1
|
Abstract
The superior colliculus is one of the most well-studied structures in the brain, and with each new report, its proposed role in behavior seems to increase in complexity. Forty years of evidence show that the colliculus is critical for reorienting an organism toward objects of interest. In monkeys, this involves saccadic eye movements. Recent work in the monkey colliculus and in the homologous optic tectum of the bird extends our understanding of the role of the colliculus in higher mental functions, such as attention and decision making. In this review, we highlight some of these recent results, as well as those capitalizing on circuit-based methodologies using transgenic mice models, to understand the contribution of the colliculus to attention and decision making. The wealth of information we have about the colliculus, together with new tools, provides a unique opportunity to obtain a detailed accounting of the neurons, circuits, and computations that underlie complex behavior.
Collapse
Affiliation(s)
- Michele A Basso
- Fuster Laboratory of Cognitive Neuroscience, Department of Psychiatry and Biobehavioral Sciences and Neurobiology, Semel Institute for Neuroscience and Human Behavior, Brain Research Institute, David Geffen School of Medicine, University of California, Los Angeles, California 90095;
| | - Paul J May
- Department of Neurobiology and Anatomical Sciences, University of Mississippi Medical Center, Jackson, Mississippi 39216
| |
Collapse
|
2
|
Turner EC, Sawyer EK, Kaas JH. Optic nerve, superior colliculus, visual thalamus, and primary visual cortex of the northern elephant seal (Mirounga angustirostris) and California sea lion (Zalophus californianus). J Comp Neurol 2017; 525:2109-2132. [PMID: 28188622 DOI: 10.1002/cne.24188] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2016] [Revised: 01/31/2017] [Accepted: 02/01/2017] [Indexed: 11/07/2022]
Abstract
The northern elephant seal (Mirounga angustirostris) and California sea lion (Zalophus californianus) are members of a diverse clade of carnivorous mammals known as pinnipeds. Pinnipeds are notable for their large, ape-sized brains, yet little is known about their central nervous system. Both the northern elephant seal and California sea lion spend most of their lives at sea, but each also spends time on land to breed and give birth. These unique coastal niches may be reflected in specific evolutionary adaptations to their sensory systems. Here, we report on components of the visual pathway in these two species. We found evidence for two classes of myelinated fibers within the pinniped optic nerve, those with thick myelin sheaths (elephant seal: 9%, sea lion: 7%) and thin myelin sheaths (elephant seal: 91%, sea lion: 93%). In order to investigate the architecture of the lateral geniculate nucleus, superior colliculus, and primary visual cortex, we processed brain sections from seal and sea lion pups for Nissl substance, cytochrome oxidase, and vesicular glutamate transporters. As in other carnivores, the dorsal lateral geniculate nucleus consisted of three main layers, A, A1, and C, while each superior colliculus similarly consisted of seven distinct layers. The sea lion visual cortex is located at the posterior side of cortex between the upper and lower banks of the postlateral sulcus, while the elephant seal visual cortex extends far more anteriorly along the dorsal surface and medial wall. These results are relevant to comparative studies related to the evolution of large brains.
Collapse
Affiliation(s)
- Emily C Turner
- Department of Psychology, Vanderbilt University, Nashville, Tennessee
| | - Eva K Sawyer
- Department of Psychology, Vanderbilt University, Nashville, Tennessee.,Department of Bioengineering, University of California, Berkeley, California
| | - Jon H Kaas
- Department of Psychology, Vanderbilt University, Nashville, Tennessee
| |
Collapse
|
3
|
Lee JY, Jeong SJ, Jeon CJ. Parvalbumin-immunoreactive cells in the superior colliculus in dog: distribution, colocalization with GABA, and effect of monocular enucleation. Zoolog Sci 2014; 31:748-57. [PMID: 25366158 DOI: 10.2108/zs140073] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Parvalbumin (PV) is thought to play a major role in buffering intracellular calcium. We studied the distribution, morphology of PV-immunoreactive (IR) cells, and the effect of enucleation on the PV distribution in the superior colliculus (SC) in dog (Canis familiaris) and compared PV labeling to that of calbindin D28K (CB) and GABA. These cells formed three laminar tiers in the dog SC; 1) the upper superficial gray layer (SGL), 2) the lower optic layer (OL) and the upper intermediate gray layer, and 3) the deep layer. The third tier was not very distinct when compared with the other two tiers. The distribution of PV-IR cells is thus complementary to that of CB-IR tiers. Our present data on the distribution of PV-IR cells within the superficial layers are strikingly different from those in previously studied mammals, which show PV-IR cells within the lower SGL and upper OL. However, there were no distinct differences in distribution within the deep layers compared with that of previously studied mammals. PV-IR cells in the SC varied dramatically in morphology and size, and included round/oval, vertical fusiform, stellate, horizontal and pyriform cells. Two-color immunofluorescence revealed quantitatively that 11.67% of the PV-IR cells colocalized with GABA. Monocular enucleation appeared to have no effect on the distribution of PV-IR cells in the contralateral SC. Similar to CB, these data suggest that retinal projection may not control the expression of PV in the dog SC. These results provide important information for delineating similarities and differences in the neurochemical architecture of the visual system.
Collapse
Affiliation(s)
- Jea-Young Lee
- Department of Biology, School of Life Sciences, BK21 Plus KNU Creative BioResearch Group, College of Natural Sciences, and Brain Science and Engineering Institute, Kyungpook National University, Daegu 702-701, South Korea
| | | | | |
Collapse
|
4
|
Giassi ACC, Duarte TT, Ellis W, Maler L. Organization of the gymnotiform fish pallium in relation to learning and memory: II. Extrinsic connections. J Comp Neurol 2013; 520:3338-68. [PMID: 22430442 DOI: 10.1002/cne.23109] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
This study describes the extrinsic connections of the dorsal telencephalon (pallium) of gymnotiform fish. We show that the afferents to the dorsolateral and dorsomedial pallial subdivisions of gymnotiform fish arise from the preglomerular complex. The preglomerular complex receives input from four clearly distinct regions: (1) descending input from the pallium itself (dorsomedial and dorsocentral subdivisions and nucleus taenia); (2) other diencephalic nuclei (centroposterior, glomerular, and anterior tuberal nuclei and nucleus of the posterior tuberculum); (3) mesencephalic sensory structures (optic tectum, dorsal and ventral torus semicircularis); and (4) basal forebrain, preoptic area, and hypothalamic nuclei. Previous studies have implicated the majority of the diencephalic and mesencephalic nuclei in electrosensory, visual, and acousticolateral functions. Here we discuss the implications of preglomerular/pallial electrosensory-associated afferents with respect to a major functional dichotomy of the electric sense. The results allow us to hypothesize that a functional distinction between electrocommunication vs. electrolocation is maintained within the input and output pathways of the gymnotiform pallium. Electrocommunication information is conveyed to the pallium through complex indirect pathways that originate in the nucleus electrosensorius, whereas electrolocation processing follows a conservative pathway inherent to all vertebrates, through the optic tectum. We hypothesize that cells responsive to communication signals do not converge onto the same targets in the preglomerular complex as cells responsive to moving objects. We also hypothesize that efferents from the dorsocentral (DC) telencephalon project to the dorsal torus semicircularis to regulate processing of electrocommunication signals, whereas DC efferents to the tectum modulate sensory control of movement.
Collapse
Affiliation(s)
- Ana C C Giassi
- Department of Cell and Molecular Medicine, Faculty of Medicine, University of Ottawa, Ottawa, Ontario K1N 6N5, Canada.
| | | | | | | |
Collapse
|
5
|
Role of dorsolateral periaqueductal grey in the coordinated regulation of cardiovascular and respiratory function. Auton Neurosci 2013; 175:17-25. [DOI: 10.1016/j.autneu.2012.12.008] [Citation(s) in RCA: 73] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2012] [Revised: 12/18/2012] [Accepted: 12/26/2012] [Indexed: 02/07/2023]
|
6
|
Clemo H, Keniston L, Meredith M. Structural Basis of Multisensory Processing. Front Neurosci 2011. [DOI: 10.1201/b11092-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
|
7
|
|
8
|
Abstract
“Column,” like “gene,” has both conceptual and linguistic shortcomings. The simple question “what is a column” is not easy to answer and the word itself is not easy to replace. In the present article, I have selected five points, in no way comprehensive or canonical, but which may nevertheless serve as a prompt and aid for further discussions and re-evaluation. These are: that anatomical columns are not solid structures, that they are part of locally interdigitating systems, that any delimited column also participates in a widely distributed network, that columns are not an obligatory cortical feature, and that columns (as “modules”) occur widely in the brain in non-cortical structures. I focus on the larger scale macrocolumns, mainly from an anatomical perspective. My position is that cortical organization is inherently dynamic and likely to incorporate multiple processing styles. One can speculate that the distributed mappings within areas like piriform cortex may resemble at least one mode of neocortical processing strategy.
