1
|
Novello M, Bosman LWJ, De Zeeuw CI. A Systematic Review of Direct Outputs from the Cerebellum to the Brainstem and Diencephalon in Mammals. CEREBELLUM (LONDON, ENGLAND) 2024; 23:210-239. [PMID: 36575348 PMCID: PMC10864519 DOI: 10.1007/s12311-022-01499-w] [Citation(s) in RCA: 28] [Impact Index Per Article: 28.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 11/22/2022] [Indexed: 05/13/2023]
Abstract
The cerebellum is involved in many motor, autonomic and cognitive functions, and new tasks that have a cerebellar contribution are discovered on a regular basis. Simultaneously, our insight into the functional compartmentalization of the cerebellum has markedly improved. Additionally, studies on cerebellar output pathways have seen a renaissance due to the development of viral tracing techniques. To create an overview of the current state of our understanding of cerebellar efferents, we undertook a systematic review of all studies on monosynaptic projections from the cerebellum to the brainstem and the diencephalon in mammals. This revealed that important projections from the cerebellum, to the motor nuclei, cerebral cortex, and basal ganglia, are predominantly di- or polysynaptic, rather than monosynaptic. Strikingly, most target areas receive cerebellar input from all three cerebellar nuclei, showing a convergence of cerebellar information at the output level. Overall, there appeared to be a large level of agreement between studies on different species as well as on the use of different types of neural tracers, making the emerging picture of the cerebellar output areas a solid one. Finally, we discuss how this cerebellar output network is affected by a range of diseases and syndromes, with also non-cerebellar diseases having impact on cerebellar output areas.
Collapse
Affiliation(s)
- Manuele Novello
- Department of Neuroscience, Erasmus MC, Rotterdam, the Netherlands
| | | | - Chris I De Zeeuw
- Department of Neuroscience, Erasmus MC, Rotterdam, the Netherlands.
- Netherlands Institute for Neuroscience, Royal Academy of Arts and Sciences (KNAW), Amsterdam, the Netherlands.
| |
Collapse
|
2
|
Red nucleus structure and function: from anatomy to clinical neurosciences. Brain Struct Funct 2020; 226:69-91. [PMID: 33180142 PMCID: PMC7817566 DOI: 10.1007/s00429-020-02171-x] [Citation(s) in RCA: 50] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Accepted: 10/24/2020] [Indexed: 12/19/2022]
Abstract
The red nucleus (RN) is a large subcortical structure located in the ventral midbrain. Although it originated as a primitive relay between the cerebellum and the spinal cord, during its phylogenesis the RN shows a progressive segregation between a magnocellular part, involved in the rubrospinal system, and a parvocellular part, involved in the olivocerebellar system. Despite exhibiting distinct evolutionary trajectories, these two regions are strictly tied together and play a prominent role in motor and non-motor behavior in different animal species. However, little is known about their function in the human brain. This lack of knowledge may have been conditioned both by the notable differences between human and non-human RN and by inherent difficulties in studying this structure directly in the human brain, leading to a general decrease of interest in the last decades. In the present review, we identify the crucial issues in the current knowledge and summarize the results of several decades of research about the RN, ranging from animal models to human diseases. Connecting the dots between morphology, experimental physiology and neuroimaging, we try to draw a comprehensive overview on RN functional anatomy and bridge the gap between basic and translational research.
Collapse
|
3
|
Touvykine B, Elgbeili G, Quessy S, Dancause N. Interhemispheric modulations of motor outputs by the rostral and caudal forelimb areas in rats. J Neurophysiol 2020; 123:1355-1368. [PMID: 32130080 PMCID: PMC7191520 DOI: 10.1152/jn.00591.2019] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
In rats, forelimb movements are evoked from two cortical regions, the caudal and rostral forelimb areas (CFA and RFA, respectively). These areas are densely interconnected and RFA induces complex and powerful modulations of CFA outputs. CFA and RFA also have interhemispheric connections, and these areas from both hemispheres send projections to common targets along the motor axis, providing multiple potential sites of interactions for movement production. Our objective was to characterize how CFA and RFA in one hemisphere can modulate motor outputs of the opposite hemisphere. To do so, we used paired-pulse protocols with intracortical microstimulation techniques (ICMS), while recording electromyographic (EMG) activity of forelimb muscles in sedated rats. A subthreshold conditioning stimulation was applied in either CFA or RFA in one hemisphere simultaneously or before a suprathreshold test stimulation in either CFA or RFA in the opposite hemisphere. Both CFA and RFA tended to facilitate motor outputs with short (0–2.5 ms) or long (20–35 ms) delays between the conditioning and test stimuli. In contrast, they tended to inhibit motor outputs with intermediate delays, in particular 10 ms. When comparing the two areas, we found that facilitatory effects from RFA were more frequent and powerful than the ones from CFA. In contrast, inhibitory effects from CFA on its homolog were more frequent and powerful than the ones from RFA. Our results demonstrate that interhemispheric modulations from CFA and RFA share some similarities but also have clear differences that could sustain specific functions these cortical areas carry for the generation of forelimb movements. NEW & NOTEWORTHY We show that caudal and rostral forelimb areas (CFA and RFA) have distinct effects on motor outputs from the opposite hemisphere, supporting that they are distinct nodes in the motor network of rats. However, the pattern of interhemispheric modulations from RFA has no clear equivalent among premotor areas in nonhuman primates, suggesting they contribute differently to the generation of ipsilateral hand movements. Understanding these interspecies differences is important given the common use of rodent models in motor control and recovery studies.
Collapse
Affiliation(s)
- Boris Touvykine
- Département de Neurosciences, Faculté de Médecine, Université de Montréal, Québec, Canada
| | - Guillaume Elgbeili
- Psychosocial Research Division, Douglas Institute Research Centre, Verdun, Québec, Canada
| | - Stephan Quessy
- Département de Neurosciences, Faculté de Médecine, Université de Montréal, Québec, Canada
| | - Numa Dancause
- Département de Neurosciences, Faculté de Médecine, Université de Montréal, Québec, Canada
| |
Collapse
|
4
|
Szarvas D, Gaál B, Matesz C, Rácz É. Distribution of the Extracellular Matrix in the Pararubral Area of the Rat. Neuroscience 2018; 394:177-188. [PMID: 30367949 DOI: 10.1016/j.neuroscience.2018.10.027] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2018] [Revised: 10/12/2018] [Accepted: 10/15/2018] [Indexed: 12/09/2022]
Abstract
Previously we described similarities and differences in the organization and molecular composition of an aggrecan based extracellular matrix (ECM) in three precerebellar nuclei, the inferior olive, the prepositus hypoglossi nucleus and the red nucleus of the rat associated with their specific cytoarchitecture, connection and function in the vestibular system. The aim of present study is to map the ECM pattern in a mesencephalic precerebellar nucleus, the pararubral area, which has a unique function among the precerebellar nuclei with its retinal connection and involvement in the circadian rhythm regulation. Using histochemistry and immunohistochemistry we have described for the first time the presence of major ECM components, the hyaluronan, aggrecan, versican, neurocan, brevican, tenascin-R (TN-R), and the HAPLN1 link protein in the pararubral area. The most common form of the aggrecan based ECM was the diffuse network in the neuropil, but each type of the condensed forms was also recognizable. Characteristic perineuronal nets (PNNs) were only recognizable with Wisteria floribunda agglutinin (WFA) and aggrecan staining around some of the medium-sized neurons, whereas the small cells were rarely surrounded by a weakly stained PNNs. The moderate expression of key molecules of PNN, the hyaluronan (HA) and HAPLN1 suggests that the lesser stability of ECM assembly around the pararubral neurons may allow quicker response to the modified neuronal activity and contributes to the high level of plasticity in the vestibular system.
Collapse
Affiliation(s)
- Dóra Szarvas
- Department of Anatomy, Histology and Embryology, Faculty of Medicine, University of Debrecen, Nagyerdei krt. 98., Debrecen H-4032, Hungary
| | - Botond Gaál
- Department of Anatomy, Histology and Embryology, Faculty of Medicine, University of Debrecen, Nagyerdei krt. 98., Debrecen H-4032, Hungary
| | - Clara Matesz
- Department of Anatomy, Histology and Embryology, Faculty of Medicine, University of Debrecen, Nagyerdei krt. 98., Debrecen H-4032, Hungary; Division of Oral Anatomy, Faculty of Dentistry, University of Debrecen, Nagyerdei krt. 98., Debrecen H-4032, Hungary
| | - Éva Rácz
- Department of Anatomy, Histology and Embryology, Faculty of Medicine, University of Debrecen, Nagyerdei krt. 98., Debrecen H-4032, Hungary; MTA-DE Neuroscience Research Group, Nagyerdei krt. 98., Debrecen 4032, Hungary.
| |
Collapse
|
5
|
Inhibitory gain modulation of defense behaviors by zona incerta. Nat Commun 2018; 9:1151. [PMID: 29559622 PMCID: PMC5861117 DOI: 10.1038/s41467-018-03581-6] [Citation(s) in RCA: 99] [Impact Index Per Article: 14.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2018] [Accepted: 02/25/2018] [Indexed: 11/08/2022] Open
Abstract
Zona incerta (ZI) is a functionally mysterious subthalamic nucleus containing mostly inhibitory neurons. Here, we discover that GABAergic neurons in the rostral sector of ZI (ZIr) directly innervate excitatory but not inhibitory neurons in the dorsolateral and ventrolateral compartments of periaqueductal gray (PAG), which can drive flight and freezing behaviors respectively. Optogenetic activation of ZIr neurons or their projections to PAG reduces both sound-induced innate flight response and conditioned freezing response, while optogenetic suppression of these neurons enhances these defensive behaviors, likely through a mechanism of gain modulation. ZIr activity progressively increases during extinction of conditioned freezing response, and suppressing ZIr activity impairs the expression of fear extinction. Furthermore, ZIr is innervated by the medial prefrontal cortex (mPFC), and silencing mPFC prevents the increase of ZIr activity during extinction and the expression of fear extinction. Together, our results suggest that ZIr is engaged in modulating defense behaviors.
Collapse
|
6
|
Del Rio-Bermudez C, Kim J, Sokoloff G, Blumberg MS. Theta Oscillations during Active Sleep Synchronize the Developing Rubro-Hippocampal Sensorimotor Network. Curr Biol 2017; 27:1413-1424.e4. [PMID: 28479324 DOI: 10.1016/j.cub.2017.03.077] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2017] [Revised: 03/02/2017] [Accepted: 03/29/2017] [Indexed: 12/15/2022]
Abstract
Neuronal oscillations comprise a fundamental mechanism by which distant neural structures establish and express functional connectivity. Long-range functional connectivity between the hippocampus and other forebrain structures is enabled by theta oscillations. Here, we show for the first time that the infant rat red nucleus (RN)-a brainstem sensorimotor structure-exhibits theta (4-7 Hz) oscillations restricted primarily to periods of active (REM) sleep. At postnatal day 8 (P8), theta is expressed as brief bursts immediately following myoclonic twitches; by P12, theta oscillations are expressed continuously across bouts of active sleep. Simultaneous recordings from the hippocampus and RN at P12 show that theta oscillations in both structures are coherent, co-modulated, and mutually interactive during active sleep. Critically, at P12, inactivation of the medial septum eliminates theta in both structures. The developmental emergence of theta-dependent functional coupling between the hippocampus and RN parallels that between the hippocampus and prefrontal cortex. Accordingly, disruptions in the early expression of theta could underlie the cognitive and sensorimotor deficits associated with neurodevelopmental disorders such as autism and schizophrenia.
