1
|
Ochandarena NE, Niehaus JK, Tassou A, Scherrer G. Cell-type specific molecular architecture for mu opioid receptor function in pain and addiction circuits. Neuropharmacology 2023; 238:109597. [PMID: 37271281 PMCID: PMC10494323 DOI: 10.1016/j.neuropharm.2023.109597] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Accepted: 05/13/2023] [Indexed: 06/06/2023]
Abstract
Opioids are potent analgesics broadly used for pain management; however, they can produce dangerous side effects including addiction and respiratory depression. These harmful effects have led to an epidemic of opioid abuse and overdose deaths, creating an urgent need for the development of both safer pain medications and treatments for opioid use disorders. Both the analgesic and addictive properties of opioids are mediated by the mu opioid receptor (MOR), making resolution of the cell types and neural circuits responsible for each of the effects of opioids a critical research goal. Single-cell RNA sequencing (scRNA-seq) technology is enabling the identification of MOR-expressing cell types throughout the nervous system, creating new opportunities for mapping distinct opioid effects onto newly discovered cell types. Here, we describe molecularly defined MOR-expressing neuronal cell types throughout the peripheral and central nervous systems and their potential contributions to opioid analgesia and addiction.
Collapse
Affiliation(s)
- Nicole E Ochandarena
- Neuroscience Curriculum, Biological and Biomedical Sciences Program, The University of North Carolina School of Medicine, Chapel Hill, NC, 27599, USA; Department of Cell Biology and Physiology, The University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA; UNC Neuroscience Center, The University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA; Department of Pharmacology, The University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA.
| | - Jesse K Niehaus
- Department of Cell Biology and Physiology, The University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA; UNC Neuroscience Center, The University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA; Department of Pharmacology, The University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| | - Adrien Tassou
- Department of Cell Biology and Physiology, The University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA; UNC Neuroscience Center, The University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA; Department of Pharmacology, The University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| | - Grégory Scherrer
- Department of Cell Biology and Physiology, The University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA; UNC Neuroscience Center, The University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA; Department of Pharmacology, The University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA; New York Stem Cell Foundation - Robertson Investigator, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA.
| |
Collapse
|
2
|
Cellular Mechanisms for Antinociception Produced by Oxytocin and Orexins in the Rat Spinal Lamina II-Comparison with Those of Other Endogenous Pain Modulators. Pharmaceuticals (Basel) 2019; 12:ph12030136. [PMID: 31527474 PMCID: PMC6789548 DOI: 10.3390/ph12030136] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2019] [Revised: 08/31/2019] [Accepted: 09/12/2019] [Indexed: 01/23/2023] Open
Abstract
Much evidence indicates that hypothalamus-derived neuropeptides, oxytocin, orexins A and B, inhibit nociceptive transmission in the rat spinal dorsal horn. In order to unveil cellular mechanisms for this antinociception, the effects of the neuropeptides on synaptic transmission were examined in spinal lamina II neurons that play a crucial role in antinociception produced by various analgesics by using the whole-cell patch-clamp technique and adult rat spinal cord slices. Oxytocin had no effect on glutamatergic excitatory transmission while producing a membrane depolarization, γ-aminobutyric acid (GABA)-ergic and glycinergic spontaneous inhibitory transmission enhancement. On the other hand, orexins A and B produced a membrane depolarization and/or a presynaptic spontaneous excitatory transmission enhancement. Like oxytocin, orexin A enhanced both GABAergic and glycinergic transmission, whereas orexin B facilitated glycinergic but not GABAergic transmission. These inhibitory transmission enhancements were due to action potential production. Oxytocin, orexins A and B activities were mediated by oxytocin, orexin-1 and orexin-2 receptors, respectively. This review article will mention cellular mechanisms for antinociception produced by oxytocin, orexins A and B, and discuss similarity and difference in antinociceptive mechanisms among the hypothalamic neuropeptides and other endogenous pain modulators (opioids, nociceptin, adenosine, adenosine 5’-triphosphate (ATP), noradrenaline, serotonin, dopamine, somatostatin, cannabinoids, galanin, substance P, bradykinin, neuropeptide Y and acetylcholine) exhibiting a change in membrane potential, excitatory or inhibitory transmission in the spinal lamina II neurons.
Collapse
|
3
|
Rojewska E, Wawrzczak-Bargiela A, Szucs E, Benyhe S, Starnowska J, Mika J, Przewlocki R, Przewlocka B. Alterations in the Activity of Spinal and Thalamic Opioid Systems in a Mice Neuropathic Pain Model. Neuroscience 2018; 390:293-302. [DOI: 10.1016/j.neuroscience.2018.08.013] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2017] [Revised: 08/08/2018] [Accepted: 08/10/2018] [Indexed: 01/29/2023]
|
4
|
Wu ZY, Lu YC, Feng B, Chen YB, Bai Y, Zhang T, Zhang H, Chen T, Dong YL, Li H, Li YQ. Endomorphin-2 Decreases Excitatory Synaptic Transmission in the Spinal Ventral Horn of the Rat. Front Neural Circuits 2017; 11:55. [PMID: 28848403 PMCID: PMC5550698 DOI: 10.3389/fncir.2017.00055] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2017] [Accepted: 07/26/2017] [Indexed: 01/20/2023] Open
Abstract
Motor impairment is one of the serious side-effects of morphine, which is an exogenous agonist of the μ-opioid receptor (MOR) as well as a widely used analgesic drug in clinical practice for chronic pain treatment. Endomorphins (EMs, including EM-1 and EM-2), the most effective and specific endogenous agonists of the MOR, exert more potent analgesia in acute and neuropathic pain than other opiates, such as morphine. Although EMs had fewer side-effects comparing to other opiates, motor impairment was still one unwanted reaction which limited its clinical application. In order to prevent and treat the motor impairment, it is critical to reveal the neural mechanisms underlying such locomotion disorder. The purpose of the present study was to reveal the neural mechanisms underlying the effects of EM-2 on the activity of motoneurons in the spinal ventral horn. First, we examine the distribution of EM-2-immunoreactive (IR) primary afferent fibers and their synaptic connections with the motoneurons innervating the skeletal muscles of the lower limb revealed by sciatic nerve retrograde tracing. The results showed that EM-2-IR fibers and terminals were sparsely observed in lamina IX and they formed symmetric synaptic connections with the motoneurons within lamina IX of the spinal ventral horn. Then, whole-cell patch-clamp technique was used to observe the effects of EM-2 on the spontaneous excitatory postsynaptic current (sEPSC) of motoneurons in lamina IX. The results showed that EM-2 could decrease both the frequency and amplitude of the sEPSC of the motoneurons in lamina IX, which was reversed by the MOR antagonist CTOP. These results indicate that EM-2-IR fibers originated from primary afferent fibers form symmetric synaptic connections with motoneurons innervating skeletal muscles of the lower limbs in lamina IX of the spinal ventral horn and EM-2 might exert inhibitory effects on the activities of these motoneurons through both presynaptic and postsynaptic mechanisms.
