1
|
Cording KR, Tu EM, Wang H, Agopyan-Miu AHCW, Bateup HS. Cntnap2 loss drives striatal neuron hyperexcitability and behavioral inflexibility. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2024.05.09.593387. [PMID: 38766169 PMCID: PMC11100810 DOI: 10.1101/2024.05.09.593387] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2024]
Abstract
Autism spectrum disorder (ASD) is a neurodevelopmental disorder characterized by two major diagnostic criteria - persistent deficits in social communication and interaction, and the presence of restricted, repetitive patterns of behavior (RRBs). Evidence from both human and animal model studies of ASD suggest that alteration of striatal circuits, which mediate motor learning, action selection, and habit formation, may contribute to the manifestation of RRBs. CNTNAP2 is a syndromic ASD risk gene, and loss of function of Cntnap2 in mice is associated with RRBs. How loss of Cntnap2 impacts striatal neuron function is largely unknown. In this study, we utilized Cntnap2 -/- mice to test whether altered striatal neuron activity contributes to aberrant motor behaviors relevant to ASD. We find that Cntnap2 -/- mice exhibit increased cortical drive of direct pathway striatal projection neurons (dSPNs). This enhanced drive is likely due to increased intrinsic excitability of dSPNs, which make them more responsive to cortical inputs. We find that Cntnap2 -/- mice exhibit spontaneous repetitive behaviors, increased motor routine learning, perseveration, and cognitive inflexibility. Increased corticostriatal drive of the direct pathway may therefore contribute to the acquisition of repetitive, inflexible behaviors in Cntnap2 mice.
Collapse
Affiliation(s)
- Katherine R. Cording
- Helen Wills Neuroscience Institute, University of California, Berkeley, Berkeley, CA USA
- Department of Neuroscience, University of California, Berkeley, Berkeley, CA USA
| | - Emilie M. Tu
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA USA
| | - Hongli Wang
- Department of Neuroscience, University of California, Berkeley, Berkeley, CA USA
| | | | - Helen S. Bateup
- Helen Wills Neuroscience Institute, University of California, Berkeley, Berkeley, CA USA
- Department of Neuroscience, University of California, Berkeley, Berkeley, CA USA
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA USA
| |
Collapse
|
2
|
Takagi S, Puhl MD, Anderson T, Balu DT, Coyle JT. Serine Racemase Expression by Striatal Neurons. Cell Mol Neurobiol 2022; 42:279-289. [PMID: 32445040 PMCID: PMC7680280 DOI: 10.1007/s10571-020-00880-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2020] [Accepted: 05/15/2020] [Indexed: 01/03/2023]
Abstract
D-serine is synthesized by serine racemase (SR) and is a co-agonist at forebrain N-methyl-D-aspartate receptors (NMDARs). D-serine and SR are expressed primarily in neurons, but not in quiescent astrocytes. In this study, we examined the localization of D-serine and SR in the mouse striatum and the effects of genetically silencing SR expression in GABAergic interneurons (iSR-/-). iSR-/- mice had substantially reduced SR expression almost exclusively in striatum, but only exhibited marginal D-serine reduction. SR positive cells in the striatum showed strong co-localization with dopamine- and cyclic AMP-regulated neuronal phosphoprotein (DARPP32) in wild type mice. Transgenic fluorescent reporter mice for either the D1 or D2 dopamine receptors exhibited a 65:35 ratio for co-localization with D1and D2 receptor positive cells, respectively. These results indicate that GABAergic medium spiny neurons receiving dopaminergic inputs in striatum robustly and uniformly express SR. In behavioral tests, iSR-/- mice showed a blunted response to the hedonic and stimulant effects of cocaine, without affecting anxiety-related behaviors. Because the cocaine effects have been shown in the constitutive SR-/- mice, the restriction of the blunted response to cocaine to iSR-/- mice reinforces the conclusion that D-serine in striatal GABAergic neurons plays an important role in mediating dopaminergic stimulant effects. Results in this study suggest that SR in striatal GABAergic neurons is synthesizing D-serine, not as a glutamatergic co-transmitter, but rather as an autocrine whereby the GABAergic neurons control the excitability of their NMDARs by determining the availability of the co-agonist, D-serine.
Collapse
Affiliation(s)
- Shunsuke Takagi
- Department of Psychiatry and Behavioral Sciences, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo-ku, Tokyo, 113-8510, Japan
- Department of Psychiatry, Tokyo Medical and Dental University Hospital, 1-5-45 Yushima, Bunkyo-ku, Tokyo, 113-8510, Japan
- Department of Neuropsychiatry, Graduate School of Medical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka, 812-8582, Japan
- Laboratory for Psychiatric and Molecular Neuroscience, McLean Hospital, 115 Mill Street, Belmont, MA, 02478, USA
| | - Matthew D Puhl
- Laboratory for Psychiatric and Molecular Neuroscience, McLean Hospital, 115 Mill Street, Belmont, MA, 02478, USA
| | - Thea Anderson
- Laboratory for Psychiatric and Molecular Neuroscience, McLean Hospital, 115 Mill Street, Belmont, MA, 02478, USA
| | - Darrick T Balu
- Department of Psychiatry, Harvard Medical School, 25 Shattuck Street, Boston, MA, 02115, USA
- Translational Psychiatry Laboratory, McLean Hospital, 115 Mill Street, Belmont, MA, 02478, USA
| | - Joseph T Coyle
- Laboratory for Psychiatric and Molecular Neuroscience, McLean Hospital, 115 Mill Street, Belmont, MA, 02478, USA.
- Department of Psychiatry, Harvard Medical School, 25 Shattuck Street, Boston, MA, 02115, USA.
| |
Collapse
|
3
|
Fujiyama F, Unzai T, Karube F. Thalamostriatal projections and striosome-matrix compartments. Neurochem Int 2019; 125:67-73. [DOI: 10.1016/j.neuint.2019.01.024] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2018] [Revised: 01/18/2019] [Accepted: 01/27/2019] [Indexed: 12/11/2022]
|
4
|
Unzai T, Kuramoto E, Kaneko T, Fujiyama F. Quantitative Analyses of the Projection of Individual Neurons from the Midline Thalamic Nuclei to the Striosome and Matrix Compartments of the Rat Striatum. Cereb Cortex 2018; 27:1164-1181. [PMID: 26672610 DOI: 10.1093/cercor/bhv295] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
A fundamental organizing principle of the striatum is the striosome/matrix system that is defined by inputs/outputs and neurochemical markers. The thalamostriatal projection is highly heterogeneous originating in many subnuclei of the thalamus including the midline (ML) and intralaminar (IL) nuclei. We examined the dendritic morphology and axonal trajectory of 15 ML and 11 IL neurons by single-neuron labeling with viral vectors in combination with mu-opioid receptor immunostaining in rat brains. Dendritic and axonal morphology defined ML neurons as type II cells consisting of at least two subclasses according to the presence or absence of striatal axon collaterals. In the striatum, ML neurons preferentially innervated striosomes, whereas parafascicular neurons preferentially innervated the matrix. Almost all single thalamostriatal neurons favoring striosome or matrix compartments also innervated the cerebral cortical areas that supplied cortical input to the same striatal compartment. We thus revealed that thalamostriatal projections are highly organized 1) by the similarity in morphological characteristics and 2) their preference for the striatal compartments and cortical areas. These findings demonstrate that the functional properties of striatal compartments are influenced by both their cortical and thalamic afferents presumably with a different time latency and support selective dynamics for the striosome and matrix compartments.
Collapse
Affiliation(s)
- Tomo Unzai
- Laboratory of Neural Circuitry, Graduate School of Brain Science, Doshisha University, Kyoto 619-0394, Japan.,Department of Morphological Brain Science, Graduate School of Medicine, Kyoto University, Kyoto 606-8501, Japan.,Core Research for Evolutional Science and Technology, Japan Science and Technology Agency, Tokyo 102-0076, Japan
| | - Eriko Kuramoto
- Department of Morphological Brain Science, Graduate School of Medicine, Kyoto University, Kyoto 606-8501, Japan.,Department of Oral Anatomy and Cell Biology, Graduate School of Medical and Dental Sciences, Kagoshima University, Kagoshima 890-8544, Japan
| | - Takeshi Kaneko
- Department of Morphological Brain Science, Graduate School of Medicine, Kyoto University, Kyoto 606-8501, Japan
| | - Fumino Fujiyama
- Laboratory of Neural Circuitry, Graduate School of Brain Science, Doshisha University, Kyoto 619-0394, Japan.,Core Research for Evolutional Science and Technology, Japan Science and Technology Agency, Tokyo 102-0076, Japan
| |
Collapse
|
5
|
Nakano Y, Karube F, Hirai Y, Kobayashi K, Hioki H, Okamoto S, Kameda H, Fujiyama F. Parvalbumin-producing striatal interneurons receive excitatory inputs onto proximal dendrites from the motor thalamus in male mice. J Neurosci Res 2018; 96:1186-1207. [PMID: 29314192 DOI: 10.1002/jnr.24214] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2017] [Revised: 12/12/2017] [Accepted: 12/12/2017] [Indexed: 01/09/2023]
Abstract
In rodents, the dorsolateral striatum regulates voluntary movement by integrating excitatory inputs from the motor-related cerebral cortex and thalamus to produce contingent inhibitory output to other basal ganglia nuclei. Striatal parvalbumin (PV)-producing interneurons receiving this excitatory input then inhibit medium spiny neurons (MSNs) and modify their outputs. To understand basal ganglia function in motor control, it is important to reveal the precise synaptic organization of motor-related cortical and thalamic inputs to striatal PV interneurons. To examine which domains of the PV neurons receive these excitatory inputs, we used male bacterial artificial chromosome transgenic mice expressing somatodendritic membrane-targeted green fluorescent protein in PV neurons. An anterograde tracing study with the adeno-associated virus vector combined with immunodetection of pre- and postsynaptic markers visualized the distribution of the excitatory appositions on PV dendrites. Statistical analysis revealed that the density of thalamostriatal appositions along the dendrites was significantly higher on the proximal than distal dendrites. In contrast, there was no positional preference in the density of appositions from axons of the dorsofrontal cortex. Population observations of thalamostriatal and corticostriatal appositions by immunohistochemistry for pathway-specific vesicular glutamate transporters confirmed that thalamic inputs preferentially, and cortical ones less preferentially, made apposition on proximal dendrites of PV neurons. This axodendritic organization suggests that PV neurons produce fast and reliable inhibition of MSNs in response to thalamic inputs and process excitatory inputs from motor cortices locally and plastically, possibly together with other GABAergic and dopaminergic dendritic inputs, to modulate MSN inhibition.
Collapse
Affiliation(s)
- Yasutake Nakano
- Laboratory of Neural Circuitry, Graduate School of Brain Science, Doshisha University, Kyotanabe, Japan
| | - Fuyuki Karube
- Laboratory of Neural Circuitry, Graduate School of Brain Science, Doshisha University, Kyotanabe, Japan
| | - Yasuharu Hirai
- Laboratory of Neural Circuitry, Graduate School of Brain Science, Doshisha University, Kyotanabe, Japan
| | - Kenta Kobayashi
- Section of Viral Vector Development, National Institute for Physiological Sciences, Okazaki, Japan
| | - Hiroyuki Hioki
- Department of Morphological Brain Science, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Shinichiro Okamoto
- Department of Morphological Brain Science, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Hiroshi Kameda
- Department of Physiology, Teikyo University School of Medicine, Tokyo, Japan
| | - Fumino Fujiyama
- Laboratory of Neural Circuitry, Graduate School of Brain Science, Doshisha University, Kyotanabe, Japan
| |
Collapse
|
6
|
Gerfen C, Bolam J. The Neuroanatomical Organization of the Basal Ganglia. HANDBOOK OF BEHAVIORAL NEUROSCIENCE 2016. [DOI: 10.1016/b978-0-12-802206-1.00001-5] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
7
|
Yager LM, Garcia AF, Wunsch AM, Ferguson SM. The ins and outs of the striatum: role in drug addiction. Neuroscience 2015; 301:529-41. [PMID: 26116518 DOI: 10.1016/j.neuroscience.2015.06.033] [Citation(s) in RCA: 271] [Impact Index Per Article: 27.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2015] [Revised: 06/05/2015] [Accepted: 06/18/2015] [Indexed: 10/23/2022]
Abstract
Addiction is a chronic relapsing disorder characterized by the loss of control over drug intake, high motivation to obtain the drug, and a persistent craving for the drug. Accumulating evidence implicates cellular and molecular alterations within cortico-basal ganglia-thalamic circuitry in the development and persistence of this disease. The striatum is a heterogeneous structure that sits at the interface of this circuit, receiving input from a variety of brain regions (e.g., prefrontal cortex, ventral tegmental area) to guide behavioral output, including motor planning, decision-making, motivation and reward. However, the vast interconnectivity of this circuit has made it difficult to isolate how individual projections and cellular subtypes within this circuit modulate each of the facets of addiction. Here, we review the use of new technologies, including optogenetics and DREADDs (Designer Receptors Exclusively Activated by Designer Drugs), in unraveling the role of the striatum in addiction. In particular, we focus on the role of striatal cell populations (i.e., direct and indirect pathway medium spiny neurons) and striatal dopaminergic and glutamatergic afferents in addiction-related plasticity and behaviors.
