cell recordings in acute mouse brain slices. Bath application of an NMDA receptor antagonist abolished Up states in the BC, and reduced the incidence but not the duration of Up states in the mEC. Conversely, blockade of kainate receptors decreased Up state duration in the mEC, but not in the BC. Voltage clamp recordings demonstrated the presence of a non-NMDA glutamate receptor-mediated slow excitatory postsynaptic current, sensitive to the selective kainate receptor antagonist UBP-302, in layer III neurons of the mEC, which was not observed in the BC. Moreover, we found that kainate receptor-mediated currents assist in recovery back to the Up state membrane potential following a current-induced hyperpolarisation of individual cells in the mEC. Finally, we were able to generate Up state activity in a network model of exponential integrate-and-fire neurons only supported by AMPA and kainate receptor-mediated currents. We propose that synaptic kainate receptors are responsible for the unique properties of mEC Up states.
Collapse
|
36
|
Dum E, Fürtinger S, Gasser E, Bukovac A, Drexel M, Tasan R, Sperk G. Effective G-protein coupling of Y2 receptors along axonal fiber tracts and its relevance for epilepsy. Neuropeptides 2017; 61:49-55. [PMID: 27847128 DOI: 10.1016/j.npep.2016.10.005] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/30/2016] [Revised: 10/17/2016] [Accepted: 10/23/2016] [Indexed: 01/11/2023]
Abstract
Neuropeptide Y (NPY)-Y2 receptors are G-protein coupled receptors and, upon activation, induce opening of potassium channels or closing of calcium channels. They are generally presynaptically located. Depending on the neuron in which they are expressed they mediate inhibition of release of NPY and of the neuron's classical transmitter GABA, glutamate or noradrenaline, respectively. Here we provide evidence that Y2 receptor binding is inhibited dose-dependently by GTPγS along Schaffer collaterals, the stria terminalis and the fimbria indicating that Y2 receptors are functionally coupled to G-proteins along these fiber tracts. Double immune fluorescence revealed coexistence of Y2-immunoreactivity with β-tubulin, a marker for axons in the stria terminalis, but not with synaptophysin labeling presynaptic terminals, supporting the localization of Y2 receptors along axonal tracts. After kainic acid-induced seizures in rats, GTPγS-induced inhibition of Y2 receptor binding is facilitated in the Schaffer collaterals but not in the stria terminalis. Our data indicate that Y2 receptors are not only located at nerve terminals but also along fiber tracts and are there functionally coupled to G-proteins.
Collapse
Affiliation(s)
- Elisabeth Dum
- Department of Pharmacology, Innsbruck Medical University, Peter-Mayr-Str. 1a, 6020 Innsbruck, Austria.
| | - Sabine Fürtinger
- Department of Pharmacology, Innsbruck Medical University, Peter-Mayr-Str. 1a, 6020 Innsbruck, Austria.
| | - Elisabeth Gasser
- Department of Pharmacology, Innsbruck Medical University, Peter-Mayr-Str. 1a, 6020 Innsbruck, Austria
| | - Anneliese Bukovac
- Department of Pharmacology, Innsbruck Medical University, Peter-Mayr-Str. 1a, 6020 Innsbruck, Austria
| | - Meinrad Drexel
- Department of Pharmacology, Innsbruck Medical University, Peter-Mayr-Str. 1a, 6020 Innsbruck, Austria
| | - Ramon Tasan
- Department of Pharmacology, Innsbruck Medical University, Peter-Mayr-Str. 1a, 6020 Innsbruck, Austria
| | - Günther Sperk
- Department of Pharmacology, Innsbruck Medical University, Peter-Mayr-Str. 1a, 6020 Innsbruck, Austria.
