1
|
Kim HK, Chung KM, Xing J, Kim HY, Youn DH. The Trigeminal Sensory System and Orofacial Pain. Int J Mol Sci 2024; 25:11306. [PMID: 39457088 PMCID: PMC11508441 DOI: 10.3390/ijms252011306] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2024] [Revised: 10/13/2024] [Accepted: 10/17/2024] [Indexed: 10/28/2024] Open
Abstract
The trigeminal sensory system consists of the trigeminal nerve, the trigeminal ganglion, and the trigeminal sensory nuclei (the mesencephalic nucleus, the principal nucleus, the spinal trigeminal nucleus, and several smaller nuclei). Various sensory signals carried by the trigeminal nerve from the orofacial area travel into the trigeminal sensory system, where they are processed into integrated sensory information that is relayed to higher sensory brain areas. Thus, knowledge of the trigeminal sensory system is essential for comprehending orofacial pain. This review elucidates the individual nuclei that comprise the trigeminal sensory system and their synaptic transmission. Additionally, it discusses four types of orofacial pain and their relationship to the system. Consequently, this review aims to enhance the understanding of the mechanisms underlying orofacial pain.
Collapse
Affiliation(s)
- Hyung Kyu Kim
- Department of Physiology, Yonsei University College of Medicine, Seoul 03722, Republic of Korea; (H.K.K.); (J.X.)
- Department of Oral Physiology, School of Dentistry, Kyungpook National University, Daegu 41940, Republic of Korea
| | - Ki-myung Chung
- Department of Physiology and Neuroscience, College of Dentistry, Gangneung-Wonju National University, Gangneung 25457, Republic of Korea;
| | - Juping Xing
- Department of Physiology, Yonsei University College of Medicine, Seoul 03722, Republic of Korea; (H.K.K.); (J.X.)
| | - Hee Young Kim
- Department of Physiology, Yonsei University College of Medicine, Seoul 03722, Republic of Korea; (H.K.K.); (J.X.)
| | - Dong-ho Youn
- Department of Oral Physiology, School of Dentistry, Kyungpook National University, Daegu 41940, Republic of Korea
| |
Collapse
|
2
|
Tang JS, Chiang CY, Dostrovsky JO, Yao D, Sessle BJ. Responses of neurons in rostral ventromedial medulla to nociceptive stimulation of craniofacial region and tail in rats. Brain Res 2021; 1767:147539. [PMID: 34052258 DOI: 10.1016/j.brainres.2021.147539] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2020] [Revised: 02/24/2021] [Accepted: 05/24/2021] [Indexed: 02/06/2023]
Abstract
The rostral ventromedial medulla (RVM) plays a key role in the endogenous modulation of nociceptive transmission in the central nervous system (CNS). The primary aim of this study was to examine whether the activities of RVM neurons were related to craniofacial nociceptive behaviour (jaw-motor response, JMR) as well as the tail-flick response (TF). The activities of RVM neurons and TF and JMR evoked by noxious heating of the tail or perioral skin were recorded simultaneously in lightly anaesthetized rats. Tail or perioral heating evoked the TF and JMR, and the latency of the JMR was significantly shorter (P < 0.001) than that of the TF. Of 89 neurons recorded in RVM, 40 were classified as ON-cells, 27 as OFF-cells, and 22 as NEUTRAL-cells based on their responsiveness to heating of the tail. Heating at either site caused an increase in ON-cell and decrease in OFF-cell activity before the occurrence of the TF and JMR, but did not alter the activity of NEUTRAL cells. Likewise, noxious stimulation of the temporomandibular joint had similar effects on RVM neurons. These findings reveal that the JMR is a measure of the excitability of trigeminal and spinal nociceptive circuits in the CNS, and that the JMR as well as TF can be used for studying processes related to descending modulation of pain. The findings also support the view that RVM ON- and OFF-cells play an important role in the elaboration of diverse nociceptive behaviours evoked by noxious stimulation of widely separated regions of the body.
Collapse
Affiliation(s)
- Jing-Shi Tang
- Department of Physiology and Pathophysiology, Xi'an Jiaotong University, Medical School, Xi'an, Shaanxi 710061, PR China
| | - Chen Yu Chiang
- Faculty of Dentistry, University of Toronto, Toronto, Ontario M5G 1G6, Canada
| | | | - Dongyuan Yao
- Neurological Institute of Jiangxi Province and Department of Neurology, Jiangxi Provincial People's Hospital, and Queen Mary College, Nanchang University, Jiangxi, PR China
| | - Barry J Sessle
- Department of Physiology, University of Toronto, Toronto, Ontario M5S 1A8, Canada; Faculty of Dentistry, University of Toronto, Toronto, Ontario M5G 1G6, Canada.
| |
Collapse
|
3
|
Biancardi V, Saini J, Pageni A, Prashaad M. H, Funk GD, Pagliardini S. Mapping of the excitatory, inhibitory, and modulatory afferent projections to the anatomically defined active expiratory oscillator in adult male rats. J Comp Neurol 2020; 529:853-884. [DOI: 10.1002/cne.24984] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2020] [Revised: 06/29/2020] [Accepted: 07/05/2020] [Indexed: 01/21/2023]
Affiliation(s)
- Vivian Biancardi
- Department of Physiology University of Alberta Edmonton Canada
- Women and Children's Health Research Institute, Faculty of Medicine and Dentistry University of Alberta Edmonton Canada
| | - Jashan Saini
- Department of Physiology University of Alberta Edmonton Canada
| | - Anileen Pageni
- Department of Physiology University of Alberta Edmonton Canada
| | | | - Gregory D. Funk
- Department of Physiology University of Alberta Edmonton Canada
- Women and Children's Health Research Institute, Faculty of Medicine and Dentistry University of Alberta Edmonton Canada
- Neuroscience and Mental Health Institute University of Alberta Edmonton Canada
| | - Silvia Pagliardini
- Department of Physiology University of Alberta Edmonton Canada
- Women and Children's Health Research Institute, Faculty of Medicine and Dentistry University of Alberta Edmonton Canada
- Neuroscience and Mental Health Institute University of Alberta Edmonton Canada
| |
Collapse
|
4
|
Beh SC. External trigeminal nerve stimulation: Potential rescue treatment for acute vestibular migraine. J Neurol Sci 2019; 408:116550. [PMID: 31677559 DOI: 10.1016/j.jns.2019.116550] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2019] [Revised: 10/19/2019] [Accepted: 10/21/2019] [Indexed: 11/28/2022]
Abstract
OBJECTIVE Vestibular migraine (VM) is the most common neurologic cause of vertigo among adults. However, there are no specifically studied or approved rescue therapies for acute VM attacks. This study describes how external trigeminal nerve stimulation (eTNS) using the Cefaly® (CEFALY Technology, Seraing, Belgium) device relieves acute VM episodes. METHODS Single-center, retrospective review of 19 patients with acute VM attacks (seen between May 2018 and June 2019) treated with 20-min eTNS. Prior to treatment, patients graded the severity of their vertigo/headache using a 10-point visual analog scale (VAS) with 0 representing no vertigo/headache, and 10 representing the worst imaginable vertigo/headache. After eTNS, patients graded their vertigo/headache using the same VAS 15 min. In addition, bedside neuro-otologic examination was performed before and after treatment. RESULTS 19/19 patients reported improvement in vertigo severity. Mean vertigo severity was 6.6 (±2.1; median 7) before eTNS, and 2.7 (±2.6; median 3) following treatment; mean improvement in vertigo was 61.3% (±32.6; median 50.0%). During VM episodes, 14/19 experienced headache. Mean headache severity was 4.8 (±2.4; median 4.5) before eTNS, and was 1.4 (±2.4; median 0) following treatment; mean improvement in headache was 77.2% (±32.7; median 100.0%). Neuro-otologic examination was normal during VM attacks in all except Patient 7 who had spontaneous upbeat nystagmus which resolved after eTNS. Other improvements include improvement of eye pressure, head pressure, and chronic facial pain. No intolerable side effects were reported. CONCLUSION This study provides preliminary evidence that eTNS is a novel, non-invasive, safe and effective treatment for acute VM attacks.
Collapse
Affiliation(s)
- Shin C Beh
- Department of Neurology, UT Southwestern Medical Center, United States of America.
| |
Collapse
|
5
|
Abstract
Vascular theories of migraine and cluster headache have dominated for many years the pathobiological concept of these disorders. This view is supported by observations that trigeminal activation induces a vascular response and that several vasodilating molecules trigger acute attacks of migraine and cluster headache in susceptible individuals. Over the past 30 years, this rationale has been questioned as it became clear that the actions of some of these molecules, in particular, calcitonin gene-related peptide and pituitary adenylate cyclase-activating peptide, extend far beyond the vasoactive effects, as they possess the ability to modulate nociceptive neuronal activity in several key regions of the trigeminovascular system. These findings have shifted our understanding of these disorders to a primarily neuronal origin with the vascular manifestations being the consequence rather than the origin of trigeminal activation. Nevertheless, the neurovascular component, or coupling, seems to be far more complex than initially thought, being involved in several accompanying features. The review will discuss in detail the anatomical basis and the functional role of the neurovascular mechanisms relevant to migraine and cluster headache.