Collapse
Affiliation(s)
- L M Yager
- Center for Integrative Brain Research, Seattle Children's Research Institute, Seattle, WA, United States
| | - A F Garcia
- Center for Integrative Brain Research, Seattle Children's Research Institute, Seattle, WA, United States; Neuroscience Graduate Program, University of Washington, Seattle, WA, United States
| | - A M Wunsch
- Center for Integrative Brain Research, Seattle Children's Research Institute, Seattle, WA, United States; Neuroscience Graduate Program, University of Washington, Seattle, WA, United States
| | - S M Ferguson
- Center for Integrative Brain Research, Seattle Children's Research Institute, Seattle, WA, United States; Neuroscience Graduate Program, University of Washington, Seattle, WA, United States; Department of Psychiatry and Behavioral Sciences, University of Washington, Seattle, WA, United States.
| |
Collapse
|
8
|
KV7 Channels Regulate Firing during Synaptic Integration in GABAergic Striatal Neurons. Neural Plast 2015; 2015:472676. [PMID: 26113994 PMCID: PMC4465714 DOI: 10.1155/2015/472676] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2015] [Accepted: 05/07/2015] [Indexed: 11/17/2022] Open
Abstract
Striatal projection neurons (SPNs) process motor and cognitive information. Their activity is affected by Parkinson's disease, in which dopamine concentration is decreased and acetylcholine concentration is increased. Acetylcholine activates muscarinic receptors in SPNs. Its main source is the cholinergic interneuron that responds with a briefer latency than SPNs during a cortical command. Therefore, an important question is whether muscarinic G-protein coupled receptors and their signaling cascades are fast enough to intervene during synaptic responses to regulate synaptic integration and firing. One of the most known voltage dependent channels regulated by muscarinic receptors is the KV7/KCNQ channel. It is not known whether these channels regulate the integration of suprathreshold corticostriatal responses. Here, we study the impact of cholinergic muscarinic modulation on the synaptic response of SPNs by regulating KV7 channels. We found that KV7 channels regulate corticostriatal synaptic integration and that this modulation occurs in the dendritic/spines compartment. In contrast, it is negligible in the somatic compartment. This modulation occurs on sub- and suprathreshold responses and lasts during the whole duration of the responses, hundreds of milliseconds, greatly altering SPNs firing properties. This modulation affected the behavior of the striatal microcircuit.
Collapse
|
9
|
Mathai A, Smith Y. The corticostriatal and corticosubthalamic pathways: two entries, one target. So what? Front Syst Neurosci 2011; 5:64. [PMID: 21866224 PMCID: PMC3149683 DOI: 10.3389/fnsys.2011.00064] [Citation(s) in RCA: 72] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2011] [Accepted: 07/21/2011] [Indexed: 11/13/2022] Open
Abstract
The basal ganglia receive cortical inputs through two main stations - the striatum and the subthalamic nucleus (STN). The information flowing along the corticostriatal system is transmitted to the basal ganglia circuitry via the "direct and indirect" striatofugal pathways, while information that flows through the STN is transmitted along the so-called "hyperdirect" pathway. The functional significance of this dual entry system is not clear. Although the corticostriatal system has been thoroughly characterized anatomically and electrophysiologically, such is not the case for the corticosubthalamic system. In order to provide further insights into the intricacy of this complex anatomical organization, this review examines and compares the anatomical and functional organization of the corticostriatal and corticosubthalamic systems, and highlights some key issues that must be addressed to better understand the mechanisms by which these two neural systems may interact to regulate basal ganglia functions and dysfunctions.
Collapse
Affiliation(s)
- Abraham Mathai
- Yerkes National Primate Research Center, Emory University Atlanta, GA, USA
| | | |
Collapse
|
10
|
Cortical and thalamic innervation of direct and indirect pathway medium-sized spiny neurons in mouse striatum. J Neurosci 2010; 30:14610-8. [PMID: 21048118 DOI: 10.1523/jneurosci.1623-10.2010] [Citation(s) in RCA: 168] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
The striatum receives major excitatory inputs from the cortex and thalamus that predominantly target the spines of medium-sized spiny neurons (MSNs). We aimed to determine whether there is any selectivity of these two excitatory afferents in their innervation of direct and indirect pathway MSNs. To address this, we used bacterial artificial chromosome transgenic mice, in which enhanced green fluorescent protein (EGFP) reports the presence of D(1) or D(2) dopamine receptor subtypes, markers of direct and indirect pathway MSNs, respectively. Excitatory afferents were identified by the selective expression of vesicular glutamate transporter type 1 (VGluT1) by corticostriatal afferents and vesicular glutamate transporter type 2 (VGluT2) by thalamostriatal afferents. A quantitative electron microscopic analysis was performed on striatal tissue from D(1) and D(2) mice that was double immunolabeled to reveal the EGFP and VGluT1 or VGluT2. We found that the proportion of synapses formed by terminals derived from the cortex and thalamus was similar for both direct and indirect pathway MSNs. Furthermore, qualitative analysis revealed that individual cortical or thalamic terminals form synapses with both direct and indirect pathway MSNs. Similarly, we observed a convergence of cortical and thalamic inputs onto individual MSNs of both direct and indirect pathway: individual EGFP-positive structures received input from both VGluT2-positive and VGluT2-negative terminals. These findings demonstrate that direct and indirect pathway MSNs are similarly innervated by cortical and thalamic afferents; both projections are thus likely to be critical in the control of MSNs and hence play fundamental roles in the expression of basal ganglia function.
Collapse
|
11
|
Gerfen CR, Bolam JP. The Neuroanatomical Organization of the Basal Ganglia. ACTA ACUST UNITED AC 2010. [DOI: 10.1016/b978-0-12-374767-9.00001-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/18/2023]
|
12
|
Mazzocchi-Jones D, Döbrössy M, Dunnett SB. Embryonic striatal grafts restore bi-directional synaptic plasticity in a rodent model of Huntington's disease. Eur J Neurosci 2009; 30:2134-42. [PMID: 20128850 DOI: 10.1111/j.1460-9568.2009.07006.x] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Embryonic striatal grafts integrate with the host striatal circuitry, forming anatomically appropriate connections capable of influencing host behaviour. In addition, striatal grafts can influence host behaviour via a variety of non-specific, trophic and pharmacological mechanisms; however, direct evidence that recovery is dependent on circuit reconstruction is lacking. Recent studies suggest that striatal grafts alleviate simple motor deficits, and also that learning of complex motor skills and habits can also be restored. However, although the data suggest that such 're-learning' requires integration of the graft into the host striatal circuitry, little evidence exists to demonstrate that such integration includes functional synaptic connections. Here we demonstrate that embryonic striatal grafts form functional connections with the host striatal circuitry, capable of restoring stable synaptic transmission, within an excitotoxic lesion model of Huntington's disease. Furthermore, such 'functional integration' of the striatal graft enables the expression of host-graft bi-directional synaptic plasticity, similar to the normal cortico-striatal circuit. These results indicate that striatal grafts express synaptic correlates of learning, and thereby provide direct evidence of functional neuronal circuit repair, an essential component of 'functional integration'.
Collapse
|
13
|
Abstract
In the neostriatum, GABAergic inhibition arises from the action of at least two classes of inhibitory interneurons, and from recurrent collaterals of the principal cells. Interneurons receive excitatory input only from extrinsic sources, and so act in a purely feedforward capacity. Feedback inhibition arises from the recurrent collaterals of the principal cells. These two kinds of inhibition have functionally distinct effects on the principal cells. Inputs from interneurons are not very convergent. There are few inhibitory neurons, and so each principal cell receives inhibitory synaptic input from very few interneurons. But, they are individually powerful, and a single interneuron can substantially delay action potentials in a group of nearby principal cells. Recurrent inhibition is highly convergent, with each principal cell receiving inhibitory input from several hundred other such cells. Feedback inhibitory synaptic inputs individually have very weak effects, as seen from the soma. The differences in synaptic strength are not caused by differences in the release of transmitter or in sensitivity of the postsynaptic membrane. Rather, they arise from differences in the number of synaptic contacts formed on individual principal cells by feedforward or feedback axons, and from differences in synaptic location. Interneurons form their powerful synapses near the somata of principal cells, while most feedback synapses are more distal, where they interact with the two-state nonlinear properties of the principal cells' dendrite. This arrangement suggests that feedforward inhibition may serve in the traditional role for inhibition, adjusting the excitability of the principle neuron near the site of action potential generation. Feedback inhibitory synapses may interact with voltage-sensitive conductances in the dendrite to alter the electrotonic structure of the spiny cell.
Collapse
Affiliation(s)
- Charles J Wilson
- Department of Biology, University of Texas at San Antonio, 6900 N. Loop 1604 W, San Antonio, TX 78249, USA.
| |
Collapse
|
14
|
Fujiyama F, Unzai T, Nakamura K, Nomura S, Kaneko T. Difference in organization of corticostriatal and thalamostriatal synapses between patch and matrix compartments of rat neostriatum. Eur J Neurosci 2006; 24:2813-24. [PMID: 17156206 DOI: 10.1111/j.1460-9568.2006.05177.x] [Citation(s) in RCA: 65] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The neostriatum, which possesses a mosaic organization consisting of patch and matrix compartments, receives glutamatergic excitatory afferents from the cerebral cortex and thalamus. Differences in the synaptic organization of these striatopetal afferents between the patch and matrix compartments were examined in the rat using confocal laser scanning and electron microscopes. Thalamostriatal terminals immunopositive for vesicular glutamate transporter (VGluT) 2 were less dense in the patch than in the matrix compartment, although the density of VGluT1-immunopositive corticostriatal terminals was almost evenly distributed in both the compartments. Quantitative analysis of ultrastructural images revealed that 84% of VGluT2-positive synapses in the patch compartment were formed with dendritic spines, whereas 70% in the matrix compartment were made with dendritic shafts. By contrast, VGluT1-positive terminals display a similar preference for specific synaptic targets in both compartments: about 80% made synapses with dendritic spines. In addition, VGluT2-positive axospinous synapses in the patch compartment were larger than the VGluT1-positive axospinous synapses in both compartments. As axospinous synapses are generally found in neuronal connections showing high synaptic plasticity, the present findings suggest that the thalamostriatal connection requires higher synaptic plasticity in the patch compartment than in the matrix compartment.
