1
|
Ding SL. A novel subdivision of the bed nucleus of stria terminalis in monkey, rat, and mouse brains. J Comp Neurol 2023; 531:2121-2145. [PMID: 36583448 PMCID: PMC11406555 DOI: 10.1002/cne.25446] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Revised: 11/17/2022] [Accepted: 12/05/2022] [Indexed: 12/31/2022]
Abstract
The bed nucleus of stria terminalis (BST) is a critical structure that mediates sustained vigilant responses to contextual, diffuse, and unpredictable threats. Dysfunction of the BST could lead to excessive anxiety and hypervigilance, which are often observed in posttraumatic stress disorder and anxiety disorders. Vigilance of potential future threats from the external environment is a basic brain function and probably requires rapid and/or short neural circuits, which enable both quick detection of the potential threats and fast adaptive responses. However, the BST in literature does not appear to receive spatial information directly from earlier visual or spatial processing structures. In this study, a novel subdivision of the BST is uncovered in monkey, rat, and mouse brains based on the human equivalent and is found in mouse to receive direct inputs from the ventral lateral geniculate nucleus and pretectal nucleus as well as from the spatial processing structures such as subiculum, presubiculum, and medial entorhinal cortex. This new subdivision, termed spindle-shaped small cell subdivision (BSTsc), is located between the known BST and the anterior thalamus. In addition to the unique afferent connections and cell morphology, the BSTsc also displays unique molecular signature (e.g., positive for excitatory markers) compared with other BST subdivisions, which are mostly composed of inhibitory GABAergic neurons. The BSTsc appears to have largely overlapping efferent projections with other BST subdivisions such as the projections to the amygdala, hypothalamus, nucleus accumbens, septum, and brainstem. Together, the present study suggests that the BSTsc is poised to serve as a shortcut bridge directly linking spatial information from the environment to vigilant adaptive internal responses.
Collapse
Affiliation(s)
- Song-Lin Ding
- Allen Institute for Brain Science, Seattle, Washington, USA
| |
Collapse
|
2
|
van de Poll Y, Cras Y, Ellender TJ. The neurophysiological basis of stress and anxiety - comparing neuronal diversity in the bed nucleus of the stria terminalis (BNST) across species. Front Cell Neurosci 2023; 17:1225758. [PMID: 37711509 PMCID: PMC10499361 DOI: 10.3389/fncel.2023.1225758] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Accepted: 08/03/2023] [Indexed: 09/16/2023] Open
Abstract
The bed nucleus of the stria terminalis (BNST), as part of the extended amygdala, has become a region of increasing interest regarding its role in numerous human stress-related psychiatric diseases, including post-traumatic stress disorder and generalized anxiety disorder amongst others. The BNST is a sexually dimorphic and highly complex structure as already evident by its anatomy consisting of 11 to 18 distinct sub-nuclei in rodents. Located in the ventral forebrain, the BNST is anatomically and functionally connected to many other limbic structures, including the amygdala, hypothalamic nuclei, basal ganglia, and hippocampus. Given this extensive connectivity, the BNST is thought to play a central and critical role in the integration of information on hedonic-valence, mood, arousal states, processing emotional information, and in general shape motivated and stress/anxiety-related behavior. Regarding its role in regulating stress and anxiety behavior the anterolateral group of the BNST (BNSTALG) has been extensively studied and contains a wide variety of neurons that differ in their electrophysiological properties, morphology, spatial organization, neuropeptidergic content and input and output synaptic organization which shape their activity and function. In addition to this great diversity, further species-specific differences are evident on multiple levels. For example, classic studies performed in adult rat brain identified three distinct neuron types (Type I-III) based on their electrophysiological properties and ion channel expression. Whilst similar neurons have been identified in other animal species, such as mice and non-human primates such as macaques, cross-species comparisons have revealed intriguing differences such as their comparative prevalence in the BNSTALG as well as their electrophysiological and morphological properties, amongst other differences. Given this tremendous complexity on multiple levels, the comprehensive elucidation of the BNSTALG circuitry and its role in regulating stress/anxiety-related behavior is a major challenge. In the present Review we bring together and highlight the key differences in BNSTALG structure, functional connectivity, the electrophysiological and morphological properties, and neuropeptidergic profiles of BNSTALG neurons between species with the aim to facilitate future studies of this important nucleus in relation to human disease.
Collapse
Affiliation(s)
- Yana van de Poll
- Department of Biomedical Sciences, University of Antwerp, Antwerp, Belgium
| | - Yasmin Cras
- Department of Biomedical Sciences, University of Antwerp, Antwerp, Belgium
| | - Tommas J. Ellender
- Department of Biomedical Sciences, University of Antwerp, Antwerp, Belgium
- Department of Pharmacology, University of Oxford, Oxford, United Kingdom
| |
Collapse
|
3
|
Williford KM, Taylor A, Melchior JR, Yoon HJ, Sale E, Negasi MD, Adank DN, Brown JA, Bedenbaugh MN, Luchsinger JR, Centanni SW, Patel S, Calipari ES, Simerly RB, Winder DG. BNST PKCδ neurons are activated by specific aversive conditions to promote anxiety-like behavior. Neuropsychopharmacology 2023; 48:1031-1041. [PMID: 36941364 PMCID: PMC10209190 DOI: 10.1038/s41386-023-01569-5] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Revised: 02/13/2023] [Accepted: 03/05/2023] [Indexed: 03/22/2023]
Abstract
The bed nucleus of the stria terminalis (BNST) is a critical mediator of stress responses and anxiety-like behaviors. Neurons expressing protein kinase C delta (BNSTPKCδ) are an abundant but understudied subpopulation implicated in inhibiting feeding, but which have conflicting reports about their role in anxiety-like behaviors. We have previously shown that expression of PKCδ is dynamically regulated by stress and that BNSTPKCδ cells are recruited during bouts of active stress coping. Here, we first show that in vivo activation of this population is mildly aversive. This aversion was insensitive to prior restraint stress exposure. Further investigation revealed that unlike other BNST subpopulations, BNSTPKCδ cells do not exhibit increased cfos expression following restraint stress. Ex vivo current clamp recordings also indicate they are resistant to firing. To elucidate their afferent control, we next used rabies tracing with whole-brain imaging and channelrhodopsin-assisted circuit mapping, finding that BNSTPKCδ cells receive abundant input from affective, arousal, and sensory regions including the basolateral amygdala (BLA) paraventricular thalamus (PVT) and central amygdala PKCδ-expressing cells (CeAPKCδ). Given these findings, we used in vivo optogenetics and fiber photometry to further examine BNSTPKCδ cells in the context of stress and anxiety-like behavior. We found that BNSTPKCδ cell activity is associated with increased anxiety-like behavior in the elevated plus maze, increases following footshock, and unlike other BNST subpopulations, does not desensitize to repeated stress exposure. Taken together, we propose a model in which BNSTPKCδ cells may serve as threat detectors, integrating exteroceptive and interoceptive information to inform stress coping behaviors.
Collapse
Affiliation(s)
- Kellie M Williford
- Vanderbilt Brain Institute, Vanderbilt University, Nashville, TN, USA
- Vanderbilt Center for Addiction Research, Vanderbilt University, Nashville, TN, USA
| | - Anne Taylor
- Vanderbilt Brain Institute, Vanderbilt University, Nashville, TN, USA
- Vanderbilt Center for Addiction Research, Vanderbilt University, Nashville, TN, USA
| | - James R Melchior
- Vanderbilt Center for Addiction Research, Vanderbilt University, Nashville, TN, USA
- Department of Pharmacology, Vanderbilt University, Nashville, TN, USA
| | - Hye Jean Yoon
- Vanderbilt Center for Addiction Research, Vanderbilt University, Nashville, TN, USA
- Department of Pharmacology, Vanderbilt University, Nashville, TN, USA
| | - Eryn Sale
- Vanderbilt Center for Addiction Research, Vanderbilt University, Nashville, TN, USA
| | - Milen D Negasi
- Vanderbilt Center for Addiction Research, Vanderbilt University, Nashville, TN, USA
| | - Danielle N Adank
- Vanderbilt Brain Institute, Vanderbilt University, Nashville, TN, USA
- Vanderbilt Center for Addiction Research, Vanderbilt University, Nashville, TN, USA
| | - Jordan A Brown
- Vanderbilt Center for Addiction Research, Vanderbilt University, Nashville, TN, USA
- Department of Pharmacology, Vanderbilt University, Nashville, TN, USA
| | - Michelle N Bedenbaugh
- Vanderbilt Center for Addiction Research, Vanderbilt University, Nashville, TN, USA
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN, USA
| | - Joseph R Luchsinger
- Vanderbilt Brain Institute, Vanderbilt University, Nashville, TN, USA
- Vanderbilt Center for Addiction Research, Vanderbilt University, Nashville, TN, USA
| | - Samuel W Centanni
- Vanderbilt Brain Institute, Vanderbilt University, Nashville, TN, USA
- Vanderbilt Center for Addiction Research, Vanderbilt University, Nashville, TN, USA
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN, USA
| | - Sachin Patel
- Vanderbilt Brain Institute, Vanderbilt University, Nashville, TN, USA
- Vanderbilt Center for Addiction Research, Vanderbilt University, Nashville, TN, USA
- Department of Pharmacology, Vanderbilt University, Nashville, TN, USA
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN, USA
- Department of Psychiatry and Behavioral Sciences, Vanderbilt University, Nashville, TN, USA
| | - Erin S Calipari
- Vanderbilt Brain Institute, Vanderbilt University, Nashville, TN, USA
- Vanderbilt Center for Addiction Research, Vanderbilt University, Nashville, TN, USA
- Department of Pharmacology, Vanderbilt University, Nashville, TN, USA
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN, USA
- Department of Psychiatry and Behavioral Sciences, Vanderbilt University, Nashville, TN, USA
| | - Richard B Simerly
- Vanderbilt Brain Institute, Vanderbilt University, Nashville, TN, USA
- Vanderbilt Center for Addiction Research, Vanderbilt University, Nashville, TN, USA
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN, USA
| | - Danny G Winder
- Vanderbilt Brain Institute, Vanderbilt University, Nashville, TN, USA.