| |
Collapse
|
37
|
Differential Activation of Calpain-1 and Calpain-2 following Kainate-Induced Seizure Activity in Rats and Mice. eNeuro 2016; 3:eN-NWR-0088-15. [PMID: 27622212 PMCID: PMC5011686 DOI: 10.1523/eneuro.0088-15.2016] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2015] [Revised: 07/30/2016] [Accepted: 08/02/2016] [Indexed: 11/30/2022] Open
Abstract
Systemic injection of kainate produces repetitive seizure activity in both rats and mice. It also results in short-term synaptic modifications as well as delayed neurodegeneration. The signaling cascades involved in both short-term and delayed responses are not clearly defined. The calcium-dependent protease calpain is activated in various brain structures following systemic kainate injection, although the precise involvement of the two major brain calpain isoforms, calpain-1 and calpain-2, remains to be defined. It has recently been reported that calpain-1 and calpain-2 play opposite roles in NMDA receptor-mediated neuroprotection or neurodegeneration, with calpain-1 being neuroprotective and calpain-2 being neurodegenerative. In the present study, we determined the activation pattern of calpain-1 and calpain-2 by analyzing changes in levels of different calpain substrates, including spectrin, drebrin, and PTEN (phosphatase and tensin homolog; a specific calpain-2 substrate) in both rats, and wild-type and calpain-1 knock-out mice. The results indicate that, while calpain-2 is rapidly activated in pyramidal cells throughout CA1 and CA3, rapid calpain-1 activation is restricted to parvalbumin-positive and to a lesser extent CCK-positive, but not somatostatin-positive, interneurons. In addition, calpain-1 knock-out mice exhibit increased long-term neurodegeneration in CA1, reinforcing the notion that calpain-1 activation is neuroprotective.
Collapse
|
38
|
Gaboyard-Niay S, Travo C, Saleur A, Broussy A, Brugeaud A, Chabbert C. Correlation between afferent rearrangements and behavioral deficits after local excitotoxic insult in the mammalian vestibule: a rat model of vertigo symptoms. Dis Model Mech 2016; 9:1181-1192. [PMID: 27483344 PMCID: PMC5087823 DOI: 10.1242/dmm.024521] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2016] [Accepted: 06/21/2016] [Indexed: 12/13/2022] Open
Abstract
Damage to inner ear afferent terminals is believed to result in many auditory and vestibular dysfunctions. The sequence of afferent injuries and repair, as well as their correlation with vertigo symptoms, remains poorly documented. In particular, information on the changes that take place at the primary vestibular endings during the first hours following a selective insult is lacking. In the present study, we combined histological analysis with behavioral assessments of vestibular function in a rat model of unilateral vestibular excitotoxic insult. Excitotoxicity resulted in an immediate but transient alteration of the balance function that was resolved within a week. Concomitantly, vestibular primary afferents underwent a sequence of structural changes followed by spontaneous repair. Within the first two hours after the insult, a first phase of pronounced vestibular dysfunction coincided with extensive swelling of afferent terminals. In the next 24 h, a second phase of significant but incomplete reduction of the vestibular dysfunction was accompanied by a resorption of swollen terminals and fiber retraction. Eventually, within 1 week, a third phase of complete balance restoration occurred. The slow and progressive withdrawal of the balance dysfunction correlated with full reconstitution of nerve terminals. Competitive re-innervation by afferent and efferent terminals that mimicked developmental synaptogenesis resulted in full re-afferentation of the sensory epithelia. By deciphering the sequence of structural alterations that occur in the vestibule during selective excitotoxic impairment, this study offers new understanding of how a vestibular insult develops in the vestibule and how it governs the heterogeneity of vertigo symptoms. Summary: Early sequence of afferent injury and repair in vestibular sensory epithelium that correlates with balance disorders and functional restoration is detailed in a rodent model of excitotoxicity.
Collapse
Affiliation(s)
| | | | | | | | | | - Christian Chabbert
- INSERM U1051, Montpellier 34090, France Aix Marseille University UMR 7260, 13331 Marseille, France
| |
Collapse
|
39
|
Vainshtein A, Veenman L, Shterenberg A, Singh S, Masarwa A, Dutta B, Island B, Tsoglin E, Levin E, Leschiner S, Maniv I, Pe’er L, Otradnov I, Zubedat S, Aga-Mizrachi S, Weizman A, Avital A, Marek I, Gavish M. Quinazoline-based tricyclic compounds that regulate programmed cell death, induce neuronal differentiation, and are curative in animal models for excitotoxicity and hereditary brain disease. Cell Death Discov 2015; 1:15027. [PMID: 27551459 PMCID: PMC4979516 DOI: 10.1038/cddiscovery.2015.27] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2015] [Accepted: 07/16/2015] [Indexed: 12/21/2022] Open