Collapse
Affiliation(s)
- Kathleen S Rockland
- Picower Institute for Learning and Memory, RIKEN-MIT Center for Neural Circuit Genetics, MIT Cambridge, MA, USA
| |
Collapse
|
9
|
Sia Y, Bourne JA. The rat temporal association cortical area 2 (Te2) comprises two subdivisions that are visually responsive and develop independently. Neuroscience 2008; 156:118-28. [PMID: 18674594 DOI: 10.1016/j.neuroscience.2008.07.002] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2008] [Revised: 07/01/2008] [Accepted: 07/02/2008] [Indexed: 10/21/2022]
Abstract
In this study, we have used the expression of non-phosphorylated neurofilament (NNF), a protein that exhibits differential areal and laminar neuronal patterning, to assess the chemoarchitectural organization of the rat temporal association cortex (Te). Since expression of NNF is associated with the latter stages of neuronal development, this enabled us to profile the hierarchical development of this region of the cortex. We also examined the expression of the protein Fos, the product of the immediate-early gene cFos, as a neuronal activity marker to determine which areas within this region are visually responsive. Our findings reveal the existence of two previously undescribed subdivisions within the dorsal and ventral domains of the rat temporal association cortical area 2 (Te2) which we have termed Te2d and Te2v, respectively. We also demonstrated the early maturation of the caudal region of Te2d while preceding the primary visual cortex. Within this region of the cortex, the Fos protein indicates that both subdivisions are visually responsive.
Collapse
Affiliation(s)
- Y Sia
- Department of Anatomy and Cell Biology, Monash University, Clayton, Victoria, 3800, Australia
| | | |
Collapse
|
10
|
Lee JY, Choi JS, Ye EA, Kim HH, Jeon CJ. Organization of Calbindin D28K-Immunoreactive Neurons in the Dog Superior Colliculus. Zoolog Sci 2007; 24:1103-14. [DOI: 10.2108/zsj.24.1103] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2007] [Accepted: 07/09/2007] [Indexed: 11/17/2022]
|
11
|
García Del Caño G, Gerrikagoitia I, Alonso-Cabria A, Martínez-Millán L. Organization and origin of the connection from the inferior to the superior colliculi in the rat. J Comp Neurol 2007; 499:716-31. [PMID: 17048224 DOI: 10.1002/cne.21107] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
The inferior colliculus (IC) is the main ascending auditory relay station prior to the superior colliculus (SC). The morphology and origin of the connection from inferior to superior colliculus (I-SC) was analyzed both by anterograde and retrograde tracing. Irrespective of the subregion of the IC in which they originate, the terminal fields of these connections formed two main tiers in the SC. While the dorsal one primarily involved the stratum opticum and the stratum griseum intermediale, the ventral one innervated the deep strata, although some fibers did connect these tiers. While the dorsal tier occupied almost the whole extension of the SC, the ventral one was mostly confined to its caudomedial quadrant. The fiber density in these tiers decreased gradually in a rostral gradient and the terminal fields became denser as the anterograde tracer at the injection site was distributed more externally in the cortex of the IC. Retrograde tracing confirmed this result, although it did not reveal any topographic ordering for the I-SC pathway. Most presynaptic boutons of the I-SC terminal field were located either inside or close to the patches of acetylcholinesterase activity. Together with previous anatomical and physiological studies, our results indicate that the I-SC connection relays behaviorally relevant information for sensory-motor processing. Our observation that this pathway terminates in regions of the superior colliculus, where neurons involved in fear-like responses are located, reinforce previous suggestions of a role for the IC in generating motor stereotypes that occur during audiogenic seizures.
Collapse
Affiliation(s)
- Gontzal García Del Caño
- Department of Neurosciences, Faculty of Pharmacy, University of the Basque Country, 01006-Vitoria-Gasteiz, Araba, Spain
| | | | | | | |
Collapse
|
12
|
Lee JY, Choi JS, Ahn CH, Kim IS, Ha JH, Jeon CJ. Calcium-binding protein calretinin immunoreactivity in the dog superior colliculus. Acta Histochem Cytochem 2006; 39:125-38. [PMID: 17327899 PMCID: PMC1698867 DOI: 10.1267/ahc.06008] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2006] [Accepted: 08/04/2006] [Indexed: 01/01/2023] Open
Abstract
We studied calretinin-immunoreactive (IR) fibers and cells in the canine superior colliculus (SC) and studied the distribution and effect of enucleation on the distribution of this protein. Localization of calretinin was immunocytochemically observed. A dense plexus of anti-calretinin-IR fibers was found within the upper part of the superficial gray layer (SGL). Almost all of the labeled fibers were small in diameter with few varicosities. The intermediate and deep layers contained many calretinin-IR neurons. Labeled neurons within the intermediate gray layer (IGL) formed clusters in many sections. By contrast, labeled neurons in the deep gray layer (DGL) did not form clusters. Calretinin-IR neurons in the IGL and DGL varied in morphology and included round/oval, vertical fusiform, stellate, and horizontal neurons. Neurons with varicose dendrites were also labeled in the IGL. Most of the labeled neurons were small to medium in size. Monocular enucleation produced an almost complete reduction of calretinin-IR fibers in the SC contralateral to the enucleation. However, many calretinin-IR cells appeared in the contralateral superficial SC. Enucleation appeared to have no effect on the distribution of calretinin-IR neurons in the contralateral intermediate and deep layers of the SC. The calretinin-IR neurons in the superficial dog SC were heterogeneous small- to medium-sized neurons including round/oval, vertical fusiform, stellate, pyriform, and horizontal in shape. Two-color immunofluorescence revealed that no cells in the dog SC expressed both calretinin and GABA. Many horseradish peroxidase (HRP)-labeled retinal ganglion cells were seen after injections into the superficial layers. The vast majority of the double-labeled cells (HRP and calretinin) were small cells. The present results indicate that antibody to calretinin labels subpopulations of neurons in the dog SC, which do not express GABA. The results also suggest that the calretinin-IR afferents in the superficial layers of the dog SC originate from small class retinal ganglion cells. The expression of calretinin might be changed by the cellular activity of selective superficial collicular neurons. These results are valuable in delineating the basic neurochemical architecture of the dog visual system.
Collapse
Affiliation(s)
- Jea-Young Lee
- Department of Biology, College of Natural Sciences, Kyungpook National University
| | - Jae-Sik Choi
- Department of Biology, College of Natural Sciences, Kyungpook National University
| | - Chang-Hyun Ahn
- Department of Biology, College of Natural Sciences, Kyungpook National University
| | - In-Suk Kim
- Department of Ophthalmic Optics, Chodang University
| | - Ji-Hong Ha
- Department of Genetic Engineering, College of Natural Sciences, Kyungpook National University
| | - Chang-Jin Jeon
- Department of Biology, College of Natural Sciences, Kyungpook National University
- Correspondence to: Prof. Chang-Jin Jeon, Ph.D., Department of Biology, College of Natural Sciences, Kyungpook National University, 1370 Sankyuk-dong, Daegu, 702–701, S. Korea. E-mail:
| |
Collapse
|
13
|
Gerrikagoitia I, García del Caño G, Canudas J, Sarasa M, Martínez-Millán L. Expression pattern of calcitonin gene-related peptide in the superior colliculus during postnatal development: demonstration of its intrinsic nature and possible roles. J Comp Neurol 2006; 494:721-37. [PMID: 16374811 DOI: 10.1002/cne.20834] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Calcitonin gene-related peptide (CGRP) is a widespread neuropeptide with multiple central and peripheral targets. In an analysis on the expression of this peptide throughout the rat brain during postnatal development, we observed a discrepancy between results obtained by immunohistochemistry and by in situ hybridization. In the superior colliculus (SC), only the immunohistochemical signal could be detected (Terrado et al. [1997] Neuroscience 80:951-970). Here we focus our attention on this structure because the temporal pattern of CGRP immunoreactivity observed in the SC suggested the participation of this peptide in the postnatal maturation of the SC. In the present study, we describe in detail the postnatal development of collicular CGRP-immunoreactive structures and their spatiotemporal relationship with cholinergic modules and definitively demonstrate the local expression of CGRP in the SC. CGRP-immunopositive axons and neurons were distributed within the most ventral part of superficial strata and in the intermediate strata of the SC, showing a peak in staining intensity and density at the end of the first postnatal week. At P14, CGRPergic terminal fibers are arranged in small, clearly defined patches in a complementary manner with respect to the cholinergic modules, which start forming at this stage. By using Western blot and RT-PCR analyses, and by means of injections of antisense oligonucleotides, both the presence of CGRP peptide in the SC and the local expression of alpha-CGRP transcripts in collicular neurons were demonstrated. A possible role of CGRP is discussed in the context of postnatal modular compartmentalization of collicular afferents.