- Vanderbilt Center for Addiction Research, Vanderbilt University, Nashville, TN, USA.
- Department of Pharmacology, Vanderbilt University, Nashville, TN, USA.
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN, USA.
- Department of Psychiatry and Behavioral Sciences, Vanderbilt University, Nashville, TN, USA.
| |
Collapse
|
4
|
Hammack SE, Braas KM, May V. Chemoarchitecture of the bed nucleus of the stria terminalis: Neurophenotypic diversity and function. HANDBOOK OF CLINICAL NEUROLOGY 2021; 179:385-402. [PMID: 34225977 DOI: 10.1016/b978-0-12-819975-6.00025-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
The bed nucleus of the stria terminalis (BNST) is a compact but neurophenotypically complex structure in the ventral forebrain that is structurally and functionally linked to other limbic structures, including the amygdala nuclear complex, hypothalamic nuclei, hippocampus, and related midbrain structures, to participate in a wide range of functions, especially emotion, emotional learning, stress-related responses, and sexual behaviors. From a variety of sensory inputs, the BNST acts as a node for signal integration and coordination for information relay to downstream central neuroendocrine and autonomic centers for appropriate homeostatic physiological and behavioral responses. In contrast to the role of the amygdala in fear, the BNST has gained wide interest from work suggesting that it has main roles in mediating sustained responses to diffuse, unpredictable and/or long-duration threats that are typically associated with anxiety-related responses. Further, some BNST subregions are highly sexually dimorphic which appear contributory to the differential stress and social interactive behaviors, including reproductive responses, between males and females. Notably, maladaptive BNST neuroplasticity and function have been implicated in chronic pain, depression, anxiety-related abnormalities, and other psychopathologies including posttraumatic stress disorders. The BNST circuits are predominantly GABAergic-the glutaminergic neurons represent a minor population-but the complexity of the system results from an overlay of diverse neuropeptide coexpression in these neurons. More than a dozen neuropeptides may be differentially coexpressed in BNST neurons, and from variable G protein-coupled receptor signaling, may inhibit or activate downstream circuit activities. The mechanisms and roles of these peptides in modulating intrinsic BNST neurocircuit signaling and BNST long-distance target cell projections are still not well understood. Nevertheless, an understanding of some of the principal players may allow assembly of the circuit interactions.
Collapse
Affiliation(s)
- Sayamwong E Hammack
- Department of Psychological Science, University of Vermont, Burlington, VT, United States
| | - Karen M Braas
- Department of Neurological Sciences, University of Vermont Larner College of Medicine, Burlington, VT, United States
| | - Victor May
- Department of Neurological Sciences, University of Vermont Larner College of Medicine, Burlington, VT, United States.
| |
Collapse
|
5
|
Ch'ng S, Fu J, Brown RM, McDougall SJ, Lawrence AJ. The intersection of stress and reward: BNST modulation of aversive and appetitive states. Prog Neuropsychopharmacol Biol Psychiatry 2018; 87:108-125. [PMID: 29330137 DOI: 10.1016/j.pnpbp.2018.01.005] [Citation(s) in RCA: 71] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/01/2017] [Revised: 12/27/2017] [Accepted: 01/08/2018] [Indexed: 12/13/2022]
Abstract
The bed nucleus of the stria terminalis (BNST) is widely acknowledged as a brain structure that regulates stress and anxiety states, as well as aversive and appetitive behaviours. The diverse roles of the BNST are afforded by its highly modular organisation, neurochemical heterogeneity, and complex intrinsic and extrinsic circuitry. There has been growing interest in the BNST in relation to psychopathologies such as anxiety and addiction. Although research on the human BNST is still in its infancy, there have been extensive preclinical studies examining the molecular signature and hodology of the BNST and their involvement in stress and reward seeking behaviour. This review examines the neurochemical phenotype and connectivity of the BNST, as well as electrophysiological correlates of plasticity in the BNST mediated by stress and/or drugs of abuse.
Collapse
Affiliation(s)
- Sarah Ch'ng
- Florey Institute of Neuroscience and Mental Health, University of Melbourne, Parkville, Victoria 3052, Australia
| | - Jingjing Fu
- Florey Institute of Neuroscience and Mental Health, University of Melbourne, Parkville, Victoria 3052, Australia
| | - Robyn M Brown
- Florey Institute of Neuroscience and Mental Health, University of Melbourne, Parkville, Victoria 3052, Australia
| | - Stuart J McDougall
- Florey Institute of Neuroscience and Mental Health, University of Melbourne, Parkville, Victoria 3052, Australia
| | - Andrew J Lawrence
- Florey Institute of Neuroscience and Mental Health, University of Melbourne, Parkville, Victoria 3052, Australia.
| |
Collapse
|
6
|
Funabashi T, Sakakibara H, Hirahara F, Kimura F. Reduced Luteinizing Hormone Induction Following Estrogen and Progesterone Priming in Female-to-Male Transsexuals. Front Endocrinol (Lausanne) 2018; 9:212. [PMID: 29867755 PMCID: PMC5949340 DOI: 10.3389/fendo.2018.00212] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/10/2017] [Accepted: 04/16/2018] [Indexed: 12/19/2022] Open
Abstract
Anatomical studies have suggested that one of the brain structures involved in gender identity is the bed nucleus of the stria terminalis, though this brain structure is probably not the only one to control gender identity. We hypothesized that, if this brain area also affected gonadotropin secretion in humans, transsexual individuals might produce different gonadotropin levels in response to exogenous stimulation. In the present study, we examined whether estrogen combined with progesterone might lead to a change in luteinizing hormone (LH) secretion in female-to-male (FTM) transsexual individuals. We studied female control subjects (n = 9), FTM transsexual subjects (n = 12), and male-to-female (MTF) transsexual subjects (n = 8). Ethinyl estradiol (50 μg/tablet) was administered orally, twice a day, for five consecutive days. After the first blood sampling, progesterone (12.5 mg) was injected intramuscularly. Plasma LH was measured with an immunoradiometric assay. The combination of estrogen and progesterone resulted in increased LH secretion in female control subjects and in MTF subjects, but this increase appeared to be attenuated in FTM transsexual subjects. In fact, the %LH response was significantly reduced in FTM subjects (P < 0.05), but not in MTF subjects (P > 0.5), compared to female control subjects. In addition, the peak time after progesterone injection was significantly delayed in FTM subjects (P < 0.05), but not in MTF subjects (P > 0.5), compared to female control subjects. We then compared subjects according to whether the combination of estrogen and progesterone had a positive (more than 200% increase) or negative (less than 200% increase) effect on LH secretion. A χ2 analysis revealed significantly different (P < 0.05) effects on LH secretion between female controls (positive n = 7, negative n = 2) and FTM transsexual subjects (positive n = 4, negative n = 8), but not between female controls and MTF transsexual subjects (positive n = 7, negative n = 1). Thus, LH secretion in response to estrogen- and progesterone priming was attenuated in FTM subjects, but not in MTF subjects, compared to control females. This finding suggested that the brain area related to gender identity in morphological studies might also be involved in the LH secretory response in humans. Thus, altered brain morphology might be correlated to altered function in FTM transsexuals.
