1
|
McPherson KB, Ingram SL. Cellular and circuit diversity determines the impact of endogenous opioids in the descending pain modulatory pathway. Front Syst Neurosci 2022; 16:963812. [PMID: 36045708 PMCID: PMC9421147 DOI: 10.3389/fnsys.2022.963812] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Accepted: 07/15/2022] [Indexed: 01/31/2023] Open
Abstract
The descending pain modulatory pathway exerts important bidirectional control of nociceptive inputs to dampen and/or facilitate the perception of pain. The ventrolateral periaqueductal gray (vlPAG) integrates inputs from many regions associated with the processing of nociceptive, cognitive, and affective components of pain perception, and is a key brain area for opioid action. Opioid receptors are expressed on a subset of vlPAG neurons, as well as on both GABAergic and glutamatergic presynaptic terminals that impinge on vlPAG neurons. Microinjection of opioids into the vlPAG produces analgesia and microinjection of the opioid receptor antagonist naloxone blocks stimulation-mediated analgesia, highlighting the role of endogenous opioid release within this region in the modulation of nociception. Endogenous opioid effects within the vlPAG are complex and likely dependent on specific neuronal circuits activated by acute and chronic pain stimuli. This review is focused on the cellular heterogeneity within vlPAG circuits and highlights gaps in our understanding of endogenous opioid regulation of the descending pain modulatory circuits.
Collapse
Affiliation(s)
- Kylie B. McPherson
- Division of Neuroscience and Clinical Pharmacology, Department of Biomedical Sciences, University of Cagliari, Monserrato, Italy,Department of Neurological Surgery, Oregon Health & Science University, Portland, OR, United States
| | - Susan L. Ingram
- Department of Neurological Surgery, Oregon Health & Science University, Portland, OR, United States,*Correspondence: Susan L. Ingram
| |
Collapse
|
2
|
Connections of the mouse subfornical region of the lateral hypothalamus (LHsf). Brain Struct Funct 2021; 226:2431-2458. [PMID: 34318365 DOI: 10.1007/s00429-021-02349-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2020] [Accepted: 07/19/2021] [Indexed: 10/20/2022]
Abstract
The lateral hypothalamus is a major integrative hub with a complex architecture characterized by intricate and overlapping cellular populations expressing a large variety of neuro-mediators. In rats, the subfornical lateral hypothalamus (LHsf) was identified as a discrete area with very specific outputs, receiving a strong input from the nucleus incertus, and involved in defensive and foraging behaviors. We identified in the mouse lateral hypothalamus a discrete subfornical region where a conspicuous cluster of neurons express the mu opioid receptor. We thus examined the inputs and outputs of this LHsf region in mice using retrograde tracing with the cholera toxin B subunit and anterograde tracing with biotin dextran amine, respectively. We identified a connectivity profile largely similar, although not identical, to what has been described in rats. Indeed, the mouse LHsf has strong reciprocal connections with the lateral septum, the ventromedial hypothalamic nucleus and the dorsal pre-mammillary nucleus, in addition to a dense output to the lateral habenula. However, the light input from the nucleus incertus and the moderate bidirectional connectivity with nucleus accumbens are specific to the mouse LHsf. A preliminary neurochemical study showed that LHsf neurons expressing mu opioid receptors also co-express calcitonin gene-related peptide or somatostatin and that the reciprocal connection between the LHsf and the lateral septum may be functionally modulated by enkephalins acting on mu opioid receptors. These results suggest that the mouse LHsf may be hodologically and functionally comparable to its rat counterpart, but more atypical connections also suggest a role in consummatory behaviors.
Collapse
|
3
|
Ganesh CB, Vijayalaxmi. Neuroanatomical organization of methionine-enkephalinergic system in the brain of the Mozambique tilapia Oreochromis mossambicus. J Chem Neuroanat 2021; 115:101963. [PMID: 33957231 DOI: 10.1016/j.jchemneu.2021.101963] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2020] [Revised: 04/27/2021] [Accepted: 04/28/2021] [Indexed: 11/24/2022]
Abstract
Enkephalins are a class of opioid peptides implicated in several physiological and neuroendocrine responses in vertebrates. In this study, using immunocytochemical or immunofluorescence technique, we examined the neuroanatomical distribution of methionine enkephalin (M-ENK) immunoreactivity in the central nervous system (CNS) of the cichlid fish Oreochromis mossambicus. In the telencephalon, no M-ENK-like-immunoreactive (M-ENK-L-ir) perikarya, but sparsely distributed fibres were detected in the glomerular layer and the granule cell layer of the olfactory bulb. Although intensely labeled M-ENK-L-ir cells and fibres were found in the pallium, no M-ENK immunoreactivity was observed in the subpallium. The preoptic area showed a few M-ENK-L-ir somata and dense innervations of fibres. In the hypothalamic area, M-ENK-L-ir cells and fibres were located in magnocellular and parvocellular subdivisions of the nucleus preopticus, and medial and lateral subdivisions of the nucleus lateralis tuberis. Surrounding the recessus lateralis of the third ventricle, several intensely stained and packed M-ENK-L-ir cells and fibres were seen in dorsal, lateral and ventral subdivisions of the nucleus recessus lateralis. In the diencephalon, M-ENK immunoreactivity was restricted to the habenula, the thalamus, the pretectal area and the nucleus posterior tuberis. Dense aggregations of M-ENK-L-ir fibres were seen in the mesencephalic subdivisions, the optic tectum and the torus semicircularis, whereas a few fusiform M-ENK-L-ir cells and fibres were scattered in the midbrain tegmentum. In the rhombencephalon, different populations of ovoid or spindle shaped M-ENK-L-ir cells were observed in the secondary gustatory nucleus, the sensory trigeminal nerve nucleus, the nucleus reticularis medialis and the vagal motor nucleus, whereas bands of fibres were seen in the rostral spinal cord. Collectively, the widespread distribution of M-ENK immunoreactivity in the CNS suggests a role for this opioid peptide in regulation of neuroendocrine control of reproduction and modulation of sensorimotor functions in fish.
Collapse
Affiliation(s)
- C B Ganesh
- Neuroendocrinology Research Laboratory, Department of Studies in Zoology, Karnatak University, Dharwad, 580 003, India.
| | - Vijayalaxmi
- Neuroendocrinology Research Laboratory, Department of Studies in Zoology, Karnatak University, Dharwad, 580 003, India
| |
Collapse
|
4
|
Bagley EE, Ingram SL. Endogenous opioid peptides in the descending pain modulatory circuit. Neuropharmacology 2020; 173:108131. [PMID: 32422213 DOI: 10.1016/j.neuropharm.2020.108131] [Citation(s) in RCA: 96] [Impact Index Per Article: 19.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2019] [Revised: 05/01/2020] [Accepted: 05/04/2020] [Indexed: 02/07/2023]
Abstract
The opioid epidemic has led to a serious examination of the use of opioids for the treatment of pain. Opioid drugs are effective due to the expression of opioid receptors throughout the body. These receptors respond to endogenous opioid peptides that are expressed as polypeptide hormones that are processed by proteolytic cleavage. Endogenous opioids are expressed throughout the peripheral and central nervous system and regulate many different neuronal circuits and functions. One of the key functions of endogenous opioid peptides is to modulate our responses to pain. This review will focus on the descending pain modulatory circuit which consists of the ventrolateral periaqueductal gray (PAG) projections to the rostral ventromedial medulla (RVM). RVM projections modulate incoming nociceptive afferents at the level of the spinal cord. Stimulation within either the PAG or RVM results in analgesia and this circuit has been studied in detail in terms of the actions of exogenous opioids, such as morphine and fentanyl. Further emphasis on understanding the complex regulation of endogenous opioids will help to make rational decisions with regard to the use of opioids for pain. We also include a discussion of the actions of endogenous opioids in the amygdala, an upstream brain structure that has reciprocal connections to the PAG that contribute to the brain's response to pain.
Collapse
Affiliation(s)
- Elena E Bagley
- Discipline of Pharmacology and Charles Perkins Centre, University of Sydney, NSW, 2006, Australia
| | - Susan L Ingram
- Department of Neurological Surgery, Oregon Health & Science University, Portland, OR, 97239, USA.
| |
Collapse
|
5
|
Dopamine/Tyrosine Hydroxylase Neurons of the Hypothalamic Arcuate Nucleus Release GABA, Communicate with Dopaminergic and Other Arcuate Neurons, and Respond to Dynorphin, Met-Enkephalin, and Oxytocin. J Neurosci 2016; 35:14966-82. [PMID: 26558770 DOI: 10.1523/jneurosci.0293-15.2015] [Citation(s) in RCA: 62] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
UNLABELLED We employ transgenic mice with selective expression of tdTomato or cre recombinase together with optogenetics to investigate whether hypothalamic arcuate (ARC) dopamine/tyrosine hydroxylase (TH) neurons interact with other ARC neurons, how they respond to hypothalamic neuropeptides, and to test whether these cells constitute a single homogeneous population. Immunostaining with dopamine and TH antisera was used to corroborate targeted transgene expression. Using whole-cell recording on a large number of neurons (n = 483), two types of neurons with different electrophysiological properties were identified in the dorsomedial ARC where 94% of TH neurons contained immunoreactive dopamine: bursting and nonbursting neurons. In contrast to rat, the regular oscillations of mouse bursting neurons depend on a mechanism involving both T-type calcium and A-type potassium channel activation, but are independent of gap junction coupling. Optogenetic stimulation using cre recombinase-dependent ChIEF-AAV-DJ expressed in ARC TH neurons evoked postsynaptic GABA currents in the majority of neighboring dopamine and nondopamine neurons, suggesting for the first time substantial synaptic projections from ARC TH cells to other ARC neurons. Numerous met-enkephalin (mENK) and dynorphin-immunoreactive boutons appeared to contact ARC TH neurons. mENK inhibited both types of TH neuron through G-protein coupled inwardly rectifying potassium currents mediated by δ and μ opioid receptors. Dynorphin-A inhibited both bursting and nonbursting TH neurons by activating κ receptors. Oxytocin excited both bursting and nonbursting neurons. These results reveal a complexity of TH neurons that communicate extensively with neurons within the ARC. SIGNIFICANCE STATEMENT Here, we show that the great majority of mouse hypothalamic arcuate nucleus (ARC) neurons that synthesize TH in the dorsomedial ARC also contain immunoreactive dopamine, and show either bursting or nonbursting electrical activity. Unlike rats, the mechanism underlying bursting was not dependent on gap junctions but required T-type calcium and A-type potassium channel activation. Neuropeptides dynorphin and met-enkephalin inhibited dopamine neurons, whereas oxytocin excited them. Most ventrolateral ARC TH cells did not contain dopamine and did not show bursting electrical activity. TH-containing neurons appeared to release synaptic GABA within the ARC onto dopamine neurons and unidentified neurons, suggesting that the cells not only control pituitary hormones but also may modulate nearby neurons.