Collapse
Affiliation(s)
- Inmaculada Gerrikagoitia
- Department of Neurosciences, Faculty of Medicine, University of the Basque Country, 48940 Leioa, Bizkaia, Spain
| | | | | | | | | |
Collapse
|
14
|
Fuentes-Santamaria V, Stein BE, McHaffie JG. Neurofilament proteins are preferentially expressed in descending output neurons of the cat the superior colliculus: A study using SMI-32. Neuroscience 2006; 138:55-68. [PMID: 16426768 DOI: 10.1016/j.neuroscience.2005.11.045] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2005] [Revised: 10/22/2005] [Accepted: 11/12/2005] [Indexed: 11/17/2022]
Abstract
Physiological studies indicate that the output neurons in the multisensory (i.e. intermediate and deep) laminae of the cat superior colliculus receive converging information from widespread regions of the neuraxis, integrate this information, and then relay the product to regions of the brainstem involved in the control of head and eye movements. Yet, an understanding of the neuroanatomy of these converging afferents has been hampered because many terminals contact distal dendrites that are difficult to label with the neurochemical markers generally used to visualize superior colliculus output neurons. Here we show that the SMI-32 antibody, directed at the non-phosphorylated epitopes of high molecular weight neurofilament proteins, is an effective marker for these superior colliculus output neurons. It is also one that can label their distal dendrites. Superior colliculus sections processed for SMI-32 revealed numerous labeled neurons with varying morphologies within the deep laminae. In contrast, few labeled neurons were observed in the superficial laminae. Neurons with large somata in the lateral aspects of the deep superior colliculus were particularly well labeled, and many of their secondary and tertiary dendrites were clearly visible. Injections of the fluorescent biotinylated dextran amine into the pontine reticular formation revealed that approximately 80% of the SMI-32 immunostained neurons also contained retrogradely transported biotinylated dextran amine, indicating that SMI-32 is a common cytoskeletal component expressed in descending output neurons. Superior colliculus output neurons also are known to express the calcium-binding protein parvalbumin, and many SMI-32 immunostained neurons also proved to be parvalbumin immunostained. These studies suggest that SMI-32 can serve as a useful immunohistochemical marker for detailing the somatic and dendritic morphology of superior colliculus output neurons and for facilitating evaluations of their input/output relationships.
Collapse
Affiliation(s)
- V Fuentes-Santamaria
- Department of Neurobiology and Anatomy, Wake Forest University School of Medicine, Winston-Salem, NC 27157-1010, USA.
| | | | | |
Collapse
|
15
|
Gabriele ML, Smoot JE, Jiang H, Stein BE, McHaffie JG. Early establishment of adult-like nigrotectal architecture in the neonatal cat: a double-labeling study using carbocyanine dyes. Neuroscience 2005; 137:1309-19. [PMID: 16359814 DOI: 10.1016/j.neuroscience.2005.10.035] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2005] [Revised: 10/05/2005] [Accepted: 10/07/2005] [Indexed: 10/25/2022]
Abstract
Virtually nothing is known about the ontogeny of substantia nigra, pars reticulata projections to the midbrain superior colliculus, even though this pathway is critical for the basal ganglia modulation of midbrain-mediated visuomotor behaviors. The present studies used the lipophilic carbocyanine dyes 1,1'-dioctodecyl-3,3,3',3'-tetramethylindocarbocyanine perchlorate and 1,1'-dioctodecyl-3,3,3',3'-tetramethylindodi, 4-chlorobenzenesulfonate salt to examine the crossed and uncrossed nigrotectal projections in neonatal cats, from parturition to 14 days postnatal (the technical limits of the tracing technique). In retrograde experiments, paired placement of the dyes in each superior colliculus produced numerous retrogradely-labeled nigrotectal neurons, with the uncrossed neurons far out numbering their crossed counterparts. No double-labeled neurons were observed, indicating that crossed and uncrossed nigrotectal neurons are segregated at birth. In anterograde experiments, dye placements into each substantia nigra, pars reticulata resulted in an iterative series of labeled patches, aligned medial-to-lateral across the intermediate and deep superior colliculus, a pattern reminiscent of the adult. Uncrossed neonatal axons had simple linear morphologies with few branch points; by contrast, crossed axons displayed more extensive terminal arbors that were distributed diffusely throughout the rostrocaudal extent of the contralateral superior colliculus In the final series of experiments, one dye was placed unilaterally in the substantia nigra, pars reticulata, while the second dye was positioned in the predorsal bundle, in order to bilaterally label superior colliculus output neurons. Although both crossed and uncrossed axons appeared to have contacted superior colliculus output neurons, crossed axons preferentially targeted the soma and proximal dendrites, whereas uncrossed terminals were distributed more distally. Throughout this early postnatal period, no significant changes in cellular morphologies or gross modification of terminal projection patterns were observed; however, the presence of growth cones in even the oldest animals studied suggests that the refinement of the nigrotectal projections extends well into postnatal life. Nevertheless, the segregation of crossed and uncrossed nigrotectal neurons into a highly organized afferent mosaic that has established synaptic contacts with superior colliculus output neurons indicates that many of the salient features characterizing nigrotectal projections are established prior to the onset of visual experience.
Collapse
Affiliation(s)
- M L Gabriele
- James Madison University, Department of Biology, MSC 7801, Harrisonburg, VA 22807, USA
| | | | | | | | | |
Collapse
|
16
|
Klop EM, Mouton LJ, Ehling T, Holstege G. Two parts of the nucleus prepositus hypoglossi project to two different subdivisions of the dorsolateral periaqueductal gray in cat. J Comp Neurol 2005; 492:303-22. [PMID: 16217796 DOI: 10.1002/cne.20728] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
The dorsolateral column of the mesencephalic periaqueductal gray (PAG) is a separate part of the PAG. Its afferent sources, efferent targets, and neurochemical properties differ from the adjacent PAG columns. The dorsolateral PAG is thought to be associated with aversive behaviors, but it is not yet understood how these behaviors are brought about. To elucidate the function of the PAG further, in the present study we investigated which brainstem regions project to the dorsolateral PAG. Wheat germ agglutinin-horseradish peroxidase (WGA-HRP) injections involving the dorsolateral PAG, but extending into the lateral part, resulted in many retrogradely labeled cells in the pontine and medullary tegmentum bilaterally. However, it was concluded that these neurons were labeled from the lateral PAG, because no anterograde labeling was found in the dorsolateral PAG after a large injection into the tegmentum. Retrogradely labeled cells were also found in the nucleus prepositus hypoglossi (PPH), mainly contralaterally. Injections of [3H]leucine or WGA-HRP in the PPH resulted in anterogradely labeled fibers in the dorsolateral PAG. Two separate distribution patterns were found. The caudal and intermediate PPH projected to a small region on the dorsolateral edge of the dorsolateral column, whereas the supragenual PPH distributed labeled fibers to all other parts of the dorsolateral PAG, except the area on the dorsolateral edge. These separate PPH projections suggest that two subdivisions exist within the dorsolateral PAG. The present findings suggest a role for the dorsolateral PAG in the oculomotor system.
Collapse
Affiliation(s)
- Esther Marije Klop
- Department of Anatomy and Embryology, University Medical Center Groningen, University of Groningen, 9700 AD Groningen, The Netherlands
| | | | | | | |
Collapse
|
17
|
Nakamura H, Itoh K. Cytoarchitectonic and connectional organization of the ventral lateral geniculate nucleus in the cat. J Comp Neurol 2004; 473:439-62. [PMID: 15116383 DOI: 10.1002/cne.20074] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
The ventral lateral geniculate nucleus is a small extrageniculate visual structure that has a complex cytoarchitecture and diverse connections. In addition to small-celled medial and lateral divisions, we cytoarchitectonically defined a small-celled dorsal division. A large-celled intermediate division intercalated between the three small-celled divisions, which we divided into medial and lateral intermediate subdivisions. In WGA-HRP injection experiments, the different cytoarchitectonic divisions were shown to have connections with different nuclei. The medial division was reciprocally connected to the pretectum and projected to the superficial layers of the superior colliculus and the intralaminar nuclei. The medial intermediate division received projections from the intermediate layer of the superior colliculus and the lateral and interpositus posterior cerebellar nuclei, and projected to the intermediate layer of the superior colliculus, the periaqueductal gray of midbrain, and the intralaminar nuclei. The lateral intermediate divisions received projections from the pretectum, the intermediate layer of the superior colliculus, and the lateral and interpositus posterior cerebellar nuclei, and projected to the pretectum, superficial layers of the superior colliculus, and the pulvinar. The lateral division received projections from superficial layers of the superior colliculus and had reciprocal connections with the pretectum. The dorsal division received projections from the pretectum and had reciprocal connections with the periaqueductal gray of midbrain. The different cytoarchitectonic divisions of the ventral lateral geniculate nucleus are thus suggested to play different functional roles related to vision, eye and head movements, attention, and defensive reactions.
Collapse
Affiliation(s)
- Hiroyuki Nakamura
- Department of Morphological Neuroscience, Gifu University School of Medicine, Gifu 501-1194, Japan.
| | | |
Collapse
|
18
|
Keay KA, Bandler R. Parallel circuits mediating distinct emotional coping reactions to different types of stress. Neurosci Biobehav Rev 2001; 25:669-78. [PMID: 11801292 DOI: 10.1016/s0149-7634(01)00049-5] [Citation(s) in RCA: 364] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
All animals, including humans, react with distinct emotional coping strategies to different types of stress. Active coping strategies (e.g. confrontation, fight, escape) are evoked if the stressor is controllable or escapable. Passive coping strategies (e.g. quiescence, immobility, decreased responsiveness to the environment) are usually elicited if the stressor is inescapable and help to facilitate recovery and healing. Neural substrates mediating active versus passive emotional coping have been identified within distinct, longitudinal neuronal columns of the midbrain periaqueductal gray (PAG) region. Active coping is evoked by activation of either the dorsolateral or lateral columns of the PAG; whereas passive coping is triggered by activation of the ventrolateral PAG. Recent anatomical studies indicate that each PAG column receives a distinctive set of ascending (spinal and medullary) and descending (prefrontal cortical and hypothalamic) afferents. Consistent with the anatomy, functional studies using immediate early gene expression (c-fos) as a marker of neuronal activation have revealed that the preferential activation of a specific PAG column reflects (i) the type of emotional coping reaction triggered, and (ii) whether a physical or psychological stressor was used.