Collapse
Affiliation(s)
- Toshiya Funabashi
- Department of Physiology, Yokohama City University School of Medicine, Yokohama, Japan
- Department of Physiology, St. Marianna University School of Medicine, Kawasaki, Japan
- *Correspondence: Toshiya Funabashi,
| | - Hideya Sakakibara
- Department of Obstetrics and Gynecology, Yokohama City University School of Medicine, Yokohama, Japan
- Department of Gynecology, Yokohama City University Medical Center, Yokohama, Japan
| | - Fumiki Hirahara
- Department of Obstetrics and Gynecology, Yokohama City University School of Medicine, Yokohama, Japan
| | - Fukuko Kimura
- Department of Physiology, Yokohama City University School of Medicine, Yokohama, Japan
- Tanaka Clinic Yokohama-Koen, Yokohama, Japan
| |
Collapse
|
7
|
Oler JA, Tromp DPM, Fox AS, Kovner R, Davidson RJ, Alexander AL, McFarlin DR, Birn RM, E Berg B, deCampo DM, Kalin NH, Fudge JL. Connectivity between the central nucleus of the amygdala and the bed nucleus of the stria terminalis in the non-human primate: neuronal tract tracing and developmental neuroimaging studies. Brain Struct Funct 2017; 222:21-39. [PMID: 26908365 PMCID: PMC4995160 DOI: 10.1007/s00429-016-1198-9] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2015] [Accepted: 01/30/2016] [Indexed: 01/10/2023]
Abstract
The lateral division of the bed nucleus of the stria terminalis (BSTL) and central nucleus of the amygdala (Ce) form the two poles of the 'central extended amygdala', a theorized subcortical macrostructure important in threat-related processing. Our previous work in nonhuman primates, and humans, demonstrating strong resting fMRI connectivity between the Ce and BSTL regions, provides evidence for the integrated activity of these structures. To further understand the anatomical substrates that underlie this coordinated function, and to investigate the integrity of the central extended amygdala early in life, we examined the intrinsic connectivity between the Ce and BSTL in non-human primates using ex vivo neuronal tract tracing, and in vivo diffusion-weighted imaging and resting fMRI techniques. The tracing studies revealed that BSTL receives strong input from Ce; however, the reciprocal pathway is less robust, implying that the primate Ce is a major modulator of BSTL function. The sublenticular extended amygdala (SLEAc) is strongly and reciprocally connected to both Ce and BSTL, potentially allowing the SLEAc to modulate information flow between the two structures. Longitudinal early-life structural imaging in a separate cohort of monkeys revealed that extended amygdala white matter pathways are in place as early as 3 weeks of age. Interestingly, resting functional connectivity between Ce and BSTL regions increases in coherence from 3 to 7 weeks of age. Taken together, these findings demonstrate a time period during which information flow between Ce and BSTL undergoes postnatal developmental changes likely via direct Ce → BSTL and/or Ce ↔ SLEAc ↔ BSTL projections.
Collapse
Affiliation(s)
- Jonathan A Oler
- Department of Psychiatry, University of Wisconsin School of Medicine and Public Health, Madison, USA.
- HealthEmotions Research Institute, Wisconsin Psychiatric Institute and Clinics, 6001 Research Park Blvd., Madison, WI, 53719, USA.
| | - Do P M Tromp
- Department of Psychiatry, University of Wisconsin School of Medicine and Public Health, Madison, USA
- HealthEmotions Research Institute, Wisconsin Psychiatric Institute and Clinics, 6001 Research Park Blvd., Madison, WI, 53719, USA
| | - Andrew S Fox
- Department of Psychiatry, University of Wisconsin School of Medicine and Public Health, Madison, USA
- Department of Psychology, University of Wisconsin-Madison, Madison, USA
- HealthEmotions Research Institute, Wisconsin Psychiatric Institute and Clinics, 6001 Research Park Blvd., Madison, WI, 53719, USA
| | - Rothem Kovner
- Department of Psychiatry, University of Wisconsin School of Medicine and Public Health, Madison, USA
- HealthEmotions Research Institute, Wisconsin Psychiatric Institute and Clinics, 6001 Research Park Blvd., Madison, WI, 53719, USA
| | - Richard J Davidson
- Department of Psychiatry, University of Wisconsin School of Medicine and Public Health, Madison, USA
- Department of Psychology, University of Wisconsin-Madison, Madison, USA
| | - Andrew L Alexander
- Department of Psychiatry, University of Wisconsin School of Medicine and Public Health, Madison, USA
- Department of Medical Physics, University of Wisconsin School of Medicine and Public Health, Madison, USA
| | - Daniel R McFarlin
- Department of Psychiatry, University of Wisconsin School of Medicine and Public Health, Madison, USA
- HealthEmotions Research Institute, Wisconsin Psychiatric Institute and Clinics, 6001 Research Park Blvd., Madison, WI, 53719, USA
| | - Rasmus M Birn
- Department of Psychiatry, University of Wisconsin School of Medicine and Public Health, Madison, USA
- Department of Medical Physics, University of Wisconsin School of Medicine and Public Health, Madison, USA
| | | | - Danielle M deCampo
- Department of Neuroscience, University of Rochester Medical Center, Rochester, USA
| | - Ned H Kalin
- Department of Psychiatry, University of Wisconsin School of Medicine and Public Health, Madison, USA
- Department of Psychology, University of Wisconsin-Madison, Madison, USA
- HealthEmotions Research Institute, Wisconsin Psychiatric Institute and Clinics, 6001 Research Park Blvd., Madison, WI, 53719, USA
| | - Julie L Fudge
- Department of Neuroscience, University of Rochester Medical Center, Rochester, USA
- Department of Psychiatry, University of Rochester Medical Center, Rochester, USA
| |
Collapse
|
8
|
Avery SN, Clauss JA, Blackford JU. The Human BNST: Functional Role in Anxiety and Addiction. Neuropsychopharmacology 2016; 41:126-41. [PMID: 26105138 PMCID: PMC4677124 DOI: 10.1038/npp.2015.185] [Citation(s) in RCA: 229] [Impact Index Per Article: 25.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/18/2015] [Revised: 05/03/2015] [Accepted: 06/17/2015] [Indexed: 01/17/2023]
Abstract
The consequences of chronic stress on brain structure and function are far reaching. Whereas stress can produce short-term adaptive changes in the brain, chronic stress leads to long-term maladaptive changes that increase vulnerability to psychiatric disorders, such as anxiety and addiction. These two disorders are the most prevalent psychiatric disorders in the United States, and are typically chronic, disabling, and highly comorbid. Emerging evidence implicates a tiny brain region-the bed nucleus of the stria terminalis (BNST)-in the body's stress response and in anxiety and addiction. Rodent studies provide compelling evidence that the BNST plays a central role in sustained threat monitoring, a form of adaptive anxiety, and in the withdrawal and relapse stages of addiction; however, little is known about the role of BNST in humans. Here, we review current evidence for BNST function in humans, including evidence for a role in the production of both adaptive and maladaptive anxiety. We also review preliminary evidence of the role of BNST in addiction in humans. Together, these studies provide a foundation of knowledge about the role of BNST in adaptive anxiety and stress-related disorders. Although the field is in its infancy, future investigations of human BNST function have tremendous potential to illuminate mechanisms underlying stress-related disorders and identify novel neural targets for treatment.
Collapse
Affiliation(s)
- S N Avery
- Department of Psychiatry, Vanderbilt University School of Medicine, Nashville, TN, USA
- Neuroscience Graduate Program, Vanderbilt Brain Institute, Vanderbilt University, Nashville, TN, USA
| | - J A Clauss
- Department of Psychiatry, Vanderbilt University School of Medicine, Nashville, TN, USA
- Neuroscience Graduate Program, Vanderbilt Brain Institute, Vanderbilt University, Nashville, TN, USA
- Vanderbilt School of Medicine, Nashville, TN, USA
| | - J U Blackford
- Department of Psychiatry, Vanderbilt University School of Medicine, Nashville, TN, USA
- Department of Psychology, Vanderbilt University, Nashville, TN, USA
| |
Collapse
|
9
|
Torrisi S, O'Connell K, Davis A, Reynolds R, Balderston N, Fudge JL, Grillon C, Ernst M. Resting state connectivity of the bed nucleus of the stria terminalis at ultra-high field. Hum Brain Mapp 2015; 36:4076-88. [PMID: 26178381 DOI: 10.1002/hbm.22899] [Citation(s) in RCA: 75] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2015] [Revised: 06/11/2015] [Accepted: 06/29/2015] [Indexed: 12/17/2022] Open
Abstract
The bed nucleus of the stria terminalis (BNST), a portion of the "extended amygdala," is implicated in the pathophysiology of anxiety and addiction disorders. Its small size and connection to other small regions prevents standard imaging techniques from easily capturing it and its connectivity with confidence. Seed-based resting state functional connectivity is an established method for mapping functional connections across the brain from a region of interest. We, therefore, mapped the BNST resting state network with high spatial resolution using 7 Tesla fMRI, demonstrating the in vivo reproduction of many human BNST connections previously described only in animal research. We identify strong BNST functional connectivity in amygdala, hippocampus and thalamic subregions, caudate, periaqueductal gray, hypothalamus, and cortical areas such as the medial PFC and precuneus. This work, which demonstrates the power of ultra-high field for mapping functional connections in the human, is an important step toward elucidating cortical and subcortical regions and subregions of the BNST network.