Collapse
Affiliation(s)
- Fumino Fujiyama
- Department of Morphological Brain Science, Graduate School of Medicine, Faculty of Medicine, Kyoto University, Kyoto 606-8501, Japan
| | | | | | | | | |
Collapse
|
15
|
Hussain N, Flumerfelt BA, Rajakumar N. Glutamatergic regulation of long-term grafts of fetal lateral ganglionic eminence in a rat model of Huntington's disease. Neurobiol Dis 2004; 15:648-53. [PMID: 15056473 DOI: 10.1016/j.nbd.2003.12.005] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2002] [Revised: 08/27/2003] [Accepted: 12/12/2003] [Indexed: 11/29/2022] Open
Abstract
Transplanting fetal striatal tissue is currently considered to be an important alternative strategy in the treatment of Huntington's disease. Although grafted striatal tissue differentiates and shows certain structural and neurochemical features of the normal striatum and receives host afferents, it is not clear whether host-derived afferent inputs can modulate the activity of neurotransmitter receptors and their signaling in the graft. An intricate interaction between dopaminergic and glutamatergic systems is pivotal for striatal function. In the present study, the modulation of D(2) receptors in the graft by host-derived glutamatergic afferents via NMDA receptors was investigated using haloperidol-induced c-Fos expression. The results indicate that haloperidol induces c-Fos in a large number of neurons in the P-zones of the graft and this induction is significantly suppressed by pretreatment with the NMDA receptor antagonist, MK-801. Therefore, the NMDA receptor-mediated modulation of D(2) receptor function seen in the normal striatum is established in the striatostriatal grafts.
Collapse
Affiliation(s)
- N Hussain
- Department of Anatomy and Cell Biology, The University of Western Ontario, London, ON, Canada N6A 5C1
| | | | | |
Collapse
|
16
|
McNeill TH, Brown SA, Hogg E, Cheng HW, Meshul CK. Synapse replacement in the striatum of the adult rat following unilateral cortex ablation. J Comp Neurol 2003; 467:32-43. [PMID: 14574678 DOI: 10.1002/cne.10907] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Defining the selective pattern of synapse replacement that occurs in different areas of the damaged brain is essential for predicting the limits of functional compensation that can be achieved after various types of brain injury. Here we describe the time course of dendritic reorganization, spine loss and recovery, and synapse replacement in the striatum following a unilateral cortex ablation. We found that the time course for the transient loss and recovery of dendritic spines on medium spiny I (MSI) neurons, the primary postsynaptic target for corticostriatal axons, paralleled the time course for the removal of degenerating axon terminals from the neuropil and the formation of new synapses on MSI neurons. Reinnervation of the deafferented striatum occurred chiefly by axon terminals that formed asymmetric synapses with dendritic spines of MSI neurons, and the mean density of asymmetric synapses recovered to 86% of the sham-operated rat value by 30 days postlesion. In addition, the synaptic circuitry of the reconstructed striatum was characterized by an increase in the number of multiple synaptic boutons (MSBs), i.e., presynaptic axon terminals that make contact with more than one dendritic spine. Whether the postsynaptic contacts of MSBs are formed with the dendritic spines of the same or a different parent dendrite in the striatum is unknown. Nevertheless, these data suggest that the formation of MSBs is an essential part of the compensatory response to the loss of input from the ipsilateral cortex following the aspiration lesion and may serve to modulate activity-dependent adaptive changes in the reconstructed striatum that can lead to functional recovery.
Collapse
Affiliation(s)
- Thomas H McNeill
- Department of Cell and Neurobiology, University of Southern California, Keck School of Medicine, Los Angeles, California 90033, USA.
| | | | | | | | | |
Collapse
|
17
|
Cho J, Duke D, Manzino L, Sonsalla PK, West MO. Dopamine depletion causes fragmented clustering of neurons in the sensorimotor striatum: evidence of lasting reorganization of corticostriatal input. J Comp Neurol 2002; 452:24-37. [PMID: 12205707 DOI: 10.1002/cne.10349] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Firing during sensorimotor exam was used to categorize single neurons in the lateral striatum of awake, unrestrained rats. Five rats received unilateral injection of 6-hydroxydopamine (6-OHDA) into the medial forebrain bundle to deplete striatal dopamine (DA; >98% depletion, postmortem assay). Three months after treatment, rats exhibited exaggerated rotational behavior induced by L-dihydroxyphenylalanine (L-DOPA) and contralateral sensory neglect. Electrode track "depth profiles" on the DA-depleted side showed fragmented clustering of neurons related to sensorimotor activity of single body parts (SBP neurons). Clusters were smaller than normal, and more SBP neurons were observed in isolation, outside of clusters. More body parts were represented per unit volume. No recovery in these measures was observed up to one year post lesion. Overall distributions of neurons related to different body parts were not altered. The fragmentation of SBP clusters after DA depletion indicates that a percentage of striatal SBP neurons switched responsiveness from one body part to one or more different body parts. Because the specific firing that characterizes striatal SBP neurons is mediated by corticostriatal inputs (Liles and Updyke [1985] Brain Res. 339:245-255), the data indicate that DA depletion resulted in a reorganization of corticostriatal connections, perhaps via unmasking or sprouting of connections to adjacent clusters of striatal neurons. After reorganization, sensory activity in a localized body part activates striatal neurons that have switched to that body part. In turn, switched signals sent from basal ganglia to premotor and motor neurons, which likely retain their original connections, would create mismatches in these normally precise topographic connections. Switched signals could partially explain parkinsonian deficits in motor functions involving somatosensory guidance and their intractability to L-DOPA therapy-particularly if the switching involves sprouting.
Collapse
Affiliation(s)
- Jeiwon Cho
- Department of Psychology, Rutgers University, New Brunswick, New Jersey 08903, USA
| | | | | | | | | |
Collapse
|
18
|
Zheng T, Wilson CJ. Corticostriatal combinatorics: the implications of corticostriatal axonal arborizations. J Neurophysiol 2002; 87:1007-17. [PMID: 11826064 DOI: 10.1152/jn.00519.2001] [Citation(s) in RCA: 142] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The complete striatal axonal arborizations of 16 juxtacellularly stained cortical pyramidal cells were analyzed. Corticostriatal neurons were located in the medial agranular or anterior cingulate cortex of rats. All axons were of the extended type and formed synaptic contacts in both the striosomal and matrix compartments as determined by counterstaining for the mu-opiate receptor. Six axonal arborizations were from collaterals of brain stem-projecting cells and the other 10 from bilaterally projecting cells with no brain stem projections. The distribution of synaptic boutons along the axons were convolved with the average dendritic tree volume of spiny projection neurons to obtain an axonal innervation volume and innervation density map for each axon. Innervation volumes varied widely, with single axons occupying between 0.4 and 14.2% of the striatum (average = 4%). The total number of boutons formed by individual axons ranged from 25 to 2,900 (average = 879). Within the innervation volume, the density of innervation was extremely sparse but inhomogeneous. The pattern of innervation resembled matrisomes, as defined by bulk labeling and functional mapping experiments, superimposed on a low background innervation. Using this sample as representative of all corticostriatal axons, the total number of corticostriatal neurons was estimated to be 17 million, about 10 times the number of striatal projection neurons.
Collapse
Affiliation(s)
- T Zheng
- Department of Neuroscience, The University of Florida, Gainesville, FL 32611, USA
| | | |
Collapse
|
19
|
Muñoz A, Lopez A, Caruncho HJ, Guerra MJ, Labandeira-García JL. Long-term cortical atrophy after excitotoxic striatal lesion: effects of intrastriatal fetal-striatum grafts and implications for Huntington disease. J Neuropathol Exp Neurol 2001; 60:786-97. [PMID: 11487053 DOI: 10.1093/jnen/60.8.786] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
It is not currently clear whether the cortical atrophy observed in Huntington disease (HD) is entirely a direct consequence of the disease or at least partially a secondary consequence of striatal atrophy. This is of major importance for evaluating the possible therapeutic value of intrastriatal fetal-striatum grafts in HD. Cresyl violet-stained sections from rats that had received striatal excitotoxic lesions 1 wk or 4 wk previously showed small and statistically nonsignificant decreases in the thickness of cortical layers V and VI, while series from rats lesioned 12 months previously showed marked decreases in the thickness of the whole cortex (approximately 35% decrease), layer V (approximately 45%-50%) and layer VI (approximately 45%-50%), together with marked neuron loss in these layers. In deep layer V and layer VI, Fluoro-Jade staining showed labeled neurons in animals lesioned 1 wk previously, labeled neurons and astrocytes in animals lesioned 4 wk previously, and practically no labeling in animals lesioned 12 months previously. Intracortical injection of Phaseolus vulgaris leucoagglutinin revealed that corticostriatal fibers were practically absent from the lesioned area of striata lesioned 12 months previously. However, rats that received intrastriatal fetal-striatum grafts shortly after the lesion and were killed 12 months later showed a significant reduction in cortical atrophy, and a large number of labeled corticostriatal fibers surrounding and innervating the graft. In addition, a reduction in the number of Fluoro-Jade-labeled cells in the cortex was already apparent at 3 wk post-grafting. Regardless of whether HD has a primary effect on the cortex, the present results suggest that the striatal degeneration caused by HD contributes markedly to the cortical atrophy, and that intrastriatal grafts may ameliorate this secondary component of the cortical degeneration.
Collapse
Affiliation(s)
- A Muñoz
- Department of Morphological Sciences, Faculty of Medicine, University of Santiago de Compostela, Spain
| | | | | | | | | |
Collapse
|
20
|
Nakao N, Itakura T. Fetal tissue transplants in animal models of Huntington's disease: the effects on damaged neuronal circuitry and behavioral deficits. Prog Neurobiol 2000; 61:313-38. [PMID: 10727778 DOI: 10.1016/s0301-0082(99)00058-1] [Citation(s) in RCA: 47] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Accumulating evidence indicates that grafts of embryonic neurons achieve the anatomical and functional reconstruction of damaged neuronal circuitry. The restorative capacity of grafted embryonic neural tissue is most illustrated by studies with striatal tissue transplantation in animals with striatal lesions. Striatal neurons implanted into the lesioned striatum receive some of the major striatal afferents such as the nigrostriatal dopaminergic inputs and the gluatmatergic afferents from the neocortex and thalamus. The grafted neurons also send efferents to the primary striatal targets, including the globus pallidus (GP, the rodent homologue of the external segment of the globus pallidus) and the entopeduncular nucleus (EP, the rodent homologue of the internal segment of the globus pallidus). These anatomical connections provide the reversal of the lesion-induced alterations in neuronal activities of primary and secondary striatal targets. Furthermore, intrastriatal striatal grafts improve motor and cognitive deficits seen in animals with striatal lesions. Since the grafts affect motor and cognitive behaviors that are critically dependent on the integrity of neuronal circuits of the basal ganglia, the graft-mediated recovery in these behavioral deficits is most likely attributable to the functional reconstruction of the damaged neuronal circuits. The fact that the extent of the behavioral recovery is positively correlated to the amount of grafted neurons surviving in the striatum encourages this view. Based on the animal studies, embryonic striatal tissue grafting could be a viable strategy to alleviate motor and cognitive disorders seen in patients with Huntington's disease where massive degeneration of striatal neurons occurs.
Collapse
Affiliation(s)
- N Nakao
- Department of Neurological Surgery, Wakayama Medical College, Wakayama, Japan.
| | | |
Collapse
|
21
|
|
22
|
Nakao N, Ogura M, Nakai K, Itakura T. Embryonic striatal grafts restore neuronal activity of the globus pallidus in a rodent model of Huntington's disease. Neuroscience 1999; 88:469-77. [PMID: 10197767 DOI: 10.1016/s0306-4522(98)00197-3] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
It has been demonstrated in rats that embryonic striatal grafts placed in the excitotoxically lesioned striatum establish neuronal connections with the host globus pallidus. In order to determine whether the morphologically verified connections between the grafts and host are functional, the present study investigated the effects of embryonic striatal grafts on changes in the neuronal activity of the globus pallidus in rats with quinolinic acid-induced striatal lesions. The activity of pallidal neurons was determined by use of quantitative cytochrome oxidase histochemistry and an electrophysiological technique. Striatal lesions induced an increase in both the cytochrome oxidase activity and the spontaneous firing rate of the globus pallidus ipsilateral to the lesions. Grafts derived from the lateral ganglionic eminence, but not the medial ganglionic eminence, reversed the lesion-induced increase in the cytochrome oxidase activity of the globus pallidus with concomitant reduction of apomorphine-induced rotational asymmetry. The lateral ganglionic eminence grafts also attenuate the increase in the firing rate of pallidal neurons in rats with striatal lesions. The present results provide evidence that striatal lesions lead to the loss of a tonic inhibitory input to the globus pallidus with consequent increase in the activity of pallidal neurons, and that intrastriatal striatal grafts reverse the altered activity of pallidal neurons. The findings strongly suggest that embryonic striatal grafts functionally repair the damaged striatopallidal pathway.