Collapse
Affiliation(s)
- Zhen-Yu Wu
- Department of Anatomy and K. K. Leung Brain Research Centre, The Fourth Military Medical UniversityXi'an, China
| | - Ya-Cheng Lu
- Department of Anatomy and K. K. Leung Brain Research Centre, The Fourth Military Medical UniversityXi'an, China
| | - Ban Feng
- Department of Anatomy and K. K. Leung Brain Research Centre, The Fourth Military Medical UniversityXi'an, China
| | - Ying-Biao Chen
- Department of Anatomy, Fujian Health CollegeMinhou, China
| | - Yang Bai
- Department of Anatomy and K. K. Leung Brain Research Centre, The Fourth Military Medical UniversityXi'an, China
| | - Ting Zhang
- Department of Anatomy and K. K. Leung Brain Research Centre, The Fourth Military Medical UniversityXi'an, China
| | - Hua Zhang
- Department of Geriatrics, Xijing Hospital, The Fourth Military Medical UniversityXi'an, China
| | - Tao Chen
- Department of Anatomy and K. K. Leung Brain Research Centre, The Fourth Military Medical UniversityXi'an, China
| | - Yu-Ling Dong
- Department of Anatomy and K. K. Leung Brain Research Centre, The Fourth Military Medical UniversityXi'an, China
| | - Hui Li
- Department of Anatomy and K. K. Leung Brain Research Centre, The Fourth Military Medical UniversityXi'an, China
| | - Yun-Qing Li
- Department of Anatomy and K. K. Leung Brain Research Centre, The Fourth Military Medical UniversityXi'an, China.,Collaborative Innovation Center for Brain Science, Fudan UniversityShanghai, China
| |
Collapse
|
5
|
Cho PS, Lee HK, Lee SH, Im JZ, Jung SJ. DAMGO modulates two-pore domain K(+) channels in the substantia gelatinosa neurons of rat spinal cord. THE KOREAN JOURNAL OF PHYSIOLOGY & PHARMACOLOGY : OFFICIAL JOURNAL OF THE KOREAN PHYSIOLOGICAL SOCIETY AND THE KOREAN SOCIETY OF PHARMACOLOGY 2016; 20:525-31. [PMID: 27610039 PMCID: PMC5014999 DOI: 10.4196/kjpp.2016.20.5.525] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/31/2016] [Revised: 06/28/2016] [Accepted: 07/07/2016] [Indexed: 11/24/2022]
Abstract
The analgesic mechanism of opioids is known to decrease the excitability of substantia gelatinosa (SG) neurons receiving the synaptic inputs from primary nociceptive afferent fiber by increasing inwardly rectifying K+ current. In this study, we examined whether a µ-opioid agonist, [D-Ala2,N-Me-Phe4, Gly5-ol]-enkephalin (DAMGO), affects the two-pore domain K+ channel (K2P) current in rat SG neurons using a slice whole-cell patch clamp technique. Also we confirmed which subtypes of K2P channels were associated with DAMGO-induced currents, measuring the expression of K2P channel in whole spinal cord and SG region. DAMGO caused a robust hyperpolarization and outward current in the SG neurons, which developed almost instantaneously and did not show any time-dependent inactivation. Half of the SG neurons exhibited a linear I~V relationship of the DAMGO-induced current, whereas rest of the neurons displayed inward rectification. In SG neurons with a linear I~V relationship of DAMGO-induced current, the reversal potential was close to the K+ equilibrium potentials. The mRNA expression of TWIK (tandem of pore domains in a weak inwardly rectifying K+ channel) related acid-sensitive K+ channel (TASK) 1 and 3 was found in the SG region and a low pH (6.4) significantly blocked the DAMGO-induced K+ current. Taken together, the DAMGO-induced hyperpolarization at resting membrane potential and subsequent decrease in excitability of SG neurons can be carried by the two-pore domain K+ channel (TASK1 and 3) in addition to inwardly rectifying K+ channel.
Collapse
Affiliation(s)
- Pyung Sun Cho
- Department of Biomedical Science, Graduate School of Biomedical Science; Engineering, Hanyang University, Seoul 04763, Korea
| | - Han Kyu Lee
- Department of Biomedical Science, Graduate School of Biomedical Science; Engineering, Hanyang University, Seoul 04763, Korea
| | - Sang Hoon Lee
- Department of Biomedical Science, Graduate School of Biomedical Science; Engineering, Hanyang University, Seoul 04763, Korea
| | - Jay Zoon Im
- Department of Biomedical Science, Graduate School of Biomedical Science; Engineering, Hanyang University, Seoul 04763, Korea
| | - Sung Jun Jung
- Department of Biomedical Science, Graduate School of Biomedical Science; Engineering, Hanyang University, Seoul 04763, Korea
| |
Collapse
|
6
|
Prasoon P, Gupta S, Kumar R, Gautam M, Kaler S, Ray SB. Role of fosaprepitant, a neurokinin Type 1 receptor antagonist, in morphine-induced antinociception in rats. Indian J Pharmacol 2016; 48:394-398. [PMID: 27756950 PMCID: PMC4980927 DOI: 10.4103/0253-7613.186198] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/16/2015] [Accepted: 06/08/2016] [Indexed: 11/04/2022] Open
Abstract
OBJECTIVES Opioids such as morphine form the cornerstone in the treatment of moderate to severe pain. However, opioids also produce serious side effects such as tolerance. Fosaprepitant is a substance P (SP) receptor antagonist, which is used for treating chemotherapy-induced nausea and vomiting. SP is an important neuropeptide mediating transmission of pain at the spinal level. Thus, it was hypothesized that combining morphine with fosaprepitant would increase the antinociceptive effect of morphine. The objectives were to evaluate the effect of fosaprepitant on morphine-induced antinociception in rats and to investigate its mechanism of action. METHODS Sprague-Dawley rats were injected with morphine (10 mg/kg twice daily) and/or fosaprepitant (30 mg/kg once daily) for 7 days. Pain threshold was assessed by the hot plate test. Expression of SP and calcitonin gene-related peptide (CGRP) in the spinal cords of these rats was evaluated by immunohistochemistry. RESULTS Morphine administration resulted in an antinociceptive effect compared to the control group (day 1 and to a lesser extent on day 4). The decreased antinociception despite continued morphine treatment indicated development of tolerance. Co-administration of fosaprepitant attenuated tolerance to morphine (days 1 and 3) and increased the antinociceptive effect compared to control group (days 1-4). Expression of SP was increased in the morphine + fosaprepitant group. CONCLUSIONS The results show that fosaprepitant attenuates the development of tolerance to morphine and thereby, increases the antinociceptive effect. This is likely linked to decreased release of SP from presynaptic terminals.