Collapse
|
6
|
Barson JR, Leibowitz SF. Hypothalamic neuropeptide signaling in alcohol addiction. Prog Neuropsychopharmacol Biol Psychiatry 2016; 65:321-9. [PMID: 25689818 PMCID: PMC4537397 DOI: 10.1016/j.pnpbp.2015.02.006] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/14/2014] [Revised: 01/30/2015] [Accepted: 02/09/2015] [Indexed: 11/27/2022]
Abstract
The hypothalamus is now known to regulate alcohol intake in addition to its established role in food intake, in part through neuromodulatory neurochemicals termed neuropeptides. Certain orexigenic neuropeptides act in the hypothalamus to promote alcohol drinking, although they affect different aspects of the drinking response. These neuropeptides, which include galanin, the endogenous opioid enkephalin, and orexin/hypocretin, appear to stimulate alcohol intake not only through mechanisms that promote food intake but also by enhancing reward and reinforcement from alcohol. Moreover, these neuropeptides participate in a positive feedback relationship with alcohol, whereby they are upregulated by alcohol intake to promote even further consumption. They contrast with other orexigenic neuropeptides, such as melanin-concentrating hormone and neuropeptide Y, which promote alcohol intake under limited circumstances, are not consistently stimulated by alcohol, and do not enhance reward. They also contrast with neuropeptides that can be anorexigenic, including the endogenous opioid dynorphin, corticotropin-releasing factor, and melanocortins, which act in the hypothalamus to inhibit alcohol drinking as well as reward and therefore counter the ingestive drive promoted by orexigenic neuropeptides. Thus, while multiple hypothalamic neuropeptides may work together to regulate different aspects of the alcohol drinking response, excessive signaling from orexigenic neuropeptides or inadequate signaling from anorexigenic neuropeptides can therefore allow alcohol drinking to become dysregulated.
Collapse
Affiliation(s)
- Jessica R. Barson
- Laboratory of Behavioral Neurobiology, The Rockefeller University, 1230 York Avenue, Box 278, New York, NY, 10065 USA
| | - Sarah F. Leibowitz
- Laboratory of Behavioral Neurobiology, The Rockefeller University, 1230 York Avenue, Box 278, New York, NY, 10065 USA
,Corresponding author at: Laboratory of Behavioral Neurobiology, The Rockefeller University, 1230 York Avenue, Box 278, New York, NY, 10065 USA. Tel.: +1 212 327 8378; fax: +1 212 327 8447
| |
Collapse
|
7
|
Gonzales KK, Pare JF, Wichmann T, Smith Y. GABAergic inputs from direct and indirect striatal projection neurons onto cholinergic interneurons in the primate putamen. J Comp Neurol 2013; 521:2502-22. [PMID: 23296794 PMCID: PMC3983787 DOI: 10.1002/cne.23295] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2012] [Revised: 11/14/2012] [Accepted: 12/27/2012] [Indexed: 01/30/2023]
Abstract
Striatal cholinergic interneurons (ChIs) are involved in reward-dependent learning and the regulation of attention. The activity of these neurons is modulated by intrinsic and extrinsic γ-aminobutyric acid (GABA)ergic and glutamatergic afferents, but the source and relative prevalence of these diverse regulatory inputs remain to be characterized. To address this issue, we performed a quantitative ultrastructural analysis of the GABAergic and glutamatergic innervation of ChIs in the postcommissural putamen of rhesus monkeys. Postembedding immunogold localization of GABA combined with peroxidase immunostaining for choline acetyltransferase showed that 60% of all synaptic inputs to ChIs originate from GABAergic terminals, whereas 21% are from putatively glutamatergic terminals that establish asymmetric synapses, and 19% from other (non-GABAergic) sources of symmetric synapses. Double pre-embedding immunoelectron microscopy using substance P and Met-/Leu-enkephalin antibodies to label GABAergic terminals from collaterals of "direct" and "indirect" striatal projection neurons, respectively, revealed that 47% of the indirect pathway terminals and 36% of the direct pathway terminals target ChIs. Together, substance P- and enkephalin-positive terminals represent 24% of all synapses onto ChIs in the monkey putamen. These findings show that ChIs receive prominent GABAergic inputs from multiple origins, including a significant contingent from axon collaterals of direct and indirect pathway projection neurons.
Collapse
Affiliation(s)
- Kalynda Kari Gonzales
- Yerkes National Primate Research Center, Emory University, Atlanta, Georgia 30329
- Udall Center of Excellence for Parkinson's Disease Research, Emory University, Atlanta, Georgia 30329
| | - Jean-Francois Pare
- Yerkes National Primate Research Center, Emory University, Atlanta, Georgia 30329
- Udall Center of Excellence for Parkinson's Disease Research, Emory University, Atlanta, Georgia 30329
| | - Thomas Wichmann
- Yerkes National Primate Research Center, Emory University, Atlanta, Georgia 30329
- Department of Neurology, Emory University, Atlanta, Georgia 30329
- Udall Center of Excellence for Parkinson's Disease Research, Emory University, Atlanta, Georgia 30329
| | - Yoland Smith
- Yerkes National Primate Research Center, Emory University, Atlanta, Georgia 30329
- Department of Neurology, Emory University, Atlanta, Georgia 30329
- Udall Center of Excellence for Parkinson's Disease Research, Emory University, Atlanta, Georgia 30329
| |
Collapse
|
8
|
Leslie RA. Neuroactive substances in the dorsal vagal complex of the medulla oblongata: nucleus of the tractus solitarius, area postrema, and dorsal motor nucleus of the vagus. Neurochem Int 2012; 7:191-211. [PMID: 20492915 DOI: 10.1016/0197-0186(85)90106-8] [Citation(s) in RCA: 132] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
The distributions of classical and putative neurotransmitters within somata and fibres of the dorsal vagal complex are reviewed. The occurrence within the dorsal medulla oblongata of receptors specific for some of these substances is examined, and possible functional correlations of the specific neurochemicals with respect to their distribution within the dorsal vagal complex are discussed. Many of the known transmitters and putative transmitters are represented in the dorsal vagal complex, particularly within various subnuclei of the nucleus of the solitary tract, the main vagal afferent nucleus. In a few cases, some of these have been examined in detail, particularly with respect to their possible mediation of cardiovascular or gastrointestinal functions. For example, the catecholamines, substance P and angiotensin II in the nucleus of the solitary tract have all been strongly implicated as playing a role in the central control of cardiovascular function. Other neurotransmitters or putative transmitters may be involved as well, but probably to a lesser extent. Similarly, the roles in the dorsal vagal complex of dopamine, the endorphins and cholecystokinin in control of the gut have been studied in some detail. Future investigations of the distributions of and electrophysiological parameters of neurotransmitters at the cellular level should provide much needed clues to advance our knowledge of the correlations between anatomical distributions of specific neurochemicals and physiological functions mediated by them.
Collapse
Affiliation(s)
- R A Leslie
- Nuffield Laboratory of Ophthalmology, Oxford University, Walton Street, Oxford OX2 6AW, U.K
| |
Collapse
|
9
|
Nielsen CK, Simms JA, Bito-Onon JJ, Li R, Ananthan S, Bartlett SE. The delta opioid receptor antagonist, SoRI-9409, decreases yohimbine stress-induced reinstatement of ethanol-seeking. Addict Biol 2012; 17:224-34. [PMID: 21309957 DOI: 10.1111/j.1369-1600.2010.00295.x] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
A major problem in treating alcohol use disorders (AUDs) is the high rate of relapse due to stress and re-exposure to cues or an environment previously associated with alcohol use. Stressors can induce relapse to alcohol-seeking in humans or reinstatement in rodents. Delta opioid peptide receptors (DOP-Rs) play a role in cue-induced reinstatement of ethanol-seeking; however, their role in stress-induced reinstatement of ethanol-seeking is not known. The objective of this study was to determine the role of DOP-Rs in yohimbine-stress-induced reinstatement of ethanol-seeking. Male, Long-Evans rats were trained to self-administer 10% ethanol in daily 30-minute operant self-administration sessions using a FR3 schedule of reinforcement, followed by extinction training. Once extinction criteria were met, we examined the effects of the DOP-R antagonist, SoRI-9409 (0-5 mg/kg, i.p.) on yohimbine (2 mg/kg, i.p.) stress-induced reinstatement. Additionally, DOP-R-stimulated [(35) S]GTPγS binding was measured in brain membranes and plasma levels of corticosterone (CORT) were determined. Pre-treatment with SoRI-9409 decreased yohimbine stress-induced reinstatement of ethanol-seeking but did not affect yohimbine-induced increases in plasma CORT levels. Additionally, yohimbine increased DOP-R-stimulated (35) [S]GTPγS binding in brain membranes of ethanol-trained rats, an effect that was inhibited by SoRI-9409. This suggests that the DOP-R plays an important role in yohimbine-stress-induced reinstatement of ethanol-seeking behavior, and DOP-R antagonists may be promising candidates for further development as a treatment for AUDs.
Collapse
Affiliation(s)
- Carsten K Nielsen
- Ernest Gallo Clinic and Research Center, University of California San Francisco, 5858 Horton Street, Emeryville, CA, USA
| | | | | | | | | | | |
Collapse
|
10
|
Yuferov V, Levran O, Proudnikov D, Nielsen DA, Kreek MJ. Search for genetic markers and functional variants involved in the development of opiate and cocaine addiction and treatment. Ann N Y Acad Sci 2010; 1187:184-207. [PMID: 20201854 PMCID: PMC3769182 DOI: 10.1111/j.1749-6632.2009.05275.x] [Citation(s) in RCA: 73] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Addiction to opiates and illicit use of psychostimulants is a chronic, relapsing brain disease that, if left untreated, can cause major medical, social, and economic problems. This article reviews recent progress in studies of association of gene variants with vulnerability to develop opiate and cocaine addictions, focusing primarily on genes of the opioid and monoaminergic systems. In addition, we provide the first evidence of a cis-acting polymorphism and a functional haplotype in the PDYN gene, of significantly higher DNA methylation rate of the OPRM1 gene in the lymphocytes of heroin addicts, and significant differences in genotype frequencies of three single-nucleotide polymorphisms of the P-glycoprotein gene (ABCB1) between "higher" and "lower" methadone doses in methadone-maintained patients. In genomewide and multigene association studies, we found association of several new genes and new variants of known genes with heroin addiction. Finally, we describe the development and application of a novel technique: molecular haplotyping for studies in genetics of drug addiction.
Collapse
MESH Headings
- ATP Binding Cassette Transporter, Subfamily B
- ATP Binding Cassette Transporter, Subfamily B, Member 1/genetics
- Catechol O-Methyltransferase/genetics
- Cocaine-Related Disorders/genetics
- Cocaine-Related Disorders/therapy
- Enkephalins/genetics
- Epigenesis, Genetic
- Genetic Markers
- Genetic Variation
- Genome-Wide Association Study
- Haplotypes
- Humans
- Methadone/metabolism
- Methadone/therapeutic use
- Opioid-Related Disorders/genetics
- Opioid-Related Disorders/therapy
- Pharmacogenetics
- Protein Precursors/genetics
- Receptor, Melanocortin, Type 2/genetics
- Receptor, Serotonin, 5-HT1B/genetics
- Receptors, Opioid, kappa/genetics
- Receptors, Opioid, mu/genetics
- Tryptophan Hydroxylase/genetics
Collapse
Affiliation(s)
- Vadim Yuferov
- The Laboratory of the Biology of Addictive Diseases, The Rockefeller University, New York, New York
| | - Orna Levran
- The Laboratory of the Biology of Addictive Diseases, The Rockefeller University, New York, New York
| | - Dmitri Proudnikov
- The Laboratory of the Biology of Addictive Diseases, The Rockefeller University, New York, New York
| | - David A. Nielsen
- The Laboratory of the Biology of Addictive Diseases, The Rockefeller University, New York, New York
| | - Mary Jeanne Kreek
- The Laboratory of the Biology of Addictive Diseases, The Rockefeller University, New York, New York
| |
Collapse
|
11
|
The opioid peptides enkephalin and beta-endorphin in alcohol dependence. Biol Psychiatry 2008; 64:989-97. [PMID: 18589403 PMCID: PMC2646839 DOI: 10.1016/j.biopsych.2008.05.008] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/16/2007] [Revised: 05/14/2008] [Accepted: 05/14/2008] [Indexed: 11/22/2022]
Abstract
BACKGROUND Experimental evidence indicates that the endogenous opioid system influences stress responses as well as reinforces effects of addictive drugs. Because stress is an important factor contributing to drug dependence and relapse, we have now studied ethanol preference in enkephalin- and beta-endorphin-deficient mice under baseline conditions and after stress exposure. METHODS In the present study we used a two-bottle choice paradigm to study ethanol consumption and stress-induced ethanol preference. To examine alcohol withdrawal symptoms the forced drinking procedure was employed. We performed an association analysis in two case-control samples of alcohol addicts to determine whether these opioid peptides also contribute to ethanol dependence in humans. RESULTS Ethanol consumption was significantly reduced in the absence of beta-endorphins, particularly in female knockout animals. Stress exposure results in an increased ethanol consumption in wild-type mice but did not influence ethanol-drinking in beta-endorphin knockouts. Enkephalin-deficient mice showed no difference from wild-type mice in baseline ethanol preference but also showed no stress-induced elevation of ethanol consumption. Interestingly, we found a two-marker haplotype in the POMC gene that was associated with alcohol dependence in females in both cohorts. CONCLUSIONS Together these results indicate a contribution of beta-endorphin to ethanol consumption and dependence.