Collapse
Affiliation(s)
- N Nakao
- Department of Neurological Surgery, Wakayama Medical College, Japan
| | | | | | | |
Collapse
|
23
|
Giordano M, Salado-Castillo R, Sánchez-Alvarez M, Prado-Alcalá RA. Striatal transplants prevent AF64A-induced retention deficits. Life Sci 1998; 63:1953-61. [PMID: 9839539 DOI: 10.1016/s0024-3205(98)00473-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
The relevance of the cholinergic system in mnemonic processes has been repeatedly demonstrated. In addition to the cholinergic systems that project to the telencephalon, there are subcortical nuclei with intrinsic cholinergic cells which appear to be involved in memory consolidation; among these is the striatum. Intrastriatal administration of anticholinergic drugs, as well as excitotoxic and electrolytic lesions have been shown to disrupt the acquisition and retention of instrumentally conditioned behaviors. In the present study male Wistar rats were used to confirm the reported detrimental effects of striatal lesions produced by the cholinotoxin AF64A on long-term retention (LTR) of inhibitory avoidance and spontaneous locomotor activity, to determine its effects on short-term retention (STR) and to investigate whether intrastriatal homotopic transplants can reverse the AF64A-induced behavioral deficits. AF64A-striatal lesions did not interfere with STR but disrupted LTR of the inhibitory avoidance task, and striatal transplants prevented this deficit. Spontaneous locomotor activity increased after the lesion but promptly returned to baseline levels. These results support previous findings showing striatal involvement in long-term but not short-term retention and indicate that homotopic transplants induce behavioral recovery of a learning task in striatal lesioned rats.
Collapse
Affiliation(s)
- M Giordano
- Centro de Neurobiología, Campus UNAM-UAQ, México, D. F., México.
| | | | | | | |
Collapse
|
24
|
Plasticity of synapses in the rat neostriatum after unilateral lesion of the nigrostriatal dopaminergic pathway. J Neurosci 1998. [PMID: 9614247 DOI: 10.1523/jneurosci.18-12-04732.1998] [Citation(s) in RCA: 209] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
In the 6-hydroxydopamine model of Parkinson's disease in the rat, there is a significant reduction in the number of dendritic spines on the principal projection neurons in the neostriatum, presumably attributable to loss of the nigrostriatal dopamine input. These spines invariably receive input from terminals forming asymmetric synapses that originate mainly from the cortex. The object of the present study was to determine the fate of those terminals after the loss of dendritic spines. Unbiased estimates of synaptic density and absolute numbers of synapses in a defined volume of the neostriatum were made using the "disector" and Cavalieri techniques. Numerical synaptic density of asymmetric synaptic contacts was 17% lower in the neostriatum deprived of dopamine innervation and, in absolute terms, there were 3 billion (19%) fewer contacts. The numerical density of a subpopulation of asymmetric contacts on dendritic spines that have complex or perforated synaptic specializations and normally make up 9% of the asymmetric population was 44% higher on the experimental side. Asymmetric synapses were found to be enriched in glutamate using postembedding immunogold labeling. The present observations demonstrate that the loss of spines previously reported after 6-hydroxydopamine lesions is accompanied by a loss of asymmetric synapses rather than by the movement of synapses from spines to other postsynaptic targets. The study also demonstrates that there is an increase in complex synaptic interactions that have been implicated in synaptic plasticity in other regions of the CNS after experimental manipulations.
Collapse
|
25
|
Abstract
The distribution of synapses formed by corticostriatal neurons was measured to determine the average connectivity and degree of convergence of these neurons and to search for spatial inhomogeneities. Two kinds of axonal fields, focal and extended, and two striatal tissue compartments, the patch (striosome) and matrix, were analyzed separately. Electron microscopic examination revealed that both kinds of corticostriatal axons made synapses at varicosities that could be identified in the light microscope, and each varicosity made a single synapse. Thus, the distribution of varicosities was a good estimate of the spatial distribution of synapses. The distance between axonal varicosities was measured to determine the density of synaptic connections formed by one axon within the volume occupied by a striatal neuron. Intersynaptic distances were distributed exponentially, except that synapses were rarely located <4 microm apart. The mean distance between synapses was approximately 10 microm, so axons made a maximum of 40 synapses within the dendritic volume of a spiny neuron. There are approximately 2840 spiny neurons located within the volume of the dendrites of one spiny cell (Oorschot, 1996), so each axon must contact </=1.4% of all cells in its axonal arborization. Within the same volume there are approximately 30.5 million asymmetric synapses (Ingham et al., 1996), approximately half of which are cortical in origin. Thus, approximately 380,000 cortical axons innervate the volume of the dendritic tree of one spiny cell. Striatal neurons with totally overlapping dendritic volumes have few presynaptic cortical axons in common, and cortical cells with overlapping axons have few striatal target neurons in common. These results explain the absence of redundancy in the responses of neurons located near each other in the striatum.
Collapse
|
26
|
Kachidian P, Vuillet J, Bartoli M, Castets F, Nieoullon A, Kerkerian-Le Goff L. Relationships between striatin-containing neurons and cortical or thalamic afferent fibres in the rat striatum. An ultrastructural study by dual labelling. Neuroscience 1998; 85:111-22. [PMID: 9607707 DOI: 10.1016/s0306-4522(97)00593-9] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Striatin, a recently isolated rat brain calmodulin-binding protein belonging to the WD-repeat protein family, is thought to be part of a calcium signal transduction pathway presumably specific to excitatory synapses, at least in the striatum. This study was aimed to specify the cellular and subcellular localization of striatin, and to determine the possible synaptic relationships between the two main excitatory afferent pathways, arising from the cerebral cortex and the thalamus, and the striatin-containing elements, in the rat striatum. Anterograde tract-tracing by means of biotinylated dextran amine injection in the frontoparietal cerebral cortex or the parafascicular nucleus of the thalamus was combined with immunogold detection of striatin. Striatin-immunoreactivity was confined to the neuronal somatodendritic compartment, including spines. Whereas 90-95% of the striatal neurons were striatin-positive, only about 50% of the sections of dendritic spines engaged in asymmetrical synaptic contacts exhibited striatin labelling. Among the sections of striatin-immunopositive dendritic spines, the number of immunogold particles ranged from one to more than seven, indicating an heterogeneity of the spine labelling. Moreover, within each class of spines presenting at least two silver-gold particles, the distribution of the particles varied from a clear-cut alignment under the postsynaptic densities (24-33% of spines) to a location distant from the synaptic area. In the cell bodies and dendrites, striatin labelling was usually not associated with the cytoplasmic membrane nor with the postsynaptic densities. In the striatum ipsilateral to the tracer injections, only 34.8% of the synaptic contacts formed by corticostriatal afferents involved striatin-positive elements (slightly labelled dendritic spines), whereas 56.7% of the synaptic contacts formed by thalamostriatal boutons were made on striatin-positive targets (mostly dendrites). In both cases, striatin labelling was usually not associated with the postsynaptic density. Most of the immunoreactive dendritic spines were in contact with unidentified afferents. These data reveal that striatin is expressed in the vast majority of the cell bodies of striatal spiny neurons, but is heterogeneously distributed among the dendritic spines of those neurons. Data also indicate a preferential relationship between striatin-containing structures and afferents from the parafascicular thalamic nucleus with respect to the frontoparietal cerebral cortex. But, at the dendritic spine level, striatin may be involved in signal transduction mechanisms involving as yet unidentified excitatory afferents to striatal neurons.
Collapse
Affiliation(s)
- P Kachidian
- Laboratoire de Neurobiologie Cellulaire et Fonctionnelle, UPR 9013, CNRS, Marseille, France
| | | | | | | | | | | |
Collapse
|
27
|
Sharpe NA, Tepper JM. Postnatal development of excitatory synaptic input to the rat neostriatum: an electron microscopic study. Neuroscience 1998; 84:1163-75. [PMID: 9578403 DOI: 10.1016/s0306-4522(97)00583-6] [Citation(s) in RCA: 50] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The distribution and density of asymmetric synapses including biocytin-labelled corticostriatal synapses of the rat neostriatum were examined at postnatal day 10 (P10), P15, P21 and in adults. The density of asymmetric synapses in the adult neostriatum (28.0 synapses/100 microm2) was significantly greater than that in neonates at P15 (14.4 synapses/100 microm2) and P10 (11.5 synapses/100 microm2), but not at P21 (24.2+/-1.5 synapses/100 microm2). The increased density of asymmetric synapses in the adult neostriatum was due primarily to an increase in the number of axospinous synapses. The density of axospinous synapses was greatest in adults (22.3 synapses/100 microm2) and significantly less at P21 (15.3 synapses/100 microm2), P15 (5.9 synapses/100 microm2), and P10 (2.0 synapses/100 microm2). The density of axodendritic synapses, however, remained similar at all ages (adult, 3.9+/-1.1 synapses/100 microm2; P21, 6.0+/-1.2 synapses/100 microm2; P15, 5.7+/-0.8 synapses/100 microm2 or P10, 7.2+/-1.3 synapses/100 microm2). Iontophoretic injection of biocytin into the lateral frontal agranular cortex produced labelling of corticostriatal afferents which formed asymmetric synapses in the neostriatum. The distribution of termination sites of biocytin-labelled corticostriatal boutons showed a pattern of development similar to the unlabelled asymmetric synapses. The present study shows that the increase in the overall number of asymmetric synapses over the first three postnatal weeks can be attributed to an increase in the density of asymmetric axospinous synapses. During the same period little change is noted in the number or density of asymmetric axodendritic synapses. These changes in excitatory synaptic input to medium spiny neurons may explain some of the previously described electrophysiological differences noted between the neonatal and adult neostriatum.
Collapse
Affiliation(s)
- N A Sharpe
- Aidekman Research Center, Center for Molecular and Behavioral Neuroscience, Rutgers, The State University of New Jersey, Newark, USA
| | | |
Collapse
|
28
|
Fricker RA, Torres EM, Hume SP, Myers R, Opacka-Juffrey J, Ashworth S, Brooks DJ, Dunnett SB. The effects of donor stage on the survival and function of embryonic striatal grafts in the adult rat brain. II. Correlation between positron emission tomography and reaching behaviour. Neuroscience 1997; 79:711-21. [PMID: 9219935 DOI: 10.1016/s0306-4522(96)00657-4] [Citation(s) in RCA: 82] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Grafts of embryonic striatal primordia are able to elicit behavioural recovery in rats which have received an excitotoxic lesion to the striatum, and it is believed that the P zones or striatal-like tissue within the transplants play a crucial role in these functional effects. We performed this study to compare the effects of different donor stage of embryonic tissue on both the morphology (see accompanying paper) and function of striatal transplants. Both the medial and lateral ganglionic eminence was dissected from rat embryos of either 10 mm, 15 mm, 19 mm, or 23 mm crown-rump length, and implanted as a cell suspension into adult rats which had received an ibotenic acid lesion 10 days prior to transplantation. After four months the animals were tested on the "staircase task" of skilled forelimb use. At 10-14 months rats from the groups which had received grafts from 10 mm or 15 mm donor embryos were taken for positron emission tomography scanning in a small diameter positron emission tomography scanner, using ligands to the dopamine D1 and D2 receptors, [11C]SCH 23390 and [11C]raclopride, respectively. A lesion-alone group was also scanned with the same ligands for comparison. Animals which had received transplants from the 10 mm donors showed a significant recovery with their contralateral paw on the "staircase test". No other groups showed recovery on this task. Similarly, the animals with grafts from the youngest donors showed a significant increase in D1 and D2 receptor binding when compared to the lesion-alone group. No increase in signal was observed with either ligand in the group which had received grafts from 15 mm donors. Success in paw reaching showed a strong correlation to both the positron emission tomography signal obtained and the P zone volume of the grafts. These results suggest that striatal grafts from younger donors (10 mm CRL) give greater behavioural recovery than grafts prepared from older embryos. This recovery is due to both the increased proportion of striatal-like tissue within the grafts and an increase in functional D1 and D2 dopamine receptors measured by positron emission tomography, i.e. a more extensive integration of the graft with the host brain.