Collapse
Affiliation(s)
- Salvatore Torrisi
- Section on the Neurobiology of Fear and Anxiety, National Institute of Mental Health, Bethesda, Maryland
| | - Katherine O'Connell
- Section on the Neurobiology of Fear and Anxiety, National Institute of Mental Health, Bethesda, Maryland
| | - Andrew Davis
- Section on the Neurobiology of Fear and Anxiety, National Institute of Mental Health, Bethesda, Maryland
| | - Richard Reynolds
- Scientific and Statistical Computing Core, National Institute of Mental Health, Bethesda, Maryland
| | - Nicholas Balderston
- Section on the Neurobiology of Fear and Anxiety, National Institute of Mental Health, Bethesda, Maryland
| | - Julie L Fudge
- Department of Neurobiology and Anatomy, University of Rochester Medical Center, Rochester, New York
| | - Christian Grillon
- Section on the Neurobiology of Fear and Anxiety, National Institute of Mental Health, Bethesda, Maryland
| | - Monique Ernst
- Section on the Neurobiology of Fear and Anxiety, National Institute of Mental Health, Bethesda, Maryland
| |
Collapse
|
10
|
Three distinct fiber pathways of the bed nucleus of the stria terminalis to the amygdala and prefrontal cortex. Cortex 2015; 66:60-8. [DOI: 10.1016/j.cortex.2015.02.007] [Citation(s) in RCA: 62] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2014] [Revised: 01/29/2015] [Accepted: 02/18/2015] [Indexed: 11/20/2022]
|
11
|
Avery SN, Clauss JA, Winder DG, Woodward N, Heckers S, Blackford JU. BNST neurocircuitry in humans. Neuroimage 2014; 91:311-23. [PMID: 24444996 PMCID: PMC4214684 DOI: 10.1016/j.neuroimage.2014.01.017] [Citation(s) in RCA: 142] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2013] [Revised: 12/10/2013] [Accepted: 01/09/2014] [Indexed: 01/17/2023] Open
Abstract
Anxiety and addiction disorders are two of the most common mental disorders in the United States, and are typically chronic, disabling, and comorbid. Emerging evidence suggests the bed nucleus of the stria terminalis (BNST) mediates both anxiety and addiction through connections with other brain regions, including the amygdala and nucleus accumbens. Although BNST structural connections have been identified in rodents and a limited number of structural connections have been verified in non-human primates, BNST connections have yet to be described in humans. Neuroimaging is a powerful tool for identifying structural and functional circuits in vivo. In this study, we examined BNST structural and functional connectivity in a large sample of humans. The BNST showed structural and functional connections with multiple subcortical regions, including limbic, thalamic, and basal ganglia structures, confirming structural findings in rodents. We describe two novel connections in the human brain that have not been previously reported in rodents or non-human primates, including a structural connection with the temporal pole, and a functional connection with the paracingulate gyrus. The findings of this study provide a map of the BNST's structural and functional connectivity across the brain in healthy humans. In large part, the BNST neurocircuitry in humans is similar to the findings from rodents and non-human primates; however, several connections are unique to humans. Future explorations of BNST neurocircuitry in anxiety and addiction disorders have the potential to reveal novel mechanisms underlying these disabling psychiatric illnesses.
Collapse
Affiliation(s)
- Suzanne N Avery
- Vanderbilt Brain Institute, Vanderbilt University, Nashville, TN 37232, USA; Psychiatric Neuroimaging Program, Vanderbilt University School of Medicine, Nashville, TN 37212, USA
| | - Jacqueline A Clauss
- Vanderbilt Brain Institute, Vanderbilt University, Nashville, TN 37232, USA; Psychiatric Neuroimaging Program, Vanderbilt University School of Medicine, Nashville, TN 37212, USA
| | - Danny G Winder
- Vanderbilt Brain Institute, Vanderbilt University, Nashville, TN 37232, USA; Department of Molecular Physiology and Biophysics, Vanderbilt University School of Medicine, Nashville, TN 37232, USA
| | - Neil Woodward
- Vanderbilt Brain Institute, Vanderbilt University, Nashville, TN 37232, USA; Psychiatric Neuroimaging Program, Vanderbilt University School of Medicine, Nashville, TN 37212, USA; Department of Psychiatry, Vanderbilt University School of Medicine, Nashville, TN 37212, USA
| | - Stephan Heckers
- Vanderbilt Brain Institute, Vanderbilt University, Nashville, TN 37232, USA; Psychiatric Neuroimaging Program, Vanderbilt University School of Medicine, Nashville, TN 37212, USA; Department of Psychiatry, Vanderbilt University School of Medicine, Nashville, TN 37212, USA
| | - Jennifer Urbano Blackford
- Vanderbilt Brain Institute, Vanderbilt University, Nashville, TN 37232, USA; Psychiatric Neuroimaging Program, Vanderbilt University School of Medicine, Nashville, TN 37212, USA; Department of Psychiatry, Vanderbilt University School of Medicine, Nashville, TN 37212, USA; Department of Psychology, Vanderbilt University School of Medicine, Nashville, TN 37240, USA.
| |
Collapse
|
12
|
deCampo DM, Fudge JL. Amygdala projections to the lateral bed nucleus of the stria terminalis in the macaque: comparison with ventral striatal afferents. J Comp Neurol 2014; 521:3191-216. [PMID: 23696521 DOI: 10.1002/cne.23340] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2013] [Revised: 03/22/2013] [Accepted: 03/29/2013] [Indexed: 01/23/2023]
Abstract
The lateral bed nucleus of the stria terminalis (BSTL) is involved in mediating anxiety-related behaviors to sustained aversive stimuli. The BSTL forms part of the central extended amygdala, a continuum composed of the BSTL, the amygdala central nucleus, and cell columns running between the two. The central subdivision (BSTLcn) and the juxtacapsular subdivision (BSTLJ) are two BSTL regions that lie above the anterior commissure, near the ventral striatum. The amygdala, a heterogeneous structure that encodes emotional salience, projects to both the BSTL and ventral striatum. We placed small injections of retrograde tracers into the BSTL, focusing on the BSTLcn and BSTLJ, and analyzed the distribution of labeled cells in amygdala subregions. We compared this to the pattern of labeled cells following injections into the ventral striatum. All retrograde results were confirmed by anterograde studies. We found that the BSTLcn receives stronger amygdala inputs relative to the BSTLJ. Furthermore, the BSTLcn is defined by inputs from the corticoamygdaloid transition area and central nucleus, while the BSTLJ receives inputs mainly from the magnocellular accessory basal and basal nucleus. In the ventral striatum, the dorsomedial shell receives inputs that are similar, but not identical, to inputs to the BSTLcn. In contrast, amygdala projections to the ventral shell/core are similar to projections to the BSTLJ. These findings indicate that the BSTLcn and BSTLJ receive distinct amygdala afferent inputs and that the dorsomedial shell is a transition zone with the BSTLcn, while the ventral shell/core are transition zones with the BSTLJ.