Collapse
|
12
|
Bilkei-Gorzo A, Racz I, Michel K, Mauer D, Zimmer A, Klingmüller D, Zimmer A. Control of hormonal stress reactivity by the endogenous opioid system. Psychoneuroendocrinology 2008; 33:425-36. [PMID: 18280051 DOI: 10.1016/j.psyneuen.2007.12.010] [Citation(s) in RCA: 74] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/16/2007] [Revised: 12/20/2007] [Accepted: 12/23/2007] [Indexed: 12/01/2022]
Abstract
Regulations of hormonal stress responses entail the initiation, amplitude and termination of the reaction, as well as its integration with other stress response systems. This study investigates the role of endogenous opioids in the regulation and integration of behavioral, thermal and hormonal stress responses, as these neuromodulators and their receptors are expressed in limbic structures responsible for stress responses. For this purpose, we subjected mice with selective deletion of beta-endorphin, enkephalin or dynorphin to the zero-maze test, a mildly stressful situation, and registered behaviors and stress hormone levels. Behavioral stress reactivity was assessed using zero-maze, light-dark and startle-reactivity paradigms. Animals lacking enkephalin displayed increased anxiety-related behavioral responses in each three, dynorphin knockouts in two models, whereas the responses of beta-endorphin knockouts indicated lower anxiety level in the zero-maze test. All knockout strains showed marked changes in hormonal stress reactivity. Increase in ACTH level after zero-maze test situation, unlike in wild type animals, failed to reach the level of significance in Penk1(-/-) and Pdyn(-/-) mice. Corticosterone plasma levels rapidly increased in all strains, with a lower peak response in knockouts. In wild-type and beta-endorphin-deficient mice, corticosterone levels returned to baseline within 60min after stress exposure. In contrast, mice lacking dynorphin and enkephalin showed longer-lasting elevated corticosterone levels, indicating a delayed termination of the stress reaction. Importantly, the behavioral and hormonal responses correlated in wild-type but not in knockout mice. Hyperthermia elicited by stress was reduced in animals lacking dynorphin and absent in Penk1(-/-) mice, despite of the heightened behavioral anxiety level of these strains. These results demonstrate an important role on the endogenous opioid system in the integration of behavioral and hormonal stress responses.
Collapse
Affiliation(s)
- Andras Bilkei-Gorzo
- Institute of Molecular Psychiatry, University of Bonn, Sigmund-Freud-Street 25, 53105 Bonn, Germany.
| | | | | | | | | | | | | |
Collapse
|
13
|
Nielsen DA, Barral S, Proudnikov D, Kellogg S, Ho A, Ott J, Kreek MJ. TPH2 and TPH1: association of variants and interactions with heroin addiction. Behav Genet 2008; 38:133-50. [PMID: 18181017 DOI: 10.1007/s10519-007-9187-7] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2007] [Accepted: 12/04/2007] [Indexed: 12/11/2022]
Abstract
The tryptophan hydroxylase 2 gene (TPH2) was resequenced at the 5' upstream, coding, and 3' downstream regions, including all 11 exons in 185 subjects. Twenty-three novel and 14 known variants were identified. In a cohort of 583 consecutively ascertained subjects, including normal volunteers and those with specific addictive diseases, six common TPH2 and one TPH1 variant were genotyped. Allele frequencies of three TPH2 variants and the TPH1 variant varied significantly among the four ethnic groups within the control subjects. Of these subjects, 385 who met heroin addiction or control criteria and were of Caucasian, African-American, or Hispanic ethnicity were examined for potential association with vulnerability to develop heroin addiction. At the two locus genotype level in Hispanics, the TPH1 rs1799913 variant was found to significantly interact with the TPH2 rs7963720 variant and heroin addiction (P=0.022), and with the TPH2 rs4290270 variant and heroin addiction (P=0.011). In the African-American group, a significant association of a specific TPH2 haplotype with heroin addiction also was found (SNPHAP, P=0.004; PHASE P=0.036).
Collapse
Affiliation(s)
- David A Nielsen
- Laboratory of Biology of the Addictive Diseases, The Rockefeller University, Box 171, 1230 York Avenue, New York, NY 10065, USA.
| | | | | | | | | | | | | |
Collapse
|
14
|
Kovács EG, Szalay F, Halasy K. Fasting-induced changes of neuropeptide immunoreactivity in the lateral septum of male rats. ACTA BIOLOGICA HUNGARICA 2005; 56:185-97. [PMID: 16196194 DOI: 10.1556/abiol.56.2005.3-4.2] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The objective of the present study was to determine the rostrocaudal distribution and the effect of reduced food intake (60% of the average daily food intake for 1-4 weeks) on the amount of leucine-enkephalin (Leu-enk), neuropeptide Y (NPY) and galanin (Gal) in the lateral septum of male rat brain. Using pre-embedding immunocytochemistry combined with densitometry on 60 microm serial vibratome sections we found that in control animals Leu-enk-immunoreactive elements showed an increasing density from rostral towards the medial part of the septum, then a gradual decrease towards the caudal direction. The distribution of NPY proved to be rather even along the examined sequence of sections with two smaller peaks roughly at the 1/3 and 2/3 of the rostrocaudal axis. Gal showed similar distribution but the peaks were shifted to more caudal direction. We also found that Leu-enk forms the most dense plexus followed by a moderate amount of NPY-positive axonal meshwork. Gal was present in the lowest amount along the lateral septal nuclei. The effect of reduced food intake was marked and differential in the case of the three examined peptides. During the first 2 weeks of reduced food intake NPY-immunoreactivity was upregulated as compared to the control, then it was reduced close to the control value by the 4th week. The changes in Gal immunoreactivity showed similar pattern. The average relative density of Leu-enk-immunoreactive elements immediately decreased as a result of reduced food intake for 1 week and it gradually decreased by the end of the 4th week. These results indicate that reduced food intake affects the expression of NPY, Gal and Leu-enk not only in the relevant hypothalamic neuroendocrine centres, but also in the lateral septal area.
Collapse
Affiliation(s)
- Eva G Kovács
- Department of Anatomy and Histology, Faculty of Veterinary Science, Szent István University, István u. 2, H-1078 Budapest, Hungary
| | | | | |
Collapse
|
15
|
Deng YP, Albin RL, Penney JB, Young AB, Anderson KD, Reiner A. Differential loss of striatal projection systems in Huntington's disease: a quantitative immunohistochemical study. J Chem Neuroanat 2004; 27:143-64. [PMID: 15183201 DOI: 10.1016/j.jchemneu.2004.02.005] [Citation(s) in RCA: 159] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2003] [Revised: 01/20/2004] [Accepted: 02/08/2004] [Indexed: 11/26/2022]
Abstract
Prior studies suggest differences exist among striatal projection neuron types in their vulnerability to Huntington's disease (HD). In the present study, we immunolabeled the fibers and terminals of the four main types of striatal projection neuron in their target areas for substance P, enkephalin, or glutamic acid decarboxylase (GAD), and used computer-assisted image analysis to quantify the abundance of immunolabeled terminals in a large sample of HD cases ranging from grade 0 to grade 4 [J. Neuropathol. Exp. Neurol. 44 (1985) 559], normalized to labeling in control human brains. Our goal was to characterize the relative rates of loss of the two striatopallidal projection systems (to the internal versus the external pallidal segments) and the two striatonigral projections systems (to pars compacta versus pars reticulata). The findings for GAD and the two neuropeptides were similar--the striatal projection to the external pallidal segment was the most vulnerable, showing substantial loss by grade 1. Loss of fibers in both subdivisions of the substantia nigra was also already great by grade 1. By contrast, the loss in the striatal projection system to the internal segment of globus pallidus proceeded more gradually. By grade 4 of HD, however, profound loss in all projection systems was apparent. These findings support the notion that the striatal neurons preferentially projecting to the internal pallidal segment are, in fact, less vulnerable in HD than are the other striatal projection neuron types.
Collapse
Affiliation(s)
- Y P Deng
- Department of Anatomy and Neurobiology, The University of Tennessee Health Science Center, Memphis, TN 38163, USA
| | | | | | | | | | | |
Collapse
|
16
|
Harvey AR, Heavens RP, Yellachich LA, Sirinathsinghji DJ. Expression of messenger RNAs for glutamic acid decarboxylase, preprotachykinin, cholecystokinin, somatostatin, proenkephalin and neuropeptide Y in the adult rat superior colliculus. Neuroscience 2001; 103:443-55. [PMID: 11246159 DOI: 10.1016/s0306-4522(00)00581-9] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The mammalian superior colliculus is an important subcortical integrator of sensorimotor behaviours. It is multi-layered, each layer containing specific neuronal types and possessing distinct input/output relationships. Here we use in situ hybridisation methods to map the distribution of seven neurotransmitters/neuromodulator systems in adult rat superior colliculus. Coronal sections were probed for preprotachykinin, cholecystokinin, somatostatin, proenkephalin, neuropeptide Y and the enzymes glutamic acid decarboxylase and choline acetyltransferase, markers for GABA and acetylcholine respectively. Cells expressing glutamic acid decarboxylase messenger RNA were the most abundant, the highest density being found in the superficial layers. Many cells containing proprotachykinin messenger RNA were found in stratum zonale and the upper two-thirds of stratum griseum superficiale; cells were also located in deeper tectal laminae, particularly caudomedially. Most cholecystokinin messenger RNA expressing cells were located in the superficial layers with a prominent band in the middle third of stratum griseum superficiale. Cells expressing moderate to high levels of somatostatin messenger RNA formed a dense band in the lower third of stratum griseum superficiale/upper stratum opticum; two less distinct tiers of labelling were seen in deeper layers. These in situ hybridisation data reveal three distinct sub-laminae in rat stratum griseum superficiale. Cells expressing moderate to low levels of proenkephalin messenger RNA were located in lower stratum griseum superficiale/upper stratum opticum and intermediate laminae. A cluster of enkephalinergic cells was located medially in the deep tectal laminae. Expression of neuropeptide Y messenger RNA was relatively low and mostly confined to cells in stratum griseum superficiale and stratum opticum. No choline acetyltransferase messenger RNA was detected. This in situ analysis of seven different neurotransmitters/neuromodulator systems sheds new light on the neurochemical organisation of the rat superior colliculus. The data are related to what is known anatomically and physiologically about intrinsic and extrinsic tectal circuitry, and the potential involvement of different neuropeptides in these circuits is discussed. The work forms the basis for future developmental studies examining the effects of transplantation and visual deprivation/deafferentation on tectal neurochemistry and function.