Abstract
Expanding on a quinazoline scaffold, we developed tricyclic compounds with biological activity. These compounds bind to the 18 kDa translocator protein (TSPO) and protect U118MG (glioblastoma cell line of glial origin) cells from glutamate-induced cell death. Fascinating, they can induce neuronal differentiation of PC12 cells (cell line of pheochromocytoma origin with neuronal characteristics) known to display neuronal characteristics, including outgrowth of neurites, tubulin expression, and NeuN (antigen known as 'neuronal nuclei', also known as Rbfox3) expression. As part of the neurodifferentiation process, they can amplify cell death induced by glutamate. Interestingly, the compound 2-phenylquinazolin-4-yl dimethylcarbamate (MGV-1) can induce expansive neurite sprouting on its own and also in synergy with nerve growth factor and with glutamate. Glycine is not required, indicating that N-methyl-D-aspartate receptors are not involved in this activity. These diverse effects on cells of glial origin and on cells with neuronal characteristics induced in culture by this one compound, MGV-1, as reported in this article, mimic the diverse events that take place during embryonic development of the brain (maintenance of glial integrity, differentiation of progenitor cells to mature neurons, and weeding out of non-differentiating progenitor cells). Such mechanisms are also important for protective, curative, and restorative processes that occur during and after brain injury and brain disease. Indeed, we found in a rat model of systemic kainic acid injection that MGV-1 can prevent seizures, counteract the process of ongoing brain damage, including edema, and restore behavior defects to normal patterns. Furthermore, in the R6-2 (transgenic mouse model for Huntington disease; Strain name: B6CBA-Tg(HDexon1)62Gpb/3J) transgenic mouse model for Huntington disease, derivatives of MGV-1 can increase lifespan by >20% and reduce incidence of abnormal movements. Also in vitro, these derivatives were more effective than MGV-1.
Collapse
Affiliation(s)
- A Vainshtein
- Department of Neuroscience, Technion – Israel Institute of Technology, Faculty of Medicine, Rappaport Family Institute for Research in the Medical Sciences, Haifa, Israel
| | - L Veenman
- Department of Neuroscience, Technion – Israel Institute of Technology, Faculty of Medicine, Rappaport Family Institute for Research in the Medical Sciences, Haifa, Israel
| | - A Shterenberg
- Technion – Israel Institute of Technology, Schulich Faculty of Chemistry, The Mallat Family Laboratory of Organic Chemistry, Haifa, Israel
| | - S Singh
- Technion – Israel Institute of Technology, Schulich Faculty of Chemistry, The Mallat Family Laboratory of Organic Chemistry, Haifa, Israel
| | - A Masarwa
- Technion – Israel Institute of Technology, Schulich Faculty of Chemistry, The Mallat Family Laboratory of Organic Chemistry, Haifa, Israel
| | - B Dutta
- Technion – Israel Institute of Technology, Schulich Faculty of Chemistry, The Mallat Family Laboratory of Organic Chemistry, Haifa, Israel
| | - B Island
- Technion – Israel Institute of Technology, Schulich Faculty of Chemistry, The Mallat Family Laboratory of Organic Chemistry, Haifa, Israel
| | - E Tsoglin
- Technion – Israel Institute of Technology, Schulich Faculty of Chemistry, The Mallat Family Laboratory of Organic Chemistry, Haifa, Israel
| | - E Levin
- Department of Neuroscience, Technion – Israel Institute of Technology, Faculty of Medicine, Rappaport Family Institute for Research in the Medical Sciences, Haifa, Israel
| | - S Leschiner
- Department of Neuroscience, Technion – Israel Institute of Technology, Faculty of Medicine, Rappaport Family Institute for Research in the Medical Sciences, Haifa, Israel
| | - I Maniv
- Department of Neuroscience, Technion – Israel Institute of Technology, Faculty of Medicine, Rappaport Family Institute for Research in the Medical Sciences, Haifa, Israel
| | - L Pe’er
- Department of Neuroscience, Technion – Israel Institute of Technology, Faculty of Medicine, Rappaport Family Institute for Research in the Medical Sciences, Haifa, Israel
| | - I Otradnov
- Department of Neuroscience, Technion – Israel Institute of Technology, Faculty of Medicine, Rappaport Family Institute for Research in the Medical Sciences, Haifa, Israel
| | - S Zubedat
- Department of Physiology, Technion – Israel Institute of Technology, The Behavioral Neuroscience Laboratory, Faculty of Medicine and Emek Medical Center, Haifa, Israel
| | - S Aga-Mizrachi
- Department of Physiology, Technion – Israel Institute of Technology, The Behavioral Neuroscience Laboratory, Faculty of Medicine and Emek Medical Center, Haifa, Israel
| | - A Weizman