Collapse
Affiliation(s)
- K A Keay
- Department of Anatomy and Histology, F13, University of Sydney, NSW 2006, Sydney, Australia
| | | |
Collapse
|
19
|
Mana S, Chevalier G. Honeycomb-like structure of the intermediate layers of the rat superior colliculus: afferent and efferent connections. Neuroscience 2001; 103:673-93. [PMID: 11274787 DOI: 10.1016/s0306-4522(01)00026-4] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
There is increasing evidence that acetylcholinesterase is organised in a lattice-like fashion in the intermediate layers of the mammalian superior colliculus. In a recent study, we described this organisation in rat by showing that it comprises a well formed honeycomb-like lattice with about 100 cylindrical compartments or modules occupying both the intermediate collicular layers. Considering this enzyme domain as a reference marker for comparing the organisation of collicular input-output systems, the present study investigates whether the principal sensori-motor systems in intermediate layers also have honeycomb-like arrangements. In 33 animals, the distributions of afferents (visual from extrastriate cortex; somatic from the primary somatosensory cortex, the trigeminal nucleus and the cervical spinal cord) and efferents (cells of origin of the crossed descending bulbospinal tract and uncrossed pathway to the pontine gray, the ascending system to the medial dorsal thalamus) were examined in a tangential plane following applications of horseradish peroxidase-wheatgerm agglutinin conjugate (used as an anterograde and retrograde tracer). In 22 of the 33 rats, axonal tracing was made within single tangential sections also stained for cholinesterasic activity in order to compare the neuron profiles with the cholinesterasic lattice.The results show that these afferent and efferent systems are also organised in honeycomb-like networks. Moreover, those related to the cortical, trigeminal and some of the spinal afferents are aligned with the cholinesterasic lattice. Likewise most of colliculo-pontine, colliculo-bulbospinal and half of colliculo-diencephalic projecting cells also tend to be in spatial register with the enzyme lattice. This indicates that the honeycomb-like arrangement is a basic architectural plan in the superior colliculus for the organisation of both acetylcholinesterase and major sensori-motor systems for orientation.
Collapse
Affiliation(s)
- S Mana
- Université Pierre et Marie Curie, Département de Neurochimie-Anatomie, Institut des Neurosciences, 9 quai Saint Bernard, 75230 Paris Cedex 05, France
| | | |
Collapse
|
20
|
García Del Caño G, Gerrikagoitia I, Martínez-Millán L. Morphology and topographical organization of the retrospleniocollicular connection: a pathway to relay contextual information from the environment to the superior colliculus. J Comp Neurol 2000; 425:393-408. [PMID: 10972940 DOI: 10.1002/1096-9861(20000925)425:3<393::aid-cne5>3.0.co;2-g] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
The retrospleniocollicular connection is of interest because it constitutes one link between the limbic system, which is considered the anatomical substrate of emotional experience, and the superior colliculus (SC), which mediates approach and avoidance behavior. The morphology, topography, and origin of the retrospleniocollicular connections were studied by using anterograde [biotinylated dextranamine 10,000 (BDA)] and retrograde [Fluoro-Gold (FG)] tracers. After BDA injections involving retrosplenial granular and agranular cortices, terminal fibers innervating all collicular layers except stratum griseum superficiale were found throughout nearly the entire colliculi. Axons branched within restricted portions of the dorsoventral collicular axis with variable morphologies, suggesting functional heterogeneity. Terminal fields originating in anterior and posterior regions of the retrosplenial cortex were preferentially distributed in laterodorsal and medioventral collicular regions, respectively, but there were also large, densely innervated regions in which the terminal fields overlapped. FG injections in the SC confirmed the retrospleniocollicular topography and demonstrated that this connection originated from layer V pyramidal cells of all retrosplenial areas. The distribution of retrospleniocollicular boutons was related to that of the AChE modules, which are associated with connections in the intermediate layers of the SC. In lateral portions of the SC intermediate layers, most retrospleniocollicular boutons were found in medium AChE stained regions, whereas in medial portions, they terminated in AChE-poor domains. The present results demonstrate that the retrosplenial cortex is the origin of a broad and dense network of axonal branches that may modulate SC-mediated motor and physiological responses involved in emotional behavior.
Collapse
Affiliation(s)
- G García Del Caño
- Department of Neuroscience, Faculty of Medicine, University of the Basque Country, Bizkaia, Spain
| | | | | |
Collapse
|
21
|
Bandler R, Keay KA, Floyd N, Price J. Central circuits mediating patterned autonomic activity during active vs. passive emotional coping. Brain Res Bull 2000; 53:95-104. [PMID: 11033213 DOI: 10.1016/s0361-9230(00)00313-0] [Citation(s) in RCA: 443] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Abstract
Animals, including humans, react with distinct emotional coping strategies to different sets of environmental demands. These strategies include the capacity to affect appropriate responses to "escapable" or "inescapable" stressors. Active emotional coping strategies--fight or flight--are particularly adaptive if the stress is escapable. On the other hand, passive emotional coping strategies-quiescence, immobility, decreased responsiveness to the environment-are useful when the stress is inescapable. Passive strategies contribute also to facilitating recovery and healing once the stressful event is over. Active vs. passive emotional coping strategies are characterised further by distinct patterns of autonomic change. Active strategies are associated with sympathoexcitation (hypertension, tachycardia), whereas passive strategies are associated with sympathoinhibitory patterns (hypotension, bradycardia). Distinct neural substrates mediating active vs. passive emotional coping have been identified within the longitudinal neuronal columns of the midbrain periaqueductal gray region (PAG). The PAG offers then a potentially useful point of entry for delineating neural circuits mediating the different forms of emotional coping and their associated patterns of autonomic activity. As one example, recent studies of the connections of orbital and medial prefrontal cortical (PFC) fields with specific PAG longitudinal neuronal columns are reviewed. Findings of discrete orbital and medial PFC projections to different PAG columns, and related PFC and PAG columnar connections with specific subregions of the hypothalamus, suggest that distinct but parallel circuits mediate the behavioural strategies and patterns of autonomic activity characteristic of emotional "engagement with" or "disengagement from" the external environment.
Collapse
Affiliation(s)
- R Bandler
- Department of Anatomy and Histology, University of Sydney, NSW, Sydney, Australia.
| | | | | | | |
Collapse
|
22
|
Floyd NS, Price JL, Ferry AT, Keay KA, Bandler R. Orbitomedial prefrontal cortical projections to distinct longitudinal columns of the periaqueductal gray in the rat. J Comp Neurol 2000; 422:556-78. [PMID: 10861526 DOI: 10.1002/1096-9861(20000710)422:4<556::aid-cne6>3.0.co;2-u] [Citation(s) in RCA: 233] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
We utilised retrograde and anterograde tracing procedures to study the origin and termination of prefrontal cortical (PFC) projections to the periaqueductal gray (PAG) in the rat. A previous study, in the primate, had demonstrated that distinct subgroups of PFC areas project to specific PAG columns. Retrograde tracing experiments revealed that projections to dorsolateral (dlPAG) and ventrolateral (vlPAG) periaqueductal gray columns arose from medial PFC, specifically prelimbic, infralimbic, and anterior cingulate cortices. Injections made in the vlPAG also labeled cells in medial, ventral, and dorsolateral orbital cortex and dorsal and posterior agranular insular cortex. Other orbital and insular regions, including lateral and ventrolateral orbital, ventral agranular insular, and dysgranular and granular insular cortex did not give rise to appreciable projections to the PAG. Anterograde tracing experiments revealed that the projections to different PAG columns arose from specific PFC areas. Projections from the caudodorsal medial PFC (caudal prelimbic and anterior cingulate cortices) terminated predominantly in dlPAG, whereas projections from the rostroventral medial PFC (rostral prelimbic cortex) innervated predominantly the vlPAG. As well, consistent with the retrograde data, projections arising from select orbital and agranular insular cortical areas terminated selectively in the vlPAG. The results indicate: (1) that rat orbital and medial PFC possesses an organisation broadly similar to that of the primate; and (2) that subdivisions within the rat orbital and medial PFC can be recognised on the basis of projections to distinct PAG columns.
Collapse
Affiliation(s)
- N S Floyd
- Department of Anatomy and Histology, The University of Sydney, Sydney, NSW 2006, Australia
| | | | | | | | | |
Collapse
|
23
|
Bandler R, Price JL, Keay KA. Brain mediation of active and passive emotional coping. PROGRESS IN BRAIN RESEARCH 2000; 122:333-49. [PMID: 10737069 DOI: 10.1016/s0079-6123(08)62149-4] [Citation(s) in RCA: 59] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
Affiliation(s)
- R Bandler
- Department of Anatomy and Histology, University of Sydney, NSW, Australia.
| | | | | |
Collapse
|
24
|
Chevalier G, Mana S. Honeycomb-like structure of the intermediate layers of the rat superior colliculus, with additional observations in several other mammals: AChE patterning. J Comp Neurol 2000; 419:137-53. [PMID: 10722995 DOI: 10.1002/(sici)1096-9861(20000403)419:2<137::aid-cne1>3.0.co;2-6] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
The aim of the present study was to reinvestigate the stereometric pattern of acetylcholinesterase (AChE) activity staining in the intermediate layers of the superior colliculus in several mammalian species. A pioneering study in the cat and the monkey by Graybiel (1978) stressed the regular arrangement of AChE staining in the deep collicular layers. According to her description, made in the frontal plane, the enzyme was arranged in a mediolateral series of patches, the cores of which tended to line up in the longitudinal axis of the structure, so they formed roughly parallel bands. As exhaustive a description as possible of the AChE distribution was undertaken in the rat by compiling observations in the frontal, sagittal, and tangential planes. It emerged that AChE-positive elements are organized in the form of a conspicuous honeycomb-like network that is divided into about 100 rounded compartments, over virtually the full extent of the intermediate layers. The generality of the rat model was then tested in other rodents such as mouse and hamster and also in cat and monkey. For these species we resorted to a single tangential cutting plane, which proved to be more appropriate for disclosing such a modular arrangement. The data revealed that in all species AChE staining followed the same architectural plan and identified the striking similarity in the number of compartments that compose the various honeycomb-like lattices. In conclusion, the present findings support a unified model of the AChE arrangement within the intermediate layers of the mammalian colliculus; the model comprehensively incorporates the classical description of the patchy and stripy features of the enzyme distribution. We hypothesize here that the modular AChE arrangement might be the anatomical basis for collicular vectorial encoding of orienting movements.