Collapse
Affiliation(s)
- A R Harvey
- Department of Anatomy and Human Biology, The University of Western Australia, Crawley, Perth, WA 6009, Australia.
| | | | | | | |
Collapse
|
17
|
Robertson D, Mulders WH. Distribution and possible functional roles of some neuroactive peptides in the mammalian superior olivary complex. Microsc Res Tech 2000; 51:307-17. [PMID: 11071716 DOI: 10.1002/1097-0029(20001115)51:4<307::aid-jemt2>3.0.co;2-4] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
The mammalian superior olivary complex (SOC) is innervated by neuronal systems that contain a variety of neuroactive peptides. Conversely, neurones of the SOC form peptidergic projections to other targets. In this review, the peptides substance P, calcitonin-gene-related peptide, enkephalins and dynorphins, cholecystokinin and somatostatin are considered. Their distribution in fibres and cell bodies of the SOC are considered, with particular attention to differences between the SOC subdivisions. Evidence for the functional effects of these peptides is also reviewed and some brief speculations are offered about their possible functional role in hearing.
Collapse
Affiliation(s)
- D Robertson
- Auditory Laboratory, Department of Physiology, The University of Western Australia, Nedlands, Western Australia, 6907, Australia.
| | | |
Collapse
|
18
|
Pego-Reigosa R, Coveñas R, Tramu G, Pesini P. Distribution of met-enkephalin immunoreactivity in the diencephalon and the brainstem of the dog. J Chem Neuroanat 2000; 19:243-58. [PMID: 11036241 DOI: 10.1016/s0891-0618(00)00071-5] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The endogenous opioid system, in particular the enkephalins, has been implicated in a vast array of neurological functions. The dog could be a suitable model for the study of complex interactions between behavioral state and regulatory physiology in which the opioid system appeared to be implicated. Moreover, opiate derivatives are currently used in veterinary clinic and sometimes pharmacologically tested in the dog. However, there are no anatomical data regarding the organization of the opioid system in this species. The present work represents the first attempt to map the distribution of Met(5)-enkephalin-like-immunoreactive (Met-enk-li) cell bodies and fibers in the diencephalon and the brainstem of the dog. In the diencephalon, labeled cells were present in all the mid-line and intralaminar thalamic nuclei; the lateral posterior, pulvinar and suprageniculate nuclei; the ventral nucleus of the lateral geniculate body and the medial geniculate body. Additionally, Met-enk-li cells were seen in every hypothalamic nucleus except in the supraoptic. Variable densities of labeled fibers were also seen in all these nuclei except in the medial geniculate body and in most areas of the lateral posterior and pulvinar nuclei. In the mesencephalon, positive cells were found in the periaqueductal gray, the Edinger-Westphal and interpeduncular nuclei, delimited areas of the superior and inferior colliculi and the ventral tegmental area. In the rhombencephalon, labeled cells were seen in the majority of the nuclei in the latero-dorsal pontine tegmentum, the nuclei of the lateral lemniscus, the trapezoid, vestibular medial, vestibular inferior and cochlear nuclei, the prepositus hypoglossal, the nucleus of the solitary tract and the dorsal motor nucleus of the vagus, the infratrigeminal nucleus and the caudal part of the spinal trigeminal nucleus and in the rhombencephalic reticular formation. The distribution of fibers included additionally the substantia nigra, all the trigeminal nerve nuclei, the facial nucleus and a restricted portion of the inferior olive. These results are discussed with regard to previous reports on the distribution of Met-enk in other species.
Collapse
Affiliation(s)
- R Pego-Reigosa
- Departamento de Anatomía, Facultad de Veterinaria, Universidad de Santiago, 27002, Lugo, Spain
| | | | | | | |
Collapse
|
19
|
Mulders WH, Robertson D. Morphological relationships of peptidergic and noradrenergic nerve terminals to olivocochlear neurones in the rat. Hear Res 2000; 144:53-64. [PMID: 10831865 DOI: 10.1016/s0378-5955(00)00045-9] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
In the rat, the outer hair cells in the cochlea receive direct synaptic input from neurones in the ventral nucleus of the trapezoid body. These so-called medial olivocochlear neurones exert an inhibitory influence on the cochlear neural output. Electrophysiological in vitro studies suggest that the activity of medial olivocochlear neurones may be affected by a variety of neuropeptides as well as noradrenaline, but anatomical confirmation of direct synaptic input is still lacking. We have investigated, at the light microscopical level, the morphological relationships between terminals containing noradrenaline, substance P, cholecystokinin and leu-enkephalin, and medial olivocochlear neurones in the rat. A retrograde tracer was injected into the cochlea to label medial olivocochlear neurones and a double labelling immunocytochemical method was used to visualise the retrograde tracer as well as the neurotransmitters within each brain section. Light microscopical analysis revealed nerve endings containing substance P, cholecystokinin and leu-enkephalin in close apposition to the dendrites of medial olivocochlear neurones, and nerve endings containing dopamine-beta-hydroxylase, a marker for noradrenaline, in close contact with the somata as well as dendrites of medial olivocochlear neurones. Although the technique cannot prove the existence of functional synaptic contacts, the results are broadly consistent with electrophysiological data and suggest a direct input to medial olivocochlear neurones from substance P, cholecystokinin, leu-enkephalin and noradrenaline-containing neural pathways. Differences in the densities and spatial distribution of the various neuropharmacological inputs suggest differences in the relative strengths and possible roles of these diverse inputs to the olivocochlear system.
Collapse
Affiliation(s)
- W H Mulders
- The Auditory Laboratory, Department of Physiology, The University of Western Australia, 6907, Nedlands, WA, Australia
| | | |
Collapse
|
20
|
Hauser KF, Houdi AA, Turbek CS, Elde RP, Maxson W. Opioids intrinsically inhibit the genesis of mouse cerebellar granule neuron precursors in vitro: differential impact of mu and delta receptor activation on proliferation and neurite elongation. Eur J Neurosci 2000; 12:1281-93. [PMID: 10762357 PMCID: PMC4306580 DOI: 10.1046/j.1460-9568.2000.01015.x] [Citation(s) in RCA: 83] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Although opioids are known to affect neurogenesis in vivo, it is uncertain the extent to which opioids directly or indirectly affect the proliferation, differentiation or death of neuronal precursors. To address these questions, the intrinsic role of the opioid system in neurogenesis was systematically explored in cerebellar external granular layer (EGL) neuronal precursors isolated from postnatal mice and maintained in vitro. Isolated neuronal precursors expressed proenkephalin-derived peptides, as well as specific mu and delta, but negligible kappa, opioid receptors. The developmental effects of opioids were highly selective. Morphine-induced mu receptor activation inhibited DNA synthesis, while a preferential delta2-receptor agonist ([D-Ala2]-deltorphin II) or Met-enkephalin, but not the delta1 agonist [D-Pen2, D-Pen5]-enkephalin, inhibited differentiation within the same neuronal population. If similar patterns occur in the developing cerebellum, spatiotemporal differences in endogenous mu and delta opioid ligand-receptor interactions may coordinate distinct aspects of granule neuron maturation. The data additionally suggest that perinatal exposure to opiate drugs of abuse directly interfere with cerebellar maturation by disrupting normal opioid signalling and inhibiting the proliferation of granule neuron precursors.
Collapse
MESH Headings
- Analgesics, Opioid/pharmacology
- Animals
- Antimetabolites/metabolism
- Antimetabolites/pharmacology
- Apoptosis/drug effects
- Apoptosis/physiology
- Bromodeoxyuridine/metabolism
- Bromodeoxyuridine/pharmacology
- Cell Differentiation/drug effects
- Cell Differentiation/physiology
- Cell Division/drug effects
- Cell Division/physiology
- Cell Survival/drug effects
- Cell Survival/physiology
- Cells, Cultured
- Cerebellum/chemistry
- Cerebellum/cytology
- DNA/biosynthesis
- Enkephalin, D-Penicillamine (2,5)-/pharmacology
- Enkephalin, Methionine/pharmacology
- Enkephalins/analysis
- In Vitro Techniques
- Mice
- Microscopy, Electron
- Morphine/pharmacology
- Naloxone/pharmacology
- Narcotic Antagonists/pharmacology
- Neurites/physiology
- Neurites/ultrastructure
- Neurons/chemistry
- Neurons/metabolism
- Neurons/ultrastructure
- Oligopeptides/pharmacology
- Opioid-Related Disorders/metabolism
- Protein Precursors/analysis
- Receptors, Opioid, delta/analysis
- Receptors, Opioid, delta/immunology
- Receptors, Opioid, delta/metabolism
- Receptors, Opioid, mu/analysis
- Receptors, Opioid, mu/immunology
- Receptors, Opioid, mu/metabolism
- Stem Cells/chemistry
- Stem Cells/metabolism
- Stem Cells/ultrastructure
Collapse
Affiliation(s)
- K F Hauser
- Department of Anatomy & Neurobiology, University of Kentucky College of Medicine, Lexington, KY 40536-0298, USA.
| | | | | | | | | |
Collapse
|
21
|
Reiner A, Medina L, Haber SN. The distribution of dynorphinergic terminals in striatal target regions in comparison to the distribution of substance P-containing and enkephalinergic terminals in monkeys and humans. Neuroscience 1999; 88:775-93. [PMID: 10363817 DOI: 10.1016/s0306-4522(98)00254-1] [Citation(s) in RCA: 58] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Single- and double-label immunohistochemical techniques using several different highly specific antisera against dynorphin peptides were used to examine the distribution of dynorphinergic terminals in globus pallidus and substantia nigra in rhesus monkeys and humans in comparison to substance P-containing and enkephalinergic terminals in these same regions. Similar results were observed in monkey and human tissue. Dynorphinergic fibers were very abundant in the medial half of the internal pallidal segment, but scarce in the external pallidal segment and the lateral half of the internal pallidal segment. In substantia nigra, dynorphinergic fibers were present in both the pars compacta and reticulata. Labeling of adjacent sections for enkephalin or substance P showed that the dynorphinergic terminals overlapped those for substance P in the medial half of the internal pallidal segment, but showed only slight overlap with enkephalinergic terminals in the external pallidal segment. The substance P-containing fibers were moderately abundant along the borders of the external pallidal segment, and enkephalinergic fibers were moderately abundant in parts of the internal pallidal segment. Dynorphinergic and substance P-containing terminals overlapped extensively in the nigra, and both extensively overlapped enkephalinergic fibers in medial nigra. Immunofluorescence double-labeling studies revealed that dynorphin co-localized extensively with substance P in individual fibers and terminals in the medial half of the internal pallidal segment and in substantia nigra. Thus, as has been found in non-primates, dynorphin within the striatum and its projection systems appears to be extensively localized to substance P-containing striatopallidal and striatonigral projection neurons. Nonetheless, our results also raise the possibility that a population of substance P-containing neurons that projects to the internal pallidal segment and does not contain dynorphin is present in primate striatum. Our results also suggest the possible existence of populations of striatopallidal and striatonigral projection neurons in which substance P and enkephalin or dynorphin and enkephalin, or all three, are co-localized. Thus, striatal projection neurons in primates may not consist of merely two types, one containing substance P and dynorphin and the other enkephalin.