Collapse
Affiliation(s)
- R A Fricker
- Department of Experimental Psychology and MRC Cambridge Centre for Brain Repair, University of Cambridge, U.K
| | | | | | | | | | | | | | | |
Collapse
|
29
|
de la Cruz RR, Pastor AM, Delgado-García JM. Influence of the postsynaptic target on the functional properties of neurons in the adult mammalian central nervous system. Rev Neurosci 1996; 7:115-49. [PMID: 8819206 DOI: 10.1515/revneuro.1996.7.2.115] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
In this review we have attempted to summarize present knowledge concerning the regulatory role of target cells on the expression and maintenance of the neuronal phenotype during adulthood. It is well known that in early developmental stages the survival of neurons is maintained by specific neurotrophic factors derived from their target tissues. Neuronal survival is not the only phenotype that is regulated by target-derived neurotrophic factors since the expression of electrophysiological and cytochemical properties of neurons is also affected. However, a good deal of evidence indicates that the survival of neurons becomes less dependent on their targets in the adult stage. The question is to what extent are target cells still required for the maintenance of the pre-existing or programmed state of the neuron; i.e., what is the functional significance of target-derived factors during maturity? Studies addressing this question comprise a variety of neuronal systems and technical approaches and they indicate that trophic interactions, although less apparent, persist in maturity and are most easily revealed by experimental manipulation. In this respect, research has been directed to analyzing the consequences of disconnecting a group of neurons from their target-by either axotomy or selective target removal using different neurotoxins-and followed (or not) by the implant of a novel target, usually a piece of embryonic tissue. Numerous alterations have been described as taking place in neurons following axotomy, affecting their morphology, physiology and metabolism. All these neuronal properties return to normal values when regeneration is successful and reinnervation of the target is achieved. Nevertheless, most of the changes persist if reinnervation is prevented by any procedure. Although axotomy may represent, besides target disconnection, a cellular lesion, alternative approaches (e.g., blockade of either the axoplasmic transport or the conduction of action potentials) have been used yielding similar results. Moreover, in the adult mammalian central nervous system, neurotoxins have been used to eliminate a particular target selectively and to study the consequences on the intact but target-deprived presynaptic neurons. Target depletion performed by excitotoxic lesions is not followed by retrograde cell death, but targetless neurons exhibit several modifications such as reduction in soma size and in the staining intensity for neurotransmitter-synthesizing enzymes. Recently, the oculomotor system has been used as an experimental model for evaluating the functional effects of target removal on the premotor abducens internuclear neurons whose motoneuronal target is destroyed following the injection of toxic ricin into the extraocular medial rectus muscle. The functional characteristics of these abducens neurons recorded under alert conditions simultaneously with eye movements show noticeable changes after target loss, such as a general reduction in firing frequency and a loss of the discharge signals related to eye position and velocity. Nevertheless, the firing pattern of these targetless abducens internuclear neurons recovers in parallel with the establishment of synaptic contacts on a presumptive new target: the small oculomotor internuclear neurons located in proximity to the disappeared target motoneurons. The possibility that a new target may restore neuronal properties towards a normal state has been observed in other systems after axotomy and is also evident from experiments of transplantation of immature neurons into the lesioned central nervous system of adult mammals. It can be concluded that although target-derived factors may not control neuronal survival in the adult nervous system, they are required for the maintenance of the functional state of neurons, regulating numerous aspects of neuronal structure, chemistry and electro-physiology.(ABSTRUCT TRUNCATED)
Collapse
Affiliation(s)
- R R de la Cruz
- Departamento de Fisiología y Biología Animal, Facultad de Biología, Universidad de Sevilla, Spain
| | | | | |
Collapse
|
30
|
|
31
|
Liste I, Rozas G, Guerra MJ, Labandeira-Garcia JL. Cortical stimulation induces Fos expression in striatal neurons via NMDA glutamate and dopamine receptors. Brain Res 1995; 700:1-12. [PMID: 8624698 DOI: 10.1016/0006-8993(95)00958-s] [Citation(s) in RCA: 43] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Cortical electrical stimulation has been shown to induce dense and widespread Fos expression throughout the ipsilateral and contralateral striatum. This raises interest for studying the mechanisms underlying the regulation of striatal neuron activity by cortical afferents, and for elucidating the interactions with other systems. However, the receptors mediating cortical-stimulation-induced expression of Fos in striatal neurons have not been identified. This was studied in the work reported here by stimulating the cortex after administration of glutamate or dopamine receptor antagonists, or after 6-hydroxydopamine (6-OHDA) lesion of the nigrostriatal dopaminergic system. Pretreatment with the non-competitive N-methyl-D-aspartate (NMDA) glutamate receptor antagonist MK-801 led to a marked reduction in the stimulation-induced density of Fos-immunoreactive nuclei in both the medial (about 80% reduction) and lateral (about 50-60% reduction) striatum. Preadministration of the D1-selective dopamine antagonist SCH-23390 alone or in combination with the D2-selective dopamine antagonist eticlopride led to a reduction in the stimulation-induced density of Fos-positive nuclei of about 60-65% in the lateral striatum, but no significant change in the medial region. The effects of 6-OHDA lesion were less pronounced, and the stimulation-induced density of Fos-immunoreactive nuclei decreased by only about 25% in the lateral region. These results indicate that both dopamine and NMDA glutamate receptors are involved in the induction of Fos by cortical stimulation, and support the hypothesis that cortex-dopamine interactions in the lateral striatum may be functionally different from those in the medial striatum.
Collapse
Affiliation(s)
- I Liste
- Department of Morphological Sciences, Faculty of Medicine, University of Santiago de Compostela, Spain
| | | | | | | |
Collapse
|
32
|
Peschanski M, Cesaro P, Hantraye P. Rationale for intrastriatal grafting of striatal neuroblasts in patients with Huntington's disease. Neuroscience 1995; 68:273-85. [PMID: 7477940 DOI: 10.1016/0306-4522(95)00162-c] [Citation(s) in RCA: 115] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Huntington's disease is a genetic disease, autosomal and dominant, that induces motor disorders, an inexorable deterioration of higher brain functions and psychiatric disturbances. At present, there are no known therapeutics against Huntington's disease. The Network of European CNS Transplantation and Restoration (NECTAR) has begun a program aimed at defining the conditions under which intrastriatal transplantation of fetal striatal cells could be attempted as an experimental treatment for Huntington's disease. This review presents the reasons why our group is considering participating in these trials. The validity of this therapeutic approach is supported by three main series of data: (i) neuropathological, clinical and imaging data indicate that Huntington's disease is, above all, a localized affection of a specific neuronal population ("medium-spiny" neurons) in the striatum; (ii) a large body of experimental results, obtained in rats and non-human primates, demonstrates that transplanted fetal striatal cells are able to integrate the host brain and to substitute for previously lesioned host striatal neurons; (iii) expertise in clinical neural transplantation has now been acquired from the treatment of patients with Parkinson's disease. These different sets of data are presented and discussed in this review. There are a number of problems which do not yet appear to be entirely resolved, nor are they likely to be using the experimental models currently available. These problems are identified and explicitly presented as working hypotheses. (1) Anatomo-functional results obtained in rodents and non-human primates with excitotoxic striatal lesions can serve as a basis for the extrapolation of what can be obtained from patients with Huntington's disease. (2). Huntington's disease can be efficiently fought by substituting degenerated striatal neurons alone. (3) Huntington's disease is due to a genetic defect which either hits the neurons that carry it directly or hits them indirectly only after several decades. Transplanted neurons, because they do not carry the gene or because they are of fetal origin, will not be rapidly affected by the ongoing disease process. Given the current state of knowledge, intracerebral transplantation appears to be the most serious opportunity (if not the only one that has been experimentally validated) for clinical improvement to be obtained in patients with Huntington's disease. The purpose of this review is to open a scientific discussion on its experimental bases before actual clinical trials start.
Collapse
Affiliation(s)
- M Peschanski
- INSERM U 421, IM3, Neuroplasticité et Thérapeutique, Faculté de Médecine, Créteil, France
| | | | | |
Collapse
|
33
|
Yung KK, Bolam JP, Smith AD, Hersch SM, Ciliax BJ, Levey AI. Immunocytochemical localization of D1 and D2 dopamine receptors in the basal ganglia of the rat: light and electron microscopy. Neuroscience 1995; 65:709-30. [PMID: 7609871 DOI: 10.1016/0306-4522(94)00536-e] [Citation(s) in RCA: 408] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
The modulatory actions of dopamine on the flow of cortical information through the basal ganglia are mediated mainly through two subtypes of receptors, the D1 and D2 receptors. In order to examine the precise cellular and subcellular location of these receptors, immunocytochemistry using subtype specific antibodies was performed on sections of rat basal ganglia at both the light and electron microscopic levels. Both peroxidase and pre-embedding immunogold methods were utilized. Immunoreactivity for both D1 and D2 receptors was most abundant in the neostriatum where it was mainly contained within spiny dendrites and in perikarya. Although some of the immunoreactive perikarya had characteristics of interneurons, most were identified as medium-sized spiny neurons. Immunoreactivity for D1 receptor but not D2 receptor was associated with the axons of the striatonigral pathway and axons and terminals in the substantia nigra pars reticulata and the entopeduncular nucleus. In contrast, D2 immunoreactivity but not D1 immunoreactivity was present in the dopaminergic neurons in the substantia nigra pars compacta and ventral pars reticulata. In the globus pallidus, little immunoreactivity for either D1 or D2 receptor was detected. At the subcellular level, D1 and D2 receptor immunoreactivity was found to be mainly associated with the internal surface of cell membranes. In dendrites and spines immunoreactivity was seen in contact with the membranes postsynaptic to terminals forming symmetrical synapses and less commonly, asymmetrical synapses. The morphological features and membrane specializations of the terminals forming symmetrical synapses are similar to those of dopaminergic terminals previously identified by immunocytochemistry for tyrosine hydroxylase. In addition to immunoreactivity associated with synapses, a high proportion of the immunoreactivity was also on membranes at non-synaptic sites. It is concluded that dopamine receptor immunoreactivity is mainly associated with spiny output neurons of the neostriatum and that there is a selective association of D1 receptors with the so-called direct pathway of information flow through the basal ganglia, i.e. the striatoentopeduncular and striatonigral pathways. Although there is an association of receptor immunoreactivity with afferent synaptic inputs a high proportion is located at extrasynaptic sites.
