1
|
Golani I, Kafkafi N. On growth and form of animal behavior. Front Integr Neurosci 2025; 18:1476233. [PMID: 39967809 PMCID: PMC11832518 DOI: 10.3389/fnint.2024.1476233] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2024] [Accepted: 12/16/2024] [Indexed: 02/20/2025] Open
Abstract
In this study we propose an architecture (bauplan) for the growth and form of behavior in vertebrates and arthropods. We show in what sense behavior is an extension of anatomy. Then we show that movement-based behavior shares linearity and modularity with the skeletal body plan, and with the Hox genes; that it mirrors the geometry of the physical environment; and that it reveals the animal's understanding of the animate and physical situation, with implications for perception, attention, emotion, and primordial cognition. First we define the primitives of movement in relational terms, as in comparative anatomy, yielding homological primitives. Then we define modules, generative rules and the architectural plan of behavior in terms of these primitives. In this way we expose the homology of behaviors, and establish a rigorous trans-phyletic comparative discipline of the morphogenesis of movement-based behavior. In morphogenesis, behavior builds up and narrows incessantly according to strict geometric rules. The same rules apply in moment-to-moment behavior, in ontogenesis, and partly also in phylogenesis. We demonstrate these rules in development, in neurological recovery, with drugs (dopamine-stimulated striatal modulation), in stressful situations, in locomotor behavior, and partly also in human pathology. The buildup of movement culminates in free, undistracted, exuberant behavior. It is observed in play, in superior animals during agonistic interactions, and in humans in higher states of functioning. Geometrization promotes the study of genetics, anatomy, and behavior within one and the same discipline. The geometrical bauplan portrays both already evolved dimensions, and prospective dimensional constraints on evolutionary behavioral innovations.
Collapse
Affiliation(s)
| | - Neri Kafkafi
- School of Zoology, Faculty of Life Sciences, Tel-Aviv University, Tel Aviv, Israel
| |
Collapse
|
2
|
Evangelista C, Mehrez N, Boisvert EE, Brake WG, Shizgal P. The priming effect of rewarding brain stimulation in rats depends on both the cost and strength of reward but survives blockade of D2-like dopamine receptors. Eur J Neurosci 2023; 58:3751-3784. [PMID: 37752810 DOI: 10.1111/ejn.16142] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2022] [Revised: 07/18/2023] [Accepted: 08/24/2023] [Indexed: 09/28/2023]
Abstract
Receipt of an intense reward boosts motivation to work for more of that reward. This phenomenon is called the priming effect of rewards. Using a novel measurement method, we show that the priming effect of rewarding electrical brain stimulation depends on the cost, as well as on the strength, of the anticipated reward. Previous research on the priming effect of electrical brain stimulation utilized a runway paradigm in which running speed serves as the measure of motivation. In the present study, the measure of motivation was the vigour with which rats executed a two-lever response chain, in a standard operant-conditioning chamber, to earn rewarding electrical stimulation of the lateral hypothalamus. In a second experiment, we introduced a modification that entails self-administered priming stimulation and alternating blocks of primed and unprimed trials. Reliable, consistent priming effects of substantial magnitude were obtained in the modified paradigm, which is closely analogous to the runway paradigm. In a third experiment, the modified paradigm served to assess the dependence of the priming effect on dopamine D2-like receptors. The priming effect proved resilient to the effect of eticlopride, a selective D2-like receptor antagonist. These results are discussed within the framework of a new model of brain reward circuitry in which non-dopaminergic medial forebrain bundle fibers and dopamine axons provide parallel inputs to the final common paths for reward and incentive motivation.
Collapse
Affiliation(s)
- Czarina Evangelista
- Centre for Studies in Behavioural Neurobiology, Concordia University, Montréal, Québec, Canada
| | - Norhan Mehrez
- Centre for Studies in Behavioural Neurobiology, Concordia University, Montréal, Québec, Canada
| | - Esthelle Ewusi Boisvert
- Centre for Studies in Behavioural Neurobiology, Concordia University, Montréal, Québec, Canada
| | - Wayne G Brake
- Centre for Studies in Behavioural Neurobiology, Concordia University, Montréal, Québec, Canada
| | - Peter Shizgal
- Centre for Studies in Behavioural Neurobiology, Concordia University, Montréal, Québec, Canada
| |
Collapse
|
3
|
Mocellin P, Mikulovic S. The Role of the Medial Septum-Associated Networks in Controlling Locomotion and Motivation to Move. Front Neural Circuits 2021; 15:699798. [PMID: 34366795 PMCID: PMC8340000 DOI: 10.3389/fncir.2021.699798] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2021] [Accepted: 06/28/2021] [Indexed: 12/29/2022] Open
Abstract
The Medial Septum and diagonal Band of Broca (MSDB) was initially studied for its role in locomotion. However, the last several decades were focussed on its intriguing function in theta rhythm generation. Early studies relied on electrical stimulation, lesions and pharmacological manipulation, and reported an inconclusive picture regarding the role of the MSDB circuits. Recent studies using more specific methodologies have started to elucidate the differential role of the MSDB's specific cell populations in controlling both theta rhythm and behaviour. In particular, a novel theory is emerging showing that different MSDB's cell populations project to different brain regions and control distinct aspects of behaviour. While the majority of these behaviours involve movement, increasing evidence suggests that MSDB-related networks govern the motivational aspect of actions, rather than locomotion per se. Here, we review the literature that links MSDB, theta activity, and locomotion and propose open questions, future directions, and methods that could be employed to elucidate the diverse roles of the MSDB-associated networks.
Collapse
Affiliation(s)
- Petra Mocellin
- Department of Cellular Neuroscience, Leibniz Institute for Neurobiology, Magdeburg, Germany
- International Max Planck Research School for Brain and Behavior, Bonn, Germany
| | - Sanja Mikulovic
- Research Group Cognition and Emotion, Leibniz Institute for Neurobiology, Magdeburg, Germany
| |
Collapse
|
4
|
Koblinger K, Jean-Xavier C, Sharma S, Füzesi T, Young L, Eaton SEA, Kwok CHT, Bains JS, Whelan PJ. Optogenetic Activation of A11 Region Increases Motor Activity. Front Neural Circuits 2018; 12:86. [PMID: 30364230 PMCID: PMC6193508 DOI: 10.3389/fncir.2018.00086] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2018] [Accepted: 09/21/2018] [Indexed: 11/13/2022] Open
Abstract
Limbic brain regions drive goal-directed behaviors. These behaviors often require dynamic motor responses, but the functional connectome of limbic structures in the diencephalon that control locomotion is not well known. The A11 region, within the posterior diencephalon has been postulated to contribute to motor function and control of pain. Here we show that the A11 region initiates movement. Photostimulation of channelrhodopsin 2 (ChR2) transfected neurons in A11 slice preparations showed that neurons could follow stimulation at frequencies of 20 Hz. Our data show that photostimulation of ChR2 transfected neurons in the A11 region enhances motor activity often leading to locomotion. Using vGluT2-reporter and vGAT-reporter mice we show that the A11 tyrosine hydroxylase positive (TH) dopaminergic neurons are vGluT2 and vGAT negative. We find that in addition to dopaminergic neurons within the A11 region, there is another neuronal subtype which expresses the monoenzymatic aromatic L-amino acid decarboxylase (AADC), but not TH, a key enzyme involved in the synthesis of catecholamines including dopamine. This monoaminergic-based motor circuit may be involved in the control of motor behavior as part of a broader diencephalic motor region.