- Tel Aviv University, Sackler Faculty of Medicine, The Felsenstein Medical Research Center, Geha Mental Health Center, Tel Aviv, Israel
| | - A Avital
- Department of Physiology, Technion – Israel Institute of Technology, The Behavioral Neuroscience Laboratory, Faculty of Medicine and Emek Medical Center, Haifa, Israel
| | - I Marek
- Technion – Israel Institute of Technology, Schulich Faculty of Chemistry, The Mallat Family Laboratory of Organic Chemistry, Haifa, Israel
| | - M Gavish
- Department of Neuroscience, Technion – Israel Institute of Technology, Faculty of Medicine, Rappaport Family Institute for Research in the Medical Sciences, Haifa, Israel
| |
Collapse
|
40
|
Gorter JA, van Vliet EA, Aronica E. Status epilepticus, blood-brain barrier disruption, inflammation, and epileptogenesis. Epilepsy Behav 2015; 49:13-6. [PMID: 25958228 DOI: 10.1016/j.yebeh.2015.04.047] [Citation(s) in RCA: 145] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/16/2015] [Accepted: 04/19/2015] [Indexed: 11/15/2022]
Abstract
Over the last 15 years, attention has been focused on dysfunction of the cerebral vasculature and inflammation as important players in epileptogenic processes, with a specific emphasis on failure of the blood-brain barrier (BBB; Fig. 1) (Seiffert et al., 2004; Marchi et al., 2007; Oby and Janigro, 2006; van Vliet et al., 2014; Vezzani et al., 2011) [3-7]. Here, we discuss how the BBB is disrupted as a consequence of SE and how this BBB breakdown may be involved in epileptogenesis. This article is part of a Special Issue entitled "Status Epilepticus".
Collapse
Affiliation(s)
- Jan A Gorter
- Center for Neuroscience, Swammerdam Institute for Life Sciences, University of Amsterdam, Amsterdam, The Netherlands.
| | - Erwin A van Vliet
- Academic Medical Center, Department of (Neuro)Pathology, University of Amsterdam, Amsterdam, The Netherlands
| | - Eleonora Aronica
- Center for Neuroscience, Swammerdam Institute for Life Sciences, University of Amsterdam, Amsterdam, The Netherlands; Academic Medical Center, Department of (Neuro)Pathology, University of Amsterdam, Amsterdam, The Netherlands; SEIN - Stichting Epilepsie Instellingen Nederland, Heemstede, The Netherlands
| |
Collapse
|
41
|
Jagirdar R, Drexel M, Kirchmair E, Tasan RO, Sperk G. Rapid changes in expression of class I and IV histone deacetylases during epileptogenesis in mouse models of temporal lobe epilepsy. Exp Neurol 2015; 273:92-104. [PMID: 26238735 DOI: 10.1016/j.expneurol.2015.07.026] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2015] [Revised: 06/19/2015] [Accepted: 07/28/2015] [Indexed: 11/20/2022]
Abstract
A prominent role of epigenetic mechanisms in manifestation of epilepsy has been proposed. Thus altered histone H3 and H4 acetylation has been demonstrated in experimental models of temporal lobe epilepsy (TLE). We now investigated changes in the expression of the class I and class IV histone deacetylases (HDAC) in two complementary mouse TLE models. Unilateral intrahippocampal injection of kainic acid (KA) induced a status epilepticus lasting 6 to 24h, development of spontaneous limbic seizures (2 to 3 days after KA injection) and chronic epilepsy, as revealed by telemetric recordings of the EEGs. Mice were killed at different intervals after KA injection and expression of HDAC mRNAs was investigated by in situ hybridization. We observed marked decreases in the expression of HDACs 1, 2 and 11 (by up to 75%) in the granule cell and pyramidal cell layers of the hippocampus during the acute status epilepticus (2 to 6h after KA injection). This was followed by increased expression of all class I HDAC mRNAs in all principal cell layers of the hippocampus after 12 to 48 h. In the chronic phase, 14 and 28 days after KA, only modest increases in the expression of HDAC1 mRNA were observed in granule and pyramidal cells. Immunohistochemistry using an antibody detecting HDAC2 revealed results consistent with the mRNA data and indicates also expression in glial cells on the injection side. Similar changes as seen in the KA model were observed after a pilocarpine-induced status epilepticus except that decreases in HDACs 2, 3 and 8 were also seen at the chronic 28 day interval. The prominent decreases in HDAC expression during status epilepticus are consistent with the previously demonstrated increased expression of numerous proteins and with the augmented acetylation of histone H4. It is suggested that respective putative gene products could facilitate proconvulsive as well as anticonvulsive mechanisms. The increased expression of all class I HDACs during the "silent phase", on the other hand, may be related to decreased histone acetylation, which could cause a decrease in expression of certain proteins, a mechanism that could also promote epileptogenesis. Thus, addressing HDAC expression may have a therapeutic potential in interfering with a status epilepticus and with the manifestation of TLE.