Collapse
Affiliation(s)
- Jan Hoffmann
- 1 Department of Systems Neuroscience, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Serapio M Baca
- 2 Skaggs School of Pharmacy and Pharmaceutical Sciences, University of Colorado, Aurora, CO, USA
| | - Simon Akerman
- 3 Department of Neural and Pain Sciences, University of Maryland Baltimore, Baltimore, MD, USA
| |
Collapse
|
6
|
Waschek JA, Baca SM, Akerman S. PACAP and migraine headache: immunomodulation of neural circuits in autonomic ganglia and brain parenchyma. J Headache Pain 2018. [PMID: 29536279 PMCID: PMC5849772 DOI: 10.1186/s10194-018-0850-6] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
The discovery that intravenous (IV) infusions of the neuropeptide PACAP-38 (pituitary adenylyl cyclase activating peptide-38) induced delayed migraine-like headaches in a large majority of migraine patients has resulted in considerable excitement in headache research. In addition to suggesting potential therapeutic targets for migraine, the finding provides an opportunity to better understand the pathological events from early events (aura) to the headache itself. Although PACAP-38 and the closely related peptide VIP (vasoactive intestinal peptide) are well-known as vasoactive molecules, the dilation of cranial blood vessels per se is no longer felt to underlie migraine headaches. Thus, more recent research has focused on other possible PACAP-mediated mechanisms, and has raised some important questions. For example, (1) are endogenous sources of PACAP (or VIP) involved in the triggering and/or propagation of migraine headaches?; (2) which receptor subtypes are involved in migraine pathophysiology?; (3) can we identify specific anatomical circuit(s) where PACAP signaling is involved in the features of migraine? The purpose of this review is to discuss the possibility, and supportive evidence, that PACAP acts to induce migraine-like symptoms not only by directly modulating nociceptive neural circuits, but also by indirectly regulating the production of inflammatory mediators. We focus here primarily on postulated extra-dural sites because potential mechanisms of PACAP action in the dura are discussed in detail elsewhere (see X, this edition).
Collapse
Affiliation(s)
- James A Waschek
- Department of Psychiatry and Biobehavioral Sciences, Semel Institute for Neuroscience and Human Behavior, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, 90095, USA.
| | - Serapio M Baca
- Department of Pharmacy and Pharmaceutical Sciences, University of Colorado, Anschutz Medical Campus, Aurora, CO, 80045, USA.
| | - Simon Akerman
- Department of Oral and Maxillofacial Pathology, Radiology and Medicine, New York University College of Dentistry, New York, NY, 10010, USA. .,Department of Neural and Pain Sciences, University of Maryland Baltimore, Maryland, Baltimore, MD, 21201, USA.
| |
Collapse
|
7
|
Abstract
Aim To provide an overview of mechanisms underlying craniofacial pain; to highlight peripheral and central adaptations that may promote chronification of pain in craniofacial pain states such as migraine and temporomandibular disorders (TMD). Background Pain is a common symptom associated with disorders involving craniofacial tissues including the teeth and their supporting structures, the temporomandibular joint and the muscles of the head. Most acute painful craniofacial conditions are easily recognized and well managed, but others, especially those that are chronic (e.g., migraine, TMD and trigeminal neuropathies), present clinical challenges. Preclinical studies have provided substantial information about the anatomical and physiological mechanisms related to the initiation and modulation of nociceptive signals in the trigeminal system. While knowledge of the mechanisms underlying chronic craniofacial pain remains limited, both clinical and preclinical investigations suggest that changes in afferent inputs to the brain as well as in brain structure and modulatory pathways occur in chronic pain. Collectively, these changes result in amplification of nociception that promotes and sustains craniofacial chronic pain states. Conclusions The increased understanding gained of the physiological and pathological processing of nociception in the trigeminal system has provided new perspectives for the mechanistic understanding of acute craniofacial pain conditions and the peripheral and central adaptations that are related to pain chronification. Such knowledge may contribute to improvements in currently available treatments as well as to the development of novel analgesic therapies.
Collapse
Affiliation(s)
- Juliana Geremias Chichorro
- 1 Departamento de Farmacologia, Universidade Federal do Parana - UFPR Setor de Ciências Biológicas, Curitiba, PR, Brasil
| | - Frank Porreca
- 2 Department of Pharmacology, University of Arizona, Tucson, AZ, USA
| | - Barry Sessle
- 3 Department of Oral Physiology Faculty of Dentistry, University of Toronto, Toronto, Ontario, Canada.,4 Department of Physiology Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
8
|
Akerman S, Romero-Reyes M, Holland PR. Current and novel insights into the neurophysiology of migraine and its implications for therapeutics. Pharmacol Ther 2017; 172:151-170. [PMID: 27919795 DOI: 10.1016/j.pharmthera.2016.12.005] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Migraine headache and its associated symptoms have plagued humans for two millennia. It is manifest throughout the world, and affects more than 1/6 of the global population. It is the most common brain disorder, and is characterized by moderate to severe unilateral headache that is accompanied by vomiting, nausea, photophobia, phonophobia, and other hypersensitive symptoms of the senses. While there is still a clear lack of understanding of its neurophysiology, it is beginning to be understood, and it seems to suggest migraine is a disorder of brain sensory processing, characterized by a generalized neuronal hyperexcitability. The complex symptomatology of migraine indicates that multiple neuronal systems are involved, including brainstem and diencephalic systems, which function abnormally, resulting in premonitory symptoms, ultimately evolving to affect the dural trigeminovascular system, and the pain phase of migraine. The migraineur also seems to be particularly sensitive to fluctuations in homeostasis, such as sleep, feeding and stress, reflecting the abnormality of functioning in these brainstem and diencephalic systems. Implications for therapeutic development have grown out of our understanding of migraine neurophysiology, leading to major drug classes, such as triptans, calcitonin gene-related peptide receptor antagonists, and 5-HT1F receptor agonists, as well as neuromodulatory approaches, with the promise of more to come. The present review will discuss the current understanding of the neurophysiology of migraine, particularly migraine headache, and novel insights into the complex neural networks responsible for associated neurological symptoms, and how interaction of these networks with migraine pain pathways has implications for the development of novel therapeutics.
Collapse
Affiliation(s)
- Simon Akerman
- Department of Oral and Maxillofacial Pathology, Radiology and Medicine, New York University College of Dentistry, New York, NY 10010, USA.
| | - Marcela Romero-Reyes
- Department of Oral and Maxillofacial Pathology, Radiology and Medicine, New York University College of Dentistry, New York, NY 10010, USA
| | - Philip R Holland
- Basic and Clinical Neuroscience, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
| |
Collapse
|
9
|
Goadsby PJ, Holland PR, Martins-Oliveira M, Hoffmann J, Schankin C, Akerman S. Pathophysiology of Migraine: A Disorder of Sensory Processing. Physiol Rev 2017; 97:553-622. [PMID: 28179394 PMCID: PMC5539409 DOI: 10.1152/physrev.00034.2015] [Citation(s) in RCA: 1141] [Impact Index Per Article: 142.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Plaguing humans for more than two millennia, manifest on every continent studied, and with more than one billion patients having an attack in any year, migraine stands as the sixth most common cause of disability on the planet. The pathophysiology of migraine has emerged from a historical consideration of the "humors" through mid-20th century distraction of the now defunct Vascular Theory to a clear place as a neurological disorder. It could be said there are three questions: why, how, and when? Why: migraine is largely accepted to be an inherited tendency for the brain to lose control of its inputs. How: the now classical trigeminal durovascular afferent pathway has been explored in laboratory and clinic; interrogated with immunohistochemistry to functional brain imaging to offer a roadmap of the attack. When: migraine attacks emerge due to a disorder of brain sensory processing that itself likely cycles, influenced by genetics and the environment. In the first, premonitory, phase that precedes headache, brain stem and diencephalic systems modulating afferent signals, light-photophobia or sound-phonophobia, begin to dysfunction and eventually to evolve to the pain phase and with time the resolution or postdromal phase. Understanding the biology of migraine through careful bench-based research has led to major classes of therapeutics being identified: triptans, serotonin 5-HT1B/1D receptor agonists; gepants, calcitonin gene-related peptide (CGRP) receptor antagonists; ditans, 5-HT1F receptor agonists, CGRP mechanisms monoclonal antibodies; and glurants, mGlu5 modulators; with the promise of more to come. Investment in understanding migraine has been very successful and leaves us at a new dawn, able to transform its impact on a global scale, as well as understand fundamental aspects of human biology.