Collapse
Affiliation(s)
- Kathrin Koblinger
- Hotchkiss Brain Institute, University of Calgary, Calgary, AB, Canada.,Department of Comparative Biology and Experimental Medicine, University of Calgary, Calgary, AB, Canada
| | - Céline Jean-Xavier
- Hotchkiss Brain Institute, University of Calgary, Calgary, AB, Canada.,Department of Comparative Biology and Experimental Medicine, University of Calgary, Calgary, AB, Canada
| | - Sandeep Sharma
- Hotchkiss Brain Institute, University of Calgary, Calgary, AB, Canada.,Department of Comparative Biology and Experimental Medicine, University of Calgary, Calgary, AB, Canada
| | - Tamás Füzesi
- Hotchkiss Brain Institute, University of Calgary, Calgary, AB, Canada.,Department of Physiology and Pharmacology, University of Calgary, Calgary, AB, Canada
| | - Leanne Young
- Hotchkiss Brain Institute, University of Calgary, Calgary, AB, Canada.,Department of Comparative Biology and Experimental Medicine, University of Calgary, Calgary, AB, Canada
| | - Shane E A Eaton
- Hotchkiss Brain Institute, University of Calgary, Calgary, AB, Canada.,Department of Comparative Biology and Experimental Medicine, University of Calgary, Calgary, AB, Canada
| | - Charlie Hong Ting Kwok
- Hotchkiss Brain Institute, University of Calgary, Calgary, AB, Canada.,Department of Comparative Biology and Experimental Medicine, University of Calgary, Calgary, AB, Canada
| | - Jaideep Singh Bains
- Hotchkiss Brain Institute, University of Calgary, Calgary, AB, Canada.,Department of Physiology and Pharmacology, University of Calgary, Calgary, AB, Canada
| | - Patrick J Whelan
- Hotchkiss Brain Institute, University of Calgary, Calgary, AB, Canada.,Department of Comparative Biology and Experimental Medicine, University of Calgary, Calgary, AB, Canada.,Department of Physiology and Pharmacology, University of Calgary, Calgary, AB, Canada
| |
Collapse
|
5
|
Roseberry TK, Lee AM, Lalive AL, Wilbrecht L, Bonci A, Kreitzer AC. Cell-Type-Specific Control of Brainstem Locomotor Circuits by Basal Ganglia. Cell 2016; 164:526-37. [PMID: 26824660 DOI: 10.1016/j.cell.2015.12.037] [Citation(s) in RCA: 266] [Impact Index Per Article: 29.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2015] [Revised: 10/27/2015] [Accepted: 12/22/2015] [Indexed: 12/23/2022]
Abstract
The basal ganglia (BG) are critical for adaptive motor control, but the circuit principles underlying their pathway-specific modulation of target regions are not well understood. Here, we dissect the mechanisms underlying BG direct and indirect pathway-mediated control of the mesencephalic locomotor region (MLR), a brainstem target of BG that is critical for locomotion. We optogenetically dissect the locomotor function of the three neurochemically distinct cell types within the MLR: glutamatergic, GABAergic, and cholinergic neurons. We find that the glutamatergic subpopulation encodes locomotor state and speed, is necessary and sufficient for locomotion, and is selectively innervated by BG. We further show activation and suppression, respectively, of MLR glutamatergic neurons by direct and indirect pathways, which is required for bidirectional control of locomotion by BG circuits. These findings provide a fundamental understanding of how BG can initiate or suppress a motor program through cell-type-specific regulation of neurons linked to specific actions.
Collapse
Affiliation(s)
- Thomas K Roseberry
- The Gladstone Institutes, San Francisco, CA 94158, USA; Neuroscience Graduate Program, University of California, San Francisco, San Francisco, CA 94158, USA
| | - A Moses Lee
- The Gladstone Institutes, San Francisco, CA 94158, USA; Neuroscience Graduate Program, University of California, San Francisco, San Francisco, CA 94158, USA; Medical Scientist Training Program, University of California, San Francisco, San Francisco, CA 94158, USA
| | | | - Linda Wilbrecht
- Department of Psychology, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Antonello Bonci
- Intramural Research Program, Synaptic Plasticity Section, National Institute for Drug Abuse, Baltimore, MD 21224, USA; Solomon H. Snyder Department of Neuroscience, Johns Hopkins University, Baltimore, MD 21205, USA; Department of Psychiatry, Johns Hopkins University, Baltimore, MD 21287, USA
| | - Anatol C Kreitzer
- The Gladstone Institutes, San Francisco, CA 94158, USA; Neuroscience Graduate Program, University of California, San Francisco, San Francisco, CA 94158, USA; Medical Scientist Training Program, University of California, San Francisco, San Francisco, CA 94158, USA; Departments of Physiology and Neurology, University of California, San Francisco, San Francisco, CA 94158, USA.
| |
Collapse
|
6
|
Sherman D, Fuller PM, Marcus J, Yu J, Zhang P, Chamberlin NL, Saper CB, Lu J. Anatomical Location of the Mesencephalic Locomotor Region and Its Possible Role in Locomotion, Posture, Cataplexy, and Parkinsonism. Front Neurol 2015; 6:140. [PMID: 26157418 PMCID: PMC4478394 DOI: 10.3389/fneur.2015.00140] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2015] [Accepted: 06/09/2015] [Indexed: 12/05/2022] Open
Abstract
The mesencephalic (or midbrain) locomotor region (MLR) was first described in 1966 by Shik and colleagues, who demonstrated that electrical stimulation of this region induced locomotion in decerebrate (intercollicular transection) cats. The pedunculopontine tegmental nucleus (PPT) cholinergic neurons and midbrain extrapyramidal area (MEA) have been suggested to form the neuroanatomical basis for the MLR, but direct evidence for the role of these structures in locomotor behavior has been lacking. Here, we tested the hypothesis that the MLR is composed of non-cholinergic spinally projecting cells in the lateral pontine tegmentum. Our results showed that putative MLR neurons medial to the PPT and MEA in rats were non-cholinergic, glutamatergic, and express the orexin (hypocretin) type 2 receptors. Fos mapping correlated with motor behaviors revealed that the dorsal and ventral MLR are activated, respectively, in association with locomotion and an erect posture. Consistent with these findings, chemical stimulation of the dorsal MLR produced locomotion, whereas stimulation of the ventral MLR caused standing. Lesions of the MLR (dorsal and ventral regions together) resulted in cataplexy and episodic immobility of gait. Finally, trans-neuronal tracing with pseudorabies virus demonstrated disynaptic input to the MLR from the substantia nigra via the MEA. These findings offer a new perspective on the neuroanatomic basis of the MLR, and suggest that MLR dysfunction may contribute to the postural and gait abnormalities in Parkinsonism.
Collapse
Affiliation(s)
- David Sherman
- Department of Neurology, Beth Israel Deaconess Medical Center , Boston, MA , USA
| | - Patrick M Fuller
- Department of Neurology, Beth Israel Deaconess Medical Center , Boston, MA , USA
| | - Jacob Marcus
- Department of Medicine, Beth Israel Deaconess Medical Center , Boston, MA , USA
| | - Jun Yu
- Department of Neurosurgery, Dalian Municipal Central Hospital , Dalian , China
| | - Ping Zhang
- Department of Endocrinology, Diabetes and Metabolism, The Second Hospital of Dalian Medical University , Dalian , China
| | - Nancy L Chamberlin
- Department of Neurology, Beth Israel Deaconess Medical Center , Boston, MA , USA
| | - Clifford B Saper
- Department of Neurology, Beth Israel Deaconess Medical Center , Boston, MA , USA
| | - Jun Lu
- Department of Neurology, Beth Israel Deaconess Medical Center , Boston, MA , USA
| |
Collapse
|
7
|
Golani I. The developmental dynamics of behavioral growth processes in rodent egocentric and allocentric space. Behav Brain Res 2012; 231:309-16. [PMID: 22306230 DOI: 10.1016/j.bbr.2012.01.039] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2011] [Revised: 01/17/2012] [Accepted: 01/19/2012] [Indexed: 11/28/2022]
Abstract
In this review I focus on how three methodological principles advocated by Philip Teitelbaum influenced my work to this day: that similar principles of organization should be looked for in ontogeny and recovery of function; that the order of emergence of behavioral components provides a view on the organization of that behavior; and that the components of behavior should be exhibited by the animal itself in relatively pure form. I start by showing how these principles influenced our common work on the developmental dynamics of rodent egocentric space, and then proceed to describe how these principles affected my work with Yoav Benjamini and others on the developmental dynamics of rodent allocentric space. We analyze issues traditionally addressed by physiological psychologists with methods borrowed from ethology, EW (Eshkol-Wachman) movement notation, dynamical systems and exploratory data analysis. Then we show how the natural origins of axes embodied by the behavior of the organism itself, are used by us as the origins of axes for the measurement of the developmental moment-by-moment dynamics of behavior. Using this methodology we expose similar principles of organization across situations, species and preparations, provide a developmental view on the organization of behavior, expose the natural components of behavior in relatively pure form, and reveal how low level primitives generate higher level constructs. Advances in tracking technology should allow us to study how movements in egocentric and allocentric spaces interlace. Tracking of multi-limb coordination, progress in online recording of neural activity in freely moving animals, and the unprecedented accumulation of genetically engineered mouse preparations makes the behavioral ground plan exposed in this review essential for a systematic study of the brain/behavior interface.