Collapse
Affiliation(s)
- Pranav Prasoon
- Department of Anatomy, All India Institute of Medical Sciences, New Delhi, India
| | - Shivani Gupta
- Department of Anatomy, All India Institute of Medical Sciences, New Delhi, India
| | - Rahul Kumar
- Department of Anatomy, All India Institute of Medical Sciences, New Delhi, India
| | - Mayank Gautam
- Department of Anatomy, All India Institute of Medical Sciences, New Delhi, India
| | - Saroj Kaler
- Department of Anatomy, All India Institute of Medical Sciences, New Delhi, India
| | - Subrata Basu Ray
- Department of Anatomy, All India Institute of Medical Sciences, New Delhi, India
| |
Collapse
|
7
|
Chen YB, Huang FS, Fen B, Yin JB, Wang W, Li YQ. Inhibitory effects of endomorphin-2 on excitatory synaptic transmission and the neuronal excitability of sacral parasympathetic preganglionic neurons in young rats. Front Cell Neurosci 2015; 9:206. [PMID: 26074773 PMCID: PMC4446531 DOI: 10.3389/fncel.2015.00206] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2015] [Accepted: 05/12/2015] [Indexed: 01/23/2023] Open
Abstract
The function of the urinary bladder is partly controlled by parasympathetic preganglionic neurons (PPNs) of the sacral parasympathetic nucleus (SPN). Our recent work demonstrated that endomorphin-2 (EM-2)-immunoreactive (IR) terminals form synapses with μ-opioid receptor (MOR)-expressing PPNs in the rat SPN. Here, we examined the effects of EM-2 on excitatory synaptic transmission and the neuronal excitability of the PPNs in young rats (24–30 days old) using a whole-cell patch-clamp approach. PPNs were identified by retrograde labeling with the fluorescent tracer tetramethylrhodamine-dextran (TMR). EM-2 (3 μM) markedly decreased both the amplitude and the frequency of the spontaneous and miniature excitatory postsynaptic currents (sEPSCs and mEPSCs) of PPNs. EM-2 not only decreased the resting membrane potentials (RMPs) in 61.1% of the examined PPNs with half-maximal response at the concentration of 0.282 μM, but also increased the rheobase current and reduced the repetitive action potential firing of PPNs. Analysis of the current–voltage relationship revealed that the EM-2-induced current was reversed at −95 ± 2.5 mV and was suppressed by perfusion of the potassium channel blockers 4-aminopyridine (4-AP) or BaCl2 or by the addition of guanosine 5′-[β-thio]diphosphate trilithium salt (GDP-β-S) to the pipette solution, suggesting the involvement of the G-protein-coupled inwardly rectifying potassium (GIRK) channel. The above EM-2-invoked inhibitory effects were abolished by the MOR selective antagonist D-Phe-Cys-Tyr-D-Trp-Orn-Thr-Pen-Thr-NH2 (CTOP), indicating that the effects of EM-2 on PPNs were mediated by MOR via pre- and/or post-synaptic mechanisms. EM-2 activated pre- and post-synaptic MORs, inhibiting excitatory neurotransmitter release from the presynaptic terminals and decreasing the excitability of PPNs due to hyperpolarization of their membrane potentials, respectively. These inhibitory effects of EM-2 on PPNs at the spinal cord level may explain the mechanism of action of morphine treatment and morphine-induced bladder dysfunction in the clinic.
Collapse
Affiliation(s)
- Ying-Biao Chen
- Department of Anatomy, Histology and Embryology, Fujian Medical University Fuzhou, China
| | - Fen-Sheng Huang
- Department of Anatomy, Histology and Embryology and K. K. Leung Brain Research Centre, The Fourth Military Medical University Xi'an, China ; Division of Medical Biophysics, Institute of Neuroscience and Physiology, Göteborg University Göteborg, Sweden
| | - Ban Fen
- Department of Anatomy, Histology and Embryology and K. K. Leung Brain Research Centre, The Fourth Military Medical University Xi'an, China
| | - Jun-Bin Yin
- Department of Anatomy, Histology and Embryology and K. K. Leung Brain Research Centre, The Fourth Military Medical University Xi'an, China
| | - Wei Wang
- Department of Anatomy, Histology and Embryology, Fujian Medical University Fuzhou, China
| | - Yun-Qing Li
- Department of Anatomy, Histology and Embryology, Fujian Medical University Fuzhou, China ; Department of Anatomy, Histology and Embryology and K. K. Leung Brain Research Centre, The Fourth Military Medical University Xi'an, China ; Collaborative Innovation Center for Brain Science, Fudan University Shanghai, China
| |
Collapse
|
8
|
Comparison of operant escape and reflex tests of nociceptive sensitivity. Neurosci Biobehav Rev 2015; 51:223-42. [PMID: 25660956 DOI: 10.1016/j.neubiorev.2015.01.022] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2014] [Revised: 01/17/2015] [Accepted: 01/27/2015] [Indexed: 01/17/2023]
Abstract
Testing of reflexes such as flexion/withdrawal or licking/guarding is well established as the standard for evaluating nociceptive sensitivity and its modulation in preclinical investigations of laboratory animals. Concerns about this approach have been dismissed for practical reasons - reflex testing requires no training of the animals; it is simple to instrument; and responses are characterized by observers as latencies or thresholds for evocation. In order to evaluate this method, the present review summarizes a series of experiments in which reflex and operant escape responding are compared in normal animals and following surgical models of neuropathic pain or pharmacological intervention for pain. Particular attention is paid to relationships between reflex and escape responding and information on the pain sensitivity of normal human subjects or patients with pain. Numerous disparities between results for reflex and operant escape measures are described, but the results of operant testing are consistent with evidence from humans. Objective reasons are given for experimenters to choose between these and other methods of evaluating the nociceptive sensitivity of laboratory animals.