Collapse
Affiliation(s)
- Carlos Del Rio-Bermudez
- Department of Psychological and Brain Sciences, University of Iowa, Iowa City, IA 52242, USA; DeLTA Center, University of Iowa, Iowa City, IA 52242, USA
| | - Jangjin Kim
- Department of Psychological and Brain Sciences, University of Iowa, Iowa City, IA 52242, USA
| | - Greta Sokoloff
- Department of Psychological and Brain Sciences, University of Iowa, Iowa City, IA 52242, USA; DeLTA Center, University of Iowa, Iowa City, IA 52242, USA
| | - Mark S Blumberg
- Department of Psychological and Brain Sciences, University of Iowa, Iowa City, IA 52242, USA; Interdisciplinary Graduate Program in Neuroscience, University of Iowa, Iowa City, IA 52242, USA; Department of Biology, University of Iowa, Iowa City, IA 52242, USA; DeLTA Center, University of Iowa, Iowa City, IA 52242, USA.
| |
Collapse
|
7
|
Bronzi D, Licata F, Li Volsi G. Noradrenergic modulation of glutamate-induced excitatory responses in single neurons of the red nucleus: an electrophysiological study. Neuroscience 2015; 300:360-9. [PMID: 26012489 DOI: 10.1016/j.neuroscience.2015.05.038] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2015] [Revised: 05/14/2015] [Accepted: 05/16/2015] [Indexed: 11/16/2022]
Abstract
The effect induced by noradrenaline (NA) on the spiking activity evoked by glutamate (Glu) on single neurons of the mesencephalic red nucleus (RN) of the rat was studied extracellularly. Long-lasting microiontophoretic applications of the amine induced a significant and reversible depression of the responsiveness of RN neurons to Glu. This effect was mediated by noradrenergic alpha2 receptors since it was mimicked by application of clonidine, an alpha2 adrenoceptor agonist, and blocked or at least reduced by application of yohimbine, an antagonist of NA for the same receptors. The effect appears homogeneously throughout the nucleus and is independent of the effect of NA on baseline firing rate. Application of isoproterenol, a beta adrenoceptor agonist, either enhanced or depressed neuronal responses to Glu in a high percentage (86%) of the tested neurons. Moreover, application of timolol, a beta adrenoceptor antagonist, was able to strengthen the depressive effects induced by NA application on neuronal responsiveness to Glu. Although these data suggest some involvement of beta adrenergic receptors in the modulation of neuronal responsiveness to Glu, the overall results indicate a short-term depressive action of NA, mediated by alpha2 receptors, on the responsiveness of RN neurons and suggest that stress initially leads to an attenuation of the relay function of the RN.
Collapse
Affiliation(s)
- D Bronzi
- University of Catania, Department of Biomedical and Biotechnological Sciences, Section of Physiology, Via Santa Sofia, 64, 95125 Catania, Italy
| | - F Licata
- University of Catania, Department of Biomedical and Biotechnological Sciences, Section of Physiology, Via Santa Sofia, 64, 95125 Catania, Italy
| | - G Li Volsi
- University of Catania, Department of Biomedical and Biotechnological Sciences, Section of Physiology, Via Santa Sofia, 64, 95125 Catania, Italy.
| |
Collapse
|
8
|
Role of the red nucleus in suppressing the jaw-opening reflex following stimulation of the raphe magnus nucleus. Neurosci Res 2014; 85:12-9. [PMID: 24929104 DOI: 10.1016/j.neures.2014.05.010] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2014] [Revised: 05/15/2014] [Accepted: 05/17/2014] [Indexed: 11/22/2022]
Abstract
In a previous study, we found that electrical and chemical stimulation of the red nucleus (RN) suppressed the high-threshold afferent-evoked jaw-opening reflex (JOR). It has been reported that the RN receives bilaterally projection fibers from the raphe magnus nucleus (RMg), and that stimulation of the RMg inhibits the tooth pulp-evoked nociceptive JOR. These facts imply that RMg-induced inhibition of the JOR could be mediated via the RN. The present study first examines whether stimulation of the RMg suppresses the high-threshold afferent-evoked JOR. The JOR was evoked by electrical stimulation of the inferior alveolar nerve (IAN), and was recorded as the electromyographic response of the anterior belly of the digastric muscle. The stimulus intensity was 4.0 (high-threshold) times the threshold. Conditioning electrical stimulation of the RMg significantly suppressed the JOR. A further study then examined whether electrically induced lesions of the RN or microinjection of muscimol into the RN affects RMg-induced suppression of the JOR. Electrically induced lesions of the bilateral RN and microinjection of muscimol into the bilateral RN both reduced the RMg-induced suppression of the JOR. These results suggest that RMg-induced suppression of the high-threshold afferent-evoked JOR is mediated by a relay in the RN.
Collapse
|
9
|
Zakiewicz IM, Bjaalie JG, Leergaard TB. Brain-wide map of efferent projections from rat barrel cortex. Front Neuroinform 2014; 8:5. [PMID: 24550819 PMCID: PMC3914153 DOI: 10.3389/fninf.2014.00005] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2013] [Accepted: 01/14/2014] [Indexed: 12/05/2022] Open
Abstract
The somatotopically organized whisker barrel field of the rat primary somatosensory (S1) cortex is a commonly used model system for anatomical and physiological investigations of sensory processing. The neural connections of the barrel cortex have been extensively mapped. But most investigations have focused on connections to limited regions of the brain, and overviews in the literature of the connections across the brain thus build on a range of material from different laboratories, presented in numerous publications. Furthermore, given the limitations of the conventional journal article format, analyses and interpretations are hampered by lack of access to the underlying experimental data. New opportunities for analyses have emerged with the recent release of an online resource of experimental data consisting of collections of high-resolution images from 6 experiments in which anterograde tracers were injected in S1 whisker or forelimb representations. Building on this material, we have conducted a detailed analysis of the brain wide distribution of the efferent projections of the rat barrel cortex. We compare our findings with the available literature and reports accumulated in the Brain Architecture Management System (BAMS2) database. We report well-known and less known intracortical and subcortical projections of the barrel cortex, as well as distinct differences between S1 whisker and forelimb related projections. Our results correspond well with recently published overviews, but provide additional information about relative differences among S1 projection targets. Our approach demonstrates how collections of shared experimental image data are suitable for brain-wide analysis and interpretation of connectivity mapping data.
Collapse
Affiliation(s)
- Izabela M Zakiewicz
- Department of Anatomy, Institute of Basic Medical Sciences, University of Oslo Oslo, Norway
| | - Jan G Bjaalie
- Department of Anatomy, Institute of Basic Medical Sciences, University of Oslo Oslo, Norway
| | - Trygve B Leergaard
- Department of Anatomy, Institute of Basic Medical Sciences, University of Oslo Oslo, Norway
| |
Collapse
|
10
|
Satoh Y, Yajima E, Ishizuka K, Iwasaki SI. Role of the lateral reticular nucleus in suppressing the jaw-opening reflex following stimulation of the red nucleus. Neurosci Res 2013; 80:10-6. [PMID: 24370814 DOI: 10.1016/j.neures.2013.12.003] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2013] [Revised: 12/10/2013] [Accepted: 12/11/2013] [Indexed: 11/26/2022]
Abstract
We found in a previous study that stimulation of the red nucleus (RN) facilitated the low-threshold afferent-evoked jaw-opening reflex (JOR) and suppressed the high-threshold afferent-evoked JOR. It has been reported that the RN projections to the contralateral lateral reticular nucleus (LRt), and stimulation of the LRt inhibits the nociceptive JOR. These facts suggest that RN-induced modulation of the JOR is mediated via the LRt. We investigated whether electrically induced lesions of the LRt, or microinjection of muscimol into the LRt, affects RN-induced modulation of the JOR. The JOR was evoked by electrical stimulation of the inferior alveolar nerve (IAN), and was recorded as the electromyographic response of the anterior belly of the digastric muscle. The stimulus intensity was either 1.2 (low-threshold) or 4.0 (high-threshold) times the threshold. Electrically induced lesion of the LRt and microinjection of muscimol into the LRt reduced the RN-induced suppression of the high-threshold afferent-evoked JOR, but did not affect the RN-induced facilitation of the low-threshold afferent-evoked JOR. These results suggest that the RN-induced suppression of the high-threshold afferent-evoked JOR is mediated by a relay in the contralateral LRt.
Collapse
Affiliation(s)
- Yoshihide Satoh
- Department of Physiology, School of Life Dentistry at Niigata, The Nippon Dental University, 1-8 Hamaura-cho, Chuou-ku, Niigata 951-8580, Japan.
| | - Eriko Yajima
- Department of Orthodontics, School of Life Dentistry at Niigata, The Nippon Dental University, 1-8 Hamaura-cho, Chuou-ku, Niigata 951-8580, Japan
| | - Ken'Ichi Ishizuka
- Department of Physiology, School of Life Dentistry at Niigata, The Nippon Dental University, 1-8 Hamaura-cho, Chuou-ku, Niigata 951-8580, Japan
| | - Shin-ichi Iwasaki
- Department of Physiology, School of Life Dentistry at Niigata, The Nippon Dental University, 1-8 Hamaura-cho, Chuou-ku, Niigata 951-8580, Japan
| |
Collapse
|
11
|
Siegel JJ, Mauk MD. Persistent activity in prefrontal cortex during trace eyelid conditioning: dissociating responses that reflect cerebellar output from those that do not. J Neurosci 2013; 33:15272-84. [PMID: 24048856 PMCID: PMC3776068 DOI: 10.1523/jneurosci.1238-13.2013] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2013] [Revised: 08/02/2013] [Accepted: 08/20/2013] [Indexed: 11/21/2022] Open
Abstract
Persistent neural activity, responses that outlast the stimuli that evoke them, plays an important role in neural computations and possibly in processes, such as working memory. Recent studies suggest that trace eyelid conditioning, which involves a temporal gap between the conditioned and unconditioned stimuli (the trace interval), requires persistent neural activity in a region of medial prefrontal cortex (mPFC). This persistent activity, which could be conveyed to cerebellum via a pathway through pons, may engage the cerebellum and allow for the expression of conditioned responses. Given the substantial reciprocity observed among many brain regions, it is essential to demonstrate that persistent responses in mPFC neurons are not simply a reflection of cerebellar feedback to the forebrain, leaving open the possibility that such responses could serve as input to the cerebellum. This concern is highlighted by studies showing that hippocampal learning-related activity is abolished by cerebellar inactivation. We inactivated the cerebellum while recording single-unit activity from the mPFC of rabbits trained with a forebrain-dependent trace eyelid conditioning procedure. We report that, whereas the responses of cells that show an onset of increased spike activity during the trace interval were abolished by cerebellar inactivation, persistent responses that begin during the conditioned stimulus and persisted into the trace interval were unaffected. Therefore, conditioned stimulus-evoked persistent responses remain the strongest candidate input pattern to support the cerebellar expression of learned responses.