Collapse
Affiliation(s)
- Danielle M deCampo
- Department of Neurobiology and Anatomy, University of Rochester Medical Center, Rochester, New York 14642, USA
| | | |
Collapse
|
13
|
Sink KS, Davis M, Walker DL. CGRP antagonist infused into the bed nucleus of the stria terminalis impairs the acquisition and expression of context but not discretely cued fear. Learn Mem 2013; 20:730-9. [PMID: 24255102 PMCID: PMC3834624 DOI: 10.1101/lm.032482.113] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Calcitonin gene-related peptide (CGRP) infusions into the bed nucleus of the stria terminalis (BNST) evoke increases in startle amplitude and increases in anxiety-like behavior in the plus maze. Conversely, intra-BNST infusions of the CGRP antagonist CGRP8–37 block unconditioned startle increases produced by fox odor. Here we evaluate the contribution of CGRP signaling in the BNST to the development and expression of learned fear. Rats received five pairings of a 3.7-sec light and footshock and were tested for fear-potentiated startle one or more days later. Neither pre-training (Experiment 1) nor pre-test (Experiment 2) infusions of the CGRP antagonist CGRP8–37 (800 ng/BNST) disrupted fear-potentiated startle to the 3.7-sec visual cue. However, in both experiments, CGRP8–37 infusions disrupted baseline startle increases that occurred when rats were tested in the same context as that in which they previously received footshock (Experiment 3). Intra-BNST CGRP8–37 infusions did not disrupt shock-evoked corticosterone release (Experiment 4). These data confirm previous findings implicating BNST CGRP receptors in fear and anxiety. They extend those results by showing an important contribution to learned fear and, specifically, to fear evoked by a shock-associated context rather than a discrete cue. This pattern is consistent with previous models of BNST function that have posited a preferential role in sustained anxiety as opposed to phasic fear responses. More generally, the results add to a growing body of evidence indicating behaviorally, possibly clinically, relevant modulation of BNST function by neuroactive peptides.
Collapse
Affiliation(s)
- Kelly S Sink
- Yerkes National Primate Research Center, Emory University, Atlanta, Georgia 30329, USA
| | | | | |
Collapse
|
14
|
Zorrilla EP, Koob GF. Amygdalostriatal projections in the neurocircuitry for motivation: a neuroanatomical thread through the career of Ann Kelley. Neurosci Biobehav Rev 2013; 37:1932-45. [PMID: 23220696 PMCID: PMC3838492 DOI: 10.1016/j.neubiorev.2012.11.019] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2012] [Accepted: 11/28/2012] [Indexed: 01/25/2023]
Abstract
In MacLean's triune brain, the amygdala putatively subserves motivated behavior by modulating the "reptilian" basal ganglia. Accordingly, Ann Kelley, with Domesick and Nauta, influentially showed that amygdalostriatal projections are much more extensive than were appreciated. They highlighted that amygdalar projections to the rostral ventromedial striatum converged with projections from the ventral tegmental area and cingulate cortex, forming a "limbic striatum". Caudal of the anterior commissure, the entire striatum receives afferents from deep basal nuclei of the amygdala. Orthologous topographic projections subsequently were observed in fish, amphibians, and reptiles. Subsequent functional studies linked acquired value to action via this neuroanatomical substrate. From Dr. Kelley's work evolved insights into components of the distributed, interconnected network that subserves motivated behavior, including the nucleus accumbens shell and core and the striatal-like extended amygdala macrostructure. These heuristic frameworks provide a neuroanatomical basis for adaptively translating motivation into behavior. The ancient amygdala-to-striatum pathways remain a current functional thread not only for stimulus-response valuation, but also for the psychopathological plasticity that underlies addiction-related memory, craving and relapse.
Collapse
Affiliation(s)
- Eric P Zorrilla
- Committee on the Neurobiology of Addictive Disorders, The Scripps Research Institute, 10550 N. Torrey Pines Road, La Jolla, CA 92037, USA.
| | | |
Collapse
|
15
|
George O, Le Moal M, Koob GF. Allostasis and addiction: role of the dopamine and corticotropin-releasing factor systems. Physiol Behav 2012; 106:58-64. [PMID: 22108506 PMCID: PMC3288230 DOI: 10.1016/j.physbeh.2011.11.004] [Citation(s) in RCA: 122] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2011] [Revised: 10/31/2011] [Accepted: 11/02/2011] [Indexed: 11/16/2022]
Abstract
Allostasis, originally conceptualized to explain persistent morbidity of arousal and autonomic function, is defined as the process of achieving stability through physiological or behavioral change. Two types of biological processes have been proposed to describe the mechanisms underlying allostasis in drug addiction, a within-system adaptation and a between-system adaptation. In the within-system process, the drug elicits an opposing, neutralizing reaction within the same system in which the drug elicits its primary and unconditioned reinforcing actions, while in the between-system process, different neurobiological systems that the one initially activated by the drug are recruited. In this review, we will focus our interest on alterations in the dopaminergic and corticotropin releasing factor systems as within-system and between-system neuroadaptations respectively, that underlie the opponent process to drugs of abuse. We hypothesize that repeated compromised activity in the dopaminergic system and sustained activation of the CRF-CRF1R system with withdrawal episodes may lead to an allostatic load contributing significantly to the transition to drug addiction.
Collapse
Affiliation(s)
- Olivier George
- Committee on the Neurobiology of Addictive Disorders, The Scripps Research Institute, La Jolla, CA 92037, USA.
| | | | | |
Collapse
|
16
|
Walker DL, Miles LA, Davis M. Selective participation of the bed nucleus of the stria terminalis and CRF in sustained anxiety-like versus phasic fear-like responses. Prog Neuropsychopharmacol Biol Psychiatry 2009; 33:1291-308. [PMID: 19595731 PMCID: PMC2783512 DOI: 10.1016/j.pnpbp.2009.06.022] [Citation(s) in RCA: 258] [Impact Index Per Article: 16.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/20/2009] [Revised: 06/26/2009] [Accepted: 06/29/2009] [Indexed: 01/09/2023]
Abstract
The medial division of the central nucleus of the amygdala (CeA(M)) and the lateral division of the bed nucleus of the stria terminalis (BNST(L)) are closely related. Both receive projections from the basolateral amygdala (BLA) and both project to brain areas that mediate fear-influenced behaviors. In contrast to CeA(M) however, initial attempts to implicate the BNST in conditioned fear responses were largely unsuccessful. More recent studies have shown that the BNST does participate in some types of anxiety and stress responses. Here, we review evidence suggesting that the CeA(M) and BNST(L) are functionally complementary, with CeA(M) mediating short- but not long-duration threat responses (i.e., phasic fear) and BNST(L) mediating long- but not short-duration responses (sustained fear or 'anxiety'). We also review findings implicating the stress-related peptide corticotropin-releasing factor (CRF) in sustained but not phasic threat responses, and attempt to integrate these findings into a neural circuit model which accounts for these and related observations.
Collapse
Affiliation(s)
- D. L. Walker
- Department of Psychiatry and Behavioral Sciences, School of Medicine, Emory University, Atlanta, GA, USA,Correspondence should be addressed to: David L. Walker, Emory University School of Medicine, 954 Gatewood Road NE, Yerkes Neurosci Bldg – Rm 5214, Atlanta, GA 30329, Ph: (404) 727-3587, Fax: (404) 727-8070,
| | | | - M. Davis
- Department of Psychiatry and Behavioral Sciences, School of Medicine, Emory University, Atlanta, GA, USA,The Center for Behavior Neurosci, Emory University, Atlanta, GA, USA
| |
Collapse
|
17
|
van Kuyck K, Gabriëls L, Nuttin B. Electrical Brain Stimulation in Treatment-Resistant Obsessive–Compulsive Disorder. Neuromodulation 2009. [DOI: 10.1016/b978-0-12-374248-3.00056-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/13/2023]
|
18
|
Koob GF, Ahmed SH, Boutrel B, Chen SA, Kenny PJ, Markou A, O'Dell LE, Parsons LH, Sanna PP. Neurobiological mechanisms in the transition from drug use to drug dependence. Neurosci Biobehav Rev 2004; 27:739-49. [PMID: 15019424 DOI: 10.1016/j.neubiorev.2003.11.007] [Citation(s) in RCA: 356] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Drug addiction is a chronic relapsing disorder characterized by compulsive drug intake, loss of control over intake, and impairment in social and occupational function. Animal models have been developed for various stages of the addiction cycle with a focus in our work on the motivational effects of drug dependence. A conceptual framework focused on allostatic changes in reward function that lead to excessive drug intake provides a heuristic framework with which to identify the neurobiologic mechanisms involved in the development of drug addiction. Neuropharmacologic studies in animal models have provided evidence for the dysregulation of specific neurochemical mechanisms in specific brain reward and stress circuits that provide the negative motivational state that drives addiction. The allostatic model integrates molecular, cellular and circuitry neuroadaptations in brain motivational systems produced by chronic drug ingestion with genetic vulnerability, and provides a new opportunity to translate advances in animal studies to the human condition.