Collapse
Affiliation(s)
- G Chevalier
- Université René Descartes, Laboratoire de Neurosciences Comportementales, Centre Universitaire Biomédical des Saints Pères, 75006 Paris, France.
| | | |
Collapse
|
25
|
An X, Bandler R, �ng�r D, Price J. Prefrontal cortical projections to longitudinal columns in the midbrain periaqueductal gray in Macaque monkeys. J Comp Neurol 1998. [DOI: 10.1002/(sici)1096-9861(19981130)401:4<455::aid-cne3>3.0.co;2-6] [Citation(s) in RCA: 364] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
26
|
An X, Bandler R, �ng�r D, Price J. Prefrontal cortical projections to longitudinal columns in the midbrain periaqueductal gray in Macaque monkeys. J Comp Neurol 1998. [DOI: 10.1002/(sici)1096-9861(19981130)401:4%3c455::aid-cne3%3e3.0.co;2-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
27
|
Harting JK, Feig S, Van Lieshout DP. Cortical somatosensory and trigeminal inputs to the cat superior colliculus: light and electron microscopic analyses. J Comp Neurol 1997; 388:313-26. [PMID: 9368844 DOI: 10.1002/(sici)1096-9861(19971117)388:2<313::aid-cne9>3.0.co;2-4] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Two different axonal transport tracers were used in single animals to test the hypothesis that the expansive intermediate gray layer of the cat superior colliculus (stratum griseum intermediale, SGI) is composed of sensorimotor domains. The results show that two sensory pathways, the trigeminotectal and the corticotectal arising from the fourth somatosensory area, commingle in patches across the middle tier of the SGI. Furthermore, the data reveal that tectospinal cells are distributed within these patches. Taken together, these results show a commingling of functionally related afferents and a consistent spatial relationship between these afferents and tectospinal neurons. These relationships indicate that the SGI consists of domains that can be distinguished by their unique combinations of afferent and efferent connections. The ultrastructural characteristics and synaptic relationships of these somatosensory afferent pathways suggest that they have distinct roles within the sensorimotor domain of the SGI. The trigeminotectal terminals are relatively small, contain round vesicles and make asymmetrical synapses on small, presumably distal, dendrites. We submit that these trigeminal terminals bestow the basic receptive field properties upon SGI neurons. In contrast, the somatosensory corticotectal terminals are relatively large, contain round vesicles, make asymmetrical synapses, participate in triads, and are presynaptic to proximal dendrites. We suggest that these cortical terminals bestow integrative abilities on SGI neurons.
Collapse
Affiliation(s)
- J K Harting
- Department of Anatomy, University of Wisconsin Medical School, Madison 53706, USA.
| | | | | |
Collapse
|
28
|
Ciaramitaro VM, Todd WE, Rosenquist AC. Disinhibition of the superior colliculus restores orienting to visual stimuli in the hemianopic field of the cat. J Comp Neurol 1997; 387:568-87. [PMID: 9373014 DOI: 10.1002/(sici)1096-9861(19971103)387:4<568::aid-cne7>3.0.co;2-0] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Following unilateral removal of all known visual cortical areas, a cat is rendered hemianopic in the contralateral visual field. Visual orientation can be restored to the blind hemifield by transection of the commissure of the superior colliculus or by destruction of the superior colliculus (SC) or the substantia nigra pars reticulata (SNpr) contralateral to the cortical lesion. It is hypothesized that a mechanism mediating recovery is disinhibition of the SC ipsilateral to the cortical lesion. The ipsilateral nigrotectal projection exerts a robust inhibitory tone onto cells in the SC. However, ibotenic acid destruction of SNpr neurons, which should decrease inhibition onto the SC, does not result in recovery. The failure of ipsilateral SNpr lesions to produce recovery puts into question the validity of SC disinhibition as a mechanism of recovery. We directly tested the disinhibition hypothesis by reversibly disinhibiting the SC ipsilateral to a visual cortical lesion with a gamma-aminobutyric acid (GABA)A antagonist, bicuculline methiodide. In accordance with the hypothesis, transient disinhibition of the SC restored visual orienting for several hours in three of eight animals. Recovery was not a volume or pH effect and was distinct from the release of irrepressible motor effects (i.e., approach and avoidance behaviors) seen within the first hour after injection. Thus, in the absence of all visual cortical areas unilaterally, disinhibition of the SC can transiently restore the ability of the cat to orient to visual stimuli in the previously "blind" hemifield.
Collapse
Affiliation(s)
- V M Ciaramitaro
- Department of Neuroscience, University of Pennsylvania, Philadelphia 19104, USA
| | | | | |
Collapse
|
29
|
Dunning DD, McHaffie JG, Stein BE. A simple enzyme histochemical method for the simultaneous demonstration of acetylcholinesterase and monoamine oxidase in fixed-frozen sections. J Histochem Cytochem 1997; 45:895-902. [PMID: 9199675 DOI: 10.1177/002215549704500614] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
We describe an enzyme histochemical technique for the simultaneous demonstration of acetylcholinesterase (AChE) and monoamine oxidase (MAO) (Types A, B, or A+B) in fixed-frozen sections. Several regions in the mesencephalon and brainstem were examined for both somatic and neuropil labeling. The results obtained are equivalent or superior to those obtained using previous methods for the individual localization of these enzymes. The simultaneous visualization of AChE and MAO in the same section allows the relationship of the two enzymes to be easily assessed with brightfield microscopy.
Collapse
Affiliation(s)
- D D Dunning
- Department of Anatomy and Neurobiology, University of California, Irvine, USA
| | | | | |
Collapse
|
30
|
Ciaramitaro VM, Wallace SF, Rosenquist AC. Ibotenic acid lesions of the substantia nigra pars reticulata ipsilateral to a visual cortical lesion fail to restore visual orienting responses in the cat. J Comp Neurol 1997. [DOI: 10.1002/(sici)1096-9861(19970127)377:4<596::aid-cne9>3.0.co;2-y] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
31
|
Abstract
The superior colliculus is a midbrain structure serving visual, multisensory and sensorimotor processing. Throughout various collicular layers, visual afferents are linked together with afferents related to other sensory modalities as well as with afferents from sources not easily subsumed under the term 'sensory'. These inputs are orchestrated in a topographic fashion and led to premotor neurons that are important elements in generating saccadic eye movements and orientation movements of other kinds. Using immunocytochemical techniques to chart the distribution of various substances serving neurotransmission and neuromodulation, it was found that many of them, e.g. acetylcholinesterase (AChE), choline acetyltransferase, the enkephalins, substance P, and parvalbumin, relate to repetitive structural islands, or modules, in the superior colliculus. From studies on the distribution of three further neuroactive substances in rat superior collicular tissue: the calcium binding protein calretinin, the growth and plasticity related protein neuromodulin (GAP-43), and a glutamate receptor of the NMDA-type, we were led to conclude (1) that the intermediate layers of the superior colliculus are composed not of two, but of at least three disjunct types of modules, (2) that not just the intermediate layers but more or less the whole superior colliculus is an assemblage of modules, and (3) that, besides topographic connectivity and laminar structuring, the modules constituting an iterative partitioning represent a third major feature of superior collicular architecture. The origin of the collicular mosaic is considered under an evolutionary perspective, and a hypothesis is presented stating that the pattern of AChE-rich modules on the level of the multimodal collicular layers can be predicted from retinal ganglion cell topography.