Collapse
Affiliation(s)
| | - Michael D. Mauk
- Center for Learning and Memory and
- the Department of Neuroscience, University of Texas at Austin, Austin, Texas 78712
| |
Collapse
|
12
|
Satoh Y, Yajima E, Ishizuka K, Nagamine Y, Iwasaki SI. Modulation of two types of jaw-opening reflex by stimulation of the red nucleus. Brain Res Bull 2013; 97:24-31. [DOI: 10.1016/j.brainresbull.2013.05.007] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2013] [Revised: 05/10/2013] [Accepted: 05/13/2013] [Indexed: 01/03/2023]
|
13
|
Suppression of the nociceptive jaw-opening reflex by stimulation of the red nucleus. Brain Res 2012; 1473:124-30. [DOI: 10.1016/j.brainres.2012.07.053] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2012] [Revised: 07/25/2012] [Accepted: 07/25/2012] [Indexed: 01/06/2023]
|
14
|
Tajti J, Szok D, Párdutz Á, Tuka B, Csáti A, Kuris A, Toldi J, Vécsei L. Where does a migraine attack originate? In the brainstem. J Neural Transm (Vienna) 2012; 119:557-68. [PMID: 22426834 DOI: 10.1007/s00702-012-0788-9] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2011] [Accepted: 03/03/2012] [Indexed: 11/27/2022]
Abstract
Migraine is a common, paroxysmal, highly disabling primary headache disorder. The origin of migraine attacks is enigmatic. Numerous clinical and experimental results suggest that the activation of distinct brainstem nuclei is crucial in its pathogenesis, but the primary cause of this activation is not fully understood. We conclude that the initialization of a migraine attack can be explained as an altered function of the neuronal elements of the brainstem nuclei. In light of our findings and the literature data, we can assume that migraine is a subcortical disorder of a specific brainstem area.
Collapse
Affiliation(s)
- J Tajti
- Department of Neurology, Albert Szent-Györgyi Clinical Centre, University of Szeged, Semmelweis u. 6, Szeged 6725, Hungary
| | | | | | | | | | | | | | | |
Collapse
|
15
|
Kalmbach BE, Mauk MD. Multiple sites of extinction for a single learned response. J Neurophysiol 2011; 107:226-38. [PMID: 21940608 DOI: 10.1152/jn.00381.2011] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Most learned responses can be diminished by extinction, a process that can be engaged when a conditioned stimulus (CS) is presented but not reinforced. We present evidence that plasticity in at least two brain regions can mediate extinction of responses produced by trace eyelid conditioning, where the CS and the reinforcing stimulus are separated by a stimulus-free interval. We observed individual differences in the effects of blocking extinction mechanisms in the cerebellum, the structure that, along with several forebrain structures, mediates acquisition of trace eyelid responses; in some rabbits extinction was prevented, whereas in others it was largely unaffected. We also show that cerebellar mechanisms can mediate extinction when noncerebellar mechanisms are bypassed. Together, these observations indicate that trace eyelid responses can be extinguished via processes operating at more than one site, one in the cerebellum and one upstream in forebrain. The relative contributions of these sites may vary from animal to animal and situation to situation.
Collapse
Affiliation(s)
- Brian E Kalmbach
- Center for Learning and Memory, Section of Neurobiology, Univ. of Texas, 1 Univ. Station, C7000, Austin, TX 78712, USA.
| | | |
Collapse
|
16
|
Mejías-Aponte CA, Drouin C, Aston-Jones G. Adrenergic and noradrenergic innervation of the midbrain ventral tegmental area and retrorubral field: prominent inputs from medullary homeostatic centers. J Neurosci 2009; 29:3613-26. [PMID: 19295165 PMCID: PMC2731794 DOI: 10.1523/jneurosci.4632-08.2009] [Citation(s) in RCA: 107] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2008] [Revised: 12/03/2008] [Accepted: 02/17/2009] [Indexed: 02/07/2023] Open
Abstract
Adrenergic agents modulate the activity of midbrain ventral tegmental area (VTA) neurons. However, the sources of noradrenergic and adrenergic inputs are not well characterized. Immunostaining for dopamine beta-hydroxylase revealed fibers within dopamine (DA) neuron areas, with the highest density in the retrorubral field (A8 cell group), followed by the VTA (A10 cell group), and very few fibers within substantia nigra compacta. A less dense, but a similar pattern of fibers was also found for the epinephrine marker, phenylethanolamine N-methyl transferase. Injection of the retrograde tracer wheat germ agglutinin-apo (inactivated) horseradish peroxidase conjugated to colloidal gold, or cholera toxin subunit b, revealed that the noradrenergic innervation of the A10 and A8 regions arise primarily from A1, A2, A5, and locus ceruleus neurons. Selective lesions of the ventral noradrenergic bundle confirmed a prominent innervation from A1 and A2 areas. Retrogradely labeled epinephrine neurons were found mainly in the C1 area. The identification of medullary noradrenergic and adrenergic afferents to DA neuron areas indicates new pathways for visceral-related inputs to reward-related areas in the midbrain.
Collapse
Affiliation(s)
- Carlos A. Mejías-Aponte
- Department of Neurobiology and Anatomy, Drexel University College of Medicine, Philadelphia, Pennsylvania 19129
| | - Candice Drouin
- Department of Psychiatry, University of Pennsylvania, Philadelphia, Pennsylvania 19104-6100, and
| | - Gary Aston-Jones
- Department of Neurosciences, Medical University of South Carolina, Charleston, South Carolina 29425
| |
Collapse
|
17
|
Wei P, Smeyne RJ, Bao D, Parris J, Morgan JI. Mapping of Cbln1-like immunoreactivity in adult and developing mouse brain and its localization to the endolysosomal compartment of neurons. Eur J Neurosci 2008; 26:2962-78. [PMID: 18001291 DOI: 10.1111/j.1460-9568.2007.05913.x] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Cbln1 is a secreted glycoprotein essential for synapse structure and function in cerebellum that is also expressed in extracerebellar structures where its function is unknown. Furthermore, Cbln1 assembles into homomeric complexes and heteromeric complexes with three family members (Cbln2-Cbln4), thereby influencing each other's degradation and secretion. Therefore, to understand its function, it is essential to establish the location of Cbln1 relative to other family members. The localization of Cbln1 in brain was determined using immunohistochemistry and cbln1-lacZ transgenic mice. Cbln1-like immunoreactivity (CLI) was always punctate and localized to the cytoplasm of neurons. The punctate CLI colocalized with cathepsin D, a lysosomal marker, but not with markers of endoplasmic reticulum or Golgi, indicating that Cbln1 is present in neuronal endosomes/lysosomes. This may represent the cellular mechanism underlying the regulated degradation of Cbln1 observed in vivo. Outside the cerebellum, CLI mapped to multiple brain regions that were frequently synaptically interconnected, warranting their analysis in cbln1-null mice. Furthermore, whereas CLI increased dramatically in the cerebellum of cbln3-null mice it was unchanged in extracerebellar neurons. This opens the possibility that other family members that are coexpressed in these areas control Cbln1 levels, potentially by modulating processing in the endolysosomal pathway. During development of cbln1-lacZ mice, beta-galactosidase staining was first observed in proliferating granule cell precursors prior to synaptogenesis and thereafter in maturing and adult granule cells. As cbln3 is only expressed in post-mitotic, post-migratory granule cells, Cbln1 homomeric complexes in precursors and Cbln1-Cbln3 heteromeric complexes in mature granule cells may have distinct functions and turnover.
Collapse
Affiliation(s)
- Peng Wei
- Department of Developmental Neurobiology, St. Jude Children's Research Hospital, 332 North Lauderdale Street, MS 323, Memphis, TN 38105-2794, USA
| | | | | | | | | |
Collapse
|
18
|
|
19
|
Satoh Y, Ishizuka K, Murakami T. Changes in cortically induced rhythmic jaw movements after lesioning of the red nucleus in rats. Brain Res 2007; 1165:60-70. [PMID: 17662263 DOI: 10.1016/j.brainres.2007.06.008] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2007] [Revised: 06/04/2007] [Accepted: 06/11/2007] [Indexed: 01/01/2023]
Abstract
We study whether the red nucleus (RN) lesion can modify rhythmic jaw movements. Rhythmic jaw movements were induced by repetitive electrical stimulation of the two cortical masticatory areas (area A: the orofacial motor cortex; area P: the insular cortex). Lesions made by applied electric current in the RN were found to influence the rhythmic jaw movements induced by stimulation of A-area. The distance between the maximum and minimum jaw-opening positions was less after the lesions were induced. The duration of rhythmic jaw movements was shorter after lesioning. In contrast, lesions of the RN did not influence rhythmic jaw movements induced by stimulation of the P-area. Next, kainic acid (0.2 microl, lesion group) or phosphate-buffered saline (0.2 microl, control group) was injected into the left RN. Three days after injection, rhythmic jaw movements were induced by repetitive electrical stimulation of the A-area. The distance between the maximum and minimum jaw-opening positions in the lesion group was smaller than in the control group. The rhythmic jaw movements of the lesion group had shorter duration than the control group. These results suggest that the RN is involved in the modification of jaw movements induced by stimulation of the A-area.
Collapse
Affiliation(s)
- Yoshihide Satoh
- Department of Physiology, The Nippon Dental University School of Life Dentistry at Niigata, 1-8 Hamaura-cho, Chuo-ku, Niigata 951-8580, Japan.
| | | | | |
Collapse
|
20
|
Satoh Y, Ishizuka K, Murakami T. Modulation of cortically induced rhythmical jaw movements by stimulation of the red nucleus in the rat. Brain Res 2006; 1087:114-22. [PMID: 16616053 DOI: 10.1016/j.brainres.2006.03.001] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2005] [Revised: 02/28/2006] [Accepted: 03/01/2006] [Indexed: 11/30/2022]
Abstract
We study whether stimulation of the red nucleus (RN) can modulate rhythmical jaw movements in rats anesthetized by urethane. Rhythmical jaw movements were induced by repetitive electrical stimulation of the two cortical masticatory areas (area A: the orofacial motor cortex; area P: the insular cortex). Stimuli applied to the RN did influence rhythmical jaw movements induced by stimulation of the A-area. Stimuli applied in the jaw-closing phase increased the amplitude of the jaw-closing movement. Stimuli applied in the jaw-opening phase disturbed the rhythm of jaw movements and induced a small jaw-closing movement. Stimuli applied to the RN did not influence rhythmical jaw movements induced by stimulation of the P-area. These results indicate that the RN is involved in the modulation of rhythmical jaw movements induced by stimulation of the A-area.