Collapse
Affiliation(s)
- K K Yung
- MRC Anatomical Neuropharmacology Unit, Oxford, U.K
| | | | | | | | | | | |
Collapse
|
34
|
Campbell K, Björklund A. Neurotransmitter-related gene expression in intrastriatal striatal transplants. III. Regulation by host cortical and dopaminergic afferents. BRAIN RESEARCH. MOLECULAR BRAIN RESEARCH 1995; 29:263-72. [PMID: 7609615 DOI: 10.1016/0169-328x(94)00258-g] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Grafted striatal neurons have previously been shown to receive innervation from both the host cerebral cortex and dopaminergic substantia nigra. In the present study, we have used quantitative in situ hybridization histochemistry for striatal neuropeptide mRNAs, to determine the extent of functional integration exhibited by these two afferent systems. DARPP-32, preproenkephalin (PPE) and preprotachykinin (PPT) mRNAs were all expressed within discrete patches of the graft (termed P-regions) which corresponded well with each other on adjacent sections. Dopamine-depleting 6-OHDA lesions resulted in a marked increase in PPE mRNA levels and a concomitant decrease in PPT mRNA expression both in the remaining host striatum and in the P-regions of the graft. In a previous report [7], we have shown that cortical and dopaminergic afferents to the striatum interact in the regulation of PPE mRNA expression, such that in the absence of functional dopaminergic inputs, intact prefrontal corticostriatal afferents are necessary in order to maintain increased PPE mRNA levels. In the present study, we observed that cortical knife cut lesions placed at the level of the foreceps minor in previously 6-OHDA-lesioned animals resulted in a normalization of PPE mRNA expression, not only in the remaining host striatum but also within the P-regions of striatal grafts. Cellular analysis showed that this normalization was most pronounced in the peripherally situated P-regions (along the graft borders), which are known to receive dense host-derived cortical input. The cortical lesions had no significant effect on the 6-OHDA-induced reduction of PPT mRNA levels neither in the remaining lost striatum nor in the striatal graft. The expression of DARPP-32 mRNA in the remaining host striatum or striatal graft was not affected by either 6-OHDA lesion or cortical transection, demonstrating the specificity of the cortical lesion effect. These results indicate that both cortical and dopaminergic afferents originating in the host, functionally regulate neuropeptide mRNA expression within the striatal grafts, and that the two afferent systems interact with each other in the regulation of enkephalin gene expression in grafted neurons. On basis of recent results [9] showing that the enkephalin-expressing neurons are identical, at least in part, to efferent graft neurons projecting to the host globus pallidus, it is proposed that the cortical-dopamine interaction demonstrated here may play an important role in the recovery of complex motor performance induced by the striatal transplants.
Collapse
Affiliation(s)
- K Campbell
- Department of Medical Cell Research, University of Lund, Sweden
| | | |
Collapse
|
35
|
Dunnett SB. Functional repair of striatal systems by neural transplants: evidence for circuit reconstruction. Behav Brain Res 1995; 66:133-42. [PMID: 7755884 DOI: 10.1016/0166-4328(94)00134-2] [Citation(s) in RCA: 70] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Intrastriatal grafts of nigral and adrenal tissues have been found to be effective in alleviating many of the simple motor and sensorimotor deficits associated with lesions of the nigrostriatal dopamine system. However, the mechanisms by which such grafts exert their effects may be less specific than originally conceived, and both pharmacological and trophic actions play an essential role. Damage to intrinsic cortico-striatal circuits are unlikely to prove similarly amenable to such diffuse mechanisms of repair. Nevertheless, striatal grafts have been found to alleviate cognitive and motor deficits after excitotoxic lesions of the neostriatum. Accumulating evidence suggests that in this particular case many aspects of functional recovery may indeed be attributable to the striatal grafts providing an effective functional reconstruction of damaged neuronal circuits within the host brain.
Collapse
Affiliation(s)
- S B Dunnett
- MRC Cambridge Centre for Brain Repair, University of Cambridge, UK
| |
Collapse
|
36
|
Campbell K, Wictorin K, Björklund A. Neurotransmitter-related gene expression in intrastriatal striatal transplants--II. Characterization of efferent projecting graft neurons. Neuroscience 1995; 64:35-47. [PMID: 7708212 DOI: 10.1016/0306-4522(94)00411-w] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
The phenotypic characteristics of identified graft neurons in intrastriatal striatal transplants which give rise to efferent projections innervating the host brain were examined using a combination of in situ hybridization histochemistry and fluorescent retrograde tracing. Cell suspension grafts of embryonic day 14-15 rat striatal primordia (including both the medial and lateral ganglionic eminences) were implanted into the previously excitotoxically lesioned striatum of adult rats, and after longer than one year the retrograde tracer Fluoro-Gold was injected bilaterally into either the globus pallidus or the substantia nigra. Injections into the globus pallidus resulted in significant retrograde labelling of graft neurons within most of the experimental animals, whereas very few graft cells were labelled after the nigral injections. The vast majority of the neurons retrogradely labelled from the globus pallidus occurred in clusters or patches in the caudal half of the transplants, which corresponded well with DARPP-32 messenger RNA expressing (i.e. striatal) regions of the grafts. Indeed, within these Fluoro-Gold-labelled graft patches, the proportion of retrogradely labelled cells found to contain DARPP-32 messenger RNA was identical to that observed in the intact striatum after similar pallidal injections (93%). In addition, some Fluoro-Gold-labelled cells were found scattered outside the DARPP-32-positive cell clusters; these cells were overall larger and rarely (c. 9%) DARPP-32 messenger RNA-positive. Messenger RNA encoding for glutamate decarboxylase (which was found in 95% of Fluoro-Gold-labelled neurons in the intact striatum) was detected in almost all retrogradely labelled graft neurons located in both the DARPP-32-positive patches of retrograde labelling (93%) and in the DARPP-32-negative regions (82%). In the intact striatum, neurons labelled after pallidal injections of Fluoro-Gold were observed to express preproenkephalin messenger RNA to a greater extent than preprotachykinin messenger RNA (81% vs 21%). Conversely, within the grafts, retrogradely labelled neurons in the patches of Fluoro-Gold-labelled cells were more often found to contain preprotachykinin messenger RNA (50%) than preproenkephalin messenger RNA (21%). The Fluoro-Gold-labelled cells scattered outside the patches of retrograde labelling rarely expressed either preproenkephalin or preprotachykinin messenger RNA. Fluoro-Gold injections into the host substantia nigra resulted in very few retrogradely labelled graft neurons; however, many (85%) of these cells were observed to express glutamate decarboxylase messenger RNA, while only rarely were they observed to contain either DARPP-32, preproenkephalin or preprotachykinin messenger RNAs (c. 10%).(ABSTRACT TRUNCATED AT 250 WORDS)
Collapse
Affiliation(s)
- K Campbell
- Department of Medical Cell Research, University of Lund, Sweden
| | | | | |
Collapse
|
37
|
Campbell K, Wictorin K, Björklund A. Neurotransmitter-related gene expression in intrastriatal striatal transplants--I. Phenotypical characterization of striatal and non-striatal graft regions. Neuroscience 1995; 64:17-33. [PMID: 7708203 DOI: 10.1016/0306-4522(94)00412-x] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
In the present study, we have re-examined the heterogeneous nature of intrastriatal striatal transplants derived from embryonic day 14-15 rat striatal primordia implanted into the previously excitotoxically lesioned striatum of adult rats, using in situ hybridization histochemistry to localize neurotransmitter-related messenger RNAs. These grafts are characterized by discrete patches of DARPP-32 messenger RNA expression, which cover approximately one-third of the cross-sectional graft area. The messenger RNAs encoding for preproenkephalin (the enkephalin precursor), preprotachykinin (precursor to substance P), choline acetyltransferase, as well as the D1 and D2 dopamine receptors, which are abundant in the normal striatum, were all present in the striatal grafts and were expressed almost exclusively in the DARPP-32-positive graft regions. In these graft regions, the expression of the neurotransmitter-related messenger RNAs was generally similar to that seen in the intact striatum, although the level of expression of preproenkephalin and preprotachykinin messenger RNAs varied notably among the patches of expression. Cellular analysis performed on individual patches showed that the expression per cell of preproenkephalin and preprotachykinin messenger RNAs was inversely related, such that patches with higher than normal preproenkephalin messenger RNA levels displayed lower than normal preprotachykinin messenger RNA levels, and vice versa. Moreover, messenger RNA expression for the dopamine D2 receptor was overall lower than that for the dopamine D1 receptor, both with respect to the level per cell and the number of positive cells within the DARPP-32 patches. Glutamate decarboxylase messenger RNA was expressed throughout the grafts, in 98% of all neurons located in the DARPP-32-positive regions and in 75% of all neurons in the non-DARPP-32 regions of the graft. Interestingly, the cellular expression of glutamate decarboxylase messenger RNA was considerably higher in the non-DARPP-32 expressing regions than that in the DARPP-32 messenger RNA-rich areas, where it approximated that of the intact striatum. Furthermore, grafted neurons located outside the DARPP-32-expressing regions displayed similar levels of expression to those found in the overlying cortex and in the closely adjacent globus pallidus. To further characterize the DARPP and non-DARPP graft compartments, messenger RNAs encoding the alpha 1 and beta 2 subunits of the GABAA receptor were studied. These receptor subunits, which exhibit a high expression in the host cortex and pallidum but little in the intact striatum, were found in discrete patches situated outside, but often closely associated with, the DARPP-32-rich areas of the graft.(ABSTRACT TRUNCATED AT 400 WORDS)
Collapse
Affiliation(s)
- K Campbell
- Department of Medical Cell Research, University of Lund, Sweden
| | | | | |
Collapse
|
38
|
Deacon TW, Pakzaban P, Isacson O. The lateral ganglionic eminence is the origin of cells committed to striatal phenotypes: neural transplantation and developmental evidence. Brain Res 1994; 668:211-9. [PMID: 7704606 DOI: 10.1016/0006-8993(94)90526-6] [Citation(s) in RCA: 182] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
In order to determine whether the lateral ganglionic eminence (LGE) of the fetal telencephalon is the primary source of striatal precursors in striatal transplants and tissue cultures, cells derived exclusively from the LGE of fetal rat brains were transplanted into the quinolinic-acid-lesioned striatum of adult rats. After 2-3 months they produced grafts that were almost entirely AChE-positive as well as DARPP-32-, TH-, and calbindin-immunoreactive. The grafts were integrated into the host striatum so that host corticofugal fiber tracts interdigitated with graft tissues similar to the way they penetrate the gray matter of the normal striatum. Fast Blue dye injected into the ipsilateral globus pallidus of LGE grafted produced retrogradely labeled neurons within the grafts, but Fluorogold dye injected into the ipsilateral substantia nigra did not. In a separate experiment using DARPP-32-immunohistochemstry as a striatal marker, fetal (E16) and neonatal (P2) rat brains showed DARPP-32 immunoreactivity in the LGE but not in the adjacent medial ganglionic eminence (MGE). In summary, both fetal LGE cells and LGE grafts express specific striatal markers, and LGE grafts integrate into the host striatum and innervate the major striatal efferent target within the host brain. These data suggest that the LGE is the origin of cells committed to striatal phenotypes in the developing brain.
Collapse
Affiliation(s)
- T W Deacon
- Neuroregeneration Laboratory, McLean Hospital, Belmont, MA 02178, USA
| | | | | |
Collapse
|
39
|
Abstract
High voltage electron microscopy (HVEM) and HVEM tomography of selectively stained cell processes in the neostriatum have offered an alternative to serial thin section reconstruction for accurate 3-D visualization and measurement of axons, dendrites, and dendritic spines. Tissue preparation is simple and rapid, allowing examination of large numbers of specimens required for quantitation of neuronal morphology. The resolution of the images exceeds that available from any light microscopic technique and is appropriate for measurement of the finest axons and dendritic spine necks. HVEM tomography allows the direct measurement of dendritic surface area, required for computational modeling of synaptic integration.