Collapse
Affiliation(s)
- George F Koob
- Department of Neuropharmacology, CVN-7, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA 92037, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Abstract
Alcoholism is a chronic relapsing disorder characterized by compulsive drinking, loss of control over intake, and impaired social and occupational function. Animal models have been developed for various stages of the alcohol addiction cycle with a focus on the motivational effects of withdrawal, craving, and protracted abstinence. A conceptual framework focused on allostatic changes in reward function that lead to excessive drinking provides a heuristic framework with which to identify the neurobiologic mechanisms involved in the development of alcoholism. Neuropharmacologic studies in animal models have provided evidence for specific neurochemical mechanisms in specific brain reward and stress circuits that become dysregulated during the development of alcohol dependence. The brain reward system implicated in the development of alcoholism comprises key elements of a basal forebrain macrostructure termed the extended amygdala that includes the central nucleus of the amygdala, the bed nucleus of the stria terminalis, and a transition zone in the medial (shell) part of the nucleus accumbens. There are multiple neurotransmitter systems that converge on the extended amygdala that become dysregulated during the development of alcohol dependence, including gamma-aminobutyric acid, opioid peptides, glutamate, serotonin, and dopamine. In addition, the brain stress systems may contribute significantly to the allostatic state. During the development of alcohol dependence, corticotropin-releasing factor may be recruited, and the neuropeptide Y brain antistress system may be compromised. These changes in the reward and stress systems are hypothesized to maintain hedonic stability in an allostatic state, as opposed to a homeostatic state, and as such convey the vulnerability for relapse in recovering alcoholics. The allostatic model not only integrates molecular, cellular, and circuitry neuroadaptations in brain motivational systems produced by chronic alcohol ingestion with genetic vulnerability but also provides a key to translate advances in animal studies to the human condition.
Collapse
Affiliation(s)
- George F Koob
- Department of Neuropharmacology, The Scripps Research Institute, La Jolla, California 92037, USA.
| |
Collapse
|
20
|
Abstract
The extended amygdala is a group of structures including the central and medial amygdaloid nuclei, bed nucleus of the stria terminalis, and sublenticular substantia innominata. This group of structures is thought to be important in a variety of psychiatric disorders, many of which are linked in one way or another to monoamines and their transporters. However, not much is known about the distribution of these molecules in the primate extended amygdala. Thus, we mapped the distribution of fibers immunoreactive for tyrosine hydroxylase, dopamine beta-hydroxylase, serotonin, dopamine transporter, and serotonin transporter in the brains of macaque monkeys. Tyrosine hydroxylase-, serotonin-, and serotonin transporter-immunoreactive fibers were found in highest concentrations in the lateral division of the central nucleus and lateral dorsal part of the bed nucleus of the stria terminalis. Dopamine beta-hydroxylase-immunoreactive fibers were found in the highest concentration in the lateral ventral bed nucleus of the stria terminalis. Dopamine transporter-immunoreactive fibers were found in the highest concentrations in the lateral juxtacapsular and lateral dorsal capsular subnuclei of the bed nucleus and lateral capsular subnucleus of the central amygdaloid nucleus, though in much lower amounts than was present in the striatum. These results suggest prominent roles for these transmitters, particularly in the lateral dorsal bed nucleus and lateral part of the central nucleus. The relative absence of dopamine transporter in the extended amygdala suggests that this transmitter acts more through volume transmission while serotonin, which is generally accompanied by proportionate amounts of transporter, may act more like a classical neurotransmitter. In addition, the finding of heavy concentrations of dopamine- and serotonin-immunoreactive fibers in the lateral central nucleus and lateral dorsal bed nucleus lends further support to the idea of these areas as parallels in some respects to the striatum.
Collapse
Affiliation(s)
- L J Freedman
- Department of Neurology, Yerkes Primate Center, 954 Gatewood Rd., Atlanta, GA 30322, USA.
| | | |
Collapse
|
21
|
Fudge JL, Haber SN. Bed nucleus of the stria terminalis and extended amygdala inputs to dopamine subpopulations in primates. Neuroscience 2001; 104:807-27. [PMID: 11440812 DOI: 10.1016/s0306-4522(01)00112-9] [Citation(s) in RCA: 58] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The 'extended amygdala', a forebrain continuum implicated in complex motivational responses, is comprised of the bed nucleus of the stria terminalis and its sublenticular extension into the centromedial amygdala. Dopamine is also involved in motivated behavior, and is increased in several brain regions by emotionally relevant stimuli. To examine how the extended amygdala influences the dopamine cells, we determined the organization of inputs from subdivisions of the bed nucleus of the stria terminalis and sublenticular extended amygdala to the dopamine subpopulations in monkeys. Inputs from the bed nucleus of the stria terminalis and corresponding regions of the sublenticular extended amygdala are differentially organized. The medial bed nucleus of the stria terminalis and its medial sublenticular extension have a mediolateral organization with the densest inputs to the medial substantia nigra, pars compacta, and relatively few inputs to the central and lateral substantia nigra. In contrast, the lateral bed nucleus of the stria terminalis (and its continuation into the sublenticular extended amygdala) projects across the mediolateral extent of the substantia nigra. The subnuclei of the lateral bed nucleus of the stria terminalis also have differential projections to the dopamine cells. While the central core of the lateral bed nucleus of the stria terminalis has restricted inputs, the surrounding dorsolateral, capsular and juxtacapsular subdivisions project strongly to the dorsal tier dopamine neurons. The posterior subdivision of the lateral bed nucleus of the stria terminalis and its continuation into the central sublenticular extended amygdala project more broadly to both the dorsal tier and densocellular region of the ventral tier. From these results we suggest that specific subdivisions of the bed nucleus of the stria terminalis have differential influences on the dopamine subpopulations, influencing dopamine responses in diverse brain regions.
Collapse
Affiliation(s)
- J L Fudge
- Department of Psychiatry, University of Rochester School of Medicine, NY 14642, USA
| | | |
Collapse
|
22
|
Daunais JB, Letchworth SR, Sim-Selley LJ, Smith HR, Childers SR, Porrino LJ. Functional and anatomical localization of mu opioid receptors in the striatum, amygdala, and extended amygdala of the nonhuman primate. J Comp Neurol 2001; 433:471-85. [PMID: 11304712 DOI: 10.1002/cne.1154] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
The subregional distribution of mu opioid receptors and corresponding G-protein activation were examined in the striatum, amygdala, and extended amygdala of cynomolgus monkeys. The topography of mu binding sites was defined using autoradiography with [(3)H]DAMGO, a selective mu ligand. In adjacent sections, the distribution of receptor-activated G proteins was identified with DAMGO-stimulated guanylyl 5'(gamma-[(35)S]thio)triphosphate ([(35)S]GTPgammaS) binding. Within the striatum, the distribution of [(3)H]DAMGO binding sites was characterized by a distinct dorsal-ventral gradient with a higher concentration of binding sites at more rostral levels of the striatum. [(3)H]DAMGO binding was further distinguished by the presence of patch-like aggregations within the caudate, as well as smaller areas of very dense receptor binding sites, previously identified in human striatum as neurochemically unique domains of the accumbens and putamen (NUDAPs). The amygdala contained the highest concentration of [(3)H]DAMGO binding sites measured in this study, with the densest levels of binding noted within the basal, accessory basal, paralaminar, and medial nuclei. In the striatum and amygdala, the distribution of DAMGO-stimulated G-protein activation largely corresponded with the distribution of mu binding sites. The central and medial nuclei of the amygdala, however, were notable exceptions. Whereas the concentration of [(3)H]DAMGO binding sites in the central nucleus of the amygdala was very low, the concentration of DAMGO-stimulated G-protein activation in this nucleus, as measured with [(35)S]GTPgammaS binding, was relatively high compared to other portions of the amygdala containing much higher concentrations of [(3)H]DAMGO binding sites. The converse was true in the medial nucleus, where high concentrations of binding sites were associated with lower levels of DAMGO-stimulated G-protein activation. Finally, [(3)H]DAMGO and [(35)S]GTPgammaS binding within the amygdala, particularly the medial nucleus, formed a continuum with the substantia innominata and bed nucleus of the stria terminalis, supporting the concept of the extended amygdala in primates.