Collapse
Affiliation(s)
- Yoshihide Satoh
- Department of Physiology, The Nippon Dental University School of Dentistry at Niigata, Niigata 951-8580, Japan.
| | | | | |
Collapse
|
21
|
Tortorella P, Rocca MA, Colombo B, Annovazzi P, Comi G, Filippi M. Assessment of MRI abnormalities of the brainstem from patients with migraine and multiple sclerosis. J Neurol Sci 2006; 244:137-41. [PMID: 16530789 DOI: 10.1016/j.jns.2006.01.015] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2005] [Revised: 10/18/2005] [Accepted: 01/20/2006] [Indexed: 11/26/2022]
Abstract
BACKGROUND In patients with migraine, functional changes have been described in the red nucleus (RN), substantia nigra (SN) and periaqueductal gray matter (PAG). PURPOSE To evaluate whether and at which frequency these structures are involved by MRI-detectable structural abnormalities in migraineurs and to investigate the pathogenic role of these abnormalities by assessing their frequency and extent in patients with multiple sclerosis (MS) and migraine. METHODS On brain dual-echo scans obtained from 58 migraineurs (40 without and 18 with aura), 37 MS patients with migraine without aura and 42 MS patients without migraine, the presence of hyperintense lesions involving the brainstem structures was recorded. A test of heterogeneity between groups was used to compare the presence of lesions among patient groups. RESULTS Lesions of RN, SN and PAG were found in all patient groups, with frequency from 57.5% to 86.5%. Significant between-group differences for all these regions were found. No difference was found between migraine patients with and without aura. Compared with MS patients without migraine, MS patients with migraine had more significant involvement of the SN (p=0.02) and RN (p<0.0001). Compared with migraine patients, MS patients with migraine had more significant involvement of the SN and PAG (p ranging from 0.009 to 0.02). CONCLUSIONS T2-visible lesions in the brainstem are frequent in patients with migraine, but do not seem to be associated with the presence of aura. Demyelinating lesions in the RN, SN and PAG might be among the factors responsible for the presence of migraine in patients with MS.
Collapse
Affiliation(s)
- Paola Tortorella
- Neuroimaging Research Unit, Scientific Institute and University Ospedale San Raffaele, Milan, Italy
| | | | | | | | | | | |
Collapse
|
22
|
Matharu MS, Cohen AS, Frackowiak RSJ, Goadsby PJ. Posterior hypothalamic activation in paroxysmal hemicrania. Ann Neurol 2006; 59:535-45. [PMID: 16489610 DOI: 10.1002/ana.20763] [Citation(s) in RCA: 135] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
OBJECTIVE Paroxysmal hemicrania (PH) is a severe, strictly unilateral headache that lasts 2 to 30 minutes, occurs more than five times daily, is associated with trigeminal autonomic symptoms, and is exquisitely responsive to indomethacin. The purpose of the study was to determine the brain structures active in PH. METHODS Seven PH patients were studied using positron emission tomography (PET). Each patient was scanned in three states: (1) acute PH attack-off indomethacin; (2) pain-free-off indomethacin; and (3) pain-free after administration of intramuscular indomethacin 100 mg. The scan images were processed and analyzed using SPM99. RESULTS The study showed no significant activations during state 1 compared with state 2, but there was relative activation of the pain neuromatrix in both states 1 and 2 compared with state 3. This suggests that there is persistent activation of the pain neuromatrix during acute PH attacks and during interictal pain-free states off indomethacin that is deactivated by the administration of indomethacin. In addition, the untreated PH state was associated with significant activation of the contralateral posterior hypothalamus and contralateral ventral midbrain, which extended over the red nucleus and the substantia nigra. INTERPRETATION These activated subcortical structures may play a pivotal role in the pathophysiology of this syndrome.
Collapse
Affiliation(s)
- Manjit S Matharu
- Headache Group, Institute of Neurology, Queen Square, London, UK
| | | | | | | |
Collapse
|
23
|
Matharu MS, Goadsby PJ. Functional brain imaging in hemicrania continua: implications for nosology and pathophysiology. Curr Pain Headache Rep 2005; 9:281-8. [PMID: 16004846 DOI: 10.1007/s11916-005-0038-z] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Hemicrania continua is a strictly unilateral, continuous headache of mild to moderate intensity, with superimposed exacerbations of moderate to severe intensity that are accompanied by trigeminal autonomic features and migrainous symptoms. The syndrome is exquisitely responsive to indomethacin. Its clinical phenotype overlaps with that of the trigeminal autonomic cephalalgias and migraine, in which the hypothalamus and the brain stem, respectively, have been postulated to play central pathophysiologic roles. A recent positron-emission tomography study of a cohort of patients with hemicrania continua demonstrated significant activation of the contralateral posterior hypothalamus and ipsilateral dorsal rostral pons in association with the headache of hemicrania continua. In addition, there was activation of the ipsilateral ventrolateral midbrain, which extended over the red nucleus and the substantia nigra and bilateral pontomedullary junction. No intracranial vessel dilatation was obvious.
Collapse
Affiliation(s)
- M S Matharu
- Institute of Neurology, Queen Square, London WC1N 3BG, UK
| | | |
Collapse
|
24
|
Matharu MS, Cohen AS, McGonigle DJ, Ward N, Frackowiak RS, Goadsby PJ. Posterior hypothalamic and brainstem activation in hemicrania continua. Headache 2004; 44:747-61. [PMID: 15330820 DOI: 10.1111/j.1526-4610.2004.04141.x] [Citation(s) in RCA: 174] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
OBJECTIVE To determine the brain structures involved in mediating the pain of hemicrania continua using positron emission tomography. BACKGROUND Hemicrania continua is a strictly unilateral, continuous headache of moderate intensity, with superimposed exacerbations of severe intensity that are accompanied by trigeminal autonomic features and migrainous symptoms. The syndrome is exquisitely responsive to indomethacin. Its clinical phenotype overlaps with that of the trigeminal autonomic headaches and migraine in which the hypothalamus and the brainstem, respectively, have been postulated to play central pathophysiologic roles. We hypothesized, based on the clinical phenotype, that hemicrania continua may involve activations in the hypothalamus, or dorsal rostral pons, or both. METHODS Seven patients with hemicrania continua were studied in two sessions each. In one session, the patients were scanned during baseline pain and when rendered completely pain free after being administered indomethacin 100 mg intramuscularly. In the other session, the patients were scanned during baseline pain and when still in pain after being administered placebo intramuscularly. Seven age- and sex-matched nonheadache subjects acted as the control group. The scan images were processed and analyzed using SPM99. RESULTS There was a significant activation of the contralateral posterior hypothalamus and ipsilateral dorsal rostral pons in association with the headache of hemicrania continua. In addition, there was activation of the ipsilateral ventrolateral midbrain, which extended over the red nucleus and the substantia nigra, and bilateral pontomedullary junction. No intracranial vessel dilatation was obvious. CONCLUSIONS This study demonstrated activations of various subcortical structures, in particular the posterior hypothalamus and the dorsal rostral pons. If posterior hypothalamic and brainstem activation are considered as markers of trigeminal autonomic headaches and migrainous syndromes, respectively, then the activation pattern demonstrated in hemicrania continua mirrors the clinical phenotype, with its overlap with trigeminal autonomic headaches and migraine.
Collapse
|
25
|
Kuteeva E, Calza L, Holmberg K, Theodorsson E, Ogren SO, Hökfelt T. Distribution of galanin and galanin transcript in the brain of a galanin-overexpressing transgenic mouse. J Chem Neuroanat 2004; 28:185-216. [PMID: 15531132 DOI: 10.1016/j.jchemneu.2004.06.004] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2004] [Revised: 06/21/2004] [Accepted: 06/21/2004] [Indexed: 10/26/2022]
Abstract
The distribution of galanin mRNA-expressing cells and galanin-immunoreactive (IR) cell bodies and processes was studied in the brain of mice overexpressing galanin under the PDGF-B promoter (GalOE mice) and of wild type (WT) mice, both in colchicine-treated and non-treated animals. In this abstract, we only describe the results in GalOE mouse. A widespread ectopic expression of galanin (both mRNA and peptide) was found, that is a situation when neither transcript nor peptide could be seen in WT mice, not even after colchicine treatment. However, in some regions, such as claustrum, basolateral amygdala, thalamus, CA1 pyramidal cells, and Purkinje cells only galanin mRNA could be detected. In the forebrain galanin was seen in the mitral cells of the olfactory bulb, throughout the cortex, in the basolateral amygdaloid nucleus, claustrum, granular and pyramidal cell layers of the hippocampus, subiculum and presubiculum. In the thalamus, the anterodorsal, mediodorsal, intermediodorsal and mediodorsal lateral nuclei, the reuniens and reticular nuclei showed ectopic expression of galanin. Within the hypothalamus, neurons of the suprachiasmatic nucleus contained galanin. In the mesencephalon, the geniculate nucleus, nucleus ruber, the mesencephalic trigeminal and reticulotegmental nuclei ectopically expressed galanin. In the cerebellum, galanin was observed in the Purkinje cells and in the lateral and interposed cerebellar nuclei. In the pons, sensory and motor nuclei of the trigeminal nerve, the laterodorsal and dorsal tegmental nuclei, the pontine, reticulotegmental and gigantocellular reticular nuclei expressed galanin. Within the medulla oblongata, labeled cells were detected in the facial, ambiguus, prepositus, lateral paragigantocellular and lateral reticular nuclei, and spinal trigeminal nucleus. High densities of galanin-IR fibers were found in the axonal terminals of the lateral olfactory tract, the hippocampal and presumably the cerebellar mossy fibers system, in several thalamic and hypothalamic regions and the lower brain stem. Possible functional consequences of galanin overexpression are discussed.
Collapse
Affiliation(s)
- Eugenia Kuteeva
- Department of Neuroscience, Karolinska Institutet, Retzius väg 8, S-17177 Stockholm, Sweden
| | | | | | | | | | | |
Collapse
|
26
|
Dypvik AT, Bland BH. Functional connectivity between the red nucleus and the hippocampus supports the role of hippocampal formation in sensorimotor integration. J Neurophysiol 2004; 92:2040-50. [PMID: 15175366 DOI: 10.1152/jn.01081.2003] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Experiments were carried out in urethane-anesthetized rats to evaluate the hypothesis that the red nucleus has functional connections with the hippocampal formation. Depth profiles of electrical stimulation in experiment 1 confirmed that stimulation administered to the red nucleus elicited theta field activity in the hippocampal formation with a linear relationship between stimulus intensity and theta frequency. Experiment 2 showed that microinfusion of local anesthetic procaine hydrochloride into the medial septum resulted in a reversible blockade of theta field activity elicited by electrical stimulation of the red nucleus. In experiment 3, the discharge activity of red nucleus cells was recorded during the field conditions of hippocampal synchrony (theta) and hippocampal asynchrony [large amplitude irregular activity (LIA)]. Analysis revealed that 26/46 (56%) of red nucleus cells were theta-related, whereas the remaining 20 (44%) were nonrelated. The majority of theta-related cells were classified as tonic theta-on. A brief increase above the basal discharge rate of tonic theta-on red nucleus cells during LIA predicted the transition from LIA to theta with 400- to 500-ms latency. Furthermore, higher frequency transitional discharges predicted higher theta frequencies, whereas higher discharge rates during theta predicted shifts to higher theta frequencies. The results supported the conclusion that the red nucleus, traditionally associated with motor functions, is functionally connected with the neural circuitry involved in the generation of theta band oscillation and synchrony in the hippocampal formation, in agreement with the predictions of the sensorimotor integration model of hippocampal function.