Collapse
Affiliation(s)
- C J Wilson
- Department of Anatomy, University of Tennessee, Memphis 38163
| |
Collapse
|
40
|
Bennett BD, Bolam JP. Synaptic input and output of parvalbumin-immunoreactive neurons in the neostriatum of the rat. Neuroscience 1994; 62:707-19. [PMID: 7870301 DOI: 10.1016/0306-4522(94)90471-5] [Citation(s) in RCA: 209] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Previous studies have demonstrated that the calcium-binding protein parvalbumin, is located within a population of GABAergic interneurons in the neostriatum of the rat. Anatomical studies have revealed that these cells receive asymmetrical synaptic input from terminals that are similar to identified cortical terminals and that they innervate neurons with the ultrastructural features of medium spiny cells. Furthermore, electrophysiological studies suggest that some GABAergic interneurons in the neostriatum receive direct excitatory input from the cortex and inhibit medium spiny cells following cortical stimulation. The main objectives of the present study were (i) to determine whether parvalbumin-immunoreactive neurons in the rat receive direct synaptic input from the cortex, (ii) to determine whether parvalbumin-immunopositive axon terminals innervate identified striatal projection neurons and (iii) to chemically characterize this anatomical circuit at the fine structural level. Rats received stereotaxic injections of biocytin in the frontal cortex or injections of neurobiotin in the substantia nigra. Following an appropriate survival time, the animals were perfused and the brains were sectioned and treated to reveal the transported tracers. Sections containing the neostriatum were treated for simultaneous localization of the transported tracer and parvalbumin immunoreactivity. Tracer deposits in the cortex gave rise to massive terminal and fibre labelling in the neostriatum. Parvalbumin-immunoreactive elements located within fields of anterogradely labelled terminals were examined in the electron microscope and corticostriatal terminals were found to form asymmetrical synaptic specializations with all parts of parvalbumin-immunoreactive neurons that were examined. Tracer deposits in the substantia nigra produced retrograde labelling of a subpopulation of striatonigral neurons. Areas of the neostriatum and nucleus accumbens containing retrogradely labelled neurons and parvalbumin-immunoreactive structures were selected for electron microscopy. Parvalbumin-immunopositive axon terminals formed symmetrical synaptic specializations with the perikarya of retrogradely labelled medium spiny projection neurons. Postembedding immunocytochemistry for GABA revealed that parvalbumin-immunoreactive boutons in synaptic contact with medium spiny neurons were GABA-positive. These data demonstrate directly a neural circuit whereby cortical information may be passed to medium spiny cells, via GABAergic interneurons, in the form of inhibition and provide an anatomical substrate for the feed-forward inhibition that has been detected in spiny neurons in electrophysiological experiments.
Collapse
Affiliation(s)
- B D Bennett
- MRC Anatomical Neuropharmacology Unit, Oxford, UK
| | | |
Collapse
|
41
|
Labandeira-Garcia JL, Guerra MJ. Cortical stimulation induces fos expression in intrastriatal striatal grafts. Brain Res 1994; 652:87-97. [PMID: 7953725 DOI: 10.1016/0006-8993(94)90321-2] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Innervation of intrastriatal grafts of fetal striatal tissue by host corticostriatal projections has been shown in a number of previous studies in rats. In the work reported here, induction of Fos protein in grafted striatal neurons by electrical stimulation of the host frontoparietal cortex has been used as cell-level marker of corticostriatal postsynaptic responses within the striatal grafts. Unilateral cortical stimulation 30 min before sacrifice led to bilateral widespread and intense Fos induction throughout the normal striatum, although the response was somewhat more intense ipsilaterally and in the dorsolateral rostral striatum. In adult rats whose striatum had been lesioned with ibotenic acid 10-12 days prior to implantation of fetal striatal tissue, 3- and 18-month-old striatal grafts showed Fos immunoreactivity in a considerable number of cells after either bilateral, or ipsilateral (approximately 30-40% of the density of Fos-immunoreactive cells in the normal striatum) or contralateral cortical stimulation. Double-Fos and -DARPP-32 immunohistochemistry revealed that the Fos-immunoreactive nuclei were concentrated in the DARPP-32-positive (i.e. striatum-like) patches, which contained approximately 60% of the density of Fos-positive nuclei in the normal striatum after either ipsilateral or bilateral stimulation. However, Fos-immunoreactive nuclei were unevenly distributed within the DARPP-32-positive compartment of the graft, with some clusters of Fos-immunoreactive nuclei at 2-3 x the density observed in the normal striatum and other areas with Fos-immunoreactive nuclei present at lower density or absent. Fos induction was also observed in 4-week-old grafts, indicating that functional corticostriatal synaptic contacts develop rapidly. Striatal grafts implanted either in non-lesioned host striatum or in long-term (18 months) lesioned striatum, similarly showed Fos-positive nuclei after cortical stimulation, indicating that host corticostriatal fibers are equally capable of establishing functional synaptic contacts under these conditions. These results indicate that host corticostriatal fibres not only form an axonal network within the graft but also induce postsynaptic responses which may contribute to the observed graft-induced amelioration of lesion-derived behavioural deficits.
Collapse
Affiliation(s)
- J L Labandeira-Garcia
- Department of Morphological Sciences, Faculty of Medicine, University of Santiago de Compostela, Spain
| | | |
Collapse
|
42
|
Smith Y, Bennett BD, Bolam JP, Parent A, Sadikot AF. Synaptic relationships between dopaminergic afferents and cortical or thalamic input in the sensorimotor territory of the striatum in monkey. J Comp Neurol 1994; 344:1-19. [PMID: 7914894 DOI: 10.1002/cne.903440102] [Citation(s) in RCA: 213] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
The cerebral cortex and the intralaminar thalamic nuclei are the major sources of excitatory glutamatergic afferents to the striatum, whereas the midbrain catecholaminergic neurones provide a dense intrastriatal plexus of dopamine-containing terminals. Evidence from various sources suggests that there is a functional interaction between the glutamate- and dopamine-containing terminals in the striatum. The aim of the present study was to determine the synaptic relationships between cortical or thalamic inputs and the dopaminergic afferents in the sensorimotor territory of the monkey striatum. To address this issue, anterograde tracing in combination with immunocytochemistry for tyrosine hydroxylase (TH) was carried out by light and electron microscopy. Squirrel monkeys received injections of biocytin in the primary motor and somatosensory cortical areas or injections of either Phaseolus vulgaris-leucoagglutinin (PHA-L) or biocytin in the centromedian nucleus (CM) of the thalamus. Sections that included the striatum were processed to visualize the anterograde tracers alone or in combination with TH immunoreactivity. The anterogradely labelled fibres from the cerebral cortex and CM display a band-like pattern and are exclusively confined to the postcommissural region of the putamen, whereas TH-immunoreactive axon terminals are homogeneously distributed throughout the entire extent of the striatum. Electron microscopic analysis revealed that the anterogradely labelled terminals from the cerebral cortex form asymmetric synapses almost exclusively with the heads of dendritic spines. The thalamic terminals also form asymmetric synapses, but in contrast to cortical fibres, predominantly with dendrites (67.4%) and less frequently with spines (32.6%). The TH-immunoreactive boutons are heterogeneous in morphology. The most common type (84% of the total population) forms symmetric synapses; of these the majority is in contact with dendritic shafts (72.1%), less with spines (22.5%) and few with perikarya (5.4%). In sections processed to reveal anterogradely labelled cortical fibres and TH-immunoreactive structures, individual spines of striatal neurones were found to receive convergent synaptic inputs from both cortical and TH-immunoreactive boutons. In contrast, anterogradely labelled thalamic terminals and TH-immunoreactive boutons were never seen to form convergent synaptic contacts on the same postsynaptic structure. These findings suggest that the dopaminergic afferents are located to subserve a more specific modulation of afferent cortical input than afferent thalamic input in the sensorimotor territory of the striatum in primates.
Collapse
Affiliation(s)
- Y Smith
- Centre de Recherche en Neurobiologie, Hôpital de l'Enfant-Jésus, Université Laval, Québec, Canada
| | | | | | | | | |
Collapse
|
43
|
Labandeira-Garcia JL, Tobio JP, Guerra MJ. Comparison between normal developing striatum and developing striatal grafts using drug-induced Fos expression and neuron-specific enolase immunohistochemistry. Neuroscience 1994; 60:399-415. [PMID: 7915411 DOI: 10.1016/0306-4522(94)90253-4] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
The cell-level functional maturation of cell suspension grafts from embryonic day 14-15 rat striatal primordia implanted unilaterally into ibotenic acid lesioned striata of adult female rats was studied from two days to 10 weeks post-grafting. The functional and morphological characteristics of the grafts were compared with those of adult grafts (one year after implantation), normal adult striata and postnatal developing striata (up to four weeks after birth). Serial sections were stained with Cresyl Violet and investigated immunohistochemically with antibodies against dopamine- and adenosine 3',5'-monophosphate-regulated phosphoprotein (DARPP-32, as a striatal marker), tyrosine hydroxylase (as a marker of dopaminergic fibres), Fos protein (as a cell-level marker of functional dopaminergic host-graft interactions), and neuron-specific enolase (correlated to differentiation and functional maturation of neuronal cells). Selected sections were double-stained for DARPP-32 and either tyrosine hydroxylase, Fos or neuron-specific enolase. The rats used to study dopamine receptor-activated expression of Fos were killed 2 h after administration of either the dopamine-releasing agent D-amphetamine (5 mg/kg intraperitoneally) or the dopamine-receptor agonist apomorphine (0.25 mg/kg subcutaneously, at which dosage it is active only on supersensitive receptors of denervated neurons). In normally developing rats, amphetamine induced Fos expression in both the striatum and globus pallidus by two weeks after birth; by four weeks, the pattern of amphetamine-induced Fos immunoreactivity was similar to that observed in adults. In the globus pallidus of both two- and three-week-old rats, amphetamine induced greater expression of Fos than in adults. Apomorphine did not induce appreciable Fos activation in either the striatum or the globus pallidus at any stage of development. In striatal grafts, amphetamine induced Fos expression from three weeks after implantation onwards, and by five to 10 weeks post-grafting the pattern of Fos immunoreactivity was similar to that observed in adult grafts. However, apomorphine induced a considerable number of Fos-positive nuclei in striatal grafts at three and four weeks after grafting. Neuron-specific enolase immunoreactivity was moderate in normal adult striatum and very high in the adult globus pallidus, and mainly located in neuronal perikarya and processes. Before two weeks of age, most neuron-specific enolase immunoreactivity was observed in internal capsule fascicles and the striatal afferents. Between two and four weeks after birth, neuron-specific enolase immunoreactivity in striatal and globus pallidus neurons gradually increased, while that in afferent fibres decreased to adult levels.(ABSTRACT TRUNCATED AT 400 WORDS)
Collapse
Affiliation(s)
- J L Labandeira-Garcia
- Department of Morphological Sciences, Faculty of Medicine, University of Santiago de Compostela, Spain
| | | | | |
Collapse
|
44
|
de la Cruz RR, Pastor AM, Delgado-García JM. Effects of target depletion on adult mammalian central neurons: functional correlates. Neuroscience 1994; 58:81-97. [PMID: 7512704 DOI: 10.1016/0306-4522(94)90157-0] [Citation(s) in RCA: 29] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
The physiological signals and patterns of synaptic connectivity that CNS neurons display after the loss of their target cells were evaluated in adult cats for one year. Abducens internuclear neurons were chosen as the experimental model because of their highly specific projection onto the medial rectus motoneurons of the oculomotor nucleus. Selective death of medial rectus motoneurons was induced by the injection into the medial rectus muscle of ricin, a potent cytotoxic lectin that leaves the presynaptic axons intact. The electrical activity of antidromically identified abducens internuclear neurons was recorded in chronic alert animals, during both spontaneous and vestibularly induced eye movements, before and after target removal. During the three weeks that followed ricin injection, abducens internuclear neurons exhibited several firing-related abnormal properties. There was an overall reduction in firing rate with a corresponding increase in the eye position threshold for recruitment. In addition, neuronal sensitivities to eye position and velocity were significantly decreased with respect to control data. Bursting activity was also altered since low-frequency delayed burst accompanied the saccades in the on-direction and, occasionally, internuclear neurons exhibited low-frequency discharges associated with off-directed saccades. Intracellular recordings carried out seven and 15 days after ricin injection demonstrated no significant changes in their electrical properties, although a marked depression of synaptic transmission was evident. The amplitude of both excitatory and inhibitory postsynaptic potentials of vestibular origin was reduced by 60-85% with respect to controls. However, postsynaptic potentials recorded one month after ricin injection showed normal amplitude values which persisted unaltered one year after target loss. Recovery of synaptic transmission occurred at the same time as the re-establishment of normal eye-related signals in the discharge pattern of abducens internuclear neurons recorded in alert cats from days 25-30 post lesion. The functional restoration of firing properties was maintained in the long term (one year). Conversely, abducens motoneurons showed normal firing and synaptic patterns at all time intervals analysed. These results demonstrate that, after an initial period of altered physiological properties, abducens internuclear neurons survive the loss of their target motoneurons and regain a normal discharge pattern and afferent synaptic connections.