Collapse
Affiliation(s)
- R B Illing
- Department of Otorhinolaryngology, University of Freiburg, Germany.
| |
Collapse
|
32
|
Bandler R, Keay KA. Columnar organization in the midbrain periaqueductal gray and the integration of emotional expression. PROGRESS IN BRAIN RESEARCH 1996; 107:285-300. [PMID: 8782526 DOI: 10.1016/s0079-6123(08)61871-3] [Citation(s) in RCA: 179] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Affiliation(s)
- R Bandler
- Department of Anatomy and Histology, Institute for Biomedical Research, The University of Sydney, N.S.W., Australia
| | | |
Collapse
|
33
|
Krauthamer GM, Grunwerg BS, Krein H. Putative cholinergic neurons of the pedunculopontine tegmental nucleus projecting to the superior colliculus consist of sensory responsive and unresponsive populations which are functionally distinct from other mesopontine neurons. Neuroscience 1995; 69:507-17. [PMID: 8552245 DOI: 10.1016/0306-4522(95)00265-k] [Citation(s) in RCA: 28] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
We examined the sensory properties of putative cholinergic neurons of the pedunculopontine tegmental nucleus projecting to the superior colliculus. Projection neurons were identified by antidromic activation from the contralateral posterior superior colliculus; stimulation of the anterior half was essentially ineffective. Identified neurons fell into two groups, one with a somatosensory input (39%) and one without a sensory input. Somatosensory responsive projection neurons were low threshold and rapidly adapting. Receptive fields were contralateral (94%) and predominantly orofacial (57%). Sensory responsive and unresponsive projection neurons were intermingled within the pedunculopontine tegmental nucleus as identified histologically by reduced nicotinamide adenine dinucleotide phosphate diaphorase or acetylcholinesterase. The properties of neurons outside the nucleus differed significantly. They could not be activated antidromically from the superior colliculus; many had ipsi- or bilateral receptive fields (75%) and wide dynamic range or nociceptive response patterns (52%). The presence of two functionally distinct groups of projection neurons implies a dual or more complex modulation of tectal neurons by the pedunculopontine tegmental nucleus. The pedunculopontine tegmental nucleus has been implicated in a multiplicity of behaviors and, in particular, in rapid eye movement sleep and alerting or arousal functions. By virtue of its many connections with the basal ganglia, limbic system and reticular structures, the projection to the superior colliculus of two distinct groups may provide an important differentiating element of the tectal organization of orienting and spatial cognitive behavior.
Collapse
Affiliation(s)
- G M Krauthamer
- Department of Neuroscience and Cell Biology, University of Medicine and Dentistry of New Jersey, Robert Wood Johnson Medical School, Piscataway 08854, USA
| | | | | |
Collapse
|
34
|
Bandler R, Shipley MT. Columnar organization in the midbrain periaqueductal gray: modules for emotional expression? Trends Neurosci 1994; 17:379-89. [PMID: 7817403 DOI: 10.1016/0166-2236(94)90047-7] [Citation(s) in RCA: 757] [Impact Index Per Article: 24.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Independent discoveries in several laboratories suggest that the midbrain periaqueductal gray (PAG), the cell-dense region surrounding the midbrain aqueduct, contains a previously unsuspected degree of anatomical and functional organization. This organization takes the form of longitudinal columns of afferent inputs, output neurons and intrinsic interneurons. Recent evidence suggests: that the important functions that are classically associated with the PAG--defensive reactions, analgesia and autonomic regulation--are integrated by overlapping longitudinal columns of neurons; and that different classes of threatening or nociceptive stimuli trigger distinct co-ordinated patterns of skeletal, autonomic and antinociceptive adjustments by selectively targeting specific PAG columnar circuits. These findings call for a fundamental revision in our concept of the organization of the PAG, and a recognition of the special roles played by different longitudinal PAG columns in co-ordinating distinct strategies for coping with different types of stress, threat and pain.
Collapse
Affiliation(s)
- R Bandler
- Dept of Anatomy and Histology, University of Sydney, New South Wales, Australia
| | | |
Collapse
|
35
|
Semenenko FM, Lumb BM, Lovick TA, Semenenka FM. Projections from nucleus raphe obscurus to the periaqueductal grey matter in the rat. Neurosci Lett 1994; 170:9-12. [PMID: 7999147 DOI: 10.1016/0304-3940(94)90226-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Retrograde transport of rhodamine- or coumarin-labelled latex microspheres was used to investigate projections from nucleus raphe obscurus (NRO) to the periaqueductal grey matter (PAG) in rats. Few labelled neurones (3.5 +/- 1.2; mean +/- S.E.M.) were seen in NRO after injections of microspheres into the dorsolateral and lateral PAG (n = 11) but after injections into the ventrolateral sector (n = 9), significant numbers (42.6 +/- 8.1) were present, particularly in the rostral third of NRO (66% of labelled cells). The results suggest that the projection from NRO to the PAG is restricted to the ventrolateral sector. Any influence of NRO on the dorsal PAG must therefore be mediated indirectly.
Collapse
|
36
|
Illing RB, Graybiel AM. Pattern formation in the developing superior colliculus: ontogeny of the periodic architecture in the intermediate layers. J Comp Neurol 1994; 340:311-27. [PMID: 8188853 DOI: 10.1002/cne.903400303] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
The superior colliculus of mammals contains a striking neurochemical architecture in which histochemically identifiable compartments are distributed in an iterative arrangement in the intermediate layers. We used stains for acetylcholinesterase activity as a compartment marker to trace ontogenesis of this architecture during pre- and postnatal development in the domestic cat. We found that compartmentation in the intermediate collicular layers is virtually absent at birth, and only gradually emerges during the first weeks of postnatal life. Over the same postnatal period, acetylcholinesterase activity shifts from a predominantly perikaryal expression pattern immediately postnatally to a nearly exclusive localization in the neuropil at maturity. Remarkably, a striking compartmentation of the superior colliculus was readily apparent with acetylcholinesterase histochemistry prenatally. The first appearance of a periodic architecture in the superior colliculus was observed at embryonic day 34, a time at which the collicular plate had not yet become laminated. The compartments characterized by high levels of acetylcholinesterase activity then gained in prominence until late in the prenatal period, when they receded and disappeared. The loss of the acetylcholinesterase-positive compartments in the perinatal period did not reflect a loss of compartmentation altogether. Neonatally, there was a distinct compartmental architecture visible with enkephalin immunohistochemistry. The virtual absence of acetylcholinesterase-positive compartments in the superior colliculus at birth therefore reflects developmental regulation of enzyme expression in the compartments, not regulation of the compartments as structural entities. We conclude that the periodic architecture, which characterizes the intermediate collicular layers in the adult cat, arises early in ontogenesis. These observations raise the possibility that the histochemical compartments are ontogenetic units that undergo remodeling as the superior colliculus matures.
Collapse
Affiliation(s)
- R B Illing
- Morphologische Hirnforschung, Univ.-HNO-Klinik, Freiburg, Germany
| | | |
Collapse
|
37
|
Graybiel AM, Illing RB. Enkephalin-positive and acetylcholinesterase-positive patch systems in the superior colliculus have matching distributions but distinct developmental histories. J Comp Neurol 1994; 340:297-310. [PMID: 8188852 DOI: 10.1002/cne.903400302] [Citation(s) in RCA: 27] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Histochemical stains for acetylcholinesterase activity and enkephalin-like immunoreactivity both demonstrate a high degree of patterning in the superior colliculus, particularly in the intermediate and deep layers. Both markers occur predominantly in the neuropil of these layers, and both are principally distributed in distinct macroscopic compartments. We report here that patches of heightened acetylcholinesterase activity correspond to patches of high enkephalin-like immunoreactivity. The two markers thus delineate largely the same domain in the intermediate and deep layers. The most prominent zones of staining for enkephalin-like peptide and for acetylcholinesterase also coincided in the dorsolateral periaqueductal gray matter. These findings suggest a close interlocking of one or more acetylcholinesterase-containing systems with one or more pathways related to endogenous opioids in the superior colliculus. As the acetylcholinesterase expression in the patches is known to match in detail choline acetyltransferase expression, our results also suggest the possibility of local cholinergic-opiatergic interactions. In some sections, blood vessels associated with enkephalin-rich and acetylcholinesterase-rich patches extended beyond the colliculus into the periaqueductal gray matter, where they again became surrounded by dense fibrous labeling. This pattern suggests that neurohumoral signal exchange might occur through blood vessels even in a sensory-motor structure such as the colliculus. In a postnatal developmental series of kitten brains we found that enkephalin-like immunoreactivity was already distinctly compartmental in the intermediate layers at birth and continued to show this distribution throughout postnatal development. By contrast, acetylcholinesterase staining was nearly homogeneous at birth and became compartmental gradually during the first postnatal weeks. Thus, despite the eventual near coincidence of the enkephalin-rich and acetylcholinesterase-rich compartments of the superior colliculus, they mark systems that follow distinct programs of neurochemical development.
Collapse
Affiliation(s)
- A M Graybiel
- Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge 02139
| | | |
Collapse
|
38
|
Jeon CJ, Spencer RF, Mize RR. Organization and synaptic connections of cholinergic fibers in the cat superior colliculus. J Comp Neurol 1993; 333:360-74. [PMID: 8349848 DOI: 10.1002/cne.903330305] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
The cat superior colliculus (SC) receives a dense cholinergic input from three brainstem nuclei, the pedunculopontine tegmental nucleus, the lateral dorsal tegmental nucleus, and the parabigeminal nucleus (PBG). The tegmental inputs project densely to the intermediate gray layer (IGL) and sparsely to the superficial layers. The PBG input probably projects only to the superficial layers. In the present study, the morphology of choline acetyltransferase (ChAT)-immunoreactive axons and synaptic endings in the superficial and deep layers of the SC was examined by light and electron microscopy to determine whether these cholinergic afferents form different types of synapses in the superficial and deep layers. Two types of fibers were found within the zonal (ZL) and upper superficial gray layers (SGL): small diameter fibers with few varicosities and larger diameter fibers with numerous varicosities. Quantitative analysis demonstrated a bimodal distribution of axon diameters, with one peak at approximately 0.3-0.5 micron and the other at 0.9-1.0 micron. On the other hand, ChAT-immunoreactive fibers in the IGL were almost all small and formed discrete patches within the IGL. Two types of ChAT-immunoreactive synaptic profiles were observed within the ZL and upper SGL using the electron microscope. The first type consisted of small terminals containing predominantly round synaptic vesicles and forming asymmetric synaptic contacts, mostly on dendrites. The second type was comprised of varicose profiles that also contained round synaptic vesicles. Their synaptic contacts were always symmetric in profile. ChAT-immunoreactive terminals in the IGL patches contained round or pleomorphic synaptic vesicles, and the postsynaptic densities varied from symmetric to asymmetric, including intermediate forms. However, no large varicose profiles were observed. This study suggests that cholinergic fibers include at least two different synaptic morphologies: small terminals with asymmetric thickenings and large varicose profiles with symmetric terminals. The large varicose profile in the superficial layers is absent in the IGL. This result suggests that the cholinergic inputs that innervate the superficial layers and the patches in the IGL of the cat SC differ in their synaptic organization and possibly also in their physiological actions.