Collapse
Affiliation(s)
- Peter J Goadsby
- Basic and Clinical Neurosciences, Institute of Psychiatry, Psychology and Neuroscience, King's College, London, United Kingdom; Department of Neurology, University of California, San Francisco, San Francisco, California; Department of Neurology, University of Hamburg-Eppendorf, Hamburg, Germany; and Department of Neurology, University Hospital Bern-Inselspital, University of Bern, Bern, Switzerland
| | - Philip R Holland
- Basic and Clinical Neurosciences, Institute of Psychiatry, Psychology and Neuroscience, King's College, London, United Kingdom; Department of Neurology, University of California, San Francisco, San Francisco, California; Department of Neurology, University of Hamburg-Eppendorf, Hamburg, Germany; and Department of Neurology, University Hospital Bern-Inselspital, University of Bern, Bern, Switzerland
| | - Margarida Martins-Oliveira
- Basic and Clinical Neurosciences, Institute of Psychiatry, Psychology and Neuroscience, King's College, London, United Kingdom; Department of Neurology, University of California, San Francisco, San Francisco, California; Department of Neurology, University of Hamburg-Eppendorf, Hamburg, Germany; and Department of Neurology, University Hospital Bern-Inselspital, University of Bern, Bern, Switzerland
| | - Jan Hoffmann
- Basic and Clinical Neurosciences, Institute of Psychiatry, Psychology and Neuroscience, King's College, London, United Kingdom; Department of Neurology, University of California, San Francisco, San Francisco, California; Department of Neurology, University of Hamburg-Eppendorf, Hamburg, Germany; and Department of Neurology, University Hospital Bern-Inselspital, University of Bern, Bern, Switzerland
| | - Christoph Schankin
- Basic and Clinical Neurosciences, Institute of Psychiatry, Psychology and Neuroscience, King's College, London, United Kingdom; Department of Neurology, University of California, San Francisco, San Francisco, California; Department of Neurology, University of Hamburg-Eppendorf, Hamburg, Germany; and Department of Neurology, University Hospital Bern-Inselspital, University of Bern, Bern, Switzerland
| | - Simon Akerman
- Basic and Clinical Neurosciences, Institute of Psychiatry, Psychology and Neuroscience, King's College, London, United Kingdom; Department of Neurology, University of California, San Francisco, San Francisco, California; Department of Neurology, University of Hamburg-Eppendorf, Hamburg, Germany; and Department of Neurology, University Hospital Bern-Inselspital, University of Bern, Bern, Switzerland
| |
Collapse
|
10
|
Chebbi R, Boyer N, Monconduit L, Artola A, Luccarini P, Dallel R. The nucleus raphe magnus OFF-cells are involved in diffuse noxious inhibitory controls. Exp Neurol 2014; 256:39-45. [PMID: 24681000 DOI: 10.1016/j.expneurol.2014.03.006] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2013] [Revised: 03/01/2014] [Accepted: 03/14/2014] [Indexed: 12/11/2022]
Abstract
Diffuse noxious inhibitory controls (DNIC) are very powerful long-lasting descending inhibitory controls which are pivotal in modulating the activity of spinal and trigeminal nociceptive neurons. DNIC are subserved by a loop involving supraspinal structures such as the lateral parabrachial nucleus and the subnucleus reticularis dorsalis. Surprisingly, though, whether the nucleus raphe magnus (NRM), another supraspinal area which is long known to be important in pain modulation, is involved in DNIC is still a matter of discussion. Here, we reassessed the role of the NRM neurons in DNIC by electrophysiologically recording from wide dynamic range (WDR) neurons in the trigeminal subnucleus oralis and pharmacologically manipulating the NRM OFF- and ON-cells. In control conditions, C-fiber-evoked responses in trigeminal WDR neurons are inhibited by a conditioning noxious heat stimulation applied to the hindpaw. We show that inactivating the NRM by microinjecting the GABAA receptor agonist, muscimol, both facilitates C-fiber-evoked responses of trigeminal WDR neurons and strongly attenuates their inhibition by heat applied to the hindpaw. Interestingly, selective blockade of ON-cells by microinjecting the broad-spectrum excitatory amino acid antagonist, kynurenate, into the NRM neither affects C-fiber-evoked responses nor attenuates DNIC of trigeminal WDR neurons. These results indicate that the NRM tonically inhibits trigeminal nociceptive inputs and is involved in the neuronal network underlying DNIC. Moreover, within NRM, OFF-cells might be more specifically involved in both the tonic and phasic descending inhibitory controls of trigeminal nociception.
Collapse
Affiliation(s)
- R Chebbi
- Clermont Université, Université d'Auvergne, NEURO-DOL, BP 10448, F-63000 Clermont-Ferrand, France; INSERM, U1107, F-63001 Clermont-Ferrand, France; Faculté de médecine dentaire, Monastir, Tunisie
| | - N Boyer
- Clermont Université, Université d'Auvergne, NEURO-DOL, BP 10448, F-63000 Clermont-Ferrand, France; INSERM, U1107, F-63001 Clermont-Ferrand, France
| | - L Monconduit
- Clermont Université, Université d'Auvergne, NEURO-DOL, BP 10448, F-63000 Clermont-Ferrand, France; INSERM, U1107, F-63001 Clermont-Ferrand, France
| | - A Artola
- Clermont Université, Université d'Auvergne, NEURO-DOL, BP 10448, F-63000 Clermont-Ferrand, France; INSERM, U1107, F-63001 Clermont-Ferrand, France
| | - P Luccarini
- Clermont Université, Université d'Auvergne, NEURO-DOL, BP 10448, F-63000 Clermont-Ferrand, France; INSERM, U1107, F-63001 Clermont-Ferrand, France
| | - R Dallel
- Clermont Université, Université d'Auvergne, NEURO-DOL, BP 10448, F-63000 Clermont-Ferrand, France; INSERM, U1107, F-63001 Clermont-Ferrand, France.
| |
Collapse
|
11
|
Akhter F, Haque T, Sato F, Kato T, Ohara H, Fujio T, Tsutsumi K, Uchino K, Sessle BJ, Yoshida A. Projections from the dorsal peduncular cortex to the trigeminal subnucleus caudalis (medullary dorsal horn) and other lower brainstem areas in rats. Neuroscience 2014; 266:23-37. [PMID: 24502921 DOI: 10.1016/j.neuroscience.2014.01.046] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2013] [Revised: 01/10/2014] [Accepted: 01/23/2014] [Indexed: 01/27/2023]
Abstract
This study has revealed direct projections from the dorsal peduncular cortex (DP) in the medial prefrontal cortex (mPfC) to the trigeminal brainstem sensory nuclear complex and other lower brainstem areas in rats. We first examined the distribution of mPfC neurons projecting directly to the medullary dorsal horn (trigeminal subnucleus caudalis [Vc]) and trigeminal subnucleus oralis (Vo) which are known to receive direct projections from the lateral prefrontal cortex (insular cortex). After injections of the retrograde tracer Fluorogold (FG) into the rostro-dorsomedial part of laminae I/II of Vc (rdm-I/II-Vc), many neurons were labeled bilaterally (with an ipsilateral predominance) in the rostrocaudal middle level of DP (mid-DP) and not in other mPfC areas. After FG injections into the lateral and caudal parts of laminae I/II of Vc, or the Vo, no neurons were labeled in the mPfC. We then examined projections from the mid-DP by using the anterograde tracer biotinylated dextranamine (BDA). After BDA injections into the mid-DP, many axons and terminals were labeled bilaterally (with an ipsilateral predominance) in the rdm-I/II-Vc, periaqueductal gray and solitary tract nucleus, and ipsilaterally in the parabrachial nucleus and trigeminal mesencephalic nucleus. In addition, the connections of the mid-DP with the insular cortex were examined. Many BDA-labeled axons and terminals from the mid-DP were also found ipsilaterally in the caudalmost level of the granular and dysgranular insular cortex (GI/DI). After BDA injections into the caudalmost GI/DI, many axons and terminals were labeled ipsilaterally in the mid-DP. The projections from the mid-DP to the rdm-I/II-Vc and other brainstem nuclei suggest that mid-DP neurons may regulate intraoral and perioral sensory processing (including nociceptive processing) of rdm-I/II-Vc neurons directly or indirectly through the brainstem nuclei. The reciprocal connections between the mid-DP and caudalmost GI/DI suggest that this regulation may involve mid-DP interactions with the caudalmost GI/DI neurons.
Collapse
Affiliation(s)
- F Akhter
- Department of Oral Anatomy and Neurobiology, Graduate School of Dentistry, Osaka University, Suita, Osaka 565-0871, Japan
| | - T Haque
- Department of Oral Anatomy and Neurobiology, Graduate School of Dentistry, Osaka University, Suita, Osaka 565-0871, Japan
| | - F Sato
- Department of Oral Anatomy and Neurobiology, Graduate School of Dentistry, Osaka University, Suita, Osaka 565-0871, Japan
| | - T Kato
- Department of Oral Anatomy and Neurobiology, Graduate School of Dentistry, Osaka University, Suita, Osaka 565-0871, Japan
| | - H Ohara
- Department of Oral Anatomy and Neurobiology, Graduate School of Dentistry, Osaka University, Suita, Osaka 565-0871, Japan
| | - T Fujio
- Department of Oral Anatomy and Neurobiology, Graduate School of Dentistry, Osaka University, Suita, Osaka 565-0871, Japan
| | - K Tsutsumi
- Department of Oral Anatomy and Neurobiology, Graduate School of Dentistry, Osaka University, Suita, Osaka 565-0871, Japan
| | - K Uchino
- Department of Oral Anatomy and Neurobiology, Graduate School of Dentistry, Osaka University, Suita, Osaka 565-0871, Japan
| | - B J Sessle
- Department of Oral Physiology, Faculty of Dentistry, University of Toronto, Toronto, Ontario M5G 1G6, Canada
| | - A Yoshida
- Department of Oral Anatomy and Neurobiology, Graduate School of Dentistry, Osaka University, Suita, Osaka 565-0871, Japan.
| |
Collapse
|
12
|
Mastication-induced vertigo and nystagmus. J Neurol 2013; 261:480-9. [DOI: 10.1007/s00415-013-7221-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2013] [Revised: 12/13/2013] [Accepted: 12/13/2013] [Indexed: 12/19/2022]
|
13
|
Warren S, May PJ. Morphology and connections of intratrigeminal cells and axons in the macaque monkey. Front Neuroanat 2013; 7:11. [PMID: 23754988 PMCID: PMC3665935 DOI: 10.3389/fnana.2013.00011] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2013] [Accepted: 04/24/2013] [Indexed: 11/13/2022] Open
Abstract
Trigeminal primary afferent fibers have small receptive fields and discrete submodalities, but second order trigeminal neurons often display larger receptive fields with complex, multimodal responses. Moreover, while most large caliber afferents terminate exclusively in the principal trigeminal nucleus, and pars caudalis (sVc) of the spinal trigeminal nucleus receives almost exclusively small caliber afferents, the characteristics of second order neurons do not always reflect this dichotomy. These surprising characteristics may be due to a network of intratrigeminal connections modifying primary afferent contributions. This study characterizes the distribution and morphology of intratrigeminal cells and axons in a macaque monkeys. Tracer injections centered in the principal nucleus (pV) and adjacent pars oralis retrogradely labeled neurons bilaterally in pars interpolaris (sVi), but only ipsilaterally, in sVc. Labeled axons terminated contralaterally within sVi and caudalis. Features of the intratrigeminal cells in ipsilateral sVc suggest that both nociceptive and non-nociceptive neurons project to principalis. A commissural projection to contralateral principalis was also revealed. Injections into sVc labeled cells and terminals in pV and pars oralis on both sides, indicating the presence of bilateral reciprocal connections. Labeled terminals and cells were also present bilaterally in sVi and in contralateral sVc. Interpolaris injections produced labeling patterns similar to those of sVc. Thus, the rostral and caudal poles of the macaque trigeminal complex are richly interconnected by ipsilateral ascending and descending connections providing an anatomical substrate for complex analysis of oro-facial stimuli. Sparser reciprocal crossed intratrigeminal connections may be important for conjugate reflex movements, such as the corneal blink reflex.