Collapse
Affiliation(s)
- A Reiner
- Department of Anatomy and Neurobiology, The University of Tennessee Health Sciences Center, Memphis, 38163, USA
| | | | | |
Collapse
|
22
|
Fukunaga Y, Inoue N, Miyamoto M, Kishioka S, Yamamoto H. Effects of peptidase inhibitors, [D-Ala2, Met5]-enkephalinamide and antiserum to methionine-enkephalin microinjected into the caudal periaqueductal gray on morphine withdrawal in rats. JAPANESE JOURNAL OF PHARMACOLOGY 1998; 78:455-61. [PMID: 9920202 DOI: 10.1254/jjp.78.455] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
We examined the involvement of enkephalins in the caudal periaqueductal gray (cPAG) in morphine withdrawal in rats. Rats were treated with increasing doses of morphine (20-30 mg/kg/day, s.c., for 5 days) to develop morphine dependence. Morphine withdrawal was induced by naloxone (5 mg/kg, s.c.) 24 hr after the final morphine injection. The level of preproenkephalin (PPE) mRNA in the cPAG was estimated by quantitative in situ hybridization. PPE mRNA in the cPAG was increased 4-24 hr after naloxone in morphine-treated rats. A mixture of peptidase inhibitors (0.5 microl of a solution of amastatin, captopril and phosphoramidon, 3 x 10(-3) M each) microinjected into the cPAG suppressed morphine withdrawal (a decrease in the number of jumping, chin rubbing, paw rubbing and teeth chattering). Antiserum to methionine-enkephalin (1:10 dilution) microinjected into the cPAG did not significantly aggravate morphine withdrawal with or without the mixture of peptidase inhibitors. However, [D-Ala2, Met5]-enkephalinamide (20 nmol), an enkephalin analog, injected into the cPAG decreased the number of jumping without any influence on the other withdrawal signs. These results suggest that the increase in enkephalins in the cPAG may participate in the alleviation of morphine withdrawal (jumping behavior).
Collapse
Affiliation(s)
- Y Fukunaga
- Department of Pharmacology, Wakayama Medical College, Japan
| | | | | | | | | |
Collapse
|
23
|
|
24
|
Abstract
A wealth of pharmacological and behavioral data suggests that spinally projecting serotonergic cells mediate opioid analgesia. A population of medullary neurons, located within raphe magnus (RM) and the neighboring reticular nuclei, contains serotonin and is the source of serotonin in the spinal dorsal horn. To test whether serotonergic neurons mediate opioid analgesia, morphine was administered during recordings from medullary cells that were physiologically characterized as serotonergic (5HTp) by their slow and steady discharge pattern in the lightly anesthetized rat. Selected 5HTp cells (n = 14) were intracellularly labeled, and all contained serotonin immunoreactivity. The discharge of most 5HTp cells was not affected by an analgesic dose of systemic morphine. In a minority of cases, 5HTp cells either increased or decreased their discharge after morphine administration. However, morphine altered the discharge of some 5HTp cells in the absence of producing analgesia and conversely did not alter the discharge of most 5HTp cells in cases in which analgesia occurred. RM cells with irregular discharge patterns and excitatory or inhibitory responses to noxious tail heat were classified as ON and OFF cells, respectively. All ON and OFF cells that were intracellularly labeled (n = 9) lacked serotonin immunoreactivity. All ON cells were inhibited, and most OFF cells were excited by systemic morphine. Because 5HTp cells do not consistently change their discharge during morphine analgesia, they are unlikely to mediate the analgesic effects of morphine. Instead, nonserotonergic cells are likely to mediate morphine analgesia in the anesthetized rat. In light of the sensitivity of morphine analgesia to manipulations of serotonin, serotonin release, although neither necessary nor sufficient for opioid analgesia, is proposed to facilitate the analgesic effects of nonserotonergic RM terminals in the spinal cord.
Collapse
|
25
|
Presynaptic versus postsynaptic localization of mu and delta opioid receptors in dorsal and ventral striatopallidal pathways. J Neurosci 1997. [PMID: 9295393 DOI: 10.1523/jneurosci.17-19-07471.1997] [Citation(s) in RCA: 62] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Parallel studies have demonstrated that enkephalin release from nerve terminals in the pallidum (globus pallidus and ventral pallidum) can be modulated by locally applied opioid drugs. To investigate further the mechanisms underlying these opioid effects, the present study examined the presynaptic and postsynaptic localization of delta (DOR1) and mu (MOR1) opioid receptors in the dorsal and ventral striatopallidal enkephalinergic system using fluorescence immunohistochemistry combined with anterograde and retrograde neuronal tracing techniques. DOR1 immunostaining patterns revealed primarily a postsynaptic localization of the receptor in pallidal cell bodies adjacent to enkephalin- or synaptophysin-positive fiber terminals. MOR1 immunostaining in the pallidum revealed both a presynaptic localization, as evidenced by punctate staining that co-localized with enkephalin and synaptophysin, and a postsynaptic localization, as evidenced by cytoplasmic staining of cells that were adjacent to enkephalin and synaptophysin immunoreactivities. Injections of the anterograde tracer Phaseolus vulgaris leucoagglutinin (PHA-L) or the retrograde tracer Texas Red-conjugated dextran amine (TRD) into the dorsal and ventral striatum resulted in labeling of striatopallidal fibers and pallidostriatal cell bodies, respectively. DOR1 immunostaining in the pallidum co-localized only with TRD and not PHA-L, whereas pallidal MOR1 immunostaining co-localized with PHA-L and not TRD. These results suggest that pallidal enkephalin release may be modulated by mu opioid receptors located presynaptically on striatopallidal enkephalinergic neurons and by delta opioid receptors located postsynaptically on pallidostriatal feedback neurons.
Collapse
|
26
|
Lee T, Kaneko T, Taki K, Mizuno N. Preprodynorphin-, preproenkephalin-, and preprotachykinin-expressing neurons in the rat neostriatum: an analysis by immunocytochemistry and retrograde tracing. J Comp Neurol 1997; 386:229-44. [PMID: 9295149 DOI: 10.1002/(sici)1096-9861(19970922)386:2<229::aid-cne5>3.0.co;2-3] [Citation(s) in RCA: 71] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Specific antibodies were produced against C-terminal portions of rat preprodynorphin (PPD), preproenkephalin (PPE), and preprotachykinin A (PPT). PPD, PPE, and PPT C-terminal immunoreactivity was observed in many cell bodies of medium-sized neurons in the rat neostriatum (caudate-putamen). Intense PPE immunoreactivity was found in neuropil of the globus pallidus, whereas intense to moderate PPD and PPT immunoreactivity was distributed in neuropil of the substantia nigra and the entopeduncular nucleus. A double-immunofluorescence analysis revealed that PPE-immunoreactive neostriatal neurons rarely showed immunoreactivity for PPD (<1%) or PPT (<2%). In contrast, more than 95% of PPD-immunoreactive neostriatal neurons showed PPT immunoreactivity, and vice versa. No PPD-, PPE-, or PPT-immunoreactive neostriatal neurons showed immunoreactivity for the markers of neostriatal intrinsic neurons, such as calretinin, choline acetyltransferase, parvalbumin, or somatostatin. When tetramethylrhodamine-dextran amine (TMR-DA) was injected into the substantia nigra, almost all neurons that were labeled retrogradely with TMR-DA showed immunoreactivity for PPD (98%) or PPT (99%), but very few of them exhibited PPE immunoreactivity (1%). After injection of TMR-DA into the globus pallidus, 86%, 17%, and 10% of the retrogradely labeled neurons showed immunoreactivity for PPE, PPD, and PPT, respectively. These results support the notion that the neostriatal projection neurons are divided into at least two groups: The projection neurons of one group contain enkephalins and send projection fibers almost exclusively to the globus pallidus, and the others contain tachykinins and dynorphins/Leu-enkephalin and send projection fibers mainly to the substantia nigra.
Collapse
Affiliation(s)
- T Lee
- Department of Morphological Brain Science, Faculty of Medicine, Kyoto University, Japan
| | | | | | | |
Collapse
|
27
|
Risold PY, Swanson LW. Chemoarchitecture of the rat lateral septal nucleus. BRAIN RESEARCH. BRAIN RESEARCH REVIEWS 1997; 24:91-113. [PMID: 9385453 DOI: 10.1016/s0165-0173(97)00008-8] [Citation(s) in RCA: 190] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
The distribution of neurons and terminal fields that contain a variety of neurotransmitters and steroid hormone receptors has been examined with in situ hybridization and immunohistochemistry in closely spaced series of sections throughout the rostrocaudal extent of the rat lateral septal nucleus, as well as the adjacent septohippocampal and septofimbrial nuclei. The results indicate that the lateral septal nucleus is divided into major rostral, caudal, and ventral parts that differ from the widely used cytoarchitectonic parcellation into dorsal, intermediate, and ventral parts. Furthermore, the rostral, caudal, and ventral parts are turn divided into about 20 zones, regions, and domains on the basis of differential terminal fields and neurons that express particular neuropeptides and steroid hormone receptors. In general, the small zones and regions form dorsoventrally oriented sheets or bands that are arranged in a complex way. Differential connections of these lateral septal components are analyzed in the accompanying paper (Risold, P. Y. and Swanson, L. W., Connections of the rat lateral septal complex, Brain Res. Rev., 24 (1997) 115-195).
Collapse
Affiliation(s)
- P Y Risold
- Department of Biological Sciences, University of Southern California, Los Angeles 90089-2520, USA
| | | |
Collapse
|
28
|
Nomura S, Ding YQ, Kaneko T, Li JL, Mizuno N. Localization of mu-opioid receptor-like immunoreactivity in the central components of the vagus nerve: a light and electron microscope study in the rat. Neuroscience 1996; 73:277-86. [PMID: 8783249 DOI: 10.1016/0306-4522(96)00027-9] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
mu-Opioid receptor, the opioid receptor that shows the highest affinity for morphine, appears to induce a variety of side-effects, at least partly, directly through the mu-opioid receptor on neurons constituting the autonomic part of the vagus nerve. Thus, in the present study, location of mu-opioid receptor-like immunoreactivity in the central components of the autonomic part of the vagus nerve was examined in the rat. The intense immunoreactivity was observed light microscopically in the neuropil of the commissural subnucleus and the dorsal part of the medial subnucleus of the nucleus of the solitary tract, and in the neuropil of the rostral half of the ambiguus nucleus. The immunoreactivity was moderate in the neuropil of the rostral and lateral subnuclei and ventral part of the medial subnucleus of the nucleus of the solitary tract, and weak in the neuropil of the dorsal motor nucleus of the vagus nerve. In the nodose ganglion, many neurons of various sizes (17-48 microns in soma diameter) showed moderate immunoreactivity. After unilateral vagotomy at a level proximal to the nodose ganglion, the immunoreactivity in the ipsilateral ambiguus nucleus was apparently reduced within 48 h of the operation, and completely disappeared by the seventh day after the operation. In the nucleus of the solitary tract and dorsal motor nucleus of the vagus nerve, the reduction of immunoreactivity after the ganglionectomy was detectable on the fourth day after the operation, and became readily apparent by the seventh day after the operation; the immunoreactivity, none the less, still remained on the 10th day after the operation. Electron microscopically, the immunoreactivity in the ambiguus nucleus was seen mainly on dendritic profiles and additionally on somatic ones; no immunoreactivity was detected in axonal profiles. The immunoreactivity in the dorsal motor nucleus of the vagus nerve was observed only on dendritic profiles. The immunoreactivity in the nucleus of the solitary tract was seen on axonal and dendritic profiles, but not on somatic profiles. The immunoreactive axon terminals in the nucleus of the solitary tract were filled with spherical synaptic vesicles and made asymmetric synapses with dendritic profiles. The results indicate that the mu-opioid receptor in the central components of the autonomic part of the vagus nerve is located on dendrites and cell bodies of efferent neurons in the ambiguus, on dendrites of efferent neurons in the dorsal motor nucleus, and on axons which arise from nodose ganglion neurons and terminate in the nucleus of the solitary tract. The receptors on these structures may constitute the targets of enkephalin-containing and beta-endorphin-containing afferent axons arising from brainstem neurons. The receptors on the axon terminals of nodose ganglion neurons may be involved in regulation of the release of neurotransmitters and/or neuromodulators.