Collapse
Affiliation(s)
- Ilan Golani
- Department of Zoology, Tel Aviv University, Israel.
| |
Collapse
|
8
|
Ribeiro AC, LeSauter J, Dupré C, Pfaff DW. Relationship of arousal to circadian anticipatory behavior: ventromedial hypothalamus: one node in a hunger-arousal network. Eur J Neurosci 2009; 30:1730-8. [PMID: 19863654 PMCID: PMC3257877 DOI: 10.1111/j.1460-9568.2009.06969.x] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The mechanisms by which animals adapt to an ever-changing environment have long fascinated scientists. Different forces, conveying information regarding various aspects of the internal and external environment, interact with each other to modulate behavioral arousal. These forces can act in concert or, at times, in opposite directions. These signals eventually converge and are integrated to influence a common arousal pathway which, depending on all the information received from the environment, supports the activation of the most appropriate behavioral response. In this review we propose that the ventromedial hypothalamic nucleus (VMN) is part of the circuitry that controls food anticipation. It is the first nucleus activated when there is a change in the time of food availability, silencing of VMN ghrelin receptors decreases food-anticipatory activity (FAA) and, although lesions of the VMN do not abolish FAA, parts of the response are often altered. In proposing this model it is not our intention to exclude parallel, redundant and possibly interacting pathways that may ultimately communicate with, or work in concert with, the proposed network, but rather to describe the neuroanatomical requirements for this circuit and to illustrate how the VMN is strategically placed and connected to mediate this complex behavioral adaptation.
Collapse
Affiliation(s)
- Ana C Ribeiro
- Laboratory of Neurobiology and Behavior, The Rockefeller University, New York, NY 10065, USA.
| | | | | | | |
Collapse
|
9
|
Torterolo P, Sampogna S, Morales FR, Chase MH. MCH-containing neurons in the hypothalamus of the cat: searching for a role in the control of sleep and wakefulness. Brain Res 2006; 1119:101-14. [PMID: 17027934 PMCID: PMC1802635 DOI: 10.1016/j.brainres.2006.08.100] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2006] [Revised: 08/04/2006] [Accepted: 08/13/2006] [Indexed: 11/20/2022]
Abstract
Neurons that utilize melanin-concentrating hormone (MCH) and others that employ hypocretin as neurotransmitter are located in the hypothalamus and project diffusely throughout the CNS, including areas that participate in the generation and maintenance of the states of sleep and wakefulness. In the present report, immunohistochemical methods were employed to examine the distribution of MCHergic and hypocretinergic neurons. In order to test the hypothesis that the MCHergic system is capable of influencing specific behavioral states, we studied Fos immunoreactivity in MCH-containing neurons during (1) quiet wakefulness, (2) active wakefulness with motor activity, (3) active wakefulness without motor activity, (4) quiet sleep and (5) active sleep induced by carbachol (AS-carbachol). We determined that MCHergic neuronal somata in the cat are intermingled with hypocretinergic neurons in the dorsal and lateral hypothalamus, principally in the tuberal and tuberomammillary regions; however, hypocretinergic neurons extended more in the anterior-posterior axis than MCHergic neurons. Axosomatic and axodendritic contacts were common between these neurons. In contrast to hypocretinergic neurons, which are known to be active during motor activity and AS-carbachol, Fos immunoreactivity was not observed in MCH-containing neurons in conjunction with any of the preceding behavioral conditions. Non-MCHergic, non-hypocretinergic neurons that expressed c-fos during active wakefulness with motor activity were intermingled with MCH and hypocretin-containing neurons, suggesting that these neurons are related to some aspect of motor function. Further studies are required to elucidate the functional sequela of the interactions between MCHergic and hypocretinergic neurons and the phenotype of the other neurons that were active during motor activity.
Collapse
Affiliation(s)
- Pablo Torterolo
- Departamento de Fisiología, Facultad de Medicina, Universidad de la República, General Flores 2125, 11800, Montevideo-Uruguay
| | - Sharon Sampogna
- WebSciences International, 1251 Westwood Blvd., Los Angeles, CA 90024
| | - Francisco R. Morales
- Departamento de Fisiología, Facultad de Medicina, Universidad de la República, General Flores 2125, 11800, Montevideo-Uruguay
- WebSciences International, 1251 Westwood Blvd., Los Angeles, CA 90024
| | - Michael H. Chase
- WebSciences International, 1251 Westwood Blvd., Los Angeles, CA 90024
- UCLA School of Medicine, Los Angeles, CA 90095
| |
Collapse
|
10
|
Song YN, Li HZ, Zhu JN, Guo CL, Wang JJ. Histamine improves rat rota-rod and balance beam performances through H(2) receptors in the cerebellar interpositus nucleus. Neuroscience 2006; 140:33-43. [PMID: 16533576 DOI: 10.1016/j.neuroscience.2006.01.045] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2005] [Revised: 12/27/2005] [Accepted: 01/31/2006] [Indexed: 10/24/2022]
Abstract
Previous studies have revealed a direct histaminergic projection from the tuberomamillary nucleus of hypothalamus to the cerebellum and a postsynaptic excitatory effect of histamine on the cerebellar interpositus nucleus neurons via histamine H(2) receptors in vitro, indicating that the histaminergic afferent inputs of cerebellar nuclei may be involved in the cerebellar function of motor control. To test this hypothesis, in this study histaminergic agents were bilaterally microinjected into the cerebellar interpositus nucleus of intact adult male rats, and their effects on motor balance and coordination of the animals performing accelerating rota-rod treadmill and balance beam tasks were observed. The results showed that microinjection of histamine into the cerebellar interpositus nucleus remarkably increased the time that animals balanced steadily on the rota-rod and markedly shortened the duration of passage through the balance beam, whereas GABA significantly depressed motor performances of animals on the rota-rod and beam, and normal saline influenced neither. In addition, administration of selective histamine H(2) receptor antagonist ranitidine considerably decreased the animals' endurance time on rota-rod and noticeably increased the passing time on beam, but selective histamine H(1) receptor antagonist triprolidine showed no effect. Furthermore, microinjection of histamine reversed the inhibitory effects of ranitidine on rota-rod and beam performance. These results demonstrate that histamine enhances rat motor balance and coordination through activation of histamine H(2) receptors in the cerebellar interpositus nucleus and suggest that the hypothalamocerebellar histaminergic projections may play a modulatory role on the cerebellar circuitry to ensure that movements are accurately executed.