Collapse
Affiliation(s)
- Susan Warren
- Department of Neurobiology and Anatomical Sciences, University of Mississippi Medical Center Jackson, MS, USA
| | | |
Collapse
|
14
|
Projections from the insular cortex to pain-receptive trigeminal caudal subnucleus (medullary dorsal horn) and other lower brainstem areas in rats. Neuroscience 2013; 233:9-27. [DOI: 10.1016/j.neuroscience.2012.12.024] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2012] [Revised: 12/13/2012] [Accepted: 12/17/2012] [Indexed: 11/18/2022]
|
15
|
Response properties of temporomandibular joint mechanosensitive neurons in the trigeminal sensory complex of the rabbit. Exp Brain Res 2012; 222:113-23. [PMID: 22855309 DOI: 10.1007/s00221-012-3200-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2012] [Accepted: 07/20/2012] [Indexed: 10/28/2022]
Abstract
The neurophysiological properties of neurons sensitive to TMJ movement (TMJ neurons) in the trigeminal sensory complex (Vcomp) during passive movement of the isolated condyle were examined in 46 rabbits. Discharges of TMJ neurons from the rostral part of the Vcomp were recorded with a microelectrode when the isolated condyle was moved manually and with a computer-regulated mechanostimulator. A total of 443 neurons responding to mechanical stimulation of the face and oral cavity were recorded from the brainstem. Twenty-one TMJ neurons were detected rostrocaudally from the dorsal part of the trigeminal principal sensory nucleus (NVsnpr), subnucleus oralis of the trigeminal spinal nucleus, and reticular formation surrounding the trigeminal motor nucleus. Most of the TMJ neurons were located in the dorso-rostral part of the NVsnpr. Of the TMJ units recorded, 90 % were slowly adapting and 26 % had an accompanying resting discharge. The majority (86 %) of the TMJ units responded to the movement of the isolated condyle in the anterior and/or ventral directions, and half were sensitive to the condyle movement in a single direction. The discharge frequencies of TMJ units increased as the condyle displacement and constant velocity (5 mm/s) increased within a 5-mm anterior displacement of the isolated condyle. Based on these results, we conclude that sensory information is processed by TMJ neurons encoding at least joint position and displacement in the physiological range of mandibular displacement.
Collapse
|
16
|
Tajti J, Szok D, Párdutz Á, Tuka B, Csáti A, Kuris A, Toldi J, Vécsei L. Where does a migraine attack originate? In the brainstem. J Neural Transm (Vienna) 2012; 119:557-68. [PMID: 22426834 DOI: 10.1007/s00702-012-0788-9] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2011] [Accepted: 03/03/2012] [Indexed: 11/27/2022]
Abstract
Migraine is a common, paroxysmal, highly disabling primary headache disorder. The origin of migraine attacks is enigmatic. Numerous clinical and experimental results suggest that the activation of distinct brainstem nuclei is crucial in its pathogenesis, but the primary cause of this activation is not fully understood. We conclude that the initialization of a migraine attack can be explained as an altered function of the neuronal elements of the brainstem nuclei. In light of our findings and the literature data, we can assume that migraine is a subcortical disorder of a specific brainstem area.
Collapse
Affiliation(s)
- J Tajti
- Department of Neurology, Albert Szent-Györgyi Clinical Centre, University of Szeged, Semmelweis u. 6, Szeged 6725, Hungary
| | | | | | | | | | | | | | | |
Collapse
|
17
|
The role of trigeminal interpolaris-caudalis transition zone in persistent orofacial pain. INTERNATIONAL REVIEW OF NEUROBIOLOGY 2011; 97:207-25. [PMID: 21708312 DOI: 10.1016/b978-0-12-385198-7.00008-4] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Previous studies have established the role of the medullary dorsal horn or the subnucleus caudalis of the spinal trigeminal complex, a homolog of the dorsal horn of the spinal cord, in trigeminal pain processing. In addition to the medullary dorsal horn, recent studies have pointed out increased excitability and sensitization of trigeminal interpolaris and caudalis transition zone (Vi/Vc) following deep orofacial injury, involving neuron-glia-cytokine interactions. The Vi/Vc transition zone accesses rostral brain regions that are important for descending pain modulation, and somatovisceral and somatoautonomic processing and plays a unique role in coordinating trigeminal nocifensive responses.
Collapse
|
18
|
Migraine is a neuronal disease. J Neural Transm (Vienna) 2010; 118:511-24. [PMID: 21161301 DOI: 10.1007/s00702-010-0515-3] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2010] [Accepted: 10/19/2010] [Indexed: 10/18/2022]
Abstract
Migraine is a common, paroxysmal, highly disabling primary headache disorder with a genetic background. The primary cause and the origin of migraine attacks are enigmatic. Numerous clinical and experimental results suggest that activation of the trigeminal system (TS) is crucial in its pathogenesis, but the primary cause of this activation is not fully understood. Since activation of the peripheral and central arms of the TS might be related to cortical spreading depression and to the activity of distinct brainstem nuclei (e.g. the periaqueductal grey), we conclude that migraine can be explained as an altered function of the neuronal elements of the TS, the brainstem, and the cortex, the centre of this process comprising activation of the TS. In light of our findings and the literature data, therefore, we can assume that migraine is mainly a neuronal disease.
Collapse
|
19
|
Devoize L, Doméjean S, Melin C, Raboisson P, Artola A, Dallel R. Organization of projections from the spinal trigeminal subnucleus oralis to the spinal cord in the rat: A neuroanatomical substrate for reciprocal orofacial–cervical interactions. Brain Res 2010; 1343:75-82. [DOI: 10.1016/j.brainres.2010.04.076] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2010] [Revised: 04/27/2010] [Accepted: 04/28/2010] [Indexed: 10/19/2022]
|
20
|
Neurobiology of migraine. Neuroscience 2009; 161:327-41. [DOI: 10.1016/j.neuroscience.2009.03.019] [Citation(s) in RCA: 290] [Impact Index Per Article: 18.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2008] [Revised: 02/28/2009] [Accepted: 03/04/2009] [Indexed: 01/27/2023]
|
21
|
Han SM, Ahn DK, Youn DH. Pharmacological analysis of excitatory and inhibitory synaptic transmission in horizontal brainstem slices preserving three subnuclei of spinal trigeminal nucleus. J Neurosci Methods 2008; 167:221-8. [PMID: 17900704 DOI: 10.1016/j.jneumeth.2007.08.011] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2007] [Revised: 08/16/2007] [Accepted: 08/18/2007] [Indexed: 11/26/2022]
Abstract
Spinal trigeminal nucleus (Vsp) consists of three subnuclei: oralis (Vo), interpolaris (Vi) and caudalis (Vc). Previous anatomical studies using antero-/retro-grade tracers have suggested that intersubnuclear ascending/descending synaptic transmissions exist between subnuclei. However, pharmacological properties of the intersubnuclear synaptic transmission have not been studied yet. Since three subnuclei are located in Vsp along rostro-caudal axis, it will be necessary to prepare horizontal brainstem slices to perform pharmacological analysis of the intersubnuclear synaptic transmission. We here show horizontal brainstem slices retaining three subnuclei, and that, using blind whole-cell recordings in the slices, synaptic transmission may be abundantly retained between subnuclei in the horizontal slices, except for the transmission from Vo to Vc. Finally, pharmacological analysis shows that excitatory and inhibitory synaptic responses, respectively, are mediated by AMPA and NMDA receptors and by GABA(A) and glycine receptors, with a differential contribution to the synaptic responses between subnuclei. We therefore conclude that horizontal brainstem slices will be a useful preparation for studies on intersubnuclear synaptic transmission, modulation and plasticity between subnuclei, as well as, further, other brainstem nuclei.