Collapse
|
9
|
Zhang X, Bao L, Li S. Opioid receptor trafficking and interaction in nociceptors. Br J Pharmacol 2014; 172:364-74. [PMID: 24611685 DOI: 10.1111/bph.12653] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2013] [Revised: 01/29/2014] [Accepted: 02/17/2014] [Indexed: 01/15/2023] Open
Abstract
UNLABELLED Opiate analgesics such as morphine are often used for pain therapy. However, antinociceptive tolerance and dependence may develop with long-term use of these drugs. It was found that μ-opioid receptors can interact with δ-opioid receptors, and morphine antinociceptive tolerance can be reduced by blocking δ-opioid receptors. Recent studies have shown that μ- and δ-opioid receptors are co-expressed in a considerable number of small neurons in the dorsal root ganglion. The interaction of μ-opioid receptors with δ-opioid receptors in the nociceptive afferents is facilitated by the stimulus-induced cell-surface expression of δ-opioid receptors, and contributes to morphine tolerance. Further analysis of the molecular, cellular and neural circuit mechanisms that regulate the trafficking and interaction of opioid receptors and related signalling molecules in the pain pathway would help to elucidate the mechanism of opiate analgesia and improve pain therapy. LINKED ARTICLES This article is part of a themed section on Opioids: New Pathways to Functional Selectivity. To view the other articles in this section visit http://dx.doi.org/10.1111/bph.2015.172.issue-2.
Collapse
Affiliation(s)
- X Zhang
- Institute of Neuroscience and State Key Laboratory of Neuroscience, Shanghai, China
| | | | | |
Collapse
|
10
|
The mu opioid receptor activation does not affect ischemia-induced agonal currents in rat spinal ventral horn. J Anesth 2014; 28:839-45. [DOI: 10.1007/s00540-014-1829-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2014] [Accepted: 03/27/2014] [Indexed: 11/26/2022]
|
11
|
Dou XL, Qin RL, Qu J, Liao YH, Lu YC, Zhang T, Shao C, Li YQ. Synaptic connections between endomorphin 2-immunoreactive terminals and μ-opioid receptor-expressing neurons in the sacral parasympathetic nucleus of the rat. PLoS One 2013; 8:e62028. [PMID: 23671582 PMCID: PMC3643968 DOI: 10.1371/journal.pone.0062028] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2012] [Accepted: 03/16/2013] [Indexed: 02/06/2023] Open
Abstract
The urinary bladder is innervated by parasympathetic preganglionic neurons (PPNs) that express μ-opioid receptors (MOR) in the sacral parasympathetic nucleus (SPN) at lumbosacral segments L6-S1. The SPN also contains endomorphin 2 (EM2)-immunoreactive (IR) fibers and terminals. EM2 is the endogenous ligand of MOR. In the present study, retrograde tract-tracing with cholera toxin subunit b (CTb) or wheat germ agglutinin-conjugated horseradish peroxidase (WGA-HRP) via the pelvic nerve combined with immunohistochemical staining for EM2 and MOR to identify PPNs within the SPN as well as synaptic connections between the EM2-IR terminals and MOR-expressing PPNs in the SPN of the rat. After CTb was injected into the pelvic nerve, CTb retrogradely labeled neurons were almost exclusively located in the lateral part of the intermediolateral gray matter at L6-S1 of the lumbosacral spinal cord. All of the them also expressed MOR. EM2-IR terminals formed symmetric synapses with MOR-IR, WGA-HRP-labeled and WGA-HRP/MOR double-labeled neuronal cell bodies and dendrites within the SPN. These results provided morphological evidence that EM2-containing axon terminals formed symmetric synapses with MOR-expressing PPNs in the SPN. The present results also show that EM2 and MOR might be involved in both the homeostatic control and information transmission of micturition.
Collapse
Affiliation(s)
- Xiao Liang Dou
- Department of Urology, Xijing Hospital, The Fourth Military Medical University, Xi'an, China
| | - Rong Liang Qin
- Department of Urology, Xijing Hospital, The Fourth Military Medical University, Xi'an, China
| | - Juan Qu
- Department of Anatomy, Histology and Embryology and K. K. Leung Brain Research Centre, The Fourth Military Medical University, Xi'an, China
| | - Yong Hui Liao
- Department of Anatomy, Histology and Embryology and K. K. Leung Brain Research Centre, The Fourth Military Medical University, Xi'an, China
| | - Ya cheng Lu
- Department of Anatomy, Histology and Embryology and K. K. Leung Brain Research Centre, The Fourth Military Medical University, Xi'an, China
| | - Ting Zhang
- Department of Anatomy, Histology and Embryology and K. K. Leung Brain Research Centre, The Fourth Military Medical University, Xi'an, China
| | - Chen Shao
- Department of Urology, Xijing Hospital, The Fourth Military Medical University, Xi'an, China
- * E-mail: (CS); (YQL)
| | - Yun Qing Li
- Department of Anatomy, Histology and Embryology and K. K. Leung Brain Research Centre, The Fourth Military Medical University, Xi'an, China
- * E-mail: (CS); (YQL)
| |
Collapse
|
12
|
Reduced number, G protein coupling, and antinociceptive efficacy of spinal mu-opioid receptors in diabetic rats are reversed by nerve growth factor. THE JOURNAL OF PAIN 2013; 14:720-30. [PMID: 23623572 DOI: 10.1016/j.jpain.2013.01.776] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/06/2012] [Revised: 01/16/2013] [Accepted: 01/31/2013] [Indexed: 02/01/2023]
Abstract
UNLABELLED This study investigated putative mechanisms of impaired spinal opioid antinociception such as a downregulation of mu-opioid receptor (MOR) number, coupling, and efficacy in rats with advanced (12 weeks) streptozotocin (STZ)-induced diabetes. Intravenous injection of STZ (45 mg/kg) in Wistar rats led to selective degeneration of insulin-producing pancreatic ß-cells, elevated blood glucose, and mechanical hyperalgesia. In these animals, dose-dependent and naloxone-reversible intrathecal fentanyl antinociception was significantly impaired and associated with a loss in MOR immunoreactivity of calcitonin gene-related peptide-immunoreactive (CGRP-IR) sensory nerve terminals, membrane-bound MOR binding sites, and MOR-stimulated G protein coupling within the dorsal horn of the spinal cord. Intrathecal delivery of nerve growth factor (NGF) in diabetic animals normalized spinal MOR number and G protein coupling and rescued spinal fentanyl-induced antinociception. These findings identify for the first time a loss in functional MOR on central terminals of sensory neurons as a contributing factor for the impaired spinal opioid responsiveness during advanced STZ-induced diabetes that can be reversed by NGF. Moreover, they support growing evidence of a distinct regulation of opioid responsiveness during various painful states of disease (eg, arthritis, cancer, neuropathy) and may give novel therapeutic incentives. PERSPECTIVE In diabetic neuropathy a loss in sensory neuron mu-opioid receptor number and coupling contributes to impaired spinal opioid antinociception that can be reversed by NGF. These findings support growing evidence of a distinct regulation of opioid responsiveness during various painful diseases and may give novel therapeutic incentives.