Collapse
Affiliation(s)
- Audny T Dypvik
- Dept. of Psychology, Behavioral Neuroscience Research Group, Univ. of Calgary, 2500 University Dr., NW, Calgary, Alberta T2N 1N4, Canada
| | | |
Collapse
|
27
|
Ciranna L, Licata F, Li Volsi G, Santangelo F. Alpha2- and beta-adrenoceptors differentially modulate GABAA- and GABAB-mediated inhibition of red nucleus neuronal firing. Exp Neurol 2004; 185:297-304. [PMID: 14736511 DOI: 10.1016/j.expneurol.2003.10.007] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
In mesencephalic red nucleus (RN), GABA-induced inhibition of neuronal firing is modulated by noradrenaline acting on alpha2- and beta-adrenoceptors. Since both GABAA and GABAB receptors are present in the rat RN, we have recorded the firing activity of RN neurons in vivo from anaesthetized rats to study how GABAA- and GABAB-mediated effects are modulated by either alpha2- or beta-adrenoceptor activation. Both the GABAA agonist isoguvacine and the GABAB agonist baclofen depressed the firing of RN neurons. During simultaneous application of clonidine, an alpha2-adrenoceptor agonist, half of the isoguvacine- and baclofen-mediated responses were modified: isoguvacine-mediated inhibition was enhanced by 97% without any change in effect duration, whereas baclofen responses were either increased or slightly reduced in the same number of cases. Application of isoprenaline, a beta-adrenoceptor agonist, increased isoguvacine effect in 66% of neurons without modifying effect duration; the amount of increase (43%) was significantly lower than that induced by clonidine. On the other hand, in the presence of isoprenaline, baclofen response was reduced in 72% of neurons with respect to both the amount (52%) and the duration (34%) of effect. Taken together, these results indicate that alpha2-adrenoceptors mainly enhance GABAA-induced inhibition and induce mixed effects on GABAB response; on the other side, beta-adrenoceptors exert an opposite modulation on GABA effects, respectively, enhancing and depressing GABAA- and GABAB-mediated responses.
Collapse
Affiliation(s)
- L Ciranna
- Dipartimento di Scienze Fisiologiche, Università di Catania, I-95125, Catania, Italy.
| | | | | | | |
Collapse
|
28
|
Chen K, Zhu JN, Li HZ, Wang JJ. Histamine elicits neuronal excitatory response of red nucleus in the rat via H2 receptors in vitro. Neurosci Lett 2003; 351:25-8. [PMID: 14550905 DOI: 10.1016/s0304-3940(03)00926-1] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Perfusing slices with histamine (1-100 microM) produced an excitatory response in rat rubral neurons (118/132, 89.4%). The histamine-induced excitation was not blocked by the low-Ca2+/high-Mg2+ medium (n=10), supporting a direct postsynaptic action of the amine. Histamine H2 receptor antagonist ranitidine effectively blocked the excitatory response of rubral neurons to histamine (n=26), but H1 receptor antagonist triprolidine did not (n=24). The excitatory effect of histamine could be mimicked by dimaprit, a highly selective H2 receptor agonist (n=24), and the dimaprit-elicited excitation of the rubral neurons could be blocked by ranitidine (n=16), but not by triprolidine (n=9). In addition, H1 receptor agonist 2-pyridylethylamine could not elicit any response in rubral neurons (n=12). These results indicate that histamine excites red nucleus neurons through H2 receptors and suggest that the histaminergic afferent fibers may play an important functional role in the sensorimotor integration through the red nucleus.
Collapse
Affiliation(s)
- Kun Chen
- Department of Biological Science and Technology, Nanjing University, 22 Hankou Road, Nanjing 210093, China
| | | | | | | |
Collapse
|
29
|
Kiss J, Csáki A, Bokor H, Kocsis K, Kocsis B. Possible glutamatergic/aspartatergic projections to the supramammillary nucleus and their origins in the rat studied by selective [(3)H]D-aspartate labelling and immunocytochemistry. Neuroscience 2002; 111:671-91. [PMID: 12031353 DOI: 10.1016/s0306-4522(02)00037-4] [Citation(s) in RCA: 70] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
The supramammillary neurons projecting directly to the hippocampus or indirectly via the septum participate in the regulation of hippocampal theta activity. Inputs to the supramammillary nucleus are only partly specified neurochemically. Glutamate appears to be an excitatory transmitter in this cell group, however, the origin of the glutamatergic afferents is unknown. The present investigations were devoted to study this question. The transmitter-selective [(3)H]D-aspartate retrograde transport method was used injecting the tracer into the lateral subregion of the nucleus. The radioactive tracer was visualized by autoradiography. Non-selective retrograde tracing experiments were also performed for reference injecting wheat germ agglutinin-conjugated colloidal gold into the same supramammillary region. Retrogradely radiolabelled neurons in various numbers were detected in several brain regions including medial septum-diagonal band complex, lateral septum, rostral part of medial and lateral preoptic areas, lateral habenula, ventral premammillary nucleus, apical subregion of interpeduncular nucleus, laterodorsal tegmental nucleus, and dorsal and median raphe nuclei. Radiolabelled neurons in the mentioned raphe nuclei were serotonin-immunonegative. In the non-selective retrograde tracing experiments combined with immunocytochemistry, about 50% of the retrogradely labelled neurons in the raphe nuclei was serotonin-immunonegative, showing that not only serotonergic raphe neurons project to the supramammillary nucleus. The findings indicate that a significant part of the afferents from telencephalic, diencephalic and brainstem regions to the supramammillary nucleus may contain glutamate/aspartate as neurotransmitter. The most important functional implications of these observations concern the role of the supramammillary nucleus in controlling the electrical activity of the hippocampus, and in particular the generation and maintenance of the theta rhythm.
Collapse
Affiliation(s)
- J Kiss
- Hungarian Academy of Sciences and Semmelweis University, Neuroendocrine Research Laboratory, Department of Human Morphology, Semmelweis University, Tuzoltó u. 58, H-1094 Budapest, Hungary.
| | | | | | | | | |
Collapse
|
30
|
Giuffrida R, Aicardi G, Rapisarda C. Projections from the Cerebral Cortex to the Red Nucleus of the Guinea-pig. A Retrograde Tracing Study. Eur J Neurosci 2002; 3:866-875. [PMID: 12106453 DOI: 10.1111/j.1460-9568.1991.tb00098.x] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The origin and the topographic distribution of corticorubral (CR) projections in the guinea-pig were studied by using the retrograde axonal transport of a tracer, colloidal gold-labelled, enzymatically inactive horseradish peroxidase conjugated to wheat-germ agglutinin (WGAapoHRP - Au), which was injected in the red nucleus (RN). It was found that the bulk of the CR projections arise from layer V neurons of the agranular frontal cortex in both its medial (Agm) and lateral (Agl) subdivisions; in the Agm labelled neurons are preferentially located in the upper part of layer V, whereas in the Agl they are more concentrated in the central band of the layer. Fewer projections originate from areas of the granular parietal and the agranular cingulate and retrobulbar cortices. CR projections have a bilateral origin, with a large ipsilateral predominance. The pattern of retrograde cortical labelling observed after injection of WGAapoHRP - Au in different portions of the RN indicates that CR projections are distributed throughout the entire rostrocaudal extent of the nucleus, but are slightly more concentrated in the rostral parvocellular area. The morphological arrangement of CR projections in the guinea-pig, as demonstrated in the present study, shows several analogies with other mammals. The functional characteristics of the cortical areas in which CR neurons are located indicate that CR projections may play a significant role in the central organization of movement.
Collapse
Affiliation(s)
- R. Giuffrida
- Istituto di Fisiologia umana, Università di Catania, Viale Andrea Doria 6, 95125 Catania, Italy
| | | | | |
Collapse
|
31
|
Jay TM, Thierry AM, Wiklund L, Glowinski J. Excitatory Amino Acid Pathway from the Hippocampus to the Prefrontal Cortex. Contribution of AMPA Receptors in Hippocampo-prefrontal Cortex Transmission. Eur J Neurosci 2002; 4:1285-1295. [PMID: 12106392 DOI: 10.1111/j.1460-9568.1992.tb00154.x] [Citation(s) in RCA: 146] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Previous experiments in the rat have demonstrated that field CA1 and the subiculum project to the prefrontal cortex and that this direct unilateral pathway is excitatory. In the present study, anatomical and electrophysiological approaches were used to determine the transmitter mediating the excitatory responses in prefrontal cortex neurons to low-frequency stimulation of the hippocampus. The method of selective retrograde d-[3H]aspartate labelling was used to identify putative glutamatergic and/or aspartatergic hippocampal afferent fibres to the prefrontal cortex. Unilateral microinjection of d-[3H]aspartate into the prelimbic area of the prefrontal cortex resulted in the retrograde labelling of a fraction of hippocampal neurons. Some labelled cell bodies were distributed in field CA1 and the subiculum but larger numbers of neurons were detected in the ventral and intermediary subiculum. In a second series of experiments, the excitatory transmission from the hippocampus to the prefrontal cortex was pharmacologically analysed to provide further evidence for the involvement of glutamate and/or aspartate in the pathway. All prefrontal cortex neurons responding to the stimulation of the hippocampus were activated by selective agonists of the glutamate receptor subtypes alpha-amino-3-hydroxy-5-methyl-4-isoxazole-propionic acid (AMPA) and N-methyl-d-aspartate (NMDA), and these effects were selectively antagonized by 6-cyano-7-nitroquinoxaline-2,3-dione (CNQX) and 2-amino-5-phosphonopentanoic acid (APV) respectively. Most of the excitatory responses of prefrontal cortex neurons to single and paired-pulse stimulation of the hippocampus were antagonized by CNQX. APV only affected the excitatory response in a few cells. These results suggest that the hippocampal input to the prefrontal cortex utilizes glutamate and/or aspartate as a transmitter. Even though prefrontal cortex neurons responding to the stimulation of the hippocampus appear to have both AMPA and NMDA receptors, low-frequency stimulation of the hippocampo-prefrontal cortex pathway activates cortical neurons mostly through AMPA receptors.