Collapse
Affiliation(s)
- J B Daunais
- Department of Physiology and Pharmacology, Center for the Neurobiological Investigation of Drug Abuse, Wake Forest University School of Medicine, Winston-Salem, North Carolina 27157-1083, USA
| | | | | | | | | | | |
Collapse
|
23
|
Heimer L, de Olmos J, Alheid G, Pearson J, Sakamoto N, Shinoda K, Marksteiner J, Switzer R. The human basal forebrain. Part II. HANDBOOK OF CHEMICAL NEUROANATOMY 1999. [DOI: 10.1016/s0924-8196(99)80024-4] [Citation(s) in RCA: 61] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
|
24
|
Kaufmann WA, Barnas U, Maier J, Saria A, Alheid GF, Marksteiner J. Neurochemical compartments in the human forebrain: evidence for a high density of secretoneurin-like immunoreactivity in the extended amygdala. Synapse 1997; 26:114-30. [PMID: 9131771 DOI: 10.1002/(sici)1098-2396(199706)26:2<114::aid-syn3>3.0.co;2-b] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Secretoneurin is a 33-amino acid neuropeptide produced by endoproteolytic processing from secretogranin II, which is a member of the chromogranin/ secretogranin family. In this immunocytochemical study we investigated the localization of secretoneurin-like immunoreactivity in the human substantia innominata in relation to the ventral striatopallidal system, the bed nucleus-amygdala complex and the basal nucleus of Meynert. A high density of secretoneurin immunostaining was found in the medial part of the nucleus accumbens. All subdivisions of the bed nucleus of the stria terminalis displayed a very prominent immunostaining for secretoneurin, whereas substance P and enkephalin showed a more restricted distribution. A high concentration of secretoneurin immunoreactivity was also observed in the central and medial amygdaloid nuclei. In the lateral bed nucleus of the stria terminalis and the sublenticular substantia innominata, the appearance of secretoneurin immunoreactivity was very similar to that of enkephalin-like immunoreactivity, exhibiting mostly peridendritic and perisomatic staining. The ventral pallidum and the inner pallidal segment displayed strong secretoneurin immunostaining. Secretoneurin did not label cholinergic neurons in the basal forebrain. This study demonstrates that secretoneurin-like immunoreactivity is prominent in the bed nucleus-amygdala complex, referred to as extended amygdala. The distribution of secretoneurin-like immunoreactivity in comparison with that of other neuroanatomical markers suggests that this forebrain system is a discret compartment in the human forebrain.
Collapse
Affiliation(s)
- W A Kaufmann
- Clinic of Psychiatry, University of Innsbruck, Austria
| | | | | | | | | | | |
Collapse
|
25
|
Heimer L, Harlan RE, Alheid GF, Garcia MM, de Olmos J. Substantia innominata: a notion which impedes clinical-anatomical correlations in neuropsychiatric disorders. Neuroscience 1997; 76:957-1006. [PMID: 9027863 DOI: 10.1016/s0306-4522(96)00405-8] [Citation(s) in RCA: 223] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Comparative neuroanatomical investigations in primates and non-primates have helped disentangle the anatomy of the basal forebrain region known as the substantia innominata. The most striking aspect of this region is its subdivision into two major parts. This reflects the fundamental organizational scheme for this portion of the forebrain. According to this scheme, two major subcortical telencephalic structures, i.e. the striatopallidal complex and extended amygdala, form large diagonally oriented bands. The rostroventral extension of the pallidum accounts for a large part of the rostral subcommissural substantia innominata, while the sublenticular substantia innominata is primarily occupied by elements of the extended amygdala. Also dispersed across this region is the basal nucleus of Meynert, which is part of a more or less continuous collection of cholinergic and non-cholinergic corticopetal and thalamopetal cells, which stretches from the septum diagonal band rostrally to the caudal globus pallidus. The basal nucleus of Meynert is especially prominent in the primate, where it is sometimes inappropriately applied as a synonym for the substantia innominata, thereby tacitly ignoring the remaining components. In most mammals, the extended amygdala presents itself as a ring of neurons encircling the internal capsule and basal ganglia. The extended amygdala may be further subdivided, i.e. into the central extended amygdala (related to the central amygdaloid nucleus) and the medial extended amygdala (related to the medial amygdaloid nucleus), which generally form separate corridors both in the sublenticular region and along the supracapsular course of the stria terminalis. The extended amygdala is directly continuous with the caudomedial shell of the accumbens, and to some extent appears to merge with it. Together the accumbens shell and extended amygdala form an extensive forebrain continuum, which establishes specific neuronal circuits with the medial prefrontal-orbitofrontal cortex and medial temporal lobe. This continuum is particularly characterized by a prominent system of long intrinsic association fibers, and a variety of highly differentiated downstream projections to the hypothalamus and brainstem. The various components of the extended amygdala, together with the shell of the accumbens, are ideally structured to generate endocrine, autonomic and somatomotor aspects of emotional and motivational states. Behavioral observations support this proposition and demonstrate the relevance of these structures to a variety of functions, ranging from the various elements of the reproductive cycle to drug-seeking behavior. The neurochemical and connectional features common to the accumbens shell and the extended amygdala are especially relevant to understanding the etiology and treatment of neuropsychiatric disorders. This is discussed in general terms, and also in specific relation to the neurodevelopmental theory of schizophrenia and to the neurosurgical treatment of neuropsychiatric disorders.
Collapse
Affiliation(s)
- L Heimer
- Department of Otolaryngology, University of Virginia Health Sciences Center, Charlottesville 22908, USA
| | | | | | | | | |
Collapse
|
26
|
Swaab D. Chapter II Neurobiology and neuropathology of the human hypothalamus. HANDBOOK OF CHEMICAL NEUROANATOMY 1997. [DOI: 10.1016/s0924-8196(97)80004-8] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
27
|
Lewis D, Sesack S. Chapter VI Dopamine systems in the primate brain. HANDBOOK OF CHEMICAL NEUROANATOMY 1997. [DOI: 10.1016/s0924-8196(97)80008-5] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
28
|
Arluison M, Brochier G, Vankova M, Leviel V, Villalobos J, Tramu G. Demonstration of peptidergic afferents to the bed nucleus of the stria terminalis using local injections of colchicine. A combined immunohistochemical and retrograde tracing study. Brain Res Bull 1994; 34:319-37. [PMID: 7521777 DOI: 10.1016/0361-9230(94)90026-4] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
In the present study, we demonstrate the existence of numerous peptidergic afferents to the bed nucleus of the stria terminalis (BNST) using the retrograde transport of gold-labeled wheat germ agglutinin-apo-peroxidase (G-WGA-HRP) combined with the indirect immunoperoxidase method after intraparenchymatous injections of colchicine. At first, we show that local injections of colchicine alone into the BNST are able to induce the retrograde accumulation of peptides until the nerve cell bodies of origin, probably because of the blockade of axonal transport in nerve terminal arborizations innervating this nucleus. The actual existence of putative peptidergic afferents to the BNST indicated by the local injections of colchicine was established using: a) the retrograde transport of G-WGA-HRP from the BNST combined with immunocytochemistry after administration of colchicine at the same place, b) the anterograde "transport" of the fluorescent tracer DiI from selected nuclei of the forebrain. We demonstrate that the neurons immunoreactive for enkephalins, neurotensin, or substance P that innervate the BNST are localized mainly in the central amygdaloid nucleus, the paraventricular thalamic nucleus, and the ventromedial hypothalamic nucleus ipsilateral to the injection, as well as bilaterally in the magnocellular paraventricular and perifornical regions of the hypothalamus. From these results it may be concluded that intracerebral injections of colchicine constitute a powerful tool to search for multiple peptidergic afferents to a given brain nucleus using only immunohistochemistry. The existence of these pathways, however, must be verified by other neuroanatomical methods because of the problem of nerve fibers of passage.
Collapse
Affiliation(s)
- M Arluison
- Lab. de Neurobiologie des Signaux Intercellulaires, Institut des Neurosciences CNRS, Université P. et M. Curie, Paris, France
| | | | | | | | | | | |
Collapse
|
29
|
Reasner DS, Johnston RE, DeVoogd TJ. Alteration of the bed nucleus of the stria terminalis (BNST) in young female Djungarian hamsters (Phodopus campbelli) exposed to adult males. BEHAVIORAL AND NEURAL BIOLOGY 1993; 60:251-8. [PMID: 8297321 DOI: 10.1016/0163-1047(93)90485-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Central components of the vomeronasal system appear to mediate extrahypothalamic control of gonadotropin release during male-induced acceleration of puberty onset in female rodents. In order to describe the bed nucleus of the stria terminalis (BNST) and to determine whether this component of the vomeronasal system is altered following early puberty onset, the anterior BNST of female Djungarian hamsters (Phodopus campbelli) was subdivided into three regions: medial, lateral, and ventral. The cross-sectional area, soma size, and neuronal density of each subdivision was compared among female hamsters in three groups: (1) young females showing accelerated reproductive development following a period of housing with an adult male, (2) young females matched by age with the accelerated females but housed alone during the same period, and (3) older females at the age of spontaneous puberty. Females housed with an adult male and undergoing accelerated puberty onset had significantly smaller lateral anterior BNST subdivisions than females housed alone for the same period (10 days following weaning) or housed alone until the age of spontaneous puberty onset (25 days following weaning). The size of the ventral and medial subdivisions was not different in the three groups. Furthermore, although soma size and neuronal density differed markedly among the anterior BNST subdivisions, these subdivision characteristics were similar in the accelerated, prepubertal, and older pubertal females. Our finding demonstrates that a central component of the vomeronasal system undergoes neuroanatomical alteration in response to environmental stimuli and recommends further examination of the BNST during this dynamic ontogenetic period.