Collapse
|
13
|
Interaction and regulatory functions of μ- and δ-opioid receptors in nociceptive afferent neurons. Neurosci Bull 2012; 28:121-30. [PMID: 22466123 DOI: 10.1007/s12264-012-1206-x] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022] Open
Abstract
μ-opioid receptor (MOR) agonists such as morphine are powerful analgesics used for pain therapy. However, the use of these drugs is limited by their side-effects, which include antinociceptive tolerance and dependence. Earlier studies reported that MOR analgesic tolerance is reduced by blockade of δ-opioid receptors (DORs) that interact with MORs. Recent studies show that the MOR/DOR interaction in nociceptive afferent neurons in the dorsal root ganglion may contribute to morphine analgesic tolerance. Further analysis of the mechanisms for regulating the trafficking of receptors, ion channels and signaling molecules in nociceptive afferent neurons would help to understand the nociceptive mechanisms and improve pain therapy.
Collapse
|
14
|
Honda H, Kawasaki Y, Baba H, Kohno T. The mu opioid receptor modulates neurotransmission in the rat spinal ventral horn. Anesth Analg 2012; 115:703-12. [PMID: 22584545 DOI: 10.1213/ane.0b013e318259393d] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
BACKGROUND Opioids inhibit excitatory neurotransmission and produce antinociception through μ opioid receptors (MORs). Although MORs are expressed in the spinal ventral horn, their functions and effects are largely unknown. Therefore, we examined the neuromodulatory effects of μ opioids in spinal lamina IX neurons at the cellular level. METHODS The effects of the selective μ agonist [D-Ala(2),-N-Me-Phe(4), Gly(5)-ol]enkephalin (DAMGO) on synaptic transmission were examined in spinal lamina IX neurons of neonatal rats using the whole-cell patch-clamp technique. RESULTS DAMGO produced outward currents in 56% of the lamina IX neurons recorded, with a 50% effective concentration of 0.1 μM. Analysis of the current-voltage relationship revealed a reversal potential of approximately -86 mV. These currents were not blocked by tetrodotoxin but were inhibited by Ba(2+) or a selective μ antagonist. Moreover, the currents were suppressed by the addition of Cs(+) and tetraethylammonium or guanosine 5'-[β-thio]diphosphate trilithium salt to the pipette solution. In addition, DAMGO decreased the frequency of spontaneous excitatory and inhibitory postsynaptic currents, and these effects were unaltered by treatment with tetrodotoxin. CONCLUSION Our results suggest that DAMGO hyperpolarizes spinal lamina IX neurons by G protein-mediated activation of K(+) channels after activation of MORs. Furthermore, activation of MORs on presynaptic terminals reduces both excitatory and inhibitory transmitter release. Although traditionally opioids are not thought to affect motor function, the present study documents neuromodulatory effects of μ opioids in spinal lamina IX neurons, suggesting that MORs can influence motor activity.
Collapse
Affiliation(s)
- Hiroyuki Honda
- Division of Anesthesiology, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
| | | | | | | |
Collapse
|
15
|
Jones AKP, Watabe H, Cunningham VJ, Jones T. Cerebral decreases in opioid receptor binding in patients with central neuropathic pain measured by [11
C]diprenorphine binding and PET. Eur J Pain 2012; 8:479-85. [PMID: 15324779 DOI: 10.1016/j.ejpain.2003.11.017] [Citation(s) in RCA: 104] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2003] [Accepted: 11/19/2003] [Indexed: 11/15/2022]
Abstract
Central neuropathic pain (CNP) is pain resulting from damage to the central nervous system. Up till now, it has not been possible to identify a common lesion or pharmacological deficit in these patients. This preliminary study in a group of patients with CNP with predominantly post-stroke pain, demonstrates that there is significantly less opioid receptor binding in a number of cortical and sub-cortical structures that are mostly, but not exclusively, within the medial pain system in patients compared to age-matched pain-free controls. The reductions in opioid receptor binding within the medial system were observed mainly in the dorsolateral (Brodman area 10) and anterior cingulate (Brodman area 24 with some extension into area 23) and insula cortices and the thalamus. There were also reductions in the lateral pain system within the inferior parietal cortex (Brodman area 40). These changes in binding could not be accounted for by the cerebral lesions shown by CT or MRI, which were outside the areas of reduced binding and the human pain system. To our knowledge this is the first systematic demonstration of a reduction in opioid receptor-binding capacity in neurones within the human nociceptive system in patients with CNP. This may be a key common factor resulting in undamped nociceptor activity within some of the structures that are predominantly within the medial nociceptive system. If confirmed, these findings may explain why certain patients with CNP require high doses of synthetic opiates to achieve optimum analgesia. The findings also raise the possibility of new pharmacological approaches to treatment.