Collapse
Affiliation(s)
- S Nomura
- College of Medical Technology, Kyoto University, Japan
| | | | | | | | | |
Collapse
|
29
|
Mijnster MJ, Ingham CA, Meredith GE, Docter GJ, Arbuthnott GW. Morphological changes in met(5)-enkephalin-immunoreactive synaptic boutons in the rat neostriatum after haloperidol decanoate treatment. Eur J Neurosci 1996; 8:716-26. [PMID: 9081623 DOI: 10.1111/j.1460-9568.1996.tb01257.x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
The morphological plasticity of an identified population of synaptic boutons in the rat neostriatum was investigated 24 h (short-term treatment) or 14 days (long-term treatment) after administration of the depot neuroleptic, haloperidol decanoate. Specific methionine(5)-enkephalin antiserum was used to label bouton profiles in the dorsal neostriatum. The size and shape of these boutons was subsequently analysed with quantitative methods at the ultrastructural level. Immunoreactive synaptic bouton profiles were found to have a larger cross-sectional area, to be less circular in shape and to have a longer maximum diameter after long-term neuroleptic treatment. These parameters were not significantly affected by short-term neuroleptic treatment. The morphological parameters indicate that methionine(5)-enkephalin-immunoreactive boutons become enlarged, probably by elongating. This suggests that boutons containing methionine(5)-enkephalin increase their potential synaptic efficacy in the long term after neuroleptic treatment.
Collapse
Affiliation(s)
- M J Mijnster
- Research Institute of Neuroscience, Vrije Universiteit, Department of Anatomy and Embryology, Amsterdam, The Netherlands
| | | | | | | | | |
Collapse
|
30
|
|
31
|
Risold PY, Swanson LW. Cajal's nucleus of the stria medullaris: characterization by in situ hybridization and immunohistochemistry for enkephalin. J Chem Neuroanat 1995; 9:235-40. [PMID: 8719273 DOI: 10.1016/0891-0618(95)00083-6] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
While analyzing the distribution of enkephalinergic neurons by in situ hybridization and immunohistochemistry in the septal region of untreated or colchicine-injected rats, a densely packed enkephalinergic group of neurons was identified that corresponds to a small nucleus first described by Cajal as the nucleus of the stria medullaris. It contains mostly irregular or fusiform small neurons differing from those in adjacent structures by their size, and by their intensity of staining with in situ hybridization and immunohistochemistry. The connections of this nucleus (which is called here the bed nucleus of the stria medullaris, BSM) are unclear, but evidence in the literature suggests that it may receive inputs from the fornix and project through the stria medullaris to the medial habenula.
Collapse
Affiliation(s)
- P Y Risold
- Department of Biological Sciences, University of Southern California, Los Angeles 90089-2520, USA
| | | |
Collapse
|
32
|
Dupouy V, Zajac JM. Effects of neuropeptide FF analogs on morphine analgesia in the nucleus raphe dorsalis. REGULATORY PEPTIDES 1995; 59:349-56. [PMID: 8577940 DOI: 10.1016/0167-0115(95)00091-o] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
The effect of microinfusion into the nucleus raphe dorsalis (DR) of neuropeptide FF (NPFF) analogs on the antinociceptive effects of morphine was evaluated in rats, using the tail-immersion test. infusion of morphine into the DR induced a dose-dependent analgesia significantly reversed by co-infusion of 2.5 nmol opioid antagonist, naloxone. Similarly, 2.5 nmol NPFF and (1DMe)Y8Fa(D-Tyr-Leu-(NMe)Phe-Gln-Pro-Gln-Arg-Phe-NH2) or (3D)Y8Fa(D-Tyr-D-Leu-D-Phe-Gln-Pro-Gln-Arg-Phe-NH2), two neuropeptide FF analogs, inhibited morphine analgesia, although these peptides had no effect on nociceptive thresholds. This anti-opioid effect is indirect since NPFF analogs displayed no significant affinity towards mu and delta opioid binding sites in the DR. After intracerebroventricular infusion, morphine produced the same degree of analgesia as that measured after infusion into the nucleus raphe dorsalis and both NPFF analogs reversed morphine antinociception. This result is the first direct evidence that neuropeptide FF may act on opioid system at the DR and that several nuclei are involved in the suppression of morphine-induced antinociception.
Collapse
Affiliation(s)
- V Dupouy
- Laboratoire de Pharmacologie et de Toxicologie Fondamentales, CNRS, Toulouse, France
| | | |
Collapse
|
33
|
Casini G, Molnar M, Davis BM, Bagnoli P. Posthatching development of preproenkephalin mRNA-expressing cell populations in the pigeon telencephalon. BRAIN RESEARCH. DEVELOPMENTAL BRAIN RESEARCH 1995; 84:233-44. [PMID: 7743643 DOI: 10.1016/0165-3806(94)00176-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Enkephalin peptides are highly expressed in the vertebrate telencephalon. Our previous investigations in the pigeon and in the chicken [26] suggested that the cellular distribution of these peptides is conserved in phylogenetically 'old' telencephalic regions (e.g. the basal ganglia), while it has species-specific organizations in areas (e.g. dorsomedial forebrain and bulbus olfactorius) that are likely to play important roles in species-specific behaviors. In the present study, we investigated the posthatching development of preproenkephalin (PPE) mRNA-containing cells in the pigeon forebrain using in situ hybridization histochemistry. These cells are densely distributed in the paleostriatal complex (corresponding to the mammalian caudate-putamen) at hatching, and their density progressively decreases during the first 9 days posthatching, when it is similar to that of adult pigeons. In the dorsomedial forebrain (corresponding to the mammalian hippocampus), PPE mRNA-expressing cells are present at hatching, and their density reaches a peak around the 6th day posthatching. In the bulbus olfactorius, the first PPE mRNA-containing cells are observed after 9 days posthatching. The developmental profile of PPE mRNA expression in these areas of the pigeon telencephalon shows remarkable similarities with the development of enkephalinergic cells in corresponding brain areas of mammals. As in the mammalian caudate-putamen, the developmental expression of enkephalin peptides in the paleostriatal complex is likely to be related to neuronal withdrawal from the mitotic cycle. The developmental pattern of expression of PPE mRNA in the dorsomedial forebrain suggests that enkephalin peptides contribute to the maturation of the behavioral functions of this area.
Collapse
Affiliation(s)
- G Casini
- Department of Environmental Sciences, Tuscia University, Viterbo, Italy
| | | | | | | |
Collapse
|
34
|
Lantos TA, Görcs TJ, Palkovits M. Immunohistochemical mapping of neuropeptides in the premamillary region of the hypothalamus in rats. BRAIN RESEARCH. BRAIN RESEARCH REVIEWS 1995; 20:209-49. [PMID: 7795657 DOI: 10.1016/0165-0173(94)00013-f] [Citation(s) in RCA: 93] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
The topographical distribution of neuropeptide-containing cell bodies, fibers and terminals was studied in the premamillary region of the rat hypothalamus using light microscopic immunohistochemistry. Alternate coronal sections through the posterior third of the hypothalamus of normal and colchicine-treated male rats were immunostained for 19 different neuropeptides and their distributions were mapped throughout the following structures: the ventral and dorsal premamillary, the supramamillary, the tuberomamillary and the posterior hypothalamic nuclei, as well as the premamillary portion of the arcuate nucleus and the postinfundibular median eminence. Seventeen of the investigated neuropeptides were present in neuronal perikarya, nerve fibers and terminals while the gonadotropin associated peptide and vasopressin occurred only in fibers and terminals. Growth hormone-releasing hormone-, somatostatin-, alpha-melanocyte stimulating hormone-, adrenocorticotropin-, beta-endorphin- and neuropeptide Y-immunoreactive neurons were seen exclusively in the premamillary portion of the arcuate nucleus. Thyrotropin-releasing hormone-, dynorphin A- and galanin-containing neurons were distributed mainly in the arcuate and the tuberomamillary nuclei. A high number of methionine- and leucine-enkephalin-immunoreactive cells were detected in the arcuate and dorsal premamillary nuclei, as well as in the area ventrolateral to the fornix. Substance P-immunoreactive perikarya were present in very high number within the entire region, in particular in the ventral and dorsal premamillary nuclei. Cell bodies labelled with cholecystokinin- and calcitonin gene-related peptide antisera were found predominantly in the supramamillary and the terete nuclei, respectively. Corticotropin-releasing hormone-, vasoactive intestinal polypeptide- and neurotensin-immunoreactive neurons were scattered randomly in low number, mostly in the arcuate and the ventral and dorsal premamillary nuclei. Peptidergic fibers were distributed unevenly throughout the whole region, with each peptide showing an individual distribution pattern. The highest density of immunoreactive fibers was presented in the ventral half of the region including the arcuate, the ventral premamillary and the tuberomamillary nuclei. The supramamillary nucleus showed moderately dense fiber networks, while the dorsal premamillary and the posterior hypothalamic nuclei were poor in peptidergic fibers.
Collapse
Affiliation(s)
- T A Lantos
- Laboratory of Neuromorphology, Semmelweis University Medical School, Budapest, Hungary
| | | | | |
Collapse
|
35
|
Estudio morfométrico de los núcleos supraóptico y paraventricular tras estímulos dolorosos y administración de morfina intracerebroventricular. Neurocirugia (Astur) 1995. [DOI: 10.1016/s1130-1473(95)70797-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
36
|
Song DD, Harlan RE. The development of enkephalin and substance P neurons in the basal ganglia: insights into neostriatal compartments and the extended amygdala. BRAIN RESEARCH. DEVELOPMENTAL BRAIN RESEARCH 1994; 83:247-61. [PMID: 7535204 DOI: 10.1016/0165-3806(94)00145-6] [Citation(s) in RCA: 23] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
To study the comparative development of the two major neuropeptide genes of the striatum, we used immunocytochemistry to detect immunoreactivity (ir) for substance P and synenkephalin (the N terminus of proenkephalin), and in situ hybridization to detect proenkephalin mRNA. Earliest detection of substance P-ir was in the anlage of the bed nucleus of the stria terminalis (BST, at E15) and in the rostral-lateral caudate-putamen (CPu), at E16. Substance P in the BST was immediately subjacent to the medial ganglionic eminence, while immunoreactivity in the CPu was associated with the lateral ganglionic eminence. Earliest detection of synenkephalin-ir or proenkephalin mRNA was in the caudal-lateral CPu and the adjacent central nucleus of the amygdala (Ce), at E16. Over the next several days, expression of each neuropeptide spread toward the region of first expression of the other neuropeptide. The first overlap of expression of the two neuropeptides was at E18, at the level of the septum. Despite correspondence of substance P-ir and proenkephalin mRNA in patches at P0, very little co-expression of the two neuropeptides was evident in individual neurons. We propose a model in which the CPu develops primarily from the lateral ganglionic eminence, and the extended amygdala develops primarily from the medial ganglionic eminence. Within each structure, two poles of neuropeptide gene expression are established initially: substance P-ir in the rostral CPu and in the rostral-medial pole of the extended amygdala (represented by the BST), and synenkephalin/proenkephalin in the caudal CPu and in the caudal-lateral pole of the extended amygdala (represented by the Ce). A stream of substance P-ir cells connects the two poles of the extended amygdala, in the sublenticular substantia innominata.