Collapse
Affiliation(s)
- D S Reasner
- Department of Psychology, Cornell University, Ithaca, New York 14853-7601
| | | | | |
Collapse
|
30
|
Loup F, Tribollet E, Dubois-Dauphin M, Dreifuss JJ. Localization of high-affinity binding sites for oxytocin and vasopressin in the human brain. An autoradiographic study. Brain Res 1991; 555:220-32. [PMID: 1657300 DOI: 10.1016/0006-8993(91)90345-v] [Citation(s) in RCA: 266] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Sites which bind oxytocin and vasopressin with high affinity were detected in the brain and upper spinal cord of 12 human subjects, using in vitro light microscopic autoradiography. Tissue sections were incubated with tritiated vasopressin, tritiated oxytocin or an iodinated oxytocin antagonist. The ligand specificity of binding was assessed with unlabelled vasopressin or oxytocin in excess, as well as in competition experiments using synthetic structural analogues. The distribution of vasopressin binding sites differed markedly from that of oxytocin binding sites in the forebrain, while there was overlap in the brainstem. Vasopressin binding sites were detected in the dorsal part of the lateral septal nucleus, in midline nuclei and adjacent intralaminar nuclei of the thalamus, in the hilus of the dentate gyrus, the dorsolateral part of the basal amygdaloid nucleus and the brainstem. The distribution of oxytocin binding sites in the brainstem has been recently reported (Loup et al., 1989). Oxytocin binding sites were also observed in the basal nucleus of Meynert, the nucleus of the vertical limb of the diagonal band of Broca, the ventral part of the lateral septal nucleus, the preoptic/anterior hypothalamic area, the posterior hypothalamic area, and variably in the globus pallidus and ventral pallidum. The presence of oxytocin and vasopressin binding sites in limbic and autonomic areas suggests a neurotransmitter or neuromodulator role for these peptides in the human central nervous system. They may also affect cholinergic transmission in the basal forebrain and consequently play a role in Alzheimer's disease.
Collapse
Affiliation(s)
- F Loup
- Department of Physiology, University Medical Center, Geneva, Switzerland
| | | | | | | |
Collapse
|
31
|
Martin LJ, Powers RE, Dellovade TL, Price DL. The bed nucleus-amygdala continuum in human and monkey. J Comp Neurol 1991; 309:445-85. [PMID: 1918444 DOI: 10.1002/cne.903090404] [Citation(s) in RCA: 109] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
The cytoarchitecture and distributions of seven neuropeptides were examined in the the bed nucleus of the stria terminalis (BST), substantia innominata (SI), and central and medial nuclei of the amygdala of human and monkey to determine whether neurons of these regions form an anatomical continuum in primate brain. The BST and centromedial amygdala have common cyto- and chemo-architectonic characteristics, and these regions are components of a distinct neuronal complex. This neuronal continuum extends dorsally, with the stria terminalis, from the BST and merges with the amygdala; it extends ventrally from the BST through the SI to the centromedial amygdala. The cytoarchitectonics of the BST-amygdala complex are heterogeneous and compartmental. The BST is parcellated broadly into anterior, lateral, medial, ventral, supracapsular, and sublenticular divisions. The central and medial nuclei of the amygdala are also parcellated into several subdivisions. Neurons of central and medial nuclei of the amygdala are similar to neurons in the lateral and medial divisions of the BST, respectively. Neurons in the SI form cellular bridges between the BST and amygdala. The BST, SI, and amygdala share several neuropeptide transmitters, and patterns of peptide immunoreactivity parallel cytological findings. Specific chemoarchitectonic zones were delineated by perikaryal, peridendritic/perisomatic, axonal, and terminal immunoreactivities. The results of this investigation demonstrate that there is a neuronal continuity between the BST and amygdala and that the BST-amygdala complex is prominent and discretely compartmental in forebrains of human and monkey.
Collapse
Affiliation(s)
- L J Martin
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205-2182
| | | | | | | |
Collapse
|
32
|
Walter A, Mai JK, Lanta L, Görcs T. Differential distribution of immunohistochemical markers in the bed nucleus of the stria terminalis in the human brain. J Chem Neuroanat 1991; 4:281-98. [PMID: 1718318 DOI: 10.1016/0891-0618(91)90019-9] [Citation(s) in RCA: 75] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
A variety of histochemical findings have contributed to a more differentiated architectonical description of the bed nucleus of the stria terminalis (BNST) in the mammalian brain. However, in the human brain investigations of the chemoarchitecture of this nucleus have been rare. Therefore we chose this region in six human autopsy brains in order to map the distribution patterns of 13 immunohistochemical markers for neurotensin (NT), neuropeptide Y (NPY), somatostatin (SOM), enkephalins (ENK), vasoactive intestinal polypeptide (VIP), substance P (SP), neurophysins (NPH), glial fibrillary acid protein, 3-fucosyl-N-acetyl-lactosamine epitope, myelin basic protein (MBP), calbindin (CAB), synaptophysin (SYN) and chromogranin-A (CHR-A). Three chemoarchitectonically distinct areas could be defined. The lateral subdivision of the BNST contained high amounts of NPY and SP-fibre immunoreactivity and was further characterized by the occurrence of neurons labelled for NPY. The central subdivision of the BNST appeared as a histochemically clearly circumscribed compartment with massive fibre immunoreactivity for SOM, ENK, VIP, SYN, CHR-A, CAB as well as SOM, ENK, NT and CAB positive cells but lacked cytosolic or fibre-like immunolabel for NPY and SP. This structure was also ensheathed by myelinated fibres identified by means of MBP immunohistochemistry. The medial subdivision of the BNST showed moderate to high SP and NPY fibre immunoreactivity but lacked immunolabelled neurons and was only scarcely supplied with varicose or punctiform ENK immunoproduct. In the most posterior levels of our sections a cell group labelled for NPH was located lateral to the fornix columns. The lateral subdivision of the BNST (with NPY, SYN) and mainly the central BNST (with SOM, ENK, VIP, SYN and CHR-A) contributed to ventrolateral extensions of dense patchy fibre immunoreactivity throughout the basal forebrain region.
Collapse
Affiliation(s)
- A Walter
- C. and O. Vogt Institute for Brain Research, University of Düsseldorf, FRG
| | | | | | | |
Collapse
|
33
|
De León M, Coveñas R, Narváez JA, Tramu G, Aguirre JA, González-Barón S. Somatostatin-28 (1-12)-like immunoreactivity in the cat diencephalon. Neuropeptides 1991; 19:107-17. [PMID: 1719443 DOI: 10.1016/0143-4179(91)90140-e] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Using an indirect immunoperoxidase technique, the location of somatostatin-28 (1-12)-like immunoreactive fibres and cell bodies in the cat diencephalon was studied. The hypothalamus was richer in somatostatin-28 (1-12)-like immunoreactive structures than the thalamus. A high density of immunoreactive fibres was observed in the nuclei habenularis lateralis, paraventricularis anterior (its caudal part), filiformis, hypothalami ventromedialis, and regio praeoptica, whereas a moderate density was found in the nuclei paracentralis, supraopticus, supra chiasmaticus, hypothalamus posterior and area hypothalamica dorsalis. The nuclei lateralis dorsalis, lateralis posterior, medialis dorsalis, rhomboidens, centralis medialis, ventralis medialis, reuniens, anterior dorsalis, parataenialis, interanteromedialis, hypothalamus lateralis, hypothalamus dorsomedialis and arcuatus had the lowest density of immunoreactive fibres. In addition, a high or moderate density of somatostatin-28 (1-12)-like immunoreactive cell bodies was observed in the nuclei paraventricularis hypothalami, supraopticus, supra chiasmaticus, area hypothalamics dorsalis, subparafascicularis, hypothalamus posterior and hypothalamus anterior, whereas scarce immunoreactive perikarya were visualized in the nuclei lateralis dorsalis and parafascicularis. The distribution of somatostatin-28 (1-12)-like immunoreactive structures is compared with the location of other neuropeptides in the cat diencephalon.
Collapse
Affiliation(s)
- M De León
- Departamento de Biología Celular y Patología, Facultad de Medicina, Avda. Campo Charro s/n, Salamanca, Spain
| | | | | | | | | | | |
Collapse
|
34
|
Heimer L, Alheid GF. Piecing together the puzzle of basal forebrain anatomy. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 1991; 295:1-42. [PMID: 1776564 DOI: 10.1007/978-1-4757-0145-6_1] [Citation(s) in RCA: 138] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Affiliation(s)
- L Heimer
- Department of Otolaryngology, University of Virginia Health Sciences Center, Charlottesville 22908
| | | |
Collapse
|