Collapse
Affiliation(s)
- Sang-Mi Han
- Department of Oral Physiology, School of Dentistry and Brain Korea 21, Kyungpook National University, 188-1 Samdeok 2-ga, Chung-gu, Daegu 700-412, Republic of Korea
| | | | | |
Collapse
|
22
|
Sugiyo S, Takemura M, Dubner R, Ren K. Trigeminal transition zone/rostral ventromedial medulla connections and facilitation of orofacial hyperalgesia after masseter inflammation in rats. J Comp Neurol 2006; 493:510-23. [PMID: 16304628 DOI: 10.1002/cne.20797] [Citation(s) in RCA: 64] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Recent studies have implicated a role for the trigeminal interpolaris/caudalis (Vi/Vc) transition zone in response to orofacial injury. Using combined neuronal tracing and Fos protein immunocytochemistry, we investigated functional connections between the Vi/Vc transition zone and rostral ventromedial medulla (RVM), a key structure in descending pain modulation. Rats were injected with a retrograde tracer, FluoroGold, into the RVM 7 days before injection of an inflammatory agent, complete Freund's adjuvant, into the masseter muscle and perfused at 2 hours postinflammation. A population of neurons in the ventral Vi/Vc overlapping with caudal ventrolateral medulla, and lamina V of the trigeminal subnucleus caudalis (Vc), exhibited FluoroGold/Fos double staining, suggesting the activation of the trigeminal-RVM pathway after inflammation. No double-labeled neurons were found in the dorsal Vi/Vc and laminae I-IV of Vc. Injection of an anterograde tracer, Phaseolus vulgaris leucoagglutinin, into the RVM resulted in labeling profiles overlapped with the region that showed FluoroGold/Fos double labeling, suggesting reciprocal connections between RVM and Vi/Vc. Lesions of Vc with a soma-selective neurotoxin, ibotenic acid, significantly reduced inflammation-induced Fos expression as well as the number of FluoroGold/Fos double-labeled neurons in the ventral Vi/Vc (P<0.05). Compared with control rats, lesions of the RVM (n=6) or Vi/Vc (n=6) with ibotenic acid led to the elimination or attenuation of masseter hyperalgesia/allodynia developed after masseter inflammation (P<0.05-0.01). The present study demonstrates reciprocal connections between the ventral Vi/Vc transition zone and RVM. The Vi/Vc-RVM pathway is activated after orofacial deep tissue injury and plays a critical role in facilitating orofacial hyperalgesia.
Collapse
Affiliation(s)
- Shinichi Sugiyo
- Department of Biomedical Sciences, Dental School, and Program in Neuroscience, University of Maryland, Baltimore, Maryland 21201-1586, USA
| | | | | | | |
Collapse
|
23
|
Giaconi E, Deriu F, Tolu E, Cuccurazzu B, Yates BJ, Billig I. Transneuronal tracing of vestibulo-trigeminal pathways innervating the masseter muscle in the rat. Exp Brain Res 2005; 171:330-9. [PMID: 16307240 PMCID: PMC2396390 DOI: 10.1007/s00221-005-0275-8] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2005] [Accepted: 10/19/2005] [Indexed: 11/26/2022]
Abstract
Previous studies reported that the activity of trigeminal motoneurons innervating masseter muscles is modulated by vestibular inputs. We performed the present study to provide an anatomical substrate for these physiological observations. The transynaptic retrograde tracer pseudorabies virus-Bartha was injected into multiple sites of the lower third of the superficial layer of the masseter muscle in rats, a subset of which underwent a sympathectomy prior to virus injections, and the animals were euthanized 24-120 h later. Labeled masseteric motoneurons were first found in the ipsilateral trigeminal motor nucleus following a 24-h postinoculation period; subsequent to 72-h survival times, the number of infected motoneurons increased, and at > or =96 h many of these cells showed signs of cytopathic changes. Following 72-h survival times, a few transynaptically labeled neurons appeared bilaterally in the medial vestibular nucleus (MVe) and the caudal prepositus hypoglossi (PH) and in the ipsilateral spinal vestibular nucleus (SpVe). At survival times of 96-120 h, labeled neurons were consistently observed bilaterally in all vestibular nuclei (VN), although the highest concentration of infected cells was located in the caudal part of the MVe, the SpVe, and the caudal portion of PH. The distribution and density of labeling in the VN and PH were similar in sympathectomized and nonsympathectomized rats. These anatomical data provide the first direct evidence that neurons in the VN and PH project bilaterally to populations of motoneurons innervating the lower third of the superficial layer of the masseter muscle. The MVe, PH, and SpVe appear to play a predominant integrative role in producing vestibulo-trigeminal responses.
Collapse
Affiliation(s)
- E Giaconi
- Department of Otolaryngology, Eye and Ear Institute, University of Pittsburgh, Room 519, Pittsburgh, PA 15213, USA
| | | | | | | | | | | |
Collapse
|
24
|
Knight Y. Brainstem Modulation of Caudal Trigeminal Nucleus: A Model for Understanding Migraine Biology and Future Drug Targets. ACTA ACUST UNITED AC 2005. [DOI: 10.1111/j.1743-5013.2005.00019.x] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
25
|
Knight YE, Classey JD, Lasalandra MP, Akerman S, Kowacs F, Hoskin KL, Goadsby PJ. Patterns of fos expression in the rostral medulla and caudal pons evoked by noxious craniovascular stimulation and periaqueductal gray stimulation in the cat. Brain Res 2005; 1045:1-11. [PMID: 15910757 DOI: 10.1016/j.brainres.2005.01.091] [Citation(s) in RCA: 57] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2004] [Revised: 01/14/2005] [Accepted: 01/14/2005] [Indexed: 11/28/2022]
Abstract
Functional imaging studies and clinical evidence suggest that structures in the brainstem contribute to migraine pathophysiology with a strong association between the brainstem areas, such as periaqueductal gray (PAG), and the headache phase of migraine. Stimulation of the superior sagittal sinus (SSS) in humans evokes head pain. Second-order neurons in the trigeminal nucleus that are activated by SSS stimulation can be inhibited by PAG stimulation. The present study was undertaken to identify pontine and medullary structures that respond to noxious stimulation of the superior sagittal sinus or to ventrolateral PAG stimulation. The distribution of neurons expressing the protein product (fos) of the c-fos immediate early gene were examined in the rostral medulla and caudal pons of the cat after (i) sham, (ii) stimulation of the superior sagittal sinus, (iii) stimulation of the superior sagittal sinus with PAG stimulation, or (iv) stimulation of the PAG alone. The structures examined for fos were the trigeminal nucleus, infratrigeminal nucleus, reticular nuclei, nucleus raphe magnus, pontine blink premotor area, and superior salivatory nucleus. Compared with all other interventions, fos expression was significantly greater in the trigeminal nucleus and superior salivatory nucleus after SSS stimulation. After PAG with SSS stimulation, on the side ipsilateral to the site of PAG stimulation, fos was significantly greater in the nucleus raphe magnus. These structures are likely to be involved in the neurobiology of migraine.
Collapse
Affiliation(s)
- Yolande E Knight
- Headache Group, Institute of Neurology, Queen Square, London WC1N 3BG, UK
| | | | | | | | | | | | | |
Collapse
|
26
|
Voisin DL, Doméjean-Orliaguet S, Chalus M, Dallel R, Woda A. Ascending connections from the caudal part to the oral part of the spinal trigeminal nucleus in the rat. Neuroscience 2002; 109:183-93. [PMID: 11784709 DOI: 10.1016/s0306-4522(01)00456-0] [Citation(s) in RCA: 42] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The brainstem trigeminal somatosensory complex, while sharing many common aspects with the spinal somatosensory system, displays features specific to orofacial information processing. One of those is the redundant representation of peripheral structures within the various subnuclei of the complex. A functional redundancy also exists since a single sensory modality, e.g. nociception, may be processed within different subnuclei. In the present study, we addressed the question whether anatomical connections from the caudal part to the oral part of the spinal trigeminal nucleus may support topographical and functional redundancy within the rat trigeminal somatosensory complex. The retrograde tracer tetramethylrhodamine-dextran was injected iontophoretically into the oral subnucleus of anaesthetised rats. Cell bodies labelled retrogradely from the oral subnucleus were observed in laminae III-IV and V of the ipsilateral caudal subnucleus consistently, and to a lesser degree in lamina I. Such a distribution of retrogradely labelled cells suggested that specific subsets of neurones may relay nociceptive information, and others non-nociceptive information. Furthermore, intratrigeminal connections conserved the somatotopic distribution of primary afferents in the two subnuclei. First, injections of tracer in the dorsomedial and ventrolateral parts of the oral subnucleus resulted in retrograde labelling of the dorsal and ventral parts of the caudal subnucleus respectively. Second, animals that received tracer into the ventrolateral oral subnucleus displayed more caudal labelling than animals that were injected into the dorsomedial oral subnucleus. These findings show the existence of anatomical connections from the caudal part to the oral part of the spinal trigeminal nucleus in the rat. The connections conserve the somatotopic distribution of primary afferents in the two subnuclei. They provide an anatomical substrate for the indirect activation of trigeminal oral subnucleus neurones by somatosensory stimuli through the caudal subnucleus.
Collapse
Affiliation(s)
- D L Voisin
- Laboratoire de Physiologie Oro-faciale, Faculté de Chirurgie Dentaire, 11 boulevard Charles de Gaulle, 63000 Clermont-Ferrand, France.
| | | | | | | | | |
Collapse
|
27
|
Ressot C, Collado V, Molat JL, Dallel R. Strychnine alters response properties of trigeminal nociceptive neurons in the rat. J Neurophysiol 2001; 86:3069-72. [PMID: 11731563 DOI: 10.1152/jn.2001.86.6.3069] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The purpose of this study was to examine the role of glycine in sensory processes in the spinal trigeminal nucleus oralis (Sp5O). We evaluated the effect of intravenous administration of strychnine, a glycine receptor antagonist, on the responses of Sp5O convergent neurons evoked by innocuous peripheral electrical and mechanical stimuli in halothane-anesthetized rats. Strychnine significantly increased the Abeta-fiber-evoked activities of Sp5O neurons to electrical stimulation in a dose-dependent (0.2-0.8 mg/kg) fashion. The response to air-jet stimulation was also significantly enhanced at the highest dose of strychnine. These findings indicate that glycinergic neurons participate in the control of the flow of information conveyed to Sp5O nociceptive neurons by myelinated low-threshold mechanoreceptive afferents. Thus, alteration of trigeminal glycinergic modulation may contribute to the dynamic mechanical allodynia that occurs in trigeminal neuropathies.