Collapse
Affiliation(s)
- Rohan Jagirdar
- Department of Pharmacology, Medical University Innsbruck, 6020 Innsbruck, Austria
| | - Meinrad Drexel
- Department of Pharmacology, Medical University Innsbruck, 6020 Innsbruck, Austria
| | - Elke Kirchmair
- Department of Pharmacology, Medical University Innsbruck, 6020 Innsbruck, Austria
| | - Ramon O Tasan
- Department of Pharmacology, Medical University Innsbruck, 6020 Innsbruck, Austria
| | - Günther Sperk
- Department of Pharmacology, Medical University Innsbruck, 6020 Innsbruck, Austria.
| |
Collapse
|
42
|
Chia WJ, Tan FCK, Ong WY, Dawe GS. Expression and localisation of brain-type organic cation transporter (BOCT/24p3R/LCN2R) in the normal rat hippocampus and after kainate-induced excitotoxicity. Neurochem Int 2015; 87:43-59. [PMID: 26004810 DOI: 10.1016/j.neuint.2015.04.009] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2014] [Revised: 04/06/2015] [Accepted: 04/14/2015] [Indexed: 01/13/2023]
Abstract
The iron siderophore binding protein lipocalin 2 (LCN2, also known as 24p3, NGAL and siderocalin) may be involved in iron homeostasis, but to date, little is known about expression of its putative receptor, brain-type organic cation transporter (BOCT, also known as BOCT1, 24p3R, NGALR and LCN2R), in the brain during neurodegeneration. The present study was carried out to elucidate the expression of LCN2 and BOCT in hippocampus after excitotoxicity induced by the glutamate analog, kainate (KA) and a possible role of LCN2 in neuronal injury. As reported previously, a rapid and sustained induction in expression of LCN2 was found in the hippocampus after intracerebroventicular injection of KA. BOCT was expressed in neurons of the saline-injected control hippocampus, and immunolabel for BOCT protein was preserved in pyramidal neurons of CA1 at 1 day post-KA injection, likely due to the delayed onset of neurodegeneration after KA injection. At 3 days and 2 weeks after KA injections, loss of immunolabel was observed due to degenerated neurons, although remaining neurons continued to express BOCT, and induction of BOCT was found in OX-42 positive microglia. This resulted in an overall decrease in BOCT mRNA and protein expression after KA treatment. Increased expression of the pro-apoptotic marker, Bim, was found in both neurons and microglia after KA injection, but TUNEL staining indicating apoptosis was found primarily in Bim-expressing neurons, but not microglia. Interaction between LCN2 and BOCT was found by DuoLink assay in cultured hippocampal neurons. Apo-LCN2 without iron caused no significant differences in neuronal Bim expression or cell survival, whereas holo-LCN2 consisting of LCN2:iron:enterochelin complex increased Bim mRNA expression and decreased neuronal survival. Together, results suggest that LCN2 and BOCT may have a role in neuronal injury.
Collapse
Affiliation(s)
- Wan-Jie Chia
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University Health System, National University of Singapore, 10 Medical Drive, Singapore 117597; National University of Singapore Graduate School for Integrative Sciences and Engineering, Centre for Life Sciences, National University of Singapore, 28 Medical Drive, Singapore 117456; Neurobiology and Ageing Programme, Life Sciences Institute, Centre for Life Sciences, National University of Singapore, 28 Medical Drive, Singapore 117456
| | - Francis Chee Kuan Tan
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University Health System, National University of Singapore, 10 Medical Drive, Singapore 117597; Neurobiology and Ageing Programme, Life Sciences Institute, Centre for Life Sciences, National University of Singapore, 28 Medical Drive, Singapore 117456; Singapore Institute for Neurotechnology (SINAPSE), Centre for Life Sciences, 28 Medical Drive, Singapore 117456
| | - Wei-Yi Ong
- Neurobiology and Ageing Programme, Life Sciences Institute, Centre for Life Sciences, National University of Singapore, 28 Medical Drive, Singapore 117456; Department of Anatomy, Yong Loo Lin School of Medicine, National University Health System, National University of Singapore, 4 Medical Drive, Singapore 117597.