Collapse
Affiliation(s)
- Y-N Song
- Department of Biological Science and Technology and State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Mailbox 426, Nanjing University, 22 Hankou Road, Nanjing, Jiangsu 210093, China
| | | | | | | | | |
Collapse
|
11
|
Zhao Z, Davis M. Fear-potentiated startle in rats is mediated by neurons in the deep layers of the superior colliculus/deep mesencephalic nucleus of the rostral midbrain through the glutamate non-NMDA receptors. J Neurosci 2004; 24:10326-34. [PMID: 15548646 PMCID: PMC6730294 DOI: 10.1523/jneurosci.2758-04.2004] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2004] [Revised: 10/05/2004] [Accepted: 10/05/2004] [Indexed: 11/21/2022] Open
Abstract
The amygdala sends heavy and broad projections to the rostral midbrain including the periaqueductal gray (PAG), the deep layers of the superior colliculus/deep mesencephalic nucleus (deep SC/DpMe), and the lateral mesencephalic reticular formation (MRF) that in turn project to the nucleus reticularis pontis caudalis (PnC), an obligatory relay in the primary acoustic startle circuit. Chemical lesions or inactivation of these areas blocked fear-potentiated startle, suggesting that these areas serve as a relay between the amygdala and the PnC. In the present study, we tried to determine more precisely which of these sites were critical for fear-potentiated startle and the role of glutamate receptors in this site in mediating fear-potentiated startle. Local infusion of the non-NMDA receptor antagonist 2,3-dihydroxy-6-nitro-7-sulfamoylbenzo(F)-quinoxaline (NBQX) dose-dependently blocked fear-potentiated startle when infused into the deep SC/DpMe before testing but had no effect on baseline startle amplitude. NBQX did not block fear-potentiated startle when infused before training. The same dose of NBQX infused into the dorsal/lateral PAG, the lateral MRF, or the superficial layers of the SC did not affect fear-potentiated startle. However, NBQX tended to reduce contextual freezing when infused into the dorsal/lateral PAG. These findings suggest that the deep SC/DpMe is the site that serves as a critical output relay between the amygdala and the PnC in mediating fear-potentiated startle and that glutamatergic transmission is required for this action.
Collapse
Affiliation(s)
- Zuowei Zhao
- Department of Psychiatry and Behavioral Sciences, School of Medicine, Emory University, Atlanta, Georgia 30329, USA.
| | | |
Collapse
|
12
|
PAGGETT KC, JACKSON AW, MCCLELLAN AD. Organization of higher-order brain areas that initiate locomotor activity in larval lamprey. Neuroscience 2004; 125:25-33. [PMID: 15051142 PMCID: PMC2915897 DOI: 10.1016/j.neuroscience.2004.01.032] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/18/2004] [Indexed: 11/26/2022]
Abstract
In the lamprey, spinal locomotor activity can be initiated by pharmacological microstimulation in several brain areas: rostrolateral rhombencephalon (RLR); dorsolateral mesencephalon (DLM); ventromedial diencephalon (VMD); and reticular nuclei. During DLM- or VMD-initiated locomotor activity in in vitro brain/spinal cord preparations, application of a solution that focally depressed neuronal activity in reticular nuclei often attenuated or abolished the locomotor rhythm. Electrical microstimulation in the DLM or VMD elicited synaptic responses in reticulospinal (RS) neurons, and close temporal stimulation in both areas evoked responses that summated and could elicit action potentials when neither input alone was sufficient. During RLR-initiated locomotor activity, focal application of a solution that depressed neuronal activity in the DLM or VMD abolished or attenuated the rhythm. These new results suggest that neurons in the RLR project rostrally to locomotor areas in the DLM and VMD. These latter areas then appear to project caudally to RS neurons, which probably integrate the synaptic inputs from both areas and activate the spinal locomotor networks. These pathways are likely to be important components of the brain neural networks for the initiation of locomotion and have parallels to locomotor command systems in higher vertebrates.
Collapse
Affiliation(s)
- K. C. PAGGETT
- Division of Biological Science and Interdisciplinary Neuroscience Program, 114 Lefevre Hall, University of Missouri, Columbia, MO 65211-6190, USA
| | - A. W. JACKSON
- Division of Biological Science and Interdisciplinary Neuroscience Program, 114 Lefevre Hall, University of Missouri, Columbia, MO 65211-6190, USA
| | - A. D. MCCLELLAN
- Division of Biological Science and Interdisciplinary Neuroscience Program, 114 Lefevre Hall, University of Missouri, Columbia, MO 65211-6190, USA
| |
Collapse
|
13
|
Mileykovskiy BY, Kiyashchenko LI, Siegel JM. Cessation of activity in red nucleus neurons during stimulation of the medial medulla in decerebrate rats. J Physiol 2002; 545:997-1006. [PMID: 12482902 PMCID: PMC2290716 DOI: 10.1113/jphysiol.2002.028985] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
The pontine oral reticular nucleus, gigantocellular reticular nucleus (Gi) and dorsal paragigantocellular nucleus (DPGi) of the medulla are key elements of a brainstem-reticulospinal inhibitory system that participates in rapid eye movement (REM) sleep atonia. Our recent study has shown that excitation of these brainstem nuclei in decerebrate rats inhibits locus coeruleus cells and the midbrain locomotor region neurons related to muscle tone facilitation. In the present study we have examined the influences of electrical and chemical stimulation of Gi and DPGi inhibitory sites on the activity of neurons located in the magnocellular part of the red nucleus (RMC), a cell group that participates in both the tonic and phasic regulation of motor output. A total of 192 RMC neurons were recorded in precollicular-premammillary decerebrate rats with muscle rigidity and induced locomotion. Thirty-three RMC neurons were identified antidromically as rubrospinal (RMC-spinal) cells by stimulation of the contralateral dorsolateral funiculus at the L2 level. A total of 141 RMC neurons (88.7 %) and all RMC-spinal neurons were inhibited during electrical stimulation of Gi and DPGi inhibitory sites. This cessation of activity was correlated with bilateral muscle atonia or blockage of locomotion. Six RMC cells (3.8 %) were excited (224 +/- 50 %, n = 6, minimum = 98, maximum = 410, P < 0.05) and 11 cells (7 %) gave no response to Gi and DPGi stimulation. Microinjections of kainic acid (100 microM, 0.2 microl) into Gi and DPGi inhibitory sites, previously identified by electrical stimulation, produced a short-latency (35 +/- 3.5 s, n = 11) decrease of rigid hindlimb muscle tone and inhibition of all tested RMC (n = 7) and RMC-spinal (n = 5) neurons. These results, combined with our recent published data, suggest that inhibition of motor function during activation of the brainstem inhibitory system is related to both the descending inhibition of spinal motoneurons and suppression of activity in supraspinal motor facilitatory systems. These two mechanisms acting synergistically may cause generalized motor inhibition during REM sleep and cataplexy.
Collapse
Affiliation(s)
- Boris Y Mileykovskiy
- Veterans Administration, Greater Los Angeles Health System, Sepulveda, California, USA
| | | | | |
Collapse
|
14
|
Mileykovskiy BY, Kiyashchenko LI, Siegel JM. Muscle tone facilitation and inhibition after orexin-a (hypocretin-1) microinjections into the medial medulla. J Neurophysiol 2002; 87:2480-9. [PMID: 11976385 PMCID: PMC8796732 DOI: 10.1152/jn.2002.87.5.2480] [Citation(s) in RCA: 57] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Orexins/hypocretins are synthesized in neurons of the perifornical, dorsomedial, lateral, and posterior hypothalamus. A loss of hypocretin neurons has been found in human narcolepsy, which is characterized by sudden loss of muscle tone, called cataplexy, and sleepiness. The normal functional role of these neurons, however, is unclear. The medioventral medullary region, including gigantocellular reticular nucleus, alpha (GiA) and ventral (GiV) parts, participates in the induction of locomotion and muscle tone facilitation in decerebrate animals and receives moderate orexinergic innervation. In the present study, we have examined the role of orexin-A (OX-A) in muscle tone control using microinjections (50 microM, 0.3 microl) into the GiA and GiV sites in decerebrate rats. OX-A microinjections into GiA sites, previously identified by electrical stimulation as facilitating hindlimb muscle tone bilaterally, produced a bilateral increase of muscle tone in the same muscles. Bilateral lidocaine microinjections (4%, 0.3 microl) into the dorsolateral mesopontine reticular formation decreased muscle rigidity and blocked muscle tone facilitation produced by OX-A microinjections into the GiA sites. The activity of cells related to muscle rigidity, located in the pedunculopontine tegmental nucleus and adjacent reticular formation, was correlated positively with the extent of hindlimb muscle tone facilitation after medullary OX-A microinjections. OX-A microinjections into GiV sites were less effective in muscle tone facilitation, although these sites produced a muscle tone increase during electrical stimulation. In contrast, OX-A microinjections into the gigantocellular nucleus (Gi) sites and dorsal paragigantocellular nucleus (DPGi) sites, previously identified by electrical stimulation as inhibitory points, produced bilateral hindlimb muscle atonia. We propose that the medioventral medullary region is one of the brain stem target for OX-A modulation of muscle tone. Facilitation of muscle tone after OX-A microinjections into this region is linked to activation of intrinsic reticular cells, causing excitation of midbrain and pontine neurons participating in muscle tone facilitation through an ascending pathway. Moreover, our results suggest that OX-A may also regulate the activity of medullary neurons participating in muscle tone suppression. Loss of OX function may, therefore, disturb both muscle tone facilitatory and inhibitory processes at the medullary level.