Collapse
Affiliation(s)
- C Ressot
- Laboratoire de Physiologie Oro-Faciale, Faculté de Chirurgie Dentaire, 63000 Clermont-Ferrand, France
| | | | | | | |
Collapse
|
28
|
Buisseret-Delmas C, Compoint C, Delfini C, Buisseret P. Organisation of reciprocal connections between trigeminal and vestibular nuclei in the rat. J Comp Neurol 1999; 409:153-68. [PMID: 10363717 DOI: 10.1002/(sici)1096-9861(19990621)409:1<153::aid-cne11>3.0.co;2-#] [Citation(s) in RCA: 97] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
In order to study the connection patterns between the sensory trigeminal and the vestibular nuclei (VN), injections of anterogradely and/or retrogradely transported neuronal tracers were made in the rat. Trigeminal injections resulted in anterogradely labelled fibres, with an ipsilateral preponderance, within the VN: in the ventrolateral part of the inferior nucleus (IVN), in the lateral part of the medial nucleus (MVN), in the lateral nucleus (LVN) with a higher density in its ventral half, and in the superior nucleus (SVN), more in the periphery than in the central part. Moderate trigeminal projections were observed in the small vestibular groups f, x and y/l and in the nucleus prepositus hypoglossi. Additional retrogradely labelled neurones were seen in the IVN, MVN, and LVN, in the same regions as those receiving trigeminal afferents. Morphological analysis of vestibular neurones demonstrated that vestibulo-trigeminal neurones are relatively small and belong to a different population than those receiving projections from the trigeminal nuclei. The trigeminovestibular and vestibulo-trigeminal relationships were confirmed by tracer injections in the VN. The results show that, in the VN, there is sensory information from facial receptors in addition to those reported from the neck and body. These facial afferents complement those from the neck and lower spinal levels in supplying important somatosensory information from the face and eye muscles. The oculomotor connections of the respective zones of the VN receiving trigeminal afferents suggest that sensory inputs from the face, including extraocular proprioception, may, through this pathway, influence the vestibular control of eye and head movements.
Collapse
Affiliation(s)
- C Buisseret-Delmas
- Laboratoire de Neuroanatomie Fonctionnelle des Systèmes Sensorimoteurs, Paris, France
| | | | | | | |
Collapse
|
29
|
Vinay L, Cazalets JR, Clarac F. Evidence for the existence of a functional polysynaptic pathway from trigeminal afferents to lumbar motoneurons in the neonatal rat. Eur J Neurosci 1995; 7:143-51. [PMID: 7711930 DOI: 10.1111/j.1460-9568.1995.tb01028.x] [Citation(s) in RCA: 23] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Stimulation of trigeminal afferents has been reported to have powerful effects on the spinal cord in adult animals of several species. In the present study, the pathway transmitting these influences was investigated in the neonatal rat. Experiments were performed on in vitro brainstem/spinal cord preparations. Stimulation of the trigeminal nerve evoked bilateral polysynaptic discharges in lumbar ventral roots. Intracellular recordings from lumbar motoneurons showed mainly excitatory responses, although a few inhibitory responses were also observed. Experiments with perfusion of different parts of the preparation with general or selective synaptic blockers revealed a synaptic relay under GABAergic control in the brainstem, and at least one synapse in the cervical and in the thoracic spinal cord. The involvement of lumbar interneurons was established by perfusing the lumbar enlargement with saline containing either a high concentration of divalent ions or mephenesin in order to reduce transmission along polysynaptic pathways. The contribution of excitatory amino acid transmission was evaluated and was found to evoke mixed receptor responses. The course of the pathway was traced by using different lesions to the brainstem and spinal cord. The pathway was found to be ipsilateral in the brainstem and to become bilateral in the spinal cord. The results of the present study demonstrate that polysynaptic sensorimotor pathways are present at birth. The results are discussed in relation to the pontomedullary locomotor strip, which has been thought to share many features with the trigeminal system.
Collapse
Affiliation(s)
- L Vinay
- CNRS, NBM, Marseille, France
| | | | | |
Collapse
|
30
|
Ginestal E, Matute C. Gamma-aminobutyric acid-immunoreactive neurons in the rat trigeminal nuclei. HISTOCHEMISTRY 1993; 99:49-55. [PMID: 8468194 DOI: 10.1007/bf00268020] [Citation(s) in RCA: 52] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
The distribution of GABAergic neurons in the rat trigeminal nuclei was studied using a highly specific monoclonal antibody (mAb3A12) to gamma-aminobutyric acid (GABA). Immunopositive cells were relatively abundant in the marginal and gelatinosa beds of the caudal part of the trigeminal spinal tract nucleus, and in the dorsomedial areas of the oral subnucleus and the principal nucleus. A high density of GABA-immunoreactive somata was also found in the rostral part of the oral subnucleus and in the adjacent parvicellular reticular formation as well as in the supratrigeminal and intertrigeminal regions. Thus, the distribution of the GABAergic cells showed a relatively high density in areas related to the convergence of sensory stimuli, and in zones that contain interneurons inhibiting masticatory motoneurons. The results suggest, therefore, that GABA might play an important role both in discriminative sensory processing and in reflex modulation of the orofacial region.
Collapse
Affiliation(s)
- E Ginestal
- Departamento de Neurociencias, Facultad de Medicina y Odontología, Universidad del País Vasco, Leioa, Spain
| | | |
Collapse
|
31
|
Brainstem pathways of the initiation of locomotion. NEUROPHYSIOLOGY+ 1992. [DOI: 10.1007/bf01052569] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
32
|
Jacquin MF, Chiaia NL, Haring JH, Rhoades RW. Intersubnuclear connections within the rat trigeminal brainstem complex. Somatosens Mot Res 1990; 7:399-420. [PMID: 2291376 DOI: 10.3109/08990229009144716] [Citation(s) in RCA: 113] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Prior intracellular recording and labeling experiments have documented local-circuit and projection neurons in the spinal trigeminal (V) nucleus with axons that arborize in more rostral and caudal spinal trigeminal subnuclei and nucleus principalis. Anterograde tracing studies were therefore carried out to assess the origin, extent, distribution, and morphology of such intersubnuclear axons in the rat trigeminal brainstem nuclear complex (TBNC). Phaseolus vulgaris leucoagglutinin (PHA-L) was used as the anterograde marker because of its high sensitivity and the morphological detail provided. Injections restricted to TBNC subnucleus caudalis resulted in dense terminal labeling in each of the more rostral ipsilateral subnuclei. Subnucleus interpolaris projected ipsilaterally and heavily to magnocellular portions of subnucleus caudalis, as well as subnucleus oralis and nucleus principalis. Nucleus principalis, on the other hand, had only a sparse projection to each of the caudal ipsilateral subnuclei. Intersubnuclear axons most frequently traveled in the deep bundles within the TBNC, the V spinal tract, and the reticular formation. They gave rise to a number of circumscribed, highly branched arbors with many boutons of the terminal and en passant types. Retrograde single- or multiple-labeling experiments assessed the cells giving rise to TBNC intersubnuclear collaterals. Horseradish peroxidase (HRP) and/or fluorescent tracer injections into the thalamus, colliculus, cerebellum, nucleus principalis, and/or subnucleus caudalis revealed large numbers of neurons in subnuclei caudalis, interpolaris, and oralis projecting to the region of nucleus principalis. Cells projecting to more caudal spinal trigeminal regions were most numerous in subnuclei interpolaris and oralis. Some cells in lamina V of subnucleus caudalis and in subnuclei interpolaris and oralis projected to thalamus and/or colliculus, as well as other TBNC subnuclei. Such collateral projections were rare in nucleus principalis and more superficial laminae of subnucleus caudalis. TBNC cells labeled by cerebellar injections were not double-labeled by tracer injections into the thalamus, colliculus, or TBNC. These findings lend generality to currently available data obtained with intracellular recording and HRP labeling methods, and suggest that most intersubnuclear axons originate in TBNC local-circuit neurons, though some originate in cells that project to midbrain and/or diencephalon.
Collapse
Affiliation(s)
- M F Jacquin
- Department of Anatomy and Neurobiology, St. Louis University School of Medicine, Missouri 63104
| | | | | | | |
Collapse
|
33
|
Chiang CY, Hu JW, Dostrovsky JO, Sessle BJ. Changes in mechanoreceptive field properties of trigeminal somatosensory brainstem neurons induced by stimulation of nucleus raphe magnus in cats. Brain Res 1989; 485:371-81. [PMID: 2720419 DOI: 10.1016/0006-8993(89)90581-7] [Citation(s) in RCA: 23] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Experiments were carried out on adult anesthetized cats in which the effects of nucleus raphe magnus (NRM) conditioning stimulation (20 ms) were tested on the responses evoked by orofacial stimuli in single brainstem neurons of trigeminal (V) subnucleus oralis. The NRM stimulation induced inhibition of the responses of 57 of 77 low-threshold mechanoreceptive (LTM) neurons and the one wide-dynamic range (WDR) neuron tested. The duration of the neuronal inhibition ranged from 300-600 ms and the mean threshold for inhibition ranged from 47.8 +/- 4.8 to 102.7 +/- 15 microA depending on the orofacial stimulation site (skin or tooth pulp) and form (mechanical or electrical) of cutaneous stimuli used to evoke neuronal responses. In 20 LTM neurons showing NRM-induced inhibition that were specifically examined for the effects of NRM stimulation on the mechanoreceptive field, one population (n = 11) showed shrinkage (mean 55 +/- 4.4% from control area) of the mechanoreceptive field while the remaining neurons (n = 9) showed no change in mechanoreceptive field size during NRM stimulation. The former group of neurons were also distinguished from the latter neurons by their significantly larger mechanoreceptive field and the activation of the majority of them by electrical stimuli applied outside their mechanoreceptive field. The responses of these neurons evoked by low-threshold inputs from the edge of the mechanoreceptive field were more sensitive to NRM conditioning stimulation than responses evoked from the mechanoreceptive field center, as judged by threshold, magnitude and duration of the NRM-induced inhibition. These findings underscore the sensitivity of LTM neurons to NRM influences. They also reveal a particular population of oralis neurons which have a differential sensitivity of low-threshold inputs evoked from the edge compared to the center of the mechanoreceptive field.