Collapse
Affiliation(s)
- C J Jeon
- Department of Anatomy and Neurobiology, College of Medicine, University of Tennessee Health Science Center, Memphis 38163
| | | | | |
Collapse
|
39
|
|
40
|
Redgrave P, Westby GW, Dean P. Functional architecture of rodent superior colliculus: relevance of multiple output channels. PROGRESS IN BRAIN RESEARCH 1993; 95:69-77. [PMID: 8493354 DOI: 10.1016/s0079-6123(08)60358-1] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Affiliation(s)
- P Redgrave
- Department of Psychology, University of Sheffield, U.K
| | | | | |
Collapse
|
41
|
Illing RB. Association of efferent neurons to the compartmental architecture of the superior colliculus. Proc Natl Acad Sci U S A 1992; 89:10900-4. [PMID: 1438296 PMCID: PMC50450 DOI: 10.1073/pnas.89.22.10900] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
The superior colliculus is a layered structure in the mammalian midbrain serving multimodal sensorimotor integration. Its intermediate layers are characterized by a compartmental architecture. These compartments are apparent through the clustering of terminals of major collicular afferents, which in many instances match the heterogeneous distribution of tissue components such as acetylcholinesterase, choline acetyltransferase, substance P, and parvalbumin. The present study was undertaken to determine whether efferent cells observe this compartmental architecture. It was found that subpopulations of both descending and ascending collicular efferents originate from perikarya situated in characteristic positions relative to the collicular compartments defined by elevated acetylcholinesterase activity and that their dendrites appear to be specifically coordinated with the heterogeneous environment. With the specific interlocking of afferent and efferent neurons through spatially distinguished neural networks, the compartmental architecture apparently constitutes an essential element for the determination of information flow in the superior colliculus.
Collapse
Affiliation(s)
- R B Illing
- Unit for Morphological Brain Research, University Department of Otorhinolaryngology, Federal Republic of Germany
| |
Collapse
|
42
|
Harting JK, Updyke BV, Van Lieshout DP. Corticotectal projections in the cat: anterograde transport studies of twenty-five cortical areas. J Comp Neurol 1992; 324:379-414. [PMID: 1401268 DOI: 10.1002/cne.903240308] [Citation(s) in RCA: 131] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Retrograde transport studies have shown that widespread areas of the cerebral cortex project upon the superior colliculus. In order to explore the organization of these extensive projections, the anterograde autoradiographic method has been used to reveal the distribution and pattern of corticotectal projections arising from 25 cortical areas. In the majority of experiments, electrophysiological recording methods were used to characterize the visual representation and cortical area prior to injection of the tracer. Our findings reveal that seventeen of the 25 cortical areas project upon some portion of the superficial layers (stratum zonale, stratum griseum superficiale, and stratum opticum, SO). These cortical regions include areas 17, 18, 19, 20a, 20b, 21a, 21b, posterior suprasylvian area (PS), ventral lateral suprasylvian area (VLS), posteromedial lateral suprasylvian area (PMLS), anteromedial lateral suprasylvian area (AMLS), anterolateral lateral suprasylvian area (ALLS), posterolateral lateral suprasylvian area (PLLS), dorsolateral lateral suprasyvian area (DLS), periauditory cortex, cingulate cortex, and the visual portion of the anterior ectosylvian sulcus. While some of these corticotectal projections target all superficial laminae and sublaminae, others are more discretely organized in their laminar-sublaminar distribution. Only the corticotectal projections arising from areas 17 and 18 are exclusively related to the superficial layers. The remaining 15 pathways innervate both the superficial and intermediate and/or deep layers. The large intermediate gray layer (stratum griseum intermedium; SGI) receives projections from almost every cortical area; only areas 17 and 18 do not project ventral to SO. All corticotectal projections to SGI vary in their sublaminar distribution and in their specific pattern of termination. The majority of these projections are periodic, or patchy, and there are elaborate (double tier, bridges, or streamers) modes of distribution. We have attempted to place these findings into a conceptual framework that emphasizes that the SGI consists of sensory and motor domains, both of which contain a mosaic of connectionally distinct afferent compartments (Illing and Graybiel, '85, Neuroscience 14:455-482; Harting and Van Lieshout, '91, J. Comp. Neurol. 305:543-558). Corticotectal projections to the layers ventral to SGI, (stratum album intermediale, stratum griseum profundum, and stratum album profundum) arise from thirteen cortical areas. While an organizational plan of these deeper projections is not readily apparent, the distribution of several corticotectal inputs reveals some connectional parcellation.
Collapse
Affiliation(s)
- J K Harting
- Department of Anatomy, University of Wisconsin, Madison 53706
| | | | | |
Collapse
|
43
|
Redgrave P, Marrow L, Dean P. Topographical organization of the nigrotectal projection in rat: evidence for segregated channels. Neuroscience 1992; 50:571-95. [PMID: 1279464 DOI: 10.1016/0306-4522(92)90448-b] [Citation(s) in RCA: 117] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Recent evidence suggests that projections from the superior colliculus to the brainstem in rat are organized into a series of anatomically segregated output channels. To understand how collicular function may be modified by the basal ganglia it is important to know whether particular output modules of the superior colliculus can be selectively influenced by input from substantia nigra. The purpose of the present study was, therefore, to examine in more detail topography within the nigrotectal system in the rat. Small injections (10-50 nl) of a 1% solution of wheatgerm agglutinin conjugated with horseradish peroxidase were made at different locations within substantia nigra and surrounding structures. A discontinuous puff-like pattern of anterogradely transported label was found in medial and caudal parts of the ipsilateral intermediate layers of the superior colliculus. In contrast, the rostrolateral enlargement of the intermediate layers contained a greater density of more evenly distributed terminal label. Injection sites associated with this dense pattern of laterally located label were concentrated in lateral pars reticulata, while the puff-like pattern was produced by injections into ventromedial pars reticulata. Retrograde tracing experiments with the fluorescent dyes True Blue and Fast Blue revealed that injections involving the rostrolateral intermediate layers were consistently associated with a restricted column of labelled cells in the dorsolateral part of ipsilateral pars reticulata. Comparable injections into medial and caudal regions of the superior colliculus produced retrograde labelling in ventral and medial parts of the rostral two-thirds of pars reticulata. Both anterograde and retrograde tracing data indicated that contralateral nigrotectal projections arise from cells located in ventral and medial pars reticulata. The present results suggest that the main ipsilateral projection from substantia nigra pars reticulata to the superior colliculus comprises two main components characterized by regionally segregated populations of output cells and spatially separated zones of termination. Of particular interest is the apparent close alignment between terminal zones of the nigrotectal channels and previously defined populations of crossed descending output cells in the superior colliculus. Thus, the rostrolateral intermediate layers contain a concentration of terminals specifically from dorsolateral pars reticulata and output cells which project to the contralateral caudal medulla and spinal cord. Conversely, the medial and caudal intermediate layers receive terminals from ventral and medial pars reticulata and contain cells which project specifically to contralateral regions of the paramedian pontine and medullary reticular formation.(ABSTRACT TRUNCATED AT 400 WORDS)
Collapse
Affiliation(s)
- P Redgrave
- Department of Psychology, University of Sheffield, U.K
| | | | | |
Collapse
|
44
|
Breder CD, Smith WL, Raz A, Masferrer J, Seibert K, Needleman P, Saper CB. Distribution and characterization of cyclooxygenase immunoreactivity in the ovine brain. J Comp Neurol 1992; 322:409-38. [PMID: 1517485 DOI: 10.1002/cne.903220309] [Citation(s) in RCA: 140] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Evidence from tissue culture studies suggests that glial cells are the principal source of prostaglandins in the brain. We have used immunohistochemistry, Western blot analysis, and enzyme activity assays to localize cyclooxygenase (COX), the enzyme responsible for the conversion of arachidonic acid to prostaglandins, in situ in the normal ovine brain. We observed very few immunoreactive glial cells. In contrast, an extensive distribution of COX-like immunoreactive (ir) neuronal cell bodies and dendrites and a corresponding pattern of COX enzyme activity were observed. COXir neurons were most abundant in forebrain sites involved in complex, integrative functions and autonomic regulation such as the cerebral cortex, hippocampus, amygdala, bed nucleus of the stria terminalis, substantia innominata, dorsomedial nucleus of the hypothalamus, and tuberomammillary nucleus. Moderate populations were observed in other regions of the central nervous system implicated in sensory afferent processing, including the dorsal column nuclei, spinal trigeminal nucleus, and superior colliculus, and in structures involved in autonomic regulation, such as the nucleus of the solitary tract, parabrachial nucleus, and the periaqueductal gray matter. We did not observe COXir axons or terminal fields, however. Our results suggest that neurons may use prostaglandins as intracellular or perhaps paracrine, but probably not synaptic, mediators in the normal brain.