Collapse
Affiliation(s)
- D D Song
- Department of Anatomy, Tulane University School of Medicine, New Orleans, LA 70112
| | | |
Collapse
|
37
|
Molnar M, Casini G, Davis BM, Bagnoli P, Brecha NC. Distribution of preproenkephalin mRNA in the chicken and pigeon telencephalon. J Comp Neurol 1994; 348:419-32. [PMID: 7844256 DOI: 10.1002/cne.903480308] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Bioassay and immunological studies have detected the presence of opioid peptides in the nervous system of representatives of all classes of vertebrates. The present study evaluates the expression and localization of preproenkephalin (PPE) mRNA to determine the sites of synthesis of the enkephalin peptides in the adult chicken and pigeon telencephalon using in situ hybridization histochemistry. We used a 500-base-pair chicken RNA probe corresponding to chicken PPE cDNA. In both the chicken and the pigeon telencephalon, the highest concentration of PPE mRNA-containing cells was observed in the lobus parolfactorius, paleostriatum augmentatum, nucleus accumbens, and septum. Distinct populations of labeled cells were also detected in the hyperstriatum accessorium, hippocampus, area parahippocampalis, nucleus of the diagonal band, cortex dorsolateralis, and cortex piriformis. Differences in PPE mRNA expression between chicken and pigeon were observed in several telencephalic regions. For instance, the bulbus olfactorius was heavily labeled in the pigeon, but was not labeled in the chicken, and numerous PPE mRNA-containing cells were present in the area parahippocampalis of pigeons but not of chickens. In contrast, in the hyperstriatum dorsale and hyperstriatum ventrale, numerous PPE mRNA-expressing cells were detected in the chicken but not in the pigeon. Overall, PPE mRNA-expressing cells were more numerous than enkephalin-immunoreactive cells described in previous studies. In addition, our results suggest that the general pattern of enkephalin expression in the avian telencephalon is similar to that found in other vertebrates. Finally, the results of the present study illustrate some differences in the pattern of PPE mRNA distribution between closely related species, indicating the existence of species-specific neurochemical pathways, which may influence and perhaps mediate different behaviors characteristics of these species.
Collapse
Affiliation(s)
- M Molnar
- Department of Physiology and Biochemistry, University of Pisa, Italy
| | | | | | | | | |
Collapse
|
38
|
Delfs JM, Kong H, Mestek A, Chen Y, Yu L, Reisine T, Chesselet MF. Expression of mu opioid receptor mRNA in rat brain: an in situ hybridization study at the single cell level. J Comp Neurol 1994; 345:46-68. [PMID: 8089277 DOI: 10.1002/cne.903450104] [Citation(s) in RCA: 167] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
The mu (mu) opioid receptors, which mediate the effects of morphine, are widely distributed in brain. We have examined the distribution of mRNA encoding a mu opioid receptor in rat brain with in situ hybridization histochemistry at the single-cell level to obtain information about the cell types synthesizing this receptor. Only neurons, not glia, were labeled in discrete brain regions. High levels of labeling were detected in the thalamus, striosomes of the caudate-putamen, globus pallidus, and brain regions involved in nociception, arousal, respiratory control, and, possibly, addiction. The general distribution of the receptor mRNA paralleled that of mu opioid binding sites with some notable exceptions. These include the cerebral cortex, which contains binding sites, but very few labeled neurons. No labeling was observed in the cerebellum, a region devoid of mu binding sites. Three main findings emerged from these experiments: 1) the mRNA was present in regions mediating both the therapeutic (analgesia) and the unwanted (respiratory depression, addiction) effects of morphine, 2) the mRNA was very densely expressed by neurons known to receive dense enkephalin-containing inputs, and 3) the dissociation between the presence of binding sites and absence of mRNA in some brain regions supports a presynaptic localization of mu opioid receptors in these areas. Alternatively, other subtypes of mu opioid receptors may be encoded by a different mRNA. These results provide new insights into the receptor types and neuronal circuits involved in the effects of endogenous opioids and morphine.
Collapse
Affiliation(s)
- J M Delfs
- Department of Pharmacology, University of Pennsylvania School of Medicine, Philadelphia 19104
| | | | | | | | | | | | | |
Collapse
|
39
|
Differential effects of isoflurane, halothane, and ketamine on the regional methionine-enkephalinlike immunoreactivity in the mouse brain. J Anesth 1994; 8:188-193. [DOI: 10.1007/bf02514711] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/1992] [Accepted: 06/21/1993] [Indexed: 10/24/2022]
|
40
|
Hook V, Purviance R, Azaryan A, Hubbard G, Krieger T. Purification and characterization of alpha 1-antichymotrypsin-like protease inhibitor that regulates prohormone thiol protease involved in enkephalin precursor processing. J Biol Chem 1993. [DOI: 10.1016/s0021-9258(20)80763-7] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
|
41
|
Yukhananov RY, Klodt PM, Shemanov AY, Rat'kin AE, Nyberg F, Maiskii AI. Dynorphin A (1-17), Met-enkephalin-Arg6-Phe7 and substance P (1-11) levels in the brain of mice with different levels of ethanol consumption. Bull Exp Biol Med 1993. [DOI: 10.1007/bf00786075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
42
|
Song DD, Harlan RE. Ontogeny of the proenkephalin system in the rat corpus striatum: its relationship to dopaminergic innervation and transient compartmental expression. Neuroscience 1993; 52:883-909. [PMID: 8095712 DOI: 10.1016/0306-4522(93)90536-o] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
The earliest detection of the proenkephalin gene was on embryonic day 16 in neuronal cell bodies in the ventrolateral portion of the caudal neostriatum. This expression was identified by both immunocytochemistry for synenkephalin, the nonopioid N-terminus of proenkephalin (1-70), and preproenkephalin in situ hybridization with a complementary DNA probe. Two developmental gradients of preproenkephalin expression and synenkephalin immunoreactivity were observed: (i) a ventrolateral to dorsomedial and caudal to rostral gradient in the rostral caudate-putamen; and (ii) a ventromedial to dorsolateral and rostral to caudal gradient in the caudal caudate-putamen. Ventrolateral to dorsomedial and caudal to rostral developmental gradients of synenkephalin fiber immunoreactivity were also identified in the globus pallidus. Methionine enkephalin immunoreactivity was not consistently detectable until postnatal day 10 and 15 in the rostral and caudal globus pallidus, respectively. A transient patchy distribution of increased preproenkephalin expression from embryonic day 20 through postnatal day 5 occurred. These patches and a subcallosal streak were found to overlap partially with areas of increased tyrosine hydroxylase immunoreactivity by adjacent section analyses. The earliest detection of tyrosine hydroxylase immunoreactivity was found to coincide with that of proenkephalin on embryonic day 16, but in differing regions of the corpus striatum. Tyrosine hydroxylase immunoreactivity in the rostral caudate-putamen preceded, while in the caudal caudate-putamen it followed first expression of the proenkephalin gene. Early proenkephalin expression, by both synenkephalin immunocytochemistry and preproenkephalin in situ hybridization, was also detected in the central nucleus of the amygdala on embryonic day 16 immediately ventral to the area of expression in the caudate-putamen. Preproenkephalin expression in the olfactory tubercle and nucleus accumbens first appeared on embryonic day 20 and expression proceeded in a lateral to dorsomedial gradient continuous with the ventral part of the rostral caudal-putamen. Relatively late detection of methionine enkephalin immunoreactivity in comparison to synenkephalin possibly indicates a developmental delay in the complete enzymatic processing of the proenkephalin precursor. Differing gradients in the ontogeny of preproenkephalin expression in the rostral vs the caudal caudate-putamen suggest possible anatomical and developmental differences of these two regions. Also, transient compartmentalization of preproenkephalin expression and differences in dopaminergic innervation as detected by tyrosine hydroxylase immunoreactivity were further support for the existence of two subsets of proenkephalinergic neurons in the caudate-putamen. Contemporaneous development of preproenkephalin expression and synenkephalin immunoreactivity in the central nucleus of the amygdala with the ventral part of the caudal caudate-putamen also suggested developmental homology.(ABSTRACT TRUNCATED AT 400 WORDS)
Collapse
Affiliation(s)
- D D Song
- Department of Anatomy, Tulane University School of Medicine, New Orleans, Louisiana 70112
| | | |
Collapse
|
43
|
The role of structures of the ventrolateral medulla in cardiovascular regulation. NEUROPHYSIOLOGY+ 1993. [DOI: 10.1007/bf01052968] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
44
|
Airaksinen MS, Alanen S, Szabat E, Visser TJ, Panula P. Multiple neurotransmitters in the tuberomammillary nucleus: comparison of rat, mouse, and guinea pig. J Comp Neurol 1992; 323:103-16. [PMID: 1385490 DOI: 10.1002/cne.903230109] [Citation(s) in RCA: 103] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Tuberomammillary neurons in the posterior hypothalamus are the sole source of neuronal histamine in adult mammalian brain. In the rat, these cells are reported to contain immunoreactivity for gamma-aminobutyric acid (GABA) and several neuropeptides. We compared the presence of these substances in the tuberomammillary cells of the rat, mouse, and guinea pig. In all three species, all histamine-immunoreactive neuronal cell bodies were positive for GABA. This suggests that GABAergic transmission may be important in tuberomammillary function. No cell bodies immunoreactive for thyrotropin releasing hormone (TRH) were found in the guinea pig or mouse tuberomammillary area. In contrast, about 14% of the histamine-immunoreactive tuberomammillary cells in the rat were TRH-positive. These cells were small or medium-sized and were located only in the medial part of the tuberomammillary complex. An antibody against porcine galanin stained about 45% of the tuberomammillary cell bodies in the rat and about 28% in the mouse, but none in the guinea pig. A large proportion of the cells in the rat and mouse, but none in the guinea pig, were positive for met-enkephalin-arg-phe. In contrast, all histamine-containing tuberomammillary cells in the guinea pig, but none in the rat or mouse, were immunoreactive for met-enkephalin. This may indicate a different expression of proenkephalin-derived peptides in the tuberomammillary neurons in these species. Some substance P-immunoreactive cell bodies were located in the tuberomammillary area in all three species. However, only 3% of the histamine-immunoreactive cell bodies in the rat and mouse but none in the guinea pig were substance P-positive. The neurochemical properties of the tuberomammillary nucleus that exhibited species commonality deserve to be studied neurochemically and electrophysiologically in order to determine the functional relevance of coexisting transmitters in this nucleus.