Collapse
Affiliation(s)
- R R de la Cruz
- Departamento de Fisiología y Biología Animal, Facultad de Biología, Universidad de Sevilla, Spain
| | | | | |
Collapse
|
45
|
|
46
|
Nothias F, Salin P, Peschanski M, Chesselet MF. Glutamic acid decarboxylase gene expression in thalamic reticular neurons transplanted as a cell suspension in the adult thalamus. BRAIN RESEARCH. MOLECULAR BRAIN RESEARCH 1993; 20:245-53. [PMID: 8302162 DOI: 10.1016/0169-328x(93)90047-s] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
The goal of the present study was to determine whether alterations in neuronal morphology and connections in thalamic grafts were accompanied by changes in the expression of mRNA encoding glutamic acid decarboxylase (GAD), the key enzyme in the synthesis of GABA, the normal neurotransmitter of neurons of the thalamic reticular nucleus. Cell suspensions of rat fetal tissue containing both thalamic reticular nucleus and ventrobasal primordia were transplanted into the excitotoxically lesioned somatosensory thalamus of adult rats. Levels of messenger RNA (mRNA) encoding GAD (Mr 67,000; GAD67) were measured 7 days to 4 months following transplantation via quantitative in situ hybridization with 35S-radiolabeled antisense RNAs. Expression of GAD67 mRNA in the thalamic reticular nucleus was analyzed in parallel in rat pups between 0 and 30 days postnatally, and in adult animals. As already observed with immunohistochemistry, transplanted neurons of the thalamic reticular nucleus did not group in specific clusters but rather mingled with unlabeled (putatively ventrobasal) neurons. Levels of labelling for GAD67 mRNA per neuron increased over time and reached adult levels during the third week post-grafting, i.e. 2 weeks after the theoretical birthdate of the neurons (grafted at embryonic days 15-16). Similar values were observed and a plateau was reached at similar time points during normal ontogeny. The results suggest that, in contrast to morphology and size of the neuronal cell bodies, gene expression of GAD67 develops normally despite the ectopic location of neurons of the thalamic reticular nucleus in the somatosensory thalamus, the abnormal connectivity and the lack of segregation from non-GABAergic neurons.(ABSTRACT TRUNCATED AT 250 WORDS)
Collapse
Affiliation(s)
- F Nothias
- INSERM CJF 91-02, Faculté de Médecine, Créteil, France
| | | | | | | |
Collapse
|
47
|
Liu FC, Dunnett SB, Graybiel AM. Intrastriatal grafts derived from fetal striatal primordia--IV. Host and donor neurons are not intermixed. Neuroscience 1993; 55:363-72. [PMID: 8377931 DOI: 10.1016/0306-4522(93)90505-a] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
Embryonic striatal grafts transplanted into excitotoxin-damaged host striatum develop a heterogeneous structure in which some regions resemble striatum but others do not. In the experiments reported here, we tested for the possibility that the regions resembling striatum were actually derived from host neurons that migrated into the grafts, rather than being derived from donor cells. We placed embryonic striatal grafts into host brains in which striatal cells had been multiply pulse-labeled with [3H]thymidine. Four groups of host rats were exposed to [3H]thymidine at embryonic days 12 and 13-15, 15-18, 16-19, or 20 to postnatal day 1, and were allowed to reach maturity. One week prior to grafting, lesions of the caudoputamen were made unilaterally in each host rat by injecting ibotenic acid. At grafting, dissociated cells from embryonic days 14-16 rat striatal primordia were injected bilaterally into the host caudoputamen. The locations of [3H]thymidine-labeled neurons were analysed by autoradiography eight to 16.5 months post-grafting. Despite the presence of many intensely labeled neurons in the host striatum of rats in all four groups, intensely labeled neurons were rarely found in the cores of grafts. A few weakly labeled small cells appeared in the graft cores, and occasional strongly or weakly labeled medium-sized cells appeared at the margins of the graft zones. Some perivascular cells associated with blood vessels in the grafts were also weakly labeled, but the gliotic tissue surrounding the graft zones was not labeled. These results suggest that very few host striatal neurons migrate into the cores of intrastriatal grafts, or that, if they do, such neurons return to the host striatum or do not survive. At most, surviving host striatal neurons have limited spatial interactions with donor cells at the margins of the grafts, both in the damaged and in the intact host striatal environment. These observations, combined with our previous finding that [3H]thymidine-labeled cells derived from embryonic day 15 striatal primordia do not appear in the host striatum, indicate that no extensive mutual migrations of striatal donor neurons and host neurons occur in the zones of grafting.
Collapse
Affiliation(s)
- F C Liu
- Massachusetts Institute of Technology, Department of Brain and Cognitive Sciences, Cambridge 02139
| | | | | |
Collapse
|
48
|
Clarke DJ, Dunnett SB. Synaptic relationships between cortical and dopaminergic inputs and intrinsic GABAergic systems within intrastriatal striatal grafts. J Chem Neuroanat 1993; 6:147-58. [PMID: 8102060 DOI: 10.1016/0891-0618(93)90024-x] [Citation(s) in RCA: 47] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Synaptic relationships between gamma-aminobutyric acid-ergic systems intrinsic to intrastriatal striatal grafts and inputs from host adult rat neocortex and substantia nigra were investigated using a variety of neuroanatomical techniques. The input from host frontal cortex was demonstrated using an anterograde degeneration technique, whilst a double immunocytochemical procedure, using the chromogens diaminobenzidine and benzidine dihydrochloride was utilized to visualize the tyrosine hydroxylase (TH)- and glutamate decarboxylase (GAD)-immunoreactive systems. Only areas receiving dense TH-immunoreactive innervation were examined for synaptic interactions since these areas were judged as being striatal in origin. Examples of synaptic interactions were observed between cortical and TH-immunoreactive inputs; between cortical input and GAD-immunoreactive neuronal elements within TH-immunoreactive inputs and a variety of GAD-immunoreactive neuronal elements within the striatal grafts. No interactions were seen between cortical input and GAD-immunoreactive neuronal perikarya or dendrites, possibly because of technical limitations since the GAD-immunoreactivity did not extend into the distal dendrites where cortical input is predominantly located, nor between all three systems. The results suggest that the formation of new synaptic connections in a pattern reminiscent of that seen in control neostriatum may be responsible, in part at least, for the behavioural recovery in motor skills seen in rats following intrastriatal striatal transplants. They also demonstrate that the host adult brain retains sufficient plasticity and may play an important role in the control of synaptic output from the transplant.
Collapse
Affiliation(s)
- D J Clarke
- Department of Human Anatomy, Oxford and Department of Experimental Psychology, Cambridge, UK
| | | |
Collapse
|
49
|
Bennett BD, Bolam JP. Characterization of calretinin-immunoreactive structures in the striatum of the rat. Brain Res 1993; 609:137-48. [PMID: 8508297 DOI: 10.1016/0006-8993(93)90866-l] [Citation(s) in RCA: 113] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Previous observations have shown that the striatum contains a population of neurones that display immunoreactivity for calretinin. In order to morphologically characterize these neurones, sections of the rat striatum were immunostained to reveal calretinin and examined at both light and electron microscopic levels. The striatum contained a small population of calretinin-immunoreactive neurones, which were of medium-size (9-17 microns) and possessed few aspiny, infrequently branching dendrites which tapered to become very thin processes in their most distal portions. Although the calretinin-immunoreactive neurones were homogeneously distributed in the frontal plane, there was a marked rostrocaudal gradient with a much greater density of cells in the rostral than in the caudal parts of the striatum. At the ultrastructural level, calretinin-immunoreactive neurones were seen to possess an indented nucleus and to receive synaptic input from at least three types of boutons. In addition to the calretinin-immunoreactive neurones, the striatum also contained axons and terminal boutons that displayed immunoreactivity for calretinin. At least two types of immunoreactive terminals were identified, those forming symmetrical synaptic specialisations and those forming asymmetrical synaptic specialisations. Approximately 50% formed asymmetrical contacts with spines and 30% formed symmetrical synaptic contact with dendritic shafts. In an attempt to further chemically characterize the calretinin-containing neurones, double pre-embedding immunocytochemistry for calretinin and parvalbumin or choline acetyltransferase was carried out and calretinin immunocytochemistry was combined with histochemistry for NADPH-diaphorase. Analysis of these double-stained sections revealed that the population of calretinin-immunoreactive neurones was distinct from the populations of neurones containing parvalbumin, choline acetyltransferase or NADPH-diaphorase. It is concluded that: (1) on the basis of distribution, morphology, chemistry, ultrastructure and afferent synaptic input, the calretinin-immunoreactive neurones are distinct from the major classes of neurones that have been previously recognised in the striatum; (2) calretinin-immunoreactive terminals are heterogeneous and are probably derived from local calretinin-containing neurones and possibly other sources.
Collapse
Affiliation(s)
- B D Bennett
- MRC Anatomical Neuropharmacology Unit, Oxford, UK
| | | |
Collapse
|
50
|
Campbell K, Kalén P, Wictorin K, Lundberg C, Mandel RJ, Björklund A. Characterization of GABA release from intrastriatal striatal transplants: dependence on host-derived afferents. Neuroscience 1993; 53:403-15. [PMID: 8098510 DOI: 10.1016/0306-4522(93)90204-s] [Citation(s) in RCA: 62] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Extracellular levels of GABA, derived from cell suspension transplants of embryonic day 14-15 rat striatal primordia implanted into the previously excitotoxically lesioned striatum, were measured using intracerebral microdialysis in halothane-anaesthetized rats. GABA overflow was monitored using loop type dialysis probes implanted into grafted, age-matched ibotenic acid-lesioned and intact striata, under baseline conditions and after different pharmacological manipulations. Basal and evoked GABA release, which was reduced by 58 and 96%, respectively, in the excitotoxin-lesioned striatum, was restored by the striatal grafts to levels close to or above those observed in normal striata. The graft-derived release of GABA was most likely of neuronal origin, since the K(+)-evoked (100 mM) GABA overflow was reduced by almost 80% when Ca++ was replaced by 20 mM Mg++ in the perfusion medium, and blockade of GABA uptake by nipecotic acid (0.5 mM), induced a greater than six-fold increase in GABA overflow. However, perfusion of the graft with 1 microM tetrodotoxin in combination with K+ (100 mM) resulted in little if any reduction in the K(+)-evoked overflow. Histological analysis demonstrated a dense tyrosine hydroxylase-positive fibre network in the grafts, which was removed after a 6-hydroxydopamine lesion of the ipsilateral nigrostriatal pathway. The dopamine denervating lesion resulted in an increased K(+)-evoked GABA overflow both in the intact (+76%) and the grafted striata (+181%), suggesting that the tonic dopaminergic inhibitory control of GABA release, seen in the intact striatum, is also present in the grafted striata. The glutamate analogue, kainic acid (1 mM added to the perfusion fluid), evoked a 60-74% increase in GABA overflow both in intact striata (with or without dopaminergic denervation) and in the striatal grafts. This effect seemed to be dependent on an intact corticostriatal projection, since knife-cut transections of the frontal cortex at the level of the forceps minor, abolished the response in both the intact and grafted striata. These results demonstrate that grafts of fetal striatal tissue implanted into the excitotoxically lesioned striatum restore striatal GABA overflow in a neuron-dependent manner, close to or above that seen in the normal intact striatum. Furthermore, the graft-derived GABA release appears to be under normal regulatory control from the host dopaminergic and glutamatergic systems. Since the GABAergic striatal output system is critical for the expression of striatum-related behaviours, it is proposed that the graft-induced behavioural recovery in the striatal lesion model, at least in part, may depend on the restoration of striatal GABAergic neurotransmission.
Collapse
Affiliation(s)
- K Campbell
- Department of Medical Cell Research, University of Lund, Sweden
| | | | | | | | | | | |
Collapse
|