Collapse
Affiliation(s)
- Anthony K P Jones
- Human Pain Research Laboratory, University of Manchester Rheumatic Diseases Centre, Clinical Sciences Building, Hope Hospital, Eccles Old Road, Salford M6 8HD, UK.
| | | | | | | |
Collapse
|
16
|
Multiple targets of μ-opioid receptor-mediated presynaptic inhibition at primary afferent Aδ- and C-fibers. J Neurosci 2011; 31:1313-22. [PMID: 21273416 DOI: 10.1523/jneurosci.4060-10.2011] [Citation(s) in RCA: 112] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Agonists at μ-opioid receptors (MORs) represent the gold standard for the treatment of severe pain. A key element of opioid analgesia is the depression of nociceptive information at the first synaptic relay in spinal pain pathways. The underlying mechanisms are, however, largely unknown. In spinal cord slices with dorsal roots attached prepared from young rats, we determined the inhibitory effect of the selective MOR agonist [d-Ala(2), N-Me-Phe(4), Gly(5)-ol]-enkephalin (DAMGO) on monosynaptic Aδ- and C-fiber-evoked EPSCs in lamina I neurons. DAMGO depressed presynaptically Aδ- and C-fiber-mediated responses, indicating that MORs are expressed on central terminals of both fiber types. We next addressed the mechanisms of presynaptic inhibition. The effect of DAMGO at both Aδ- and C-fiber terminals was mainly mediated by an inhibition of N-type voltage-dependent Ca(2+) channels (VDCCs), and to a lesser extent of P/Q-type VDCCs. Inhibition by DAMGO was not reduced by K(+) channel blockers. The rate of miniature EPSCs was reduced by DAMGO in a dose-dependent manner. The opioid also reduced Ca(2+)-dependent, ionomycin-induced EPSCs downstream of VDCCs. DAMGO had no effect on the kinetics of vesicle exocytosis in C-fiber terminals, but decreased the rate of unloading of Aδ-fiber boutons moderately, as revealed by two-photon imaging of styryl dye destaining. Together, these results suggest that binding of opioids to MORs reduces nociceptive signal transmission at central Aδ- and C-fiber synapses mainly by inhibition of presynaptic N-type VDCCs. P/Q-type VDCCs and the transmitter release machinery are targets of opioid action as well.
Collapse
|
17
|
|
18
|
Coexpression of delta- and mu-opioid receptors in nociceptive sensory neurons. Proc Natl Acad Sci U S A 2010; 107:13117-22. [PMID: 20615975 DOI: 10.1073/pnas.1008382107] [Citation(s) in RCA: 179] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Morphine-induced analgesia and antinociceptive tolerance are known to be modulated by interaction between delta-opioid receptors (DORs) and mu-opioid receptors (MORs) in the pain pathway. However, evidence for expression of DORs in nociceptive small-diameter neurons in dorsal root ganglia (DRG) and for coexistence of DORs with MORs and neuropeptides has recently been challenged. We now report, using in situ hybridization, single-cell PCR, and immunostaining, that DORs are widely expressed not only in large DRG neurons but in small ones and coexist with MORs in peptidergic small DRG neurons, with protachykinin-dependent localization in large dense-core vesicles. Importantly, both DOR and MOR agonists reduce depolarization-induced Ca(2+) currents in single small DRG neurons and inhibit afferent C-fiber synaptic transmission in the dorsal spinal cord. Thus, coexistence of DORs and MORs in small DRG neurons is a basis for direct interaction of opioid receptors in modulation of nociceptive afferent transmission and opioid analgesia.
Collapse
|
19
|
Kumar K, Bodani V, Bishop S, Tracey S. Use of Intrathecal Bupivacaine in Refractory Chronic Nonmalignant Pain. PAIN MEDICINE 2009; 10:819-28. [DOI: 10.1111/j.1526-4637.2009.00640.x] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
20
|
Ray SB, Gupta H, Gupta YK. Up-regulation of mu-opioid receptors in the spinal cord of morphine-tolerant rats. J Biosci 2009; 29:51-6. [PMID: 15286403 DOI: 10.1007/bf02702561] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
Though morphine remains the most powerful drug for treating pain, its effectiveness is limited by the development of tolerance and dependence. The mechanism underlying development of tolerance to morphine is still poorly understood. One of the factors could be an alteration in the number of micro-receptors within specific parts of the nervous system. However, reports on changes in the micro-opioid receptor density in the spinal cord after chronic morphine administration are conflicting. Most of the studies have used subcutaneously implanted morphine pellets to produce tolerance. However, it does not simulate clinical conditions, where it is more common to administer morphine at intervals, either by injections or orally. In the present study, rats were made tolerant to morphine by injecting increasing doses of morphine (10-50 mg/kg, subcutaneously) for five days. In vitro tissue autoradiography for localization of micro-receptor in the spinal cord was done using [3H]-DAMGO. As compared to the spinal cord of control rats, the spinal cord of tolerant rats showed an 18.8% increase or up-regulation in the density of micro-receptors in the superficial layers of the dorsal horn. This up-regulation of micro-receptors after morphine tolerance suggests that a fraction of the receptors have been rendered desensitized, which in turn could lead to tolerance
Collapse
Affiliation(s)
- Subrata Basu Ray
- Department of Anatomy, All India Institute of Medical Sciences, New Delhi, India.
| | | | | |
Collapse
|
21
|
Buesa I, Urrutia A, Aira Z, Salgueiro M, Bilbao J, Mozas M, Aguilera L, Zimmermann M, Azkue JJ. Depression of C fibre-evoked spinal field potentials by the spinal δ opioid receptor is enhanced in the spinal nerve ligation model of neuropathic pain: Involvement of the μ-subtype. Neuropharmacology 2008; 55:1376-82. [DOI: 10.1016/j.neuropharm.2008.08.029] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2008] [Revised: 07/23/2008] [Accepted: 08/25/2008] [Indexed: 10/21/2022]
|
22
|
Lynch JL, Alley JF, Wellman L, Beitz AJ. Decreased spinal cord opioid receptor mRNA expression and antinociception in a Theiler's murine encephalomyelitis virus model of multiple sclerosis. Brain Res 2007; 1191:180-91. [PMID: 18096140 DOI: 10.1016/j.brainres.2007.11.034] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2007] [Revised: 11/15/2007] [Accepted: 11/17/2007] [Indexed: 01/24/2023]
Abstract
Multiple sclerosis patients typically experience increased pain that is relatively insensitive to opiate treatment. The mechanistic basis for this increased nociception is currently poorly understood. In the present study, we utilized the Theiler's murine encephalomyelitis virus (TMEV) model of MS to examine possible changes in spinal cord opioid receptor mRNA over the course of disease progression. TMEV infection led to significantly decreased mu, delta and kappa opioid receptor mRNA expression as analyzed by quantitative real-time PCR in both male and female mice at days 90, 150 and 180 post-infection (PI). Since opioid receptor mRNA expression decreased in TMEV mice, we examined whether opiate analgesia is also altered. TMEV infected female mice had significantly decreased opiate analgesia in thermal nociceptive tests beginning at day 90 PI, while TMEV-infected male mice did not display significantly decreased opiate analgesia until day 120 PI. The novel finding that opioid receptor expression is significantly decreased in the spinal cord of TMEV mice could explain the increased nociception and loss of opiate analgesia observed in both TMEV mice and multiple sclerosis patients.