Collapse
Affiliation(s)
- Thérèse M. Jay
- INSERM U 114, Collège de France, 11 place Marcelin Berthelot, 75231 Paris Cedex 05, France
| | | | | | | |
Collapse
|
32
|
Csáki A, Kocsis K, Kiss J, Halász B. Localization of putative glutamatergic/aspartatergic neurons projecting to the supraoptic nucleus area of the rat hypothalamus. Eur J Neurosci 2002; 16:55-68. [PMID: 12153531 DOI: 10.1046/j.1460-9568.2002.02059.x] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Oxytocin and vasopressin neurosecretory neurons of the supraoptic nucleus receive a rich glutamatergic innervation. The nerve cells of this prominent structure express various ionotropic and metabotropic glutamate receptor subtypes and there is converging evidence that glutamate acts as an excitatory transmitter in the control of release of oxytocin and vasopressin synthesized in this cell group. The location of the glutamatergic neurons projecting to this hypothalamic region is unknown. The aim of the present investigation was to study this question. [(3)H]D-aspartate, which is selectively taken up by high-affinity uptake sites at presynaptic endings that use glutamate as a transmitter, and is transported back to the cell body, was injected into the supraoptic nucleus area. The neurons retrogradely labelled with [(3)H]D-aspartate were detected autoradiographically. Labelled nerve cells were found in several diencephalic and telencephalic structures, but not in the brainstem. Diencephalic cell groups included the supraoptic nucleus itself, its perinuclear area, hypothalamic paraventricular, suprachiasmatic, ventromedial, dorsomedial, ventral premammillary, supramammillary and thalamic paraventricular nuclei. Within the telencephalon, labelled neurons were detected in the septum, amygdala, bed nucleus of the stria terminalis and preoptic area. The findings provide neuromorphological data on the location of putative glutamatergic neurons projecting to the supraoptic nucleus and its perinuclear area. Furthermore, they indicate that local putative glutamatergic neurons as well as several diencephalic and telencephalic structures contribute to the glutamatergic innervation of the cell group and thus are involved in the control of oxytocin and vasopressin release by neurosecretory neurons of the nucleus.
Collapse
Affiliation(s)
- A Csáki
- Neuroendocrine Research Laboratory, Department of Human Morphology & Developmental Biology, Semmelweis University, Tüzoltó u. 58. H-1094 Budapest, Hungary
| | | | | | | |
Collapse
|
33
|
Jiang MC, Alheid GF, Nunzi MG, Houk JC. Cerebellar input to magnocellular neurons in the red nucleus of the mouse: synaptic analysis in horizontal brain slices incorporating cerebello-rubral pathways. Neuroscience 2002; 110:105-21. [PMID: 11882376 DOI: 10.1016/s0306-4522(01)00544-9] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
We studied the synaptic input from the nucleus interpositus of the cerebellum to the magnocellular division of the red nucleus (RNm) in the mouse using combined electrophysiological and neuroanatomical methods. Whole-cell patch-clamp recordings were made from brain slices (125-150 microm) cut in a horizontal plane oriented to pass through both red nucleus and nucleus interpositus. Large cells that were visually selected and patched were injected with Lucifer Yellow and identified as RNm neurons. Using anterograde tracing from nucleus interpositus in vitro, we examined the course of interposito-rubral axons which are dispersed in the superior cerebellar peduncle. In vitro monosynaptic responses in RNm were elicited by an electrode array placed contralaterally in this pathway but near the midline. Mixed excitatory post-synaptic potentials (EPSPs)/inhibitory post-synaptic potentials (IPSPs) were observed in 48 RNm neurons. Excitatory components of the evoked potentials were studied after blocking inhibitory components with picrotoxin (100 microM) and strychnine (5 microM). All RNm neurons examined continued to show monosynaptic EPSPs after non-N-methyl-D-aspartate (NMDA) glutamate receptor components were blocked with 10 microM 6,7-dinitroquinoxaline-2,3-dione or 5 microM 2,3-dihydro-6-nitro-7-sulfamoyl-benzo(f)-quinoxaline (NBQX; n=12). The residual potentials were identified as NMDA receptor components since they (i) were blocked by the addition of the NMDA receptor antagonist, D,L-2-amino-5-phosphonovaleric acid (APV), (ii) were voltage-dependent, and (iii) were enhanced by Mg(2+) removal. Inhibitory components of the evoked potentials were studied after blocking excitatory components with NBQX and APV. Under these conditions, all RNm neurons studied continued to show IPSPs. Blockade of GABA(A) receptors reduced but did not eliminate the IPSPs. These were eliminated when GABA(A) receptor blockade was combined with strychnine to eliminate glycine components of the IPSPs. Thus, IPSPs evoked by midline stimulation of the superior cerebellar peduncle, while blocking alpha-amino-3-hydroxy-5-methylisoxazole-4-propionic acid (AMPA) and NMDA receptors, raise the possibility of direct inhibitory inputs to RNm from the cerebellum. In summary we propose that the special properties of the NMDA receptor components are considered important for the generation of RNm motor commands: their slow time course will contribute a steady driving force for sustained discharge and their voltage dependency will facilitate abrupt transitions from a resting state of quiescence to an active state of intense motor command generation.
Collapse
|
34
|
Licata F, Li Volsi G, Di Mauro M, Fretto G, Ciranna L, Santangelo F. Serotonin modifies the neuronal inhibitory responses to gamma-aminobutyric acid in the red nucleus: a microiontophoretic study in the rat. Exp Neurol 2001; 167:95-107. [PMID: 11161597 DOI: 10.1006/exnr.2001.7533] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The effects of 5-hydroxytryptamine (5-HT) on the inhibitory responses evoked by gamma-aminobutyric acid (GABA) in neurons of the red nucleus (RN) were studied using a microiontophoretic technique. Extracellular unitary recordings performed in anesthetized rats demonstrated that 5-HT ejection influenced GABA-evoked inhibition in 94% of RN neurons, enhancing them in 52% and depressing them in 46% of cases. Both effects were specific and dose-dependent,although enhancements or depressions of the GABA responses were respectively inversely and directly related to the doses of 5-HT applied. The type of modulation exerted by 5-HT on the GABA responses was independent of the action of the amine on background firing. In fact, 5-HT induced an enhancement of the GABA responses in neurons mostly located in the rostral RN and a depression in those in the caudal RN. The application of 8-hydroxy-2(di-n-propylamino)tetralin, a specific 5-HT(1A) receptor agonist, enhanced GABA responses, whereas alpha-methyl-5-hydroxytryptamine, a 5-HT(2A) receptor agonist, depressed them. Both the 5-HT(2) antagonist methysergide and the 5-HT(2A) selective antagonist ketanserin were able to block partially or totally the depressive action of 5-HT on GABA responses. In contrast, the same 5-HT antagonists mimicked the enhancing action of 5-HT on the GABA responses or were ineffective. Application of bicuculline, a GABA(A) receptor antagonist, enhanced the excitatory action of 5-HT on the background firing and slightly reduced the inhibitory action. It is concluded that 5-HT is able to modulate GABA-evoked responses in RN neurons by acting on both 5-HT(1A) and 5-HT(2A) receptors. The functional significance of a serotonergic control on GABAergic inhibitory effects in RN is discussed.
Collapse
Affiliation(s)
- F Licata
- Department of Physiological Sciences, University of Catania, Catania, 95125, Italy
| | | | | | | | | | | |
Collapse
|
35
|
Ciranna L, Licata F, Li Volsi G, Santangelo F. Neurotransmitter-mediated control of neuronal firing in the red nucleus of the rat: reciprocal modulation between noradrenaline and GABA. Exp Neurol 2000; 163:253-63. [PMID: 10785465 DOI: 10.1006/exnr.2000.7377] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The electrical activity of neurons from the red nucleus, a mesencephalic structure involved in motor control, is under the influence of several neurotransmitters released from afferent fibers and/or from local interneurons. We have investigated the combined effects of gamma-aminobutyric acid (GABA) and noradrenaline (NA), both present at high levels in the red nucleus, on the firing activity of single rubral neurons recorded extracellularly in vivo on anesthetized adult rats. NA inhibited the firing activity of a large part of rubral neurons and induced excitatory or biphasic inhibitory/excitatory effects in a smaller group of cells. Neuronal firing was also inhibited by GABA in all the cells studied. When the effect of GABA was tested during continuous applications of NA, the magnitude of GABA response was modified in 58% of the cells: the effect of GABA was potentiated by NA in half of the responding neurons and was decreased in the remaining half. NA-induced potentiation of GABA response was mimicked by the alpha(2)-adrenoceptor agonist clonidine and was abolished by the alpha(2)-adrenoceptor antagonist yohimbine. On the other side, the decrease of GABA response was reproduced by the beta-adrenoceptor agonist isoprenaline and was blocked by timolol, an antagonist of beta-adrenoceptors. Neuronal firing activity was reduced by nipecotic acid, an inhibitor of GABA reuptake mechanism, and was instead increased during application of the GABA(A) receptor antagonist bicuculline, suggesting that rubral neurons in vivo were under tonic control by endogenous GABA. Both the inhibitory and the excitatory effects of NA were reduced in the presence of nipecotic acid and were instead potentiated during application of bicuculline, suggesting that NA responses were modified by endogenous GABA. Taken together, our results indicate a reciprocal modulation between the effects of GABA and NA on neuronal firing activity in the red nucleus of the rat: GABA depresses the responsiveness of rubral neurons to NA, whereas NA is able either to potentiate or to decrease the effects of GABA by activation of alpha(2)- and beta-adrenoceptors, respectively. The functional significance of such interaction, as well as the possible implication in diseases affecting motor control, will be discussed.
Collapse
Affiliation(s)
- L Ciranna
- Dipartimento di Scienze Fisiologiche, Università di Catania, Viale Andrea Doria 6, Catania, I-95125, Italy
| | | | | | | |
Collapse
|
36
|
Keifer J, Lustig DG. Comparison of cortically and subcortically controlled motor systems. II. Distribution of anterogradely labeled terminal boutons on intracellularly filled rubrospinal neurons in rat and turtle. J Comp Neurol 2000; 416:101-11. [PMID: 10578105 DOI: 10.1002/(sici)1096-9861(20000103)416:1<101::aid-cne8>3.0.co;2-r] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
The present study examined the circuitry of the red nucleus of the Sprague-Dawley rat and the freshwater pond turtle, Chrysemys picta, by using intracellular cell filling combined with anterograde tract tracing. Although both species have a well-developed cerebellorubral system, they differ in that the red nucleus of rats receives direct input from the motor areas of the cerebral cortex, whereas turtles do not. However, a direct descending projection from the hypothalamus to the red nucleus of turtles has been described. The aim of this study was to elucidate the relative functional contributions of the cerebellum and descending inputs to motor signal generation in the red nucleus. The results show that the cellular distribution of cerebellar inputs on rubrospinal neurons is similar between the rat and turtle; these projections are observed on the soma and the proximal and distal dendrites. In contrast, the hypothalamic inputs in turtles occupy mainly the more distally located dendrites, similar to the position of the cortical inputs in rats. These findings suggest that, first, the cerebellar inputs are not spatially segregated from the cortical or hypothalamic inputs in rats or turtles, as far as can be determined by light microscopy. Second, there is specificity of input from the cortex in rats and hypothalamus in turtles onto the distal portions of the dendrites. The similarity in the organizational features of the mammalian and non-mammalian cerebellorubrospinal systems has implications for interpretations of the relative roles of the cerebellum and cerebral cortex in motor control.