| | - Gavin S Dawe
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University Health System, National University of Singapore, 10 Medical Drive, Singapore 117597; National University of Singapore Graduate School for Integrative Sciences and Engineering, Centre for Life Sciences, National University of Singapore, 28 Medical Drive, Singapore 117456; Neurobiology and Ageing Programme, Life Sciences Institute, Centre for Life Sciences, National University of Singapore, 28 Medical Drive, Singapore 117456; Singapore Institute for Neurotechnology (SINAPSE), Centre for Life Sciences, 28 Medical Drive, Singapore 117456.
| |
Collapse
|
43
|
Vieira AC, Alemañ N, Cifuentes JM, Bermúdez R, Peña ML, Botana LM. Brain Pathology in Adult Rats Treated With Domoic Acid. Vet Pathol 2015; 52:1077-86. [DOI: 10.1177/0300985815584074] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Domoic acid (DA) is a neurotoxin reported to produce damage to the hippocampus, which plays an important role in memory. The authors inoculated rats intraperitoneally with an effective toxic dose of DA to study the distribution of the toxin in major internal organs by using immunohistochemistry, as well as to evaluate the induced pathology by means of histopathologic and immunohistochemical methods at different time points after toxin administration (6, 10, and 24 hours; 5 and 54 days). DA was detected by immunohistochemistry exclusively in pyramidal neurons of the hippocampus at 6 and 10 hours after dosing. Lesions induced by DA were prominent at 5 days following treatment in selected regions of the brain: hippocampus, amygdala, piriform and perirhinal cortices, olfactory tubercle, septal nuclei, and thalamus. The authors found 2 types of lesions: delayed death of selective neurons and large areas of necrosis, both accompanied by astrocytosis and microgliosis. At 54 days after DA exposure, the pathology was characterized by still-distinguishable dying neurons, calcified lesions in the thalamus, persistent astrocytosis, and pronounced microgliosis. The expression of nitric oxide synthases suggests a role for nitric oxide in the pathogenesis of neuronal degeneration and chronic inflammation induced by DA in the brain.
Collapse
Affiliation(s)
- A. C. Vieira
- Departamento de Farmacología, Facultad de Veterinaria, Lugo, Spain
| | - N. Alemañ
- Anatomía y Producción Animal, Facultad de Veterinaria, Lugo, Spain
| | - J. M. Cifuentes
- Anatomía y Producción Animal, Facultad de Veterinaria, Lugo, Spain
| | - R. Bermúdez
- Anatomía y Producción Animal, Facultad de Veterinaria, Lugo, Spain
| | - M. López Peña
- Ciencias Clínicas Veterinarias, Facultad de Veterinaria, Lugo, Spain
| | - L. M. Botana
- Departamento de Farmacología, Facultad de Veterinaria, Lugo, Spain
| |
Collapse
|
44
|
Animal models of temporal lobe epilepsy following systemic chemoconvulsant administration. J Neurosci Methods 2015; 260:45-52. [PMID: 25769270 DOI: 10.1016/j.jneumeth.2015.03.009] [Citation(s) in RCA: 166] [Impact Index Per Article: 16.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2015] [Revised: 03/03/2015] [Accepted: 03/04/2015] [Indexed: 01/23/2023]
Abstract
In order to understand the pathophysiology of temporal lobe epilepsy (TLE), and thus to develop new pharmacological treatments, in vivo animal models that present features similar to those seen in TLE patients have been developed during the last four decades. Some of these models are based on the systemic administration of chemoconvulsants to induce an initial precipitating injury (status epilepticus) that is followed by the appearance of recurrent seizures originating from limbic structures. In this paper we will review two chemically-induced TLE models, namely the kainic acid and pilocarpine models, which have been widely employed in basic epilepsy research. Specifically, we will take into consideration their behavioral, electroencephalographic and neuropathologic features. We will also evaluate the response of these models to anti-epileptic drugs and the impact they might have in developing new treatments for TLE.