Collapse
Affiliation(s)
- Jessica L Lynch
- Department of Veterinary and Biomedical Sciences, University of Minnesota, 1988 Fitch Avenue, St. Paul, MN 55108, USA
| | | | | | | |
Collapse
|
23
|
Cannon KE, Leurs R, Hough LB. Activation of peripheral and spinal histamine H3 receptors inhibits formalin-induced inflammation and nociception, respectively. Pharmacol Biochem Behav 2007; 88:122-9. [PMID: 17719621 PMCID: PMC2064035 DOI: 10.1016/j.pbb.2007.07.014] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/08/2007] [Revised: 07/06/2007] [Accepted: 07/16/2007] [Indexed: 12/17/2022]
Abstract
Pharmacological activation of histamine H3 receptors is known to reduce the release of inflammatory peptides, thereby reducing pain and inflammation, but the site(s) and mechanism(s) of these effects are currently unknown. The present study addressed these questions by examining the effects of the H3 agonist immepip and the H3 antagonist thioperamide on nociceptive behaviors and swelling produced during the rat formalin test. Systemic administration of immepip (5 and 30 mg/kg, s.c.) significantly attenuated formalin-induced flinching but not licking responses during both phases. This attenuation was reversed by either systemic (15 mg/kg, i.p.) or intrathecal (20 or 50 microg) administration of thioperamide. Furthermore, immepip (30 mg/kg, s.c.) significantly inhibited formalin-induced swelling, an action which was completely reversed by systemic (15 mg/kg, i.p.), but not intrathecal (50 microg) thioperamide. Also consistent with this pattern, intrathecal immepip (50 microg) reduced flinching responses, but had no effect on formalin-induced paw swelling. The present findings suggest that activation of H3 receptors located on peripheral and spinal terminals of deep dermal fibers attenuates formalin-induced swelling and flinching, respectively. Pharmacological stimulation of H3 receptors could be an important therapeutic approach for many disorders related to deep dermal or inflammatory pain.
Collapse
Affiliation(s)
- Keri E. Cannon
- Center for Neuropharmacology and Neuroscience, Albany Medical College MC-136, Albany, NY, USA
| | - Rob Leurs
- Leiden/Amsterdam Center of Drug Research (LACDR), Division of Medicinal Chemistry, Department of Pharmacochemistry, Vrije Universiteit Amsterdam, De Boelelaan 1083, 1081 HV Amsterdam, The Netherlands
| | - Lindsay B. Hough
- Center for Neuropharmacology and Neuroscience, Albany Medical College MC-136, Albany, NY, USA
| |
Collapse
|
24
|
Abstract
The endogenous opioid system is one of the most studied innate pain-relieving systems. This system consists of widely scattered neurons that produce three opioids: beta-endorphin, the met- and leu-enkephalins, and the dynorphins. These opioids act as neurotransmitters and neuromodulators at three major classes of receptors, termed mu, delta, and kappa, and produce analgesia. Like their endogenous counterparts, the opioid drugs, or opiates, act at these same receptors to produce both analgesia and undesirable side effects. This article examines some of the recent findings about the opioid system, including interactions with other neurotransmitters, the location and existence of receptor subtypes, and how this information drives the search for better analgesics. We also consider how an understanding of the opioid system affects clinical responses to opiate administration and what the future may hold for improved pain relief. The goal of this article is to assist clinicians to develop pharmacological interventions that better meet their patient's analgesic needs.
Collapse
Affiliation(s)
- Janean E Holden
- Department of Medical-Surgical Nursing, The University of Illinois at Chicago, Illinois 60612-7350, USA.
| | | | | |
Collapse
|
25
|
Barrière G, Cazalets JR, Bioulac B, Tison F, Ghorayeb I. The restless legs syndrome. Prog Neurobiol 2005; 77:139-65. [PMID: 16300874 DOI: 10.1016/j.pneurobio.2005.10.007] [Citation(s) in RCA: 57] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2005] [Revised: 10/19/2005] [Accepted: 10/21/2005] [Indexed: 10/25/2022]
Abstract
The restless legs syndrome (RLS) is one of the commonest neurological sensorimotor disorders at least in the Western countries and is often associated with periodic limb movements (PLM) during sleep leading to severe insomnia. However, it remains largely underdiagnosed and its underlying pathogenesis is presently unknown. Women are more affected than men and early-onset disease is associated with familial cases. A genetic origin has been suggested but the mode of inheritance is unknown. Secondary causes of RLS may share a common underlying pathophysiology implicating iron deficiency or misuse. The excellent response to dopaminegic drugs points to a central role of dopamine in the pathophysiology of RLS. Iron may also represent a primary factor in the development of RLS, as suggested by recent pathological and brain imaging studies. However, the way dopamine and iron, and probably other compounds, interact to generate the circadian pattern in the occurrence of RLS and PLM symptoms remains unknown. The same is also the case for the level of interaction of the two compounds within the central nervous system (CNS). Recent electrophysiological and animals studies suggest that complex spinal mechanisms are involved in the generation of RLS and PLM symptomatology. Dopamine modulation of spinal reflexes through dopamine D3 receptors was recently highlighted in animal models. The present review suggests that RLS is a complex disorder that may result from a complex dysfunction of interacting neuronal networks at one or several levels of the CNS and involving numerous neurotransmitter systems.