Collapse
Affiliation(s)
- Boris Y Mileykovskiy
- Institute of Evolutionary Physiology and Biochemistry, Russian Academy of Sciences, St. Petersburg 194223, Russia
| | | | | |
Collapse
|
15
|
Sinnamon HM, Jassen AK, Vita LA. Brainstem regions with neuronal activity patterns correlated with priming of locomotor stepping in the anesthetized rat. Neuroscience 2000; 99:77-91. [PMID: 10924954 DOI: 10.1016/s0306-4522(00)00179-2] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Locomotor stimulation in the perifornical hypothalamus produces a transient facilitation of subsequent locomotion, a priming effect, such that stepping to a second train of stimulation occurs with a shorter latency of onset and increased amplitude. Neurons responsible for the initiation of this facilitated stepping presumably respond to locomotor stimulation with a similar priming effect, i.e. either a shorter latency or a larger change in activity rate. This study used anesthetized rats (urethane, 800mg/kg) to compare brainstem regions in terms of the relative rates of occurrence of single neurons that showed both specific responses to locomotor stimulation and also priming effects. Specific responses were characterized by a progressive increase in activity prior to the first step (a Type I pattern). In that they co-varied in time with the increased probability of stepping onset, Type I responses were more specific than Type II responses, which peaked early in the stimulation train several seconds before the onset of stepping. Regions with high proportions of neurons showing Type I responses and priming effects included the anterior dorsal tegmentum lateral to the central gray, the oral pontine reticular nucleus and the medial gigantocellular nucleus. Few Type I neurons showed a modulation of activity related to the step cycle. Type I primed neurons were uncommon in the cuneiform and the pedunculopontine regions, but neurons showing other patterns (decreases and antidromic responses) were relatively prevalent there. The ventral tegmental area was generally unresponsive. The results indicate that stepping elicited by perifornical stimulation in the anesthetized rat is mediated by circuits that differ at midbrain levels from the circuits implicated in other types of locomotion. Two regions, the anterior dorsal tegmentum and the oral pontine reticular nucleus, warrant further attention to determine their possible roles in the initiation of locomotion.
Collapse
Affiliation(s)
- H M Sinnamon
- Neuroscience & Behavior Program, Wesleyan University, Middletown,CT 06459-0408, USA.
| | | | | |
Collapse
|
16
|
Sinnamon HM. Priming pattern determines the correlation between hippocampal theta activity and locomotor stepping elicited by stimulation in anesthetized rats. Neuroscience 2000; 98:459-70. [PMID: 10869840 DOI: 10.1016/s0306-4522(00)00145-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Abstract
The after-effects of locomotor stimulation are a transient facilitation of locomotor initiation (the priming effect), and a transient increase in hippocampal rhythmic slow activity in the 3-6 Hz band of the theta range. The similar time course of the two effects suggests that hippocampal 3-6 Hz activity may be linked to the excitability of locomotor initiation. This study tested the hypothesis that power in the 3-6 Hz band that is present prior to stimulation would predict the magnitude of elicited stepping. Stimulation electrodes were implanted in 15 locomotor sites of 10 anesthetized rats (urethane, 800 mg/kg). Hindlimb stepping was elicited by a single control train of electrical stimulation presented once every 62 s. On test trials, a test train at the same intensity followed the control train at varying control/test intervals (15-36 s) to assess the priming effect on stepping. The priming pattern determined whether hippocampal 3-6 Hz power predicted the amount of stepping to be elicited by a stimulation train. Positive correlation (0.47>r>0.22) was found for seven out of eight sites showing positive priming effects. Correlation was absent for three other sites that showed non-significant priming effects and were mixed for four sites that showed negative effects. Sites with positive priming patterns, compared to sites with inconsistent or negative priming patterns, had similar trends in post-stimulation 3-6 Hz power, smaller increases in 6-8 Hz power during the control train and lower 1-3 Hz power during the periods immediately before the control stimulation. For six of 15 sites, regardless of the priming pattern, 1-3 Hz power was inversely related to subsequent stepping, and in three cases provided an independent predictor of stepping. Stimulation at two sites produced discrete episodes of post-stimulation stepping. In one of these cases, a 0.5-Hz increase in peak frequency of hippocampal activity preceded stepping. The results show that the association between hippocampal 3-6 Hz activity and the excitability of locomotor initiation is sufficiently specific to allow prediction of the magnitude of stepping by the prior levels of 3-6 Hz power. However, the occurrence of negative priming effects during prominent 3-6 Hz activity indicates that other factors determine the actual stepping and they can suppress the correlation between theta activity and subsequent locomotion.
Collapse
Affiliation(s)
- H M Sinnamon
- Neuroscience and Behavior Program, Wesleyan University, Middletown, CT 06459-0408 USA.
| |
Collapse
|
17
|
Sinnamon HM, Jassen AK, Ilch C. Hippocampal theta activity and facilitated locomotor stepping produced by GABA injections in the midbrain raphe region. Behav Brain Res 2000; 107:93-103. [PMID: 10628733 DOI: 10.1016/s0166-4328(99)00112-6] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Inactivation of neurons in the midbrain raphe region produces increases in locomotor activity, and it appears that they function to suppress locomotion. Inactivation of neurons there also produces hippocampal slow wave (theta) activity and it appears that they also function to inhibit rhythmic activity in the hippocampus. We determined whether the degree of association between the two effects was consistent with the operation of a single mechanism. Stimulation electrodes were implanted into locomotor sites of the hypothalamus of 34 urethane-anesthetized rats. Hindlimb stepping was elicited by 5.12-s trains of perifornical electrical stimulation presented once per minute. Hippocampal theta activity was recorded across the CA1 layer of the dorsal hippocampus. GABA injections were used to locate raphe sites at which neuronal inactivation influenced stepping and hippocampal activity. A glass pipette (80-microm tip) was inserted into the midbrain, and injections of GABA (50-100 mg/0.1-0.2 microl) were made in 70 sites in the midbrain. Injections at 34 sites facilitated stimulation-elicited stepping, and at 17 sites, they also produced intertrial stepping. Facilitating injections, but not ineffective or suppressive injections, increased the mean peak frequency of hippocampal activity, and increased power in the 4-5 Hz band during the period that preceded the stimulation trains, but did not change the 5-6 Hz activity produced during the stimulation trains. Priming locomotor stimulation which also facilitated stepping produced generally similar increases in pre-stimulation peak frequency and 4-Hz power. The magnitudes of the increases in stepping and 4-Hz power were uncorrelated. The increase in 4-Hz power appeared earlier than the increase in stepping in 18 of 34 cases, and later in 11 cases; no increases in 4-Hz power were apparent in five cases. The results indicate that pre-locomotor 4-Hz hippocampal activity in the urethane-anesthetized rat is loosely coupled with facilitated locomotor initiation. Neurons in the midbrain raphe region appear to suppress both processes, but the low degree of association between the magnitudes and onset times of increases in stepping and hippocampal 4-Hz power indicate the operation of multiple mechanisms.