Collapse
Affiliation(s)
- C Y Chiang
- Faculty of Dentistry, University of Toronto, Ont., Canada
| | | | | | | |
Collapse
|
34
|
Beresovskii VK, Bayev KV. New locomotor regions of the brainstem revealed by means of electrical stimulation. Neuroscience 1988; 26:863-9. [PMID: 3200432 DOI: 10.1016/0306-4522(88)90105-4] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
New sites in the brainstem eliciting treadmill locomotion have been revealed in decerebrated cats by electrical stimulation. These are the cochlear nuclei, cuneate nucleus, spinocerebellar tracts, and substantia grisea centralis at the level of red nuclei which lie outside the known locomotor regions. Participation of neurons and fibers forming ascending sensory tracts (medial and lateral lemniscus) is of special interest in initiation of locomotion. Collaterals of these tracts pass through the hypothalamic and mesencephalic locomotor regions and may contribute largely to initiation of locomotor generators. Hypotheses about the leading role of non-specific afferent activation of the brainstem reticular formation in initiation of locomotion are put forward.
Collapse
Affiliation(s)
- V K Beresovskii
- Department of Physiology of the Spinal Cord, A. A. Bogomoletz Institute of Physiology, Academy of Sciences, Kiev, U.S.S.R
| | | |
Collapse
|
35
|
Yakhnitsa VA, Gura EV. Effects of partial bulbar section on inhibition of jaw-opening reflexes induced by central gray matter stimulation in the cat. NEUROPHYSIOLOGY+ 1988. [DOI: 10.1007/bf01056628] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
36
|
Baev KV, Berezovskii VK, Esipenko VB. Structural organization and connections of the cat bulbar locomotor strip. NEUROPHYSIOLOGY+ 1988. [DOI: 10.1007/bf01056620] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
37
|
Ujihara H, Sasa M, Fujita Y, Takaori S. Opioid-mediated inhibition from the subnucleus caudalis of spinal trigeminal nucleus to the neurons in the subnucleus oralis. Brain Res 1987; 418:52-7. [PMID: 3664275 DOI: 10.1016/0006-8993(87)90961-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
The influence of enkephalin-containing neurons in the subnucleus caudalis of the spinal trigeminal nucleus (STN caudalis) on the subnucleus oralis of the STN (STN oralis) was examined using chloral hydrate-anesthetized rats. In the STN oralis, conditioning stimuli applied to the STN caudalis 10-50 ms preceding the test stimulus inhibited spikes produced by tooth pulp stimulation in type B interneuron, which was activated by orthodromic stimulation but not by thalamic stimulation, without affecting those of the relay neuron. When the type B interneurons were further classified into type B1 and type B2 neurons, which were characterized by the occurrence of the STN caudalis-induced inhibition with long and short latencies, respectively, microiontophoretically applied naloxone reduced the STN caudalis-induced inhibition of th orthodromic spikes of type B1 interneurons with little effects on type B2 interneuron. Furthermore, naloxone-reversible inhibition of tooth pulp-induced spikes of the type B1 interneurons were also observed during iontophoretic application of enkephalin. These results suggest that the type B1 interneurons in the STN oralis are inhibited by opioid peptides-containing neurons in the STN caudalis.
Collapse
Affiliation(s)
- H Ujihara
- Department of Pharmacology, Faculty of Medicine, Kyoto University, Japan
| | | | | | | |
Collapse
|
38
|
Byrum CE, Guyenet PG. Afferent and efferent connections of the A5 noradrenergic cell group in the rat. J Comp Neurol 1987; 261:529-42. [PMID: 2440916 DOI: 10.1002/cne.902610406] [Citation(s) in RCA: 204] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
The supraspinal afferent and efferent connections of the A5 noradrenergic cell group were examined in rats. Very small deposits of HRP-WGA were made in the rostral A5 area. Catecholamine histofluorescence techniques were used to confirm that the deposits overlapped the A5 column. Retrogradely labeled cells were present in the perifornical area and paraventricular nucleus of the hypothalamus, the Kölliker-Fuse nucleus, dorsal parabrachial area, intermediate and caudal portions of the nucleus of the solitary tract, and the ventral medullary reticular formation in the areas of the A1 and B1 cell groups. Anterograde HRP-WGA labeling was found in several areas of the subcortical CNS. The contribution of A5 neurons to this labeling was confirmed with retrogradely transported fluorescent latex microspheres combined with catecholamine histofluorescence techniques. The A5 cell group was found to have significant projections to the central nucleus of the amygdala, perifornical area of the hypothalamus, midbrain periaqueductal gray, parabrachial area, and the nucleus of the solitary tract. Other A5 projections include the paraventricular nucleus of the thalamus, the bed nucleus of the stria terminalis, and possibly the zona incerta and lateral and dorsal hypothalamic areas. In addition, A5 neurons may innervate the ventrolateral reticular formation of the medulla. Virtually all of the areas innervated by A5 noradrenergic neurons are involved in cardiovascular regulation. In addition, the A5 area receives afferent input from major cardiovascular regulatory centers of the supraspinal CNS. Thus the A5 cell group has the potential to exert a significant influence on the cardiovascular regulatory system.
Collapse
|
39
|
Edwards DL, Johnston KM, Poletti CE, Foote WE. Morphology of pontomedullary raphe and reticular formation neurons in the brainstem of the cat: an intracellular HRP study. J Comp Neurol 1987; 256:257-73. [PMID: 3558881 DOI: 10.1002/cne.902560206] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
In order to understand better the anatomical substrates underlying processing of sensory information, the cytoarchitecture of neurons in the pontomedullary raphe and reticular formation was investigated following intracellular injections of horseradish peroxidase in the cat. Raphe cells studied were located in the nucleus raphe magnus, nucleus raphe obscurus, and nucleus raphe pallidus. The most prominent type had a smooth, oval cell body and oval dendritic tree with dendrites extending laterally into the adjacent reticular formation. Two other raphe cell types, large cells with a dorsoventral orientation of both cell body and dendritic tree, and very small cells, were rarer. The primary dendritic orientation lay in the coronal plane for all three raphe cell types. Wispy, straight, or clublike spines were located on more distal regions of dendrites, although we also found spineless dendrites. Raphe cells lying near longitudinal fiber pathways exhibited bundling of dendrites around the passing axon fascicles. Reticular formation cells studied were located in the nucleus gigantocellularis, nucleus magnocellularis, nucleus paragigantocellularis dorsalis, and nucleus reticularis paramedianus. Two morphological types were found on the basis of dendritic branching patterns: sparsely branched and densely branched. Most reticular formation cells had round dendritic trees as viewed in the coronal plane and polygonal cell bodies that were medium to large in size. There was no correlation between reticular formation cell morphology and nuclear location. Spines were more common on the densely branched cells, but for both reticular cell types they were usually absent from cell bodies and proximal dendrites. Thus, by using the criteria of dendritic branching and arbor shape along with distance from the midline it was possible to identify raphe cells as distinct from reticular formation cells. In contrast, no morphological characteristics were found that would differentiate cells in the two major median reticular formation nuclei, gigantocellularis and magnocellularis.
Collapse
|
40
|
Beitz AJ, Clements JR, Ecklund LJ, Mullett MM. The nuclei of origin of brainstem enkephalin and cholecystokinin projections to the spinal trigeminal nucleus of the rat. Neuroscience 1987; 20:409-25. [PMID: 3295585 DOI: 10.1016/0306-4522(87)90101-1] [Citation(s) in RCA: 32] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
The sites of origin of brain stem enkephalin and cholecystokinin projections to the rodent spinal trigeminal nucleus were studied utilizing the combined retrograde transport-peroxidase antiperoxidase immunohistochemical technique. Several brain stem areas were found to contain enkephalin-like immunoreactive double-labeled neurons following injection of wheat germ agglutinin-horseradish peroxidase or horseradish peroxidase into the spinal trigeminal nucleus. The largest numbers of enkephalin double-labeled neurons were identified in the nucleus pontis oralis, nucleus raphe medianis, medial vestibular nucleus and the midbrain periaqueductal gray. Enkephalin projections to the spinal trigeminal nucleus were also found to originate from the nucleus solitarius, nucleus raphe pallidus, nucleus raphe magnus, nucleus raphe dorsalis, nucleus reticularis paragigantocellularis, nucleus reticularis gigantocellularis pars alpha and the deep mesencephalic nucleus. In contrast to the numerous sources of enkephalin input to the spinal trigeminal nucleus, cholecystokinin projections to this region were limited to four brain stem nuclei. These included the nucleus solitarius, raphe obscurus, nucleus paragigantocellularis and the ventral reticular nucleus of the medulla. The finding that only a small number of brain stem cholecystokinin-like immunoreactive neurons project to the spinal trigeminal nucleus supports the hypothesis that most of the cholecystokinin input to the spinal trigeminal nucleus arises from primary afferent trigeminal fibers. The spinal trigeminal nucleus is known to play a role in processing sensory information and in the transmission of orofacial nociception. The present study identifies several brain stem sites which provide enkephalin and/or cholecystokinin input to the spinal trigeminal nucleus. Several of these nuclei have been implicated as components of the endogenous pain control system and the present results raise the possibility that they may modulate incoming orofacial nociception by releasing the endogenous opioid, enkephalin. Cholecystokinin, on the other hand, has been demonstrated in other studies to attenuate the action of opiates and thus may play an opposing role in the spinal trigeminal nucleus.