Collapse
|
45
|
Vagus Nerve Stimulation has Antidepressant Effects in the Kainic Acid Model for Temporal Lobe Epilepsy. Brain Stimul 2015; 8:13-20. [DOI: 10.1016/j.brs.2014.09.013] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2014] [Revised: 09/04/2014] [Accepted: 09/22/2014] [Indexed: 11/22/2022] Open
|
46
|
Kim CH, Park SH, Sim YB, Sharma N, Kim SS, Lim SM, Jung JS, Suh HW. Effect of pertussis and cholera toxins administered supraspinally on CA3 hippocampal neuronal cell death and the blood glucose level induced by kainic acid in mice. Neurosci Res 2014; 89:31-6. [DOI: 10.1016/j.neures.2014.08.017] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2014] [Revised: 08/20/2014] [Accepted: 08/26/2014] [Indexed: 10/24/2022]
|
47
|
Schauwecker PE. Susceptibility to seizure-induced excitotoxic cell death is regulated by an epistatic interaction between Chr 18 (Sicd1) and Chr 15 (Sicd2) loci in mice. PLoS One 2014; 9:e110515. [PMID: 25333963 PMCID: PMC4198259 DOI: 10.1371/journal.pone.0110515] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2014] [Accepted: 09/15/2014] [Indexed: 12/02/2022] Open
Abstract
Seizure-induced cell death is believed to be regulated by multiple genetic components in addition to numerous external factors. We previously defined quantitative trait loci that control susceptibility to seizure-induced cell death in FVB/NJ (susceptible) and C57BL/6J (resistant) mice. Two of these quantitative trait loci assigned to chromosomes 18 (Sicd1) and 15 (Sicd2), control seizure-induced cell death resistance. In this study, through the use of a series of novel congenic strains containing the Sicd1 and Sicd2 congenic strains and different combinations of the Sicd1 or Sicd2 sub region(s), respectively, we defined these genetic interactions. We generated a double congenic strain, which contains the two C57BL/6J differential segments from chromosome 18 and 15, to determine how these two segments interact with one another. Phenotypic comparison between FVB-like littermates and the double congenic FVB.B6-Sicd1/Sicd2 strain identified an additive effect with respect to resistance to seizure-induced excitotoxic cell death. It thus appears that C57BL/6J alleles located on chromosomes 18 and 15 interact epistatically in an additive manner to control the extent of seizure-induced excitotoxic cell death. Three interval-specific congenic lines were developed, in which either segments of C57BL/6J Chr 18 or C57BL/6J Chr 15 were introduced in the FVB/NJ genetic background, and progeny were treated with kainate and examined for the extent of seizure-induced cell death. All of the interval-specific congenic lines exhibited reduced cell death in both area CA3 and the dentate hilus, associated with the C57BL/6J phenotype. These experiments demonstrate functional interactions between Sicd1 and Sicd2 that improve resistance to seizure-induced excitotoxic cell death, validating the critical role played by gene-gene interactions in excitotoxic cell death.
Collapse
Affiliation(s)
- Paula Elyse Schauwecker
- Department of Cell and Neurobiology, USC Keck School of Medicine, Los Angeles, California, United States of America
| |
Collapse
|
48
|
Increased levels and activity of cathepsins B and D in kainate-induced toxicity. Neuroscience 2014; 284:360-373. [PMID: 25307300 DOI: 10.1016/j.neuroscience.2014.10.003] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2014] [Revised: 08/21/2014] [Accepted: 10/01/2014] [Indexed: 12/25/2022]
Abstract
Administration of kainic acid induces acute seizures that result in the loss of neurons, gliosis and reorganization of mossy fiber pathways in the hippocampus resembling those observed in human temporal lobe epilepsy. Although these structural changes have been well characterized, the mechanisms underlying the degeneration of neurons following administration of kainic acid remain unclear. Since the lysosomal enzymes, cathepsins B and D, are known to be involved in the loss of neurons and clearance of degenerative materials in a variety of experimental conditions, we evaluated their potential roles in kainic acid-treated rats. In parallel, we also measured the levels and expression of insulin-like growth factor-II/mannose 6-phosphate (IGF-II/M6P) receptors, which mediate the intracellular trafficking of these enzymes, in kainic acid-treated rats. Our results showed that systemic administration of kainic acid evoked severe loss of neurons along with hypertrophy of astrocytes and microglia in the hippocampus of the adult rat brain. The levels and activity of cathepsins B and D increased with time in the hippocampus of kainic acid-treated rats compared to the saline-injected control animals. The expression of both cathepsins B and D, as evident by immunolabeling studies, was also markedly increased in activated astrocytes and microglia of the kainic acid-treated rats. Additionally, cytosolic levels of the cathepsins were enhanced along with cytochrome c and to some extent Bax in the hippocampus in kainic acid-treated rats. These changes were accompanied by appearance of cleaved caspase-3-positive neurons in the hippocampus of kainic acid-treated animals. The levels of IGF-II/M6P receptors, on the other hand, were not significantly altered, but these receptors were found to be present in a subset of reactive astrocytes following administration of kainic acid. These results, taken together, suggest that enhanced levels/expression and activity of lysosomal enzymes may have a role in the loss of neurons and/or clearance of degenerative materials observed in kainic acid-treated rats.