Collapse
Affiliation(s)
- H M Sinnamon
- Neuroscience and Behavior Program, Wesleyan University, Middletown, CT 06459-0408, USA.
| | | | | |
Collapse
|
18
|
Sinnamon HM, Benaur M. GABA injected into the anterior dorsal tegmentum (ADT) of the midbrain blocks stepping initiated by stimulation of the hypothalamus. Brain Res 1997; 766:271-5. [PMID: 9359615 DOI: 10.1016/s0006-8993(97)00734-8] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Previous work showed that the activity rates of certain neurons in the anterior dorsal tegmentum (ADT) of the midbrain correlated with the onset of stepping elicited by hypothalamic stimulation. This study determined if reversible inactivation of the ADT would block locomotion elicited by hypothalamic stimulation of anesthetized rats (urethane, 800 mg/kg). GABA (concentrations 0.25-1.0 mg/microl in saline) were injected in 52 sites in 21 rats. GABA at volumes of 0.1 or 0.2 microl blocked hindlimb stepping in 18 cases. Locomotor blocks occurred within 5 min of the injection, and typically recovered within 10-20 min. The effective blocking sites were clustered around the interstitial nucleus of the medial longitudinal fasciculus. Sites more dorsal and more anterior were not as effective as sites in and ventral to this nucleus. The data are consistent with a role for the ADT of the midbrain in locomotor initiation.
Collapse
Affiliation(s)
- H M Sinnamon
- Neuroscience and Behavior Program, Wesleyan University, Middletown, CT 06459-0408, USA.
| | | |
Collapse
|
19
|
Tresch MC, Miller CL, Sinnamon HM. Priming of locomotor initiation by electrical stimulation in the hypothalamus and preoptic region in the anesthetized rat. Physiol Behav 1995; 57:641-8. [PMID: 7777597 DOI: 10.1016/0031-9384(94)00307-6] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Electrical stimulation at a locomotor site can prime (i.e., shorten the latency to initiate) stepping elicited by subsequent stimulation of the same or a different site. We tested for the priming effect in representative sites along the medial forebrain bundle, and determined if its magnitude showed regional differences. Rats (n = 20) were anesthetized with Nembutal and held in a stereotaxic apparatus over a wheel. Stepping was detected by accelerometers attached to the hindlimbs. Priming and test trains of stimulation (0.5-ms cathodal pulses, 50 Hz, 25-75 microA, 7-9-s train duration) separated by 20 s were delivered every 90 s. When the priming and test stimulations were applied to the same site, the priming effects were similar along the entire extent of the medial forebrain bundle. When the priming and test sites were different, the priming effect depended on their relative positions. Anterior stimulation primed posterior sites at magnitude comparable to those produced by stimulating the same posterior site. Posterior stimulation primed anterior sites at a level half of that produced by stimulation of the same anterior site. This pattern was found for priming and test sites that were ipsilateral and contralateral. Priming is a general and robust phenomenon with properties that may be useful for studying locomotor initiation pathways.
Collapse
Affiliation(s)
- M C Tresch
- Neuroscience and Behavior Program, Wesleyan University, Middletown, CT 06459-0408, USA
| | | | | |
Collapse
|
20
|
Epuru DR, Liang HH, Sinnamon HM. Neural activity in the midbrain correlated with hindlimb extension initiated by locomotor stimulation of the hypothalamus of the anesthetized rat. Neuroscience 1995; 64:507-24. [PMID: 7700535 DOI: 10.1016/0306-4522(94)00391-h] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Midbrain neuronal activity that correlated with the initiation of locomotion produced by hypothalamic stimulation was studied. Locomotion was elicited by electrical stimulation in the perifornical hypothalamus of 59 rats anesthetized with Nembutal. The first hindlimb extension indexed stepping onset. Single and multiple neurons were recorded ipsilateral to the stimulation site at 2230 sites in the anterior and posterior midbrain. To classify responses, activity patterns averaged around stimulation onset and around the extension onset were examined. Responses with specific correlations to extension onset were Type I; responses not specifically related to the extension onset were Type II. In the anterior midbrain, 6% of sites were Type I and 8% were Type II. The larger Type I responses were frequent in the anterior tegmentum near the central gray. The relative frequency of Type I patterns in the posterior ventrolateral tegmentum was similar. Other regions showed relatively more Type II responses; they included the ventral tegmental area, and the regions near the superior cerebellar peduncle and the posterior central gray. Regional population profiles showed that during the initiation of locomotion, neurons in the posterior peribrachial region responded early and neurons in the anterior dorsal and the posterior ventrolateral tegmentum responded later. The initiation-related activity of Type I neurons in the anterior and posterior midbrain tegmentum suggest that they warrant further study for a role in locomotor initiation.
Collapse
Affiliation(s)
- D R Epuru
- Neuroscience & Behavior Program, Wesleyan University, Middletown, CT 06457, USA
| | | | | |
Collapse
|
21
|
Influence of stimulation of movement-inhibiting areas of the pons on the activity of neurons of the medial region of the medulla oblongata. NEUROSCIENCE AND BEHAVIORAL PHYSIOLOGY 1994; 24:423-8. [PMID: 7838365 DOI: 10.1007/bf02359795] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
The reactions of 249 neurons located in the zones of gigantocellular reticular nucleus and the nucleus raphé magnus in response to electrical stimulation of areas of the cuneate nucleus of the midbrain, the medial parabrachial nucleus, and the central raphé nucleus, which inhibit movement, were analyzed in anesthetized white rats. Reactions to stimulation of these areas of the pons were lacking in 40 cells; 25 neurons were excited antidromically; 48 responded with solitary orthodromic action potentials; prolonged inhibition was observed in 72 neurons following the phase of activation; and 64 cells were tonically excited. The functional identification of the two last groups of neurons showed that the inhibition reactions are primarily recorded in cells receiving tactile and mechano- and nociceptive information, while the neurons which tonically discharge upon stimulation apparently participate in the inhibition of the motoneurons of the hind limbs.
Collapse
|
22
|
Sinnamon HM. Preoptic and hypothalamic neurons and the initiation of locomotion in the anesthetized rat. Prog Neurobiol 1993; 41:323-44. [PMID: 8105509 DOI: 10.1016/0301-0082(93)90003-b] [Citation(s) in RCA: 98] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Despite its insensate condition and apparent motoric depression, the anesthetized rat can provide useful information about the systems involved in locomotor initiation. The preparation appears to be particularly appropriate for the study of the appetitive locomotor systems and may be more limited for the study of the circuits involved in exploratory and defensive locomotion. In the anesthetized rat, pharmacological evidence indicates that the preoptic basal forebrain contains neurons which initiate locomotor stepping. Mapping with low levels of electrical stimulation indicates, but does not prove, that a region centered in the lateral preoptic area might be the location of these neurons. Several lines of evidence indicate that locomotor stepping elicited by electrical stimulation of the hypothalamus is mediated by neurons in the perifornical and lateral hypothalamus. Locomotor effects of hypothalamic stimulation persist in the absence of descending fibers of passage from the ipsilateral preoptic locomotor regions but are severely impaired by kainic acid lesions in the area of stimulation. Injections of glutamate into the perifornical and lateral hypothalamus elicit locomotor stepping at short latencies. Anatomical evidence suggests that the two regions are components of a network for appetitive locomotion. The recognition that multiple systems initiate locomotion both clarifies and complicates the study of locomotion. It provides a framework that incorporates disparate findings but it also underscores the need for increased attention to behavioral issues in studies of locomotor circuitry.