Collapse
Affiliation(s)
- J Keifer
- Neuroscience Group, Division of Basic Biomedical Sciences, University of South Dakota School of Medicine, Vermillion, South Dakota 57069, USA.
| | | |
Collapse
|
37
|
Teune TM, van der Burg J, de Zeeuw CI, Voogd J, Ruigrok TJ. Single Purkinje cell can innervate multiple classes of projection neurons in the cerebellar nuclei of the rat: a light microscopic and ultrastructural triple-tracer study in the rat. J Comp Neurol 1998; 392:164-78. [PMID: 9512267 DOI: 10.1002/(sici)1096-9861(19980309)392:2<164::aid-cne2>3.0.co;2-0] [Citation(s) in RCA: 73] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Two different populations of projection neurons are intermingled in the cerebellar nuclei. One group consists of small, gamma-aminobutyric acid-containing (GABAergic) neurons that project to the inferior olive, and the other group consists of larger, non-GABAergic neurons that provide an input to one or more, usually premotor, centers in the brainstem, such as the red nucleus, the thalamus, and the superior colliculus. All cerebellar nuclear neurons are innervated by GABAergic Purkinje cells. In this study, we investigated whether individual Purkinje cells of the C1 zone of the paramedian lobe of the rat innervate both groups of projection neurons in the anterior interposed nucleus. Two different, retrogradely transported tracers, either cholera toxin beta subunit (CTb) or wheat germ agglutinin coupled to horseradish peroxidase (WGA-HRP) and a gold lectin tracer were injected into the red nucleus and the inferior olive, respectively, whereas Purkinje cell axons were anterogradely labeled with biotinylated dextran amine (BDA) injected into the paramedian lobule. Cerebellar nuclear sections studied with the light microscope demonstrated a close relation of varicosities from BDA-labeled Purkinje cell axons with both gold lectin- and CTb-labeled neurons. Branches of individual axons could be traced to both retrogradely labeled cell populations. At the ultrastructural level, synapses of labeled Purkinje cell terminals with profiles of WGA-HRP-labeled projection neurons predominated over contacts with gold lectin-containing neurons. Nine out of 367 investigated BDA-labeled terminals were observed to be presynaptic to a WGA-HRP-labeled profile as well as to a gold lectin-labeled profile. This indicates that nuclear cells that project to the inferior olive as well as those that project to premotor centers are under the influence of the same Purkinje cells. Such an arrangement would suggest an in-phase cortical modulation of the activation patterns of the inhibitory cells that project to the inferior olive and excitatory cells that project to premotor nuclei, which could explain why olivary neurons, especially those of the rostral part of the dorsal accessory olive, appear to be unresponsive to stimuli generated during active movement.
Collapse
Affiliation(s)
- T M Teune
- Department of Anatomy, Erasmus University Rotterdam, The Netherlands
| | | | | | | | | |
Collapse
|
38
|
Ciranna L, Licata F, Li Volsi G, Santangelo F. Noradrenaline modifies the spontaneous spiking activity of red nucleus neurons in the rat by activation of alpha 2- and beta-adrenoceptors. Brain Res 1996; 743:284-93. [PMID: 9017257 DOI: 10.1016/s0006-8993(96)01057-8] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
We have investigated the effects of noradrenaline (NA) on the spontaneous firing activity of red nucleus (RN) neurons recorded extracellularly in anesthetized rats by using an in vivo electrophysiological technique. Microiontophoretic applications of NA (5-100 nA for 30 s) modified the background firing rate in 99 out of 124 neurons and three different patterns of response were observed in distinct cells. In 61% of the responding neurons NA decreased the mean firing rate, whereas 22% of the neurons responded to NA application with an increase of their spiking activity; in a smaller group of cells (17%) NA exerted a biphasic inhibitory/excitatory effect on the spontaneous firing rate. The effects of NA were reversible and dose-dependent. From histological examination, the neurons responding to NA with a purely inhibitory effect were scattered throughout the RN. On the other hand, the neurons responding to NA with an excitation were found to be more numerous in the dorso-medial part of the RN, whereas the neurons in which NA induced biphasic effects appeared to be segregated in the outer lateral portion of the RN. The alpha 2-adrenoceptor antagonist yohimbine completely blocked the inhibitory effect of NA but was unable to antagonize the excitatory response. In addition, the inhibitory effect of NA was mimicked by clonidine, a selective agonist of alpha 2-adrenoceptors; clonidine had no effect on those cells which responded to NA with an increase of the mean firing rate. The excitatory effect of NA was mimicked by the beta-receptor agonist isoprenaline and was antagonized by timolol, a selective antagonist of beta-adrenoceptors. Isoprenaline was ineffective in those cells in which NA exerted inhibitory responses. Taken together, our results indicate that the inhibitory effect of NA on the firing activity of rat RN neurons were mediated by alpha 2-adrenoceptors, whereas beta-adrenoceptors were responsible for the excitatory effects.
Collapse
Affiliation(s)
- L Ciranna
- Instituto di Fisiologia Umana, Catania, Italy.
| | | | | | | |
Collapse
|
39
|
Abstract
D-[3H]aspartate was used to identify potential glutamatergic connections of the chinchilla inferior colliculus (IC). High-affinity uptake of D-[3H]aspartate is considered a selective marker for glutamatergic synapses, and neurons retrogradely labeled from such injections are believed to use glutamate, or a closely related compound, as a transmitter. Injections of D-[3H]aspartate suggest that glutamatergic endings in the IC arise primarily from intrinsic connections, the opposite IC, layer 5 of temporal cortex, nucleus sagulum, and lateral lemniscal nuclei. Neurons giving rise to the principal sensory (lemniscal) projections to the IC, i.e., those from the cochlear nuclei, superior olive, and the majority of projections from the lateral lemniscal nuclei, did not label in these experiments, indicating that their synapses do not recognize D-[3H]aspartate as a suitable substrate and may use inhibitory or other excitatory transmitters. After IC injections, fiber and diffuse labeling was found ipsilaterally in the medial geniculate body, superior colliculus, and dorsolateral pontine nuclei, contralaterally in the IC, and bilaterally in the superior olive and cochlear nuclei. Such labeling was attributed to anterograde transport of D-[3H]aspartate within the efferent collaterals of labeled IC neurons, suggesting that many of the IC's efferent projections may also be glutamatergic. This interpretation was confirmed in separate experiments in which D-[3H]aspartate, injected in the medial geniculate body, retrogradely labeled neurons in the IC as well as in layer 6 of temporal cortex. Finally, the mesencephalic trigeminal nucleus and tract labeled in some cases and may have local glutamatergic connections.
Collapse
Affiliation(s)
- R L Saint Marie
- Department of Neuroanatomy, House Ear Institute, Los Angeles, California 90057, USA
| |
Collapse
|
40
|
Aumann TD, Horne MK. A comparison of the ultrastructure of synapses in the cerebello-rubral and cerebello-thalamic pathways in the rat. Neurosci Lett 1996; 211:175-8. [PMID: 8817569 DOI: 10.1016/0304-3940(96)12757-9] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
The aim of this study was to compare the ultrastructure of anterogradely labelled cerebellar terminals in the red nucleus (RN), ventrolateral (VL), parafascicular (PF) and central medial (CM) thalamic nuclei, as well as in the zona incerta (ZI). No differences were found in the morphology of synapses in any of the nuclei. Terminals in RN and VL were larger than those in PF, CM and ZI and synapsed proximally. In contrast, synapses in PF, CM and ZI formed mainly on distal dendrites. These findings indicate that cerebellar output neurones (a) form morphologically similar synapses (Gray's type I) on neurones in functionally different nuclei, and (b) form larger, more proximal synapses in RN and VL than in PF, CM and ZI.
Collapse
Affiliation(s)
- T D Aumann
- Department of Anatomy, Monash University, Clayton, Victoria, Australia
| | | |
Collapse
|
41
|
|
42
|
Teune TM, van der Burg J, Ruigrok TJ. Cerebellar projections to the red nucleus and inferior olive originate from separate populations of neurons in the rat: a non-fluorescent double labeling study. Brain Res 1995; 673:313-9. [PMID: 7606446 DOI: 10.1016/0006-8993(94)01431-g] [Citation(s) in RCA: 56] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
In the rat, the extent of collateralization of projections from the cerebellar nuclei to the red nucleus and inferior olive was investigated using a retrograde double labeling technique. The combination of tracers selected, cholera toxin-beta-subunit and WGA-BSA-gold, not only enabled the use of small injection sites but also resulted in clearly distinguishable and permanently stained neurons that could be analyzed in counterstained sections.
Collapse
Affiliation(s)
- T M Teune
- Department of Anatomy, Erasmus University, Rotterdam, The Netherlands
| | | | | |
Collapse
|
43
|
De Zeeuw CI, Ruigrok TJ. Olivary projecting neurons in the nucleus of Darkschewitsch in the cat receive excitatory monosynaptic input from the cerebellar nuclei. Brain Res 1994; 653:345-50. [PMID: 7526963 DOI: 10.1016/0006-8993(94)90411-1] [Citation(s) in RCA: 111] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
The direct projection from the cerebellar nuclei to the inferior olive is GABAergic. In the present study, we investigated the projection from the cerebellar nuclei to the mesodiencephalic junction which is known to provide an excitatory projection to the inferior olive. The mesodiencephalic junction was studied in cat following anterograde transport of wheatgerm agglutinated horseradish peroxidase from the cerebellar nuclei in combination with: (1) retrograde transport of gold-lectin conjugate from the inferior olive; and (2) postembedding GABA-immunocytochemistry. Light microscopic analysis revealed that overlap of the anterograde and retrograde labeling was especially prominent in the nucleus of Darkschewitsch. Electron microscopic examination of this area showed: (1) that many cerebellar terminals made synaptic contacts with neurons that project to the inferior olive; (2) that virtually all cerebellar terminals were non-GABAergic and displayed an excitatory morphology; and (3) olivary projecting neurons were non-GABAergic. It is concluded that the indirect cerebellar projection to the inferior olive via the nucleus of Darkschewitsch is disynaptic and excitatory.
Collapse
Affiliation(s)
- C I De Zeeuw
- Department of Anatomy, Erasmus University of Rotterdam, The Netherlands
| | | |
Collapse
|
44
|
Abstract
Serotonergic neurons are thought to play a role in depression and obsessive compulsive disorder. However, their functional transmitter repertoire is incompletely known. To investigate this repertoire, intracellular recordings were obtained from 132 cytochemically identified rat mesopontine serotonergic neurons that had re-established synapses in microcultures. Approximately 60% of the neurons evoked excitatory glutamatergic potentials in themselves or in target neurons. Glutamatergic transmission was frequently observed in microcultures containing a solitary serotonergic neuron. Evidence for co-release of serotonin and glutamate from single raphe neurons was also obtained. However, evidence for gamma-aminobutyric acid release by serotonergic neurons was observed in only two cases. These findings indicate that many cultured serotonergic neurons form glutamatergic synapses and may explain several observations in slices and in vivo.