Collapse
|
49
|
The major bioactive components of seaweeds and their mosquitocidal potential. Parasitol Res 2014; 113:3121-41. [PMID: 25115733 DOI: 10.1007/s00436-014-4068-5] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2014] [Accepted: 07/31/2014] [Indexed: 01/29/2023]
Abstract
Seaweeds are one of the most widely studied natural resources for their biological activities. Novel seaweed compounds with unique chemical structures have been reported for their pharmacological properties. The urge to search for novel insecticidal compound with a new mode of action for development of botanical insecticides supports the relevant scientific research on discovering the bioactive compounds in seaweeds. The mosquitocidal potential of seaweed extracts and their isolated compounds are documented in this review paper, along with the discussion on bioactivities of the major components of seaweeds such as polysaccharides, phenolics, proteins, terpenes, lipids, and halogenated compounds. The effects of seaweed extracts and compounds toward different life stages of mosquito (egg, larva, pupa, and adult), its growth, development, and reproduction are elaborated. The structure-activity relationships of mosquitocidal compounds are discussed to extrapolate the possible chemical characteristics of seaweed compounds responsible for insecticidal properties. Furthermore, the possible target sites and mode of actions of the mosquitocidal seaweed compounds are included in this paper. The potential synergistic effects between seaweeds and commercial insecticides as well as the toxic effects of seaweed extracts and compounds toward other insects and non-target organisms in the same habitat are also described. On top of that, various factors that influence the mosquitocidal potential of seaweeds, such as abiotic and biotic variables, sample preparation, test procedures, and considerations for a precise experimental design are discussed. The potential of active seaweed extracts and compounds in the development of effective bioinsecticide are also discussed.
Collapse
|
50
|
Expression of neuropeptide Y1 receptors in the amygdala and hippocampus and anxiety-like behavior associated with Ammon's horn sclerosis following intrahippocampal kainate injection in C57BL/6J mice. Epilepsy Behav 2014; 37:175-83. [PMID: 25050777 DOI: 10.1016/j.yebeh.2014.06.033] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/09/2014] [Revised: 06/24/2014] [Accepted: 06/26/2014] [Indexed: 11/22/2022]
Abstract
Damage to the amygdala is often linked to Ammon's horn sclerosis (AHS) in surgical specimens of patients suffering from temporal lobe epilepsy (TLE). Moreover, amygdalar pathology is thought to contribute to the development of anxiety symptoms frequently found in TLE. The neuropeptide Y (NPY) Y1 receptor is critical in the regulation of anxiety-related behavior and epileptiform activity in TLE. Therefore, intrahippocampal kainate (KA) injection was performed to induce AHS-associated TLE and to investigate behavioral and cytoarchitectural changes that occur in the amygdala related to Y1 receptor expression. Status epilepticus was induced by intrahippocampal KA injection in C57BL/6J mice. Anxiety-like behavior was assessed using the elevated plus maze (EPM). Pathology of hippocampus and amygdala (volume loss and gliosis) was examined in KA-injected and saline-injected controls. Y1 receptor expression was measured using immunohistochemistry and ELISA. Animal injected with KA showed increased anxiety-like behaviors and reduced risk assessment in the EPM test compared with saline-injected controls. In the ipsilateral hippocampus of KA-injected animals, CA1 ablation, granule cell dispersion, and volume reduction were accompanied by astrogliosis indicating the development of AHS. In the amygdala, a significant decrease in the volume of nuclei and numbers of neurons was observed in the ipsilateral lateral, basolateral, and central amygdalar nuclei, which was accompanied by astrogliosis. In addition, a decrease in Y1 receptor-expressing cells in the ipsilateral CA1 and CA3 sectors of the hippocampus, ipsilateral and contralateral granule cell layer of the dentate gyrus, and ipsilateral central nucleus of the amygdala was found, consistent with a reduction in Y1 receptor protein levels. Our results suggest that plastic changes in hippocampal and/or amygdalar Y1 receptor expression may negatively impact anxiety levels. Moreover, intrahippocampal KA injection can induce amygdalar damage suggesting that AHS-associated amygdala damage may contribute to behavioral alterations seen in patients with TLE.
Collapse
|