Collapse
|
45
|
Jones SL, Light AR. Serotoninergic medullary raphespinal projection to the lumbar spinal cord in the rat: a retrograde immunohistochemical study. J Comp Neurol 1992; 322:599-610. [PMID: 1383285 DOI: 10.1002/cne.903220413] [Citation(s) in RCA: 70] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Classically the raphespinal system has been regarded as a serotoninergic system; inhibition of spinal nociceptive transmission produced by stimulation of the medullary raphe nuclei is mediated partially by spinal serotoninergic receptors. However, recent evidence suggests that the raphe nuclei are not homogeneous populations of serotoninergic cells. The objective of the present study was to re-examine, in the rat, the serotoninergic raphespinal projection to the lumbar spinal cord, and to determine the relative contribution of serotoninergic raphespinal neurons to the total population of raphespinal neurons. Microinjections of wheat-germ agglutinin horseradish peroxidase conjugate coupled to colloidal gold into the lumbar spinal cord resulted in the retrograde labeling of 53% and 59% of the serotoninergic neurons in the raphe nuclei and in the para-raphe zone, respectively. Conversely, 47% and 28% of the retrogradely labeled neurons in the raphe and para-raphe zone, respectively, demonstrated serotonin-like immunoreactivity. Thus, contrary to previous reports, the present results suggest 1) that only about half of the serotoninergic neurons in the raphe nuclei and in the surrounding para-raphe zone project to the lumbar spinal cord, and 2) that a large proportion of the neurons in the raphe nuclei (53%) and in the surrounding para-raphe zone (72%) that project to the lumbar spinal cord are not serotoninergic.
Collapse
Affiliation(s)
- S L Jones
- College of Medicine, Department of Pharmacology, University of Oklahoma, Oklahoma City 73190
| | | |
Collapse
|
46
|
Przewłocki R, Hassan AH, Lason W, Epplen C, Herz A, Stein C. Gene expression and localization of opioid peptides in immune cells of inflamed tissue: functional role in antinociception. Neuroscience 1992; 48:491-500. [PMID: 1603330 DOI: 10.1016/0306-4522(92)90509-z] [Citation(s) in RCA: 217] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Our previous studies indicate that endogenous opioids (primarily beta-endorphin) released during stressful stimuli can interact with peripheral opioid receptors to inhibit nociception in inflamed tissue of rats. This study sought to localize opioid precursor mRNAs and opioid peptides deriving therefrom in inflamed tissue, identify opioid containing cells and demonstrate their functional significance in the inhibition of nociception. In rats with Freund's adjuvant-induced unilateral hindpaw inflammation we show that: (i) pro-opiomelanocortin and proenkephalin-mRNAs (but not prodynorphin mRNA) are abundant in cells of inflamed, but absent in non-inflamed tissue; (ii) numerous cells infiltrating the inflamed subcutaneous tissue are stained intensely with beta-endorphin and [Met]enkephalin (but only few scattered cells with dynorphin) antibodies; (iii) beta-endorphin is present in T- and B-lymphocytes, monocytes and macrophages; and (iv) whole-body irradiation suppresses stress-induced antinociception in the inflamed paw. Taken together, these data suggest that endogenous opioid peptides are synthesized and processed within various types of immune cells at the site of inflammation. Immunosuppression abolishes the intrinsic antinociception in inflammatory tissue confirming the functional significance of these cells.
Collapse
Affiliation(s)
- R Przewłocki
- Department of Neuropharmacology, Max-Planck-Institut für Psychiatrie, Martinsried, F.R.G
| | | | | | | | | | | |
Collapse
|
47
|
Laurent-Huck FM, Stoeckel ME, Felix JM. Ontogeny of proenkephalin gene expression in the rat hypothalamus. BRAIN RESEARCH. DEVELOPMENTAL BRAIN RESEARCH 1991; 62:33-43. [PMID: 1760871 DOI: 10.1016/0165-3806(91)90187-n] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
In the rat hypothalamus, proenkephalin (PE) mRNA synthetizing cells were detected by in situ hybridization, using synthetic oligodeoxy-nucleotides, from embryonic day 14 (E14) in the presumptive anterior hypothalamic area (AHA) and preoptic part of the bed nucleus of the stria terminalis (BST), and from E18 in the developing median preoptic area, perifornical area, suprachiasmatic nucleus, dorsomedial and ventromedial hypothalamic nuclei. In the paraventricular nucleus, cells expressed PE gene in the late prenatal stages; both parvo- and magnocellular neurons synthetized PEmRNA in the early postnatal stages. Cells expressing PE gene were observed after birth in the lateral preoptic area, lateral hypothalamus, medial and lateral parts of the BST. PEmRNA was also found from E14 in the striatum, from E18 in the central and medial amygdaloid nuclei, the medial group of the thalamic nuclei, and postnatally in a second more anterior structure of the thalamus. In the hypothalamus, a clear similarity was observed between adult and developmental distributions of PE gene expressing cells. The early onset of PE gene expression in the developing rat diencephalon suggests an involvement of PE in developmental processes, such as cell proliferation and differentiation; the presence of PE during the perinatal period may also indicate the appearance of adult neural regulations.
Collapse
Affiliation(s)
- F M Laurent-Huck
- Laboratoire de Physiologie Générale, URA 1446 CNRS, Strasbourg, France
| | | | | |
Collapse
|
48
|
Cunningham ET, Simmons DM, Swanson LW, Sawchenko PE. Enkephalin immunoreactivity and messenger RNA in a discrete projection from the nucleus of the solitary tract to the nucleus ambiguous in the rat. J Comp Neurol 1991; 307:1-16. [PMID: 1856314 DOI: 10.1002/cne.903070102] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Previous work described in the rat a circumscribed, partly somatostatinergic, interneuronal projection from the esophageal afferent part of the nucleus of the solitary tract (NTSc) to esophageal motor neurons in the compact formation of the nucleus ambiguous (NAcf: Cunningham and Sawchenko, J Neurosci 9:1668, 1989). In the present study, axonal transport, immunohistochemical and in situ hybridization histochemical techniques were used to determine whether enkephalin (ENK), a peptide known to be expressed in a number of somatostatin-containing medullary cell groups, is also expressed in the projection from the NTSc to the NAcf. The results may be summarized as follows: 1) cells immunoreactive (IR) for prepro-enkephalin (ppENK)-derived peptides were found in the NTSc in colchicine-pretreated animals; in untreated animals, a dense ENK-IR terminal field was observed in the NAcf: sections stained with antisera against dynorphin-related peptides showed sparse staining in both regions; 2) signal indicating the presence of ppENK messenger RNA (mRNA) was found over the NTSc, including over a majority of cells identified using a retrograde tracing technique as projecting to the region of the NAcf; the signal for ppENK mRNA signal was greater than that for prepro-somatostatin (ppSS) in the NTSc; 3) a combined anterograde tracing-immunohistochemical technique demonstrated a strong correspondence between the distribution of inputs from the NTS to the NAcf, and the distribution of endogenous ENK-IR varicosities; in addition, leucine (L)-ENK-IR was found in an appreciable number of varicosities in the NAcf that had been anterogradely labeled from the NTSc; 4) unilateral electrolytic lesions of the rostromedial NTS, which included the central subnucleus, virtually eliminated ENK-IR in the ipsilateral NAcf, while staining on the contralateral side was unaffected. Taken together, these studies provide evidence that ppENK- and ppSS-derived peptides are expressed in the pathway from the NTSc to the NAcf, a pathway thought to play a role in the reflex control of esophageal peristalsis.
Collapse
Affiliation(s)
- E T Cunningham
- Salk Institute for Biological Studies, San Diego, California 92186
| | | | | | | |
Collapse
|
49
|
Reiner A, Erichsen JT, Cabot JB, Evinger C, Fitzgerald ME, Karten HJ. Neurotransmitter organization of the nucleus of Edinger-Westphal and its projection to the avian ciliary ganglion. Vis Neurosci 1991; 6:451-72. [PMID: 1712628 DOI: 10.1017/s0952523800001310] [Citation(s) in RCA: 59] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Two morphologically distinct types of preganglionic endings are observed in the avian ciliary ganglion: boutonal and cap-like. Boutonal endings synapse on ciliary ganglion neurons (called choroidal neurons) innervating choroidal blood vessels, while cap-like endings synapse on ciliary ganglion neurons (called ciliary neurons) controlling the lens and pupil. Some of both types of preganglionic endings contain the neuropeptides substance P (SP) and/or leucine-enkephalin (LENK). Although both types of preganglionic terminals are also known to be cholinergic, there has been no direct evidence that SP and LENK are found in cholinergic endings in the ciliary ganglion. The present studies in pigeons, which involved the use of single- and double-label immunohistochemical techniques, were undertaken to examine this issue, as well as to (1) determine the relative percentages of the boutonal and cap-like endings that contain SP, LENK, or both SP and LENK; and (2) determine if the two different types of terminals in the ciliary ganglion arise from different subdivisions of the nucleus of Edinger-Westphal (EW). Single- and double-label immunohistochemical studies revealed that all neurons of EW, regardless of whether they contained immunohistochemically detectible amounts of SP or LENK, are cholinergic. In the medial subdivision of EW (EWM), which was found to contain approximately 700 neurons, 20.2% of these neurons were observed to contain both SP and LENK, while 11.6% were observed to contain SP only and 10.7% were observed to contain LENK only. In contrast, in lateral EW (EWL), which was found to contain approximately 500 neurons, 16.2% of the neurons were observed to contain both SP and LENK, while 19.2% of the neurons were observed to contain SP only and 12.6% were observed to contain LENK only. Retrograde-labeling studies involving horseradish peroxidase injections into the ciliary ganglion revealed that EW was the sole source of input to the ciliary ganglion and all, or nearly all, neurons in EW innervate the ciliary ganglion. Immunohistochemical labeling of the ciliary ganglion neurons with an antiserum against choline acetyltransferase revealed that approximately 900 choroidal neurons and approximately 600 ciliary neurons are present in the ganglion, all of which receive cholinergic preganglionic endings. Of the choroidal neurons, 94% receive butonal terminals containing both SP and LENK, while only 2% receive SP+ only boutonal endings and 2% receive LENK+ only butonal endings. Of the ciliary neurons, 25% receive cap-like endings containing both SP and LENK, 30% receive cap-like endings containing only SP and 3% receive cap-like endings containing only LENK.(ABSTRACT TRUNCATED AT 400 WORDS)
Collapse
Affiliation(s)
- A Reiner
- Department of Anatomy and Neurobiology, University of Tennessee, Memphis
| | | | | | | | | | | |
Collapse
|
50
|
Giraud AS, Clarke IJ, Rundle SE, Parker LM, Funder JW, Simpson RJ, Smith AI. Distribution, Isolation and Sequence Analysis of the C-Terminal Heptapeptide of Pro-Enkephalin A (YGGFMRF) from the Ovine Median Eminence. J Neuroendocrinol 1991; 3:215-20. [PMID: 19215524 DOI: 10.1111/j.1365-2826.1991.tb00265.x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Abstract Using a polyclonal antiserum raised against the C-terminal heptapeptide of pro-enkephalin A, we have isolated the opioid heptapeptide Tyr-Gly-Gly-Phe-Met-Arg-Phe (MERF) from ovine median eminence and mapped its distribution in that structure. MERF-immunoreactivity was confined to the pars externa (neurosecretory zone) where it colocalized with corticotrophin-releasing factor in the majority of terminals. No larger, N-terminally extended forms of MERF were detected in median eminence extracts suggesting that pro-enkephalin is fully processed to its constituent enkephalin congeners, and that the bioactive products, including MERF, act at the level of the hypothalamus in regulating anterior pituitary function.
Collapse
Affiliation(s)
- A S Giraud
- Department of Medicine, The University of Melbourne, Western Hospital, Footscray, Victoria 3011, Australia
| | | | | | | | | | | | | |
Collapse
|