Collapse
Affiliation(s)
- M D Johnson
- Department of Neurobiology, Harvard Medical School, Boston, Massachusetts 02115
| |
Collapse
|
45
|
Francis PT, Sims NR, Procter AW, Bowen DM. Cortical pyramidal neurone loss may cause glutamatergic hypoactivity and cognitive impairment in Alzheimer's disease: investigative and therapeutic perspectives. J Neurochem 1993; 60:1589-604. [PMID: 8473885 DOI: 10.1111/j.1471-4159.1993.tb13381.x] [Citation(s) in RCA: 173] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Affiliation(s)
- P T Francis
- Miriam Marks Department of Neurochemistry, Institute of Neurology, London, England
| | | | | | | |
Collapse
|
46
|
Giuffrida R, Aicardi G, Canedi A, Rapisarda C. Excitatory amino acids as neurotransmitters of cortical and cerebellar projections to the red nucleus: an immunocytochemical study in the guinea pig. Somatosens Mot Res 1993; 10:365-76. [PMID: 7906069 DOI: 10.3109/08990229309028844] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
We combined a retrograde labeling technique with peroxidase immunocytochemistry to verify whether cortical and cerebellar neurons projecting to the red nucleus (RN) contain high concentrations of glutamate and aspartate as possible neurotransmitters. Injections of a tracer, colloidal gold-labeled enzymatically inactive horseradish peroxidase conjugated to wheatgerm agglutinin, into the RN of adult guinea pigs produced retrograde labeling of layer V cortical neurons, with a large predominance in the ipsilateral hemisphere. Corticorubral neurons were located in the granular parietal cortex (Gr), agranular frontal cortex (Ag), agranular cingulate cortex (Cg), and retrobulbar cortex (Rb). Large numbers of retrogradely labeled neurons were concentrated in contralateral interpositus and dentate cerebellar nuclei. We found the majority of corticorubral neurons to be immunostained by antibodies raised in rabbits against glutamate or aspartate conjugated to invertebrate hemocyanin by glutaraldehyde, supporting the hypothesis that excitatory amino acids are neurotransmitters of corticorubral projections. With either antiserum, immunostaining was found in 58-72% of corticorubral neurons in Ag and Gr; higher percentages were observed in Rb (80-85%) and Cg (up to 96%). Cross-sectional area measurements indicated that the perikarya of corticorubral neurons were larger in Ag and Gr than in Rb and Cg; in each area, soma size values of immunopositive corticorubral neurons tended to be larger than those of immunonegative ones. In the cerebellar nuclei, virtually all retrogradely labeled neurons were immunostained by glutamate and aspartate antisera, suggesting that excitatory amino acids might also be considered as possible neurotransmitters for cerebellorubral projections.
Collapse
Affiliation(s)
- R Giuffrida
- Istituto di Fisiologia Umana, Università di Catania, Italy
| | | | | | | |
Collapse
|
47
|
Batini C, Compoint C, Buisseret-Delmas C, Daniel H, Guegan M. Cerebellar nuclei and the nucleocortical projections in the rat: Retrograde tracing coupled to GABA and glutamate immunohistochemistry. J Comp Neurol 1992; 315:74-84. [PMID: 1371781 DOI: 10.1002/cne.903150106] [Citation(s) in RCA: 139] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
The amino acids GABA and glutamate (Glu) are thought to be the principal substances in the central nervous system responsible for neuronal inhibition and excitation. Their distributions among the different neurons in a defined pathway may thus be indicative of the contributions of the cells to pathway function. Examples of such neurons are those of the cerebellar nuclei which, while regulating output from the Purkinje cells of the cerebellar cortex, are also found to project back to the cerebellar cortex. Immunohistochemical experiments were done to identify GABA and glutamate (Glu) containing cells in the adult rat cerebellar nuclei. Consecutive semithin and serial vibratome sections were incubated with antisera raised in rabbit against GABA and Glu. In semithin sections, only small neurons were intensely GABA immunoreactive (GABA-IR) (31.7%), and the majority (80.5%) were Glu immunoreactive (Glu-IR) of different sizes. Consistent with Glu being a metabolic precursor for GABA, 75.4% of the GABA-IR population colocalized Glu. In vibratome sections GABA-IR neurons showed some local differences in number, whereas the Glu-IR were uniformly distributed in the three nuclei studied. Measured mean diameters for these neurons showed a distinct size difference for the GABA- and Glu-IR with little overlap. Cerebellar nuclei neurons projecting to the cortex (nucleocortical neurons, NCN) were identified by locally preinjecting the retrograde transported WGA-apoHRP-colloidal gold complex in the cerebellar cortex. Vibratome sections of these cerebellar were silver intensified for the retrograde tracer and double labeled for GABA and Glu. Of the total number of identified NCN, 8.7% were GABA-IR (10 animals) and 47.7% Glu-IR (5 animals). Many retrograde labeled NCN in the core of the thick sections were immunonegative for both amino acids due to poor antibody penetration, thus underestimating the proportions of cells containing GABA and Glu. The size distributions for the GABA-IR and Glu-IR NCN were similar to those measured in non-retrograde labeled nuclei in thick sections. The conclusions reached are that GABA-IR neurons of the cerebellar nuclei, including the NCN, use GABA as the presumed inhibitory neurotransmitter and that Glu-IR neurons may use Glu or another excitatory neurotransmitter.
Collapse
Affiliation(s)
- C Batini
- CNRS URA 385, Université Pierre et Marie Curie, CHU Pitié-Salpetrière, Paris, France
| | | | | | | | | |
Collapse
|
48
|
Abstract
The role of the red nucleus (RN) in nociception was investigated in this study. Extracellular recordings from spontaneously active RN neurons were conducted in the rat while noxious pressure was delivered to the hindpaws or tail. Cells in the RN were predominantly inhibited by the stimuli. The units were most responsive when noxious pressure was applied to the contralateral hindpaw. Furthermore, more cells in the magnocellular division of the RN responded to the stimuli than cells in the parvocellular division. Delivery of a graded pressure stimulus to the contralateral hindpaw revealed 4 cell types in the RN: non-responsive cells; cells only responsive during the early, non-noxious portion of the stimulus; cells only responsive during the later, noxious portion of the stimulus; and cells that showed an initial response during the non-noxious part of the stimulus and a second, later response during the noxious portion of the stimulus. To further examine the putative role of the RN in nociception, oxotremorine, gamma-aminobutyric acid (GABA), serotonin, glutamate, and morphine were unilaterally microinjected into the RN and the responses of the animals in the tail flick test were assessed. Only morphine produced a significant antinociception in the animals following intrarubral microinjection. However, it is unclear whether this alteration was mediated through the RN because an antinociception of equal magnitude could be elicited from the reticular formation surrounding the RN and lesions of the RN did not alter the antinociception produced by systemic administration of morphine. Although other explanations cannot be ruled out, it appears that the RN may be involved in coordinating the motor response to pain rather than modulating sensory transmission.
Collapse
Affiliation(s)
- R R Matsumoto
- Brown University, Schrier Research Laboratory, Department of Psychology, Providence, RI 02912
| | | |
Collapse
|
49
|
Ikeda M, Houtani T, Ueyama T, Sugimoto T. Choline acetyltransferase immunoreactivity in the cat cerebellum. Neuroscience 1991; 45:671-90. [PMID: 1775241 DOI: 10.1016/0306-4522(91)90280-2] [Citation(s) in RCA: 24] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Choline acetyltransferase immunoreactivity was demonstrated in particular projection systems in cat cerebellum by combining immunohistochemistry, retrograde tracing and lesioning paradigms. The monoclonal antibody used in this study recognized a 68,000 mol. wt protein on immunoblots of cat cerebellum and striatum. Choline acetyltransferase immunoreactivity was localized to some neurons and varicose fibers in the cerebellar nuclei, and also to some mossy fibers and endings (rosettes), fiber plexuses around Purkinje cells, granule cells and parallel fibers in the cerebellar cortex. In addition, the presence of choline acetyltransferase-immunoreactive large cells, presumptive Golgi cells, in the granular layer was confirmed. In each cerebellar nucleus, choline acetyltransferase-immunoreactive neurons contained either large, medium-sized or small cell bodies and were distributed evenly in the entire nuclear domain. Large and medium-sized ones were frequently encountered. Choline acetyltransferase-immunoreactive mossy fibers and rosettes were most abundant in the vermal lobules I-III, VIII, IX and the simple lobule, moderately accumulated in the vermal lobules IV-VII, X, crus I and crus II, and less abundant in the paramedian lobule, paraflocculus and flocculus. Some granule cells with prominent dendritic claws and bifurcating parallel axons were immunolabeled in the entire vermis with infrequent occurrence in the remaining cortices. Following unilateral lesioning of the cerebellar nuclei with electrocoagulation or kainate injections, a reduction in number of choline acetyltransferase-immunoreactive fibers occurred ipsilaterally in the cerebellar cortex and contralaterally in the red nucleus, ventrolateral thalamic nucleus and ventroanterior thalamic nucleus. In addition, perikarya of some cerebellothalamic neurons were shown to contain choline acetyltransferase immunoreactivity. The results indicate that some nucleocortical, cerebellorubral and cerebellothalamic projections are cholinergic and that a subpopulation of cholinergic granule cell-parallel fibers exists.
Collapse
Affiliation(s)
- M Ikeda
- Department of Anatomy, Kansai Medical University, Osaka, Japan
| | | | | | | |
Collapse
|
50
|
Young AB, Dauth GW, Hollingsworth Z, Penney JB, Kaatz K, Gilman S. Quisqualate- and NMDA-sensitive [3H]glutamate binding in primate brain. J Neurosci Res 1990; 27:512-21. [PMID: 1981916 DOI: 10.1002/jnr.490270412] [Citation(s) in RCA: 41] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Excitatory amino acids (EAA) such as glutamate and aspartate are probably the neurotransmitters of a majority of mammalian neurons. Only a few previous studies have been concerned with the distribution of the subtypes of EAA receptor binding in the primate brain. We examined NMDA- and quisqualate-sensitive [3H]glutamate binding using quantitative autoradiography in monkey brain (Macaca fascicularis). The two types of binding were differentially distributed. NMDA-sensitive binding was most dense in dentate gyrus of hippocampus, stratum pyramidale of hippocampus, and outer layers of cerebral cortex. Quisqualate-sensitive binding was most dense in dentate gyrus of hippocampus, inner and outer layers of cerebral cortex, and molecular layer of cerebellum. In caudate nucleus and putamen, quisqualate- and NMDA-sensitive binding sites were nearly equal in density. However, in globus pallidus, substantia nigra, and subthalamic nucleus, quisqualate-sensitive binding was several-fold greater than NMDA-sensitive binding. In thalamus, [3H]glutamate binding was generally low for both subtypes of binding except for the anterior ventral, lateral dorsal, and pulvinar nuclei. In the brainstem, low levels of binding were found, and strikingly the red nucleus and pons, which are thought to receive glutamatergic projections, had approximately 1/20 the binding observed in cerebral cortex. These results demonstrate that NMDA- and quisqualate-sensitive [3H]glutamate binding are observed in all regions of primate brain, but that in some regions one subtype predominates over the other. In addition, certain areas thought to receive glutamatergic projections have low levels of both types of binding.
Collapse
Affiliation(s)
- A B Young
- Department of Neurology, University of Michigan, Ann Arbor
| | | | | | | | | | | |
Collapse
|