Collapse
|
41
|
Gray BG, Dostrovsky JO. Inhibition of feline spinal cord dorsal horn neurons following electrical stimulation of nucleus paragigantocellularis lateralis. A comparison with nucleus raphe magnus. Brain Res 1985; 348:261-73. [PMID: 4075085 DOI: 10.1016/0006-8993(85)90444-5] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
The effect of electrical stimulation applied to the nucleus paragigantocellularis lateralis (PGL) was assessed on the somatosensory responses of functionally identified spinal cord dorsal horn neurons in the cat. Neurons were classified as low threshold mechanoreceptive, wide dynamic range or nociceptive specific. The responses of over 95% of all neurons tested were inhibited by a conditioning stimulus to the PGL. For each cell the threshold current intensity necessary to produce inhibition from the PGL (inhibitory threshold) was determined. Analysis of the incidence of inhibition and the inhibitory thresholds showed that the PGL-induced inhibition was not selective for a particular class of neuron. Due to the many similarities between the PGL and the nucleus raphe magnus (NRM), a comparison was made between each region's potency in inhibiting the responses of spinal cord neurons. Based on an analysis of inhibitory thresholds, the PGL was found to be significantly more potent than the NRM. These results indicate the PGL to be an important site from which descending modulation of spinal cord somesthetic information emanates.
Collapse
|
42
|
Ide LS, Killackey HP. Fine structural survey of the rat's brainstem sensory trigeminal complex. J Comp Neurol 1985; 235:145-68. [PMID: 3998207 DOI: 10.1002/cne.902350202] [Citation(s) in RCA: 29] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
The fine structural organization of the principal sensory trigeminal nucleus was compared with that of the spinal trigeminal nucleus (subnuclei oralis, interpolaris, and the deep layers of caudalis) in adult albino rats. Direct comparisons indicate similarities between all of the subdivisions of the brainstem trigeminal complex both in the major morphological classes of neurons present and in basic patterns of synaptic connections. Major differences between the several subdivisions occur in the relative numbers and distribution of the different cell types. The spinal trigeminal nucleus is distinguished by more numerous large (22-40 micron) polygonal neurons which give rise to long straight primary dendrites. Both the perikaryal surface and the thick primary dendrites of many of these cells are densely innervated by synaptic terminals. Especially large cells of this type are a prominent feature of subnucleus oralis. By contrast, the principal sensory nucleus is distinguished by its high density of small to medium-sized (8-20 micron) round or ovoid neurons. These smaller neurons tend to receive a sparse axosomatic innervation. In addition to these differences the spinal trigeminal neuropil is distinguished by the striking manner in which it is broken up by large rostrocaudally oriented bundles of myelinated axons. Proximal dendrites of polygonal and fusiform neurons often wrap around these large axon bundles. Morphologically heterogeneous populations of synaptic terminals with round vesicles (R terminals) and terminals with predominantly flattened vesicles (F terminals) occur in all of the subdivisions of the trigeminal complex. Both types of terminal make primarily axodendritic synapses, but both also make axosomatic synapses, and axospinous synapses with somatic as well as dendritic spines. In addition, axoaxonic synaptic contacts from F terminals onto large R terminals are seen in all subdivisions. Convincing examples of presynaptic dendrites were not observed in any of the brainstem subdivisions. Synaptic glomeruli, characteristic groupings of dendrites and synaptic terminals, are found throughout the brainstem trigeminal complex. The dendritic elements in these glomeruli tend to be small-diameter dendrites, spines, and large, spinelike appendages. Within the glomerulus these elements are postsynaptic to a single large R terminal and may also be postsynaptic to smaller F terminals. In addition, axoaxonic synaptic contacts from the F terminals onto the R terminal are a consistent feature of trigeminal synaptic glomeruli.(ABSTRACT TRUNCATED AT 400 WORDS)
Collapse
|
43
|
Walberg F, Dietrichs E, Nordby T. On the projections from the vestibular and perihypoglossal nuclei to the spinal trigeminal and lateral reticular nuclei in the cat. Brain Res 1985; 333:123-30. [PMID: 3995280 DOI: 10.1016/0006-8993(85)90131-3] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
The projection from the vestibular and perihypoglossal nuclei to the spinal trigeminal and lateral reticular nuclei has been studied in cats where the wheat germ agglutinin-horseradish peroxidase complex has been used as a retrograde tracer. All injections were made at the level of the caudal pole of the inferior olive. The medial and descending vestibular, and the perihypoglossal nuclei were found to project to the spinal trigeminal nucleus. The projection to the lateral reticular nucleus reaches its medial-most part only, and originates in the lateral vestibular nucleus. The lateral part of the reticular formation also appears to be the target for some vestibular efferent fibres, mainly from the descending vestibular nucleus. The retrogradely labelled cells within the medial and descending vestibular nuclei are of all sizes and distributed throughout their entire territory. Certain observations furthermore indicate that the fibres reaching the lateral reticular nucleus are collaterals only from the vestibulospinal tract. The projections are bilateral. The observations confirm and extend previous observations on the afferent projections to the spinal trigeminal and lateral reticular nuclei.
Collapse
|
44
|
Gura EV, Yakhnitsa VA, Limanskii YP. Inhibition of jaw opening reflexes by stimulation of the central gray matter and raphe nuclei in cats. NEUROPHYSIOLOGY+ 1985. [DOI: 10.1007/bf01065382] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
45
|
Falls WM. The morphology of neurons in trigeminal nucleus oralis projecting to the medullary dorsal horn (trigeminal nucleus caudalis): a retrograde horseradish peroxidase and Golgi study. Neuroscience 1984; 13:1279-98. [PMID: 6527793 DOI: 10.1016/0306-4522(84)90298-7] [Citation(s) in RCA: 38] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
This study demonstrates that trigeminal nucleus oralis, the most rostral subdivision of the spinal trigeminal nucleus, contains four morphologically distinct types of small neurons which project to the medullary dorsal horn (trigeminal nucleus caudalis) via descending intratrigeminal pathways. Using the retrograde transport of horseradish peroxidase following injections in the medullary dorsal horn, labeled small neurons with cell bodies ranging from 8-15 microns in diameter are found principally in the ventrolateral portion of the trigeminal nucleus oralis. Most neurons are labeled ipsilaterally throughout the entire rostrocaudal extent of the ventrolateral portion of the trigeminal nucleus oralis, but a few cells are also labeled contralaterally. From this aspect of the present study it can be concluded that a specific portion of the trigeminal nucleus oralis, i.e. the ventrolateral part, contains numerous small neurons which send descending projections to the medullary dorsal horn that could affect synaptic activity there. Utilizing both the methods of Golgi and retrograde horseradish peroxidase labeling four distinct types of small descending medullary dorsal horn projection neurons can be distinguished in the ventrolateral portion of the trigeminal nucleus oralis on the basis of their morphology and the distribution of their axons and dendrites. All four neuronal cell types are present throughout the entire rostrocaudal extent of the trigeminal nucleus oralis. Type I neurons are the most frequently labeled descending medullary dorsal horn projection neurons. They are concentrated in the medial 500-550 microns of the ventrolateral portion of the trigeminal nucleus oralis and display dendritic trees which occupy spherical domains approaching 300 microns in diameter. The unmyelinated axons of many of these cells arise either directly from the cell body or a primary dendrite and give rise to a single collateral within 50 microns of their site of origin. This collateral generates a fine axonal plexus within a portion of the dendritic arbor of the parent cell while the parent axon, without branching further, travels a short distance in the ventrolateral portion of the trigeminal nucleus oralis and enters a deep axon bundle. Type II neurons are the second most frequently labeled descending medullary dorsal horn projection neuron. They generate medial and lateral dendritic arbors which together span nearly the entire medial 500-550 microns of the ventrolateral portion of the trigeminal nucleus oralis. An unmyelinated axon emerges from the cell body and within 10-30 microns of its origin gives rise to two collaterals.(ABSTRACT TRUNCATED AT 400 WORDS)
Collapse
|
46
|
Falls WM. Termination in trigeminal nucleus oralis of ascending intratrigeminal axons originating from neurons in the medullary dorsal horn: an HRP study in the rat employing light and electron microscopy. Brain Res 1984; 290:136-40. [PMID: 6692129 DOI: 10.1016/0006-8993(84)90743-1] [Citation(s) in RCA: 36] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
The anterograde horseradish peroxidase (HRP) technique was used to identify ascending intratrigeminal axons originating from neurons in the medullary dorsal horn (MDH) which terminate in trigeminal nucleus oralis (Vo). HRP injections into the MDH labeled two populations of axons ascending ipsilaterally within the spinal trigeminal nucleus. The first population was composed of parent branches which each gave off a single branching collateral strand to Vo as they ascended. These collaterals were characterized by boutons filled with small, round synaptic vesicles and forming asymmetrical synaptic contacts with large diameter dendritic shafts. The second axonal population was made up of parent branches which terminated directly in Vo. Their short terminal strands were distinguished by axonal endings containing pleomorphic synaptic vesicles and forming symmetrical synaptic junctions with small diameter dendritic shafts and spines.
Collapse
|