Collapse
Affiliation(s)
- H M Sinnamon
- Neuroscience and Behavior Program, Wesleyan University, Middletown, CT 06457
| |
Collapse
|
23
|
Sinnamon HM. Microstimulation mapping of the basal forebrain in the anesthetized rat: the "preoptic locomotor region". Neuroscience 1992; 50:197-207. [PMID: 1407556 DOI: 10.1016/0306-4522(92)90392-f] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Previous studies have indicated that the basal forebrain at the level of the preoptic area contains neurons which participate in the initiation of locomotion. This study attempted to localize those neurons by mapping sites at which 25- and 50-microA stimulation (50 Hz, 0.5 ms cathodal pulses, 10-s trains) initiated hindlimb stepping. Anesthetized rats were held in a stereotaxic apparatus supported by a sling so that stepping movements rotated a wheel. Anesthesia was maintained by periodic injections of Nembutal (7 mg/kg) supplemented by lidocaine injections. Stimulation was applied through 50-70-microns diameter pipettes filled with 2 M NaCl at approximately 1600 sites in the basal forebrain, adjacent thalamus, and striatum. A circumscribed grouping of 25-microA locomotor sites, centered in the lateral preoptic area, defined the preoptic locomotor region. It extended into the ventral bed nucleus of the stria terminalis, the lateral part of the medial preoptic area, the anterior hypothalamic area, the medial and rostral parts of the ventral pallidum, medial substantia innominata, and the horizontal limb of the diagonal band. This general region is known to project to the midbrain locomotor region and the ventral tegmental area; it is proposed to initiate locomotion in service of primary motivational systems. Among the structures generally negative for locomotor sites were the dorsal and ventral striata, septal complex, bed nucleus of stria terminalis, and lateral ventral pallidum and substantia innominata. These findings indicate that low current stimulation applied to a circumscribed area centered in the lateral preoptic area produces locomotor stepping in the anesthetized rat. Whether the activated elements in this preoptic locomotor region are cells or fibers is not yet known. The degree of localization afforded by these findings indicates that the areas that are most likely to contain the mediating elements are quite limited in extent.
Collapse
Affiliation(s)
- H M Sinnamon
- Neuroscience & Behavior Program, Wesleyan University, Middletown, CT 06457
| |
Collapse
|
24
|
Sinnamon HM, Marciello M, Goerner DW. Locomotor sites mapped with low current stimulation in intact and kainic acid damaged hypothalamus of anesthetized rats. Behav Brain Res 1991; 46:49-61. [PMID: 1723880 DOI: 10.1016/s0166-4328(05)80096-8] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
To determine whether local neurons mediated the locomotor effects of electrical stimulation of the lateral hypothalamus, kainic acid injections (0.5-1.25 micrograms), intended to destroy neural somata as opposed to fibers of passage, were made unilaterally in the tuberal-posterior hypothalamus of 22 rats. The area of lesion and its contralateral homolog were mapped for locomotor stepping sites in Nembutal-anesthetized rats mounted in a stereotaxic apparatus such that locomotor stepping rotated a wheel. Stimulation (25 and 50 microA, 50 Hz, 0.5-ms cathodal pulses, 10-s trains) was delivered through 50-80 microns glass pipettes filled with 2 M saline. Contralateral to the lesion, locomotor stepping sites were common in the perifornical lateral and medial hypothalamus and less dense in the zona incerta. On the side of the kainic-acid lesion, locomotor sites were generally absent in the central part of the damaged area. If they did appear within the area of lesion, they tended to be near the border with intact tissue. In a few cases, locomotor stepping sites were found centrally located in the lesion amidst widespread loss of somata. In four rats, additional maps of anterior locomotor regions in the preoptic area ipsilateral to the lesion suggested that their descending fibers were largely spared by the kainic lesions. Local neurons appear to be major contributors to the locomotion elicited by electrical stimulation of the lateral hypothalamus, but fibers of passage may also participate.
Collapse
Affiliation(s)
- H M Sinnamon
- Neuroscience and Behavior Program, Wesleyan University, Middletown, CT 06457
| | | | | |
Collapse
|
25
|
Mileikovskii BYa, Verevkina SK, Nozdrachev AD. Central neurophysiologic mechanisms of the regulation of inhibition. NEUROSCIENCE AND BEHAVIORAL PHYSIOLOGY 1991; 21:263-8. [PMID: 1922737 DOI: 10.1007/bf01191667] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
The neuronal populations of the cuneate nucleus of the midbrain, the medial parabrachial nucleus, the median and magnus nuclei of the raphé, the electrical and local chemical stimulation of which elicits the inhibition of the motor activity of animals, were determined in chronic experiments on freely-moving white male mongrel rats. It was established that when each of the enumerated regions of the brain are stimulated electrically in other zones which elicit motor inhibition, multineuronal responses with a latent period of less than 2.5 msec were recorded. At the same time, multidirectional bilateral changes in muscle tone of the flexors and extensors of the hind limbs are observed in sodium ethaminal anesthetized and unanesthetized animals. The electrolytic destruction of the inhibitory zones of the median raphé nucleus and raphé nucleus magnus blocks the motor inhibition elicited by electrical stimulation of the cuneate nucleus of the midbrain and the medial parabrachial nucleus.
Collapse
Affiliation(s)
- Mileikovskii BYa
- Department of Human and Animal Physiology, Leningrad State University
| | | | | |
Collapse
|
26
|
Depoortere R, Di Scala G, Sandner G. Treadmill locomotion and aversive effects induced by electrical stimulation of the mesencephalic locomotor region in the rat. Brain Res Bull 1990; 25:723-7. [PMID: 2289160 DOI: 10.1016/0361-9230(90)90049-6] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
The effects of electrical stimulation of the "mesencephalic locomotor region" and adjacent dorsolateral tegmentum were assessed and compared in the same rats in freely moving conditions or when lightly anesthetized and suspended over a moving treadmill. In freely moving conditions, electrical brain stimulation (EBS) of this part of the mesencephalon elicited mainly aversive effects (escape reactions: violent running and explosive jumps), but also ipsiversive circling and "gnawing." On the treadmill, EBS induced flexions of hindlimbs followed by locomotion (stepping) or flexions only. In addition, it was found that locomotion and flexions on the treadmill were almost exclusively elicited by EBS of sites positive for escape reactions in freely moving conditions.
Collapse
Affiliation(s)
- R Depoortere
- D.N.B.C., Centre de Neurochimie du C.N.R.S., Strasbourg, France
| | | | | |
Collapse
|
27
|
Sinnamon HM, Sklow B. Latency to initiate locomotion elicited by stimulation of the diencephalon positively correlates in awake and anesthetized rats. Pharmacol Biochem Behav 1990; 36:725-8. [PMID: 2217498 DOI: 10.1016/0091-3057(90)90067-r] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Locomotor stepping can be elicited by brain stimulation at various diencephalic sites under moderate levels of Nembutal. This study determined if locomotor initiation measured under anesthesia provides a valid measure of the intersite factors which determine initiation in the awake condition. We compared the latencies to initiate locomotor stepping elicited by electrical stimulation (50 microA, 0.5-msec pulses, 10 to 160 Hz) by rats tested while awake and unrestrained in a rotary runway or anesthetized and held in a stereotaxic apparatus. In the latter tests, initial anesthesia was provided by Nembutal (25 mg/kg) and 2% halothane and maintenance anesthesia was provided by 7 mg/kg as needed and local injections of lidocaine. For 30 sites in 16 rats, average locomotor initiation latency in the awake condition and the shortest latencies in the anesthetized condition were positively correlated (r = .78). Locomotion at sites with long latencies in the awake condition was frequently blocked in the anesthetized condition, but sites with short latencies were rarely blocked. The results indicate that the shortest locomotor latencies in the anesthetized condition approximate the latencies measured in the awake condition. It is concluded that the anesthetized condition can provide valid initiation measures, but sites with long latencies in the awake condition are prone to depression under anesthesia.
Collapse
Affiliation(s)
- H M Sinnamon
- Neuroscience & Behavior Program, Wesleyan University, Middletown, CT 06457
| | | |
Collapse
|
28
|
Sinnamon HM. Locomotor stepping elicited by electrical stimulation of the hypothalamus persists after lesion of descending fibers of passage. Physiol Behav 1990; 48:261-6. [PMID: 2255729 DOI: 10.1016/0031-9384(90)90310-z] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Locomotion initiated by electrical stimulation of the lateral hypothalamus could be due to activation of local neurons or of fibers of passage descending from locomotor regions in the basal forebrain. This study mapped hypothalamic sites for electrically elicited locomotion in six rats with electrolytic lesions of the ipsilateral basal forebrain sources of descending fibers of passage. For mapping, anesthetized rats were held in a stereotaxic apparatus supported by a sling so that stepping movements rotated a wheel. Anesthesia was maintained by periodic injections of Nembutal (7 mg/kg) supplemented by lidocaine injections. Stimulation (25 and 50 microA, 50 Hz, 0.5 msec cathodal pulses, 10 sec trains) was applied through 50-80 microns diameter pipettes filled with 2 M saline. In all cases, locomotor stepping could be elicited by stimulation in sites ipsilateral to the lesion at currents of 50 microA or less. In the one case in which 25-microA sites were not found in the lateral hypothalamus, the lesion extended caudally to within 1 mm of the stimulation sites. These findings do not exclude a locomotor role for fibers of passage but they suggest that activation of lateral hypothalamic neurons is sufficient to initiate locomotion.