Collapse
Affiliation(s)
- C D Breder
- Committee on Neurobiology, University of Chicago, Illinois 60637
| | | | | | | | | | | | | |
Collapse
|
45
|
Dean P, Redgrave P. Behavioural consequences of manipulating GABA neurotransmission in the superior colliculus. PROGRESS IN BRAIN RESEARCH 1992; 90:263-81. [PMID: 1321460 DOI: 10.1016/s0079-6123(08)63618-3] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Affiliation(s)
- P Dean
- Department of Psychology, University of Sheffield, England, UK
| | | |
Collapse
|
46
|
|
47
|
Saper CB, Breder CD. Endogenous pyrogens in the CNS: role in the febrile response. PROGRESS IN BRAIN RESEARCH 1992; 93:419-28; discussion 428-9. [PMID: 1480760 DOI: 10.1016/s0079-6123(08)64587-2] [Citation(s) in RCA: 55] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
The febrile reaction is an integrated endocrine, autonomic and behavioral response, coordinated by the hypothalamus, that includes certain components of the stress response, such as elevated corticosteroid secretion. It is produced by the actions of circulating cytokines, such as interleukin-1 (IL-1) and tumor necrosis factor (TNF), on the organum vasculosum of the lamina terminalis (OVLT), resulting in the secretion of prostaglandin E2, which initiates a variety of responses, including elevation of body temperature and corticosteroid secretion. Although circulating cytokines apparently do not enter the brain, injections of IL-1 or TNF well within the blood-brain barrier produce identical effects. We have examined the localization of possible central sources of cytokines and prostaglandins, using immunohistochemistry, immunoblotting and enzyme assay. Our data indicate that in the brain cyclooxygenase, the key enzyme in the synthesis of prostaglandins, is found in neurons in the OVLT, but is also made by neurons in many sensory and visceral regulatory systems. We present evidence also that IL-1 beta in the human brain and TNF alpha in the mouse may be present in the central nervous system as neuromodulators that are important for producing the autonomic, endocrine and behavioral components of the febrile reaction. We propose a sequence of events in the febrile reaction involving: (1) action of circulating cytokines on cyclooxygenase containing neurons within the OVLT to produce local prostaglandin secretion; (2) local diffusion of prostaglandin E2 into the preoptic and anterior hypothalamic areas; (3) action of prostaglandin E2 on cytokine containing neurons in the preoptic and anterior hypothalamic areas; and (4) release of cytokines from neuronal terminals at distal sites involved in producing the autonomic, endocrine and behavioral components of the febrile reaction.
Collapse
Affiliation(s)
- C B Saper
- Department of Pharmacological and Physiological Sciences, University of Chicago, IL 60637
| | | |
Collapse
|
48
|
McHaffie JG, Beninato M, Stein BE, Spencer RF. Postnatal development of acetylcholinesterase in, and cholinergic projections to, the cat superior colliculus. J Comp Neurol 1991; 313:113-31. [PMID: 1761749 DOI: 10.1002/cne.903130109] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
The postnatal development of cholinergic afferents to the superior colliculus in neonatal cats was studied by using acetylcholinesterase (AChE) histochemistry, choline acetyltransferase (ChAT) immunohistochemistry, and retrograde transport of horseradish peroxidase (HRP). In the adult cat, the pattern of AChE staining was laminar specific. AChE was distributed continuously in the stratum griseum superficiale (SGS) but was organized as patches in the stratum griseum intermediate (SGI). Diffuse AChE staining also was present in the stratum griseum profundum (SGP) and the dorsolateral periaqueductal gray (PAG). At birth, however, AChE staining was barely detectable in the SGS and, aside from a few isolated labeled neurons, was absent from the SGI, SGP, and PAG. By 7 days postnatal (dpn), staining in the SGS was more apparent but did not change appreciably in the deeper laminae. A substantial increase in AChE staining occurred in the SGS at 14 dpn (several days after eye opening), at which time patches in the SGI first became apparent. By 28 dpn, the complete laminar-specific adult AChE staining pattern was present, though the staining intensity did not reach the adult level until 56 dpn. A protracted maturation of both AChE staining and ChAT immunoreactivity also was observed in the sources of cholinergic afferents to the superior colliculus, which include the parabigeminal nucleus, and the pedunculopontine (PPN) and lateral dorsal tegmental (LDTN) nuclei. AChE and ChAT-immunoreactive staining in each nucleus was weak at birth but increased during the ensuing 2 weeks. At 21 dpn, however, ChAT immunoreactivity virtually disappeared in the parabigeminal nucleus and significantly decreased in PPN and LDTN. The ChAT immunoreactivity in these nuclei then gradually increased reaching maximum levels by 28 dpn. At 35 dpn, AChE staining showed a significant, though temporary (4 weeks), decrease in the parabigeminal nucleus, but not in the PPN and LDTN, that subsequently increased to the adult level of staining at 70 dpn. The absence of AChE in the SGI in neonatal animals was correlated, at least in part, with a paucity of neurons in the brainstem cholinergic cell groups labeled by retrograde transport of HRP from the superior colliculus. Injections of HRP into the superior colliculus retrogradely labeled many neurons in the parabigeminal nucleus, but few, if any, neurons in the PPN or LDTN at 1 dpn. Retrogradely labeled neurons also were observed in the substantia nigra pars reticulata, albeit fewer in neonates than in adults.(ABSTRACT TRUNCATED AT 400 WORDS)
Collapse
Affiliation(s)
- J G McHaffie
- Department of Physiology, Medical College of Virginia, Richmond 23298
| | | | | | | |
Collapse
|
49
|
Ma TP, Graybiel AM, Wurtz RH. Location of saccade-related neurons in the macaque superior colliculus. Exp Brain Res 1991; 85:21-35. [PMID: 1715825 DOI: 10.1007/bf00229983] [Citation(s) in RCA: 58] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
The locations of saccade-related neurons were studied in the superior colliculi of two adult rhesus monkeys (Macaca mulatta) by placing marking lesions at the sites of physiologically characterized cells and comparing these histologically identified sites with the collicular laminae and acetylcholinesterase (AChE)-rich patches. Three major conclusions were drawn on the basis of 39 histologically identified sites at which saccade-related neurons were recorded. First, saccade-related neurons were distributed from the ventral half of the optic layer through the deep gray layer, and were most concentrated in the intermediate gray and white layers. Second, there was a clear relationship between the discharge characteristics of these saccade-related neurons and the depths at which they were found. Neurons having presaccadic bursts, defined as clipped and partially-clipped, tended to be encountered more dorsally, and neurons that did not have bursts (unclipped) were encountered more ventrally. Although cells having different discharge characteristics seemed to be organized along a dorsoventral axis, there was no compelling evidence that these properties were specified by their laminar locations. Third, there was no clear correlation between the locations of saccade-related neurons and the distribution of individual AChE-rich patches. Saccade-related cells were found both in the caudal superior colliculus where patches were located and in the rostral superior colliculus where patches were not found; both within and between the two tiers of AChE-rich patches in the caudal superior colliculus; and both within and between individual AChE-rich patches. However, the depth-level at which saccade-related neurons occurred generally matched the region bounded by the two tiers of AChE-rich patches in the intermediate and deep layers, and the dorsal and ventral extent of saccade-related neurons was the same as that of the AChE-rich patches.
Collapse
Affiliation(s)
- T P Ma
- Laboratory of Sensorimotor Research, National Eye Institute, National Institutes of Health, Bethesda, MD 20892
| | | | | |
Collapse
|
50
|
Harting JK, Van Lieshout DP. Spatial relationships of axons arising from the substantia nigra, spinal trigeminal nucleus, and pedunculopontine tegmental nucleus within the intermediate gray of the cat superior colliculus. J Comp Neurol 1991; 305:543-58. [PMID: 2045535 DOI: 10.1002/cne.903050403] [Citation(s) in RCA: 72] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
We have utilized two different anterograde transport methods (Phaseolus vulgaris leucoagglutinin [PHA-L] immunocytochemistry and autoradiography) in the same experiment to compare the sublaminar location and arrangement of tectopetal axons arising from the substantia nigra pars reticulata, the spinal trigeminal nucleus, and the pedunculopontine tegmental nucleus. Our findings reveal that the nigrotectal projection terminates in a patchy fashion within three horizontally oriented sublaminae of the stratum griseum superficiale (SGI), the dorsal, middle and ventral. The middle tier of nigrotectal axons exhibits an exquisite, puzzle-like, complementary spatial relationship with trigeminotectal axons. In contrast, axons arising from the pedunculopontine tegmental nucleus overlap with patches of nigrotectal axons within the middle tier. Thus the middle tier of the SGI consists of domains of overlapping nigral and pedunculopontine tegmental inputs which interdigitate with domains rich in somatosensory inputs.
Collapse
Affiliation(s)
- J K Harting
- Department of Anatomy, University of Wisconsin Madison 53706
| | | |
Collapse
|