Collapse
Affiliation(s)
- H M Sinnamon
- Neuroscience & Behavior Program, Wesleyan University, Middletown, CT 06457
| |
Collapse
|
29
|
Sklow B, Sinnamon HM. Initiation and execution of locomotion elicited by diencephalic stimulation: regional differences in response to nembutal. Pharmacol Biochem Behav 1990; 36:719-24. [PMID: 2217497 DOI: 10.1016/0091-3057(90)90066-q] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
At moderate levels of Nembutal, within the anesthetic range, locomotor stepping can be elicited by brain stimulation. We determined if Nembutal (7, 14 and 28 mg/kg) had different effects on locomotion elicited by stimulation at different brain regions. Two regions were compared: the medial forebrain bundle (MFB, 13 sites) and the areas medial and dorsal to it (MED/DORSAL, 20 sites). Locomotion was produced by electrical stimulation (50 microA, 0.5 msec pulses, 10 to 160 Hz) of unrestrained rats in a rotary runway. The latency to initiate locomotion and the time to complete 1 revolution of the rotary were measured. With no drug, MFB locomotion was initiated sooner but took longer to complete than MED/DORSAL locomotion. Nembutal at 7 mg/kg did not affect initiation of MFB or MED/DORSAL locomotion. Nembutal at 14 mg/kg shortened MFB initiations, but this dose prolonged MED/DORSAL initiations. Initiations with both types of sites were blocked with 28 mg/kg. The 7 and 14 mg/kg doses prolonged the locomotor completion times of the MFB sites but not of the MED/DORSAL sites. The results indicate that the response to Nembutal differs qualitatively for locomotion elicited by stimulation of the MFB and locomotion elicited by stimulation of the medial and dorsal hypothalamus. The mechanisms underlying the difference remain to be elucidated; they may relate to nonlocomotor behaviors also elicited by stimulation or to the motivational states reflected in those behaviors.
Collapse
Affiliation(s)
- B Sklow
- Neuroscience & Behavior Program, Wesleyan University, Middletown, CT 06457
| | | |
Collapse
|
30
|
Levy DI, Sinnamon HM. Midbrain areas required for locomotion initiated by electrical stimulation of the lateral hypothalamus in the anesthetized rat. Neuroscience 1990; 39:665-74. [PMID: 2097520 DOI: 10.1016/0306-4522(90)90251-x] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Locomotor stepping in the Nembutal-anesthetized rat was elicited by electrical stimulation of either of two sites in the right or left posterolateral hypothalamus. Essential midbrain loci were identified by reversibly blocking the elicited locomotion through local injections of the anesthetic procaine (15%, 0.5 microliter). Two types of critical midbrain sites were found. At ipsilateral block sites (n = 21), procaine blocked only that locomotion elicited by ipsilateral stimulation. These sites could be along the course of a direct descending ipsilateral pathway although a possible bidirectional pathway is not to be excluded. At bilateral block sites (n = 21), procaine blocked locomotion elicited by both ipsilateral and contralateral stimulation. These sites could be involved in functions prerequisite for the initiation of locomotion or in the generation of the stepping pattern. Procaine injections in 35 sites had no effect on locomotion. Ipsilateral and bilateral block sites were intermixed and generally located in regions ventral to the midbrain central gray: chiefly the anterior ventromedial midbrain, the pontis oralis nucleus and the pedunculopontine nucleus. Negative sites were located in both the dorsal and ventral midbrain. Ipsilateral block sites were relatively prevalent in the anterior midbrain, indicating that the locomotor initiation signals are lateralized at this level. Bilateral block sites were more prevalent in the posterior levels, suggesting that the initiation signals are proximal to, or interact with, circuits that have a bilateral influence on locomotion.
Collapse
Affiliation(s)
- D I Levy
- Neuroscience and Behavior Program, Wesleyan University, Middletown, CT 06457
| | | |
Collapse
|
31
|
Garcia-Cairasco N. [Neural and ethological relations in the evaluation of motor control changes. II. Experimental models]. ARQUIVOS DE NEURO-PSIQUIATRIA 1989; 47:172-81. [PMID: 2688607 DOI: 10.1590/s0004-282x1989000200008] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
As a tool for the study of normal and pathological motor manifestations, the experimental models of motor alterations are discussed. Here, we present particularly the neural and ethological characteristics of experimental models as hemiplegia, akinesia, parkinsonism and epilepsy.
Collapse
Affiliation(s)
- N Garcia-Cairasco
- Departamento de Fisiologia, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paule
| |
Collapse
|
32
|
Dietrichs E, Haines DE. Interconnections between hypothalamus and cerebellum. ANATOMY AND EMBRYOLOGY 1989; 179:207-20. [PMID: 2644872 DOI: 10.1007/bf00326585] [Citation(s) in RCA: 47] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
The cerebellum and hypothalamus are interconnected through a multitude of direct (monosynaptic) and indirect (polysynaptic) pathways. Direct hypothalamocerebellar fibres are mainly uncrossed and reach all parts of the cerebellar cortex and nuclei. They are neither mossy fibres nor climbing fibres, but appear to terminate in all layers of the cerebellar cortex as multilayered fibres. At least some of the hypothalamocerebellar fibres are histaminergic, and it appears that a small proportion of the hypothalamocerebellar neurons contain GABA. Indirect hypothalamocerebellar connections may be relayed through various brain stem nuclei. The hypothalamo-ponto-cerebellar pathway, which has a contralateral predominance, appears to be the quantitatively most important of these. The direct cerebellohypothalamic projection originates from the cerebellar nuclei and terminates in the posterior hypothalamus, in the same regions where the direct hypothalamocerebellar pathway has its main origin. Indirect cerebellohypothalamic connections with brain stem relays have also been demonstrated. The functions of hypothalamocerebellar circuits are so far unknown. However, these pathways are probably involved in the coordination and integration of somatic as well as non-somatic responses to a given set of inputs.
Collapse
Affiliation(s)
- E Dietrichs
- Anatomical Institute, University of Oslo, Norway
| | | |
Collapse
|
33
|
Sinnamon HM, Stopford CK. Locomotion elicited by lateral hypothalamic stimulation in the anesthetized rat does not require the dorsal midbrain. Brain Res 1987; 402:78-86. [PMID: 3828790 DOI: 10.1016/0006-8993(87)91049-3] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Locomotor stepping elicited by lateral hypothalamic stimulation in the anesthetized rat is blocked by lesions in the anterior ventromedial midbrain. This study determined in acute experiments whether the dorsal midbrain regions implicated in locomotion were also part of the necessary pathway. Rats were anesthetized with Nembutal and held in a stereotaxic apparatus so that stepping responses rotated a wheel. Stepping was elicited by stimulation of the lateral hypothalamus (up to 100 microA, 0.5 ms cathodal pulses, 50 Hz, 10-s train length). Nine rats received unilateral lesions ipsilateral to the locomotor electrode and 3 rats received bilateral lesions. None of the dorsal midbrain lesions reduced locomotion elicited by ipsilateral lateral hypothalamic stimulation. Therefore the following regions are unnecessary for this type of locomotion: the dorsal and lateral central gray, the tegmentum lateral to the central gray, and in particular the area cuneiformis and the dorsal aspect of the pedunculopontine region. The neural systems required for lateral hypothalamic locomotion are located ventral to the superior cerebellar peduncle.
Collapse
|