Collapse
Affiliation(s)
- G Barrière
- Laboratoire de Neurophysiologie, UMR-CNRS 5543, Université Bordeaux 2, Bordeaux, France
| | | | | | | | | |
Collapse
|
26
|
Morinville A, Cahill CM, Aibak H, Rymar VV, Pradhan A, Hoffert C, Mennicken F, Stroh T, Sadikot AF, O'Donnell D, Clarke PBS, Collier B, Henry JL, Vincent JP, Beaudet A. Morphine-induced changes in delta opioid receptor trafficking are linked to somatosensory processing in the rat spinal cord. J Neurosci 2004; 24:5549-59. [PMID: 15201327 PMCID: PMC6729333 DOI: 10.1523/jneurosci.2719-03.2004] [Citation(s) in RCA: 65] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2003] [Revised: 04/22/2004] [Accepted: 04/26/2004] [Indexed: 01/13/2023] Open
Abstract
An in vivo fluorescent deltorphin (Fluo-DLT) internalization assay was used to assess the distribution and regulation of pharmacologically available delta opioid receptors (deltaORs) in the rat lumbar (L4-5) spinal cord. Under basal conditions, intrathecal injection of Fluo-DLT resulted in the labeling of numerous deltaOR-internalizing neurons throughout dorsal and ventral horns. The distribution and number of Fluo-DLT-labeled perikaryal profiles were consistent with that of deltaOR-expressing neurons, as revealed by in situ hybridization and immunohistochemistry, suggesting that a large proportion of these cells was responsive to intrathecally administered deltaOR agonists. Pretreatment of rats with morphine for 48 hr resulted in a selective increase in Fluo-DLT-labeled perikaryal profiles within the dorsal horn. These changes were not accompanied by corresponding augmentations in either deltaOR mRNA or (125)I-deltorphin-II binding levels, suggesting that they were attributable to higher densities of cell surface deltaOR available for internalization rather than to enhanced production of the receptor. Unilateral dorsal rhizotomy also resulted in increased Fluo-DLT internalization in the ipsilateral dorsal horn when compared with the side contralateral to the deafferentation or to non-deafferented controls, suggesting that deltaOR trafficking in dorsal horn neurons may be regulated by afferent inputs. Furthermore, morphine treatment no longer increased Fluo-DLT internalization on either side of the spinal cord after unilateral dorsal rhizotomy, indicating that microOR-induced changes in the cell surface availability of deltaOR depend on the integrity of primary afferent inputs. Together, these results suggest that regulation of deltaOR responsiveness through microOR activation in this region is linked to somatosensory information processing.
Collapse
MESH Headings
- Animals
- Fluorescent Dyes/chemistry
- Fluorescent Dyes/pharmacology
- Guanosine 5'-O-(3-Thiotriphosphate)/metabolism
- In Situ Hybridization
- Lumbosacral Region
- Male
- Microscopy, Fluorescence
- Morphine/pharmacology
- Narcotics/pharmacology
- Oligopeptides/chemistry
- Oligopeptides/metabolism
- Oligopeptides/pharmacology
- Posterior Horn Cells/metabolism
- Protein Transport
- Radioligand Assay
- Rats
- Rats, Sprague-Dawley
- Receptors, Opioid, delta/agonists
- Receptors, Opioid, delta/biosynthesis
- Receptors, Opioid, delta/metabolism
- Receptors, Opioid, mu/agonists
- Receptors, Opioid, mu/metabolism
- Rhizotomy
- Spinal Cord/anatomy & histology
- Spinal Cord/metabolism
- Up-Regulation
Collapse
Affiliation(s)
- Anne Morinville
- Montreal Neurological Institute, McGill University, Montreal, Québec, Canada H3A 2B4
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Besse D, Lombard MC, Besson JM. Plasticity of &mgr; and delta Opioid Receptors in the Superficial Dorsal Horn of the Adult Rat Spinal Cord Following Dorsal Rhizotomies: A Quantitative Autoradiographic Study. Eur J Neurosci 2002; 4:954-965. [PMID: 12106431 DOI: 10.1111/j.1460-9568.1992.tb00122.x] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The aim was to study the regulation of &mgr; and delta opioid binding sites in the superficial layers (laminae I - II) of the dorsal horn of the adult rat spinal cord 1, 2, 4 and 12 weeks after unilateral dorsal rhizotomies of various extents. Using quantitative autoradiography and highly selective tritiated opioid ligands, we have shown that the decrease in [3H]Tyr*-d-Ala-Gly-NMe-Phe-Gly-ol ([3H]DAMGO) (&mgr; sites) and [3H]Tyr*-d-Thr-Gly-Phe-Leu-Thr ([3H]DTLET) (delta sites) binding in the side ipsilateral to the lesion as compared to the intact side is related to the number of dorsal roots cut. In the segment central to the lesion, 1 week after the lesion, ipsilateral/contralateral side binding ratios for [3H]DAMGO were 0.70, 0.49, 0.36 and 0.25 when 1, 3, 5 and 7 roots respectively were sectioned. For [3H]DTLET, the ratios were 0.71, 0.54, 0.42 and 0.39. The time-related analysis of binding ratios showed that, in partially deafferented spinal segments after long-term deafferentation (12 weeks postlesion) there were greater numbers of &mgr; and delta binding sites than in cases of short-term deafferentation (1 - 2 weeks). By contrast, in spinal segments considered as completely deafferented, there was no difference in the remaining &mgr; and delta binding sites at 12 weeks as compared to 1 week postlesion. Consequently, it is deduced that the partial recovery of &mgr; and delta binding observed after long-term partial deafferentation could be associated with neuronal plasticity (probably collateral sprouting) of fine diameter primary afferent fibres arising from intact dorsal roots.
Collapse
Affiliation(s)
- D. Besse
- Unité de Recherches de Physiopharmacologie du Système Nerveux (INSERM, U. 161) and Laboratoire de Physiopharmacologie de la Douleur, Ecole Pratique des Hautes Etudes, 2 rue d'Alésia 75014 Paris, France
| | | | | |
Collapse
|
28
|
Ruscheweyh R, Sandkühler J. Lamina-specific membrane and discharge properties of rat spinal dorsal horn neurones in vitro. J Physiol 2002; 541:231-44. [PMID: 12015432 PMCID: PMC2290304 DOI: 10.1113/jphysiol.2002.017756] [Citation(s) in RCA: 154] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
Membrane and discharge properties determine the input-output relationship of neurones and are therefore of paramount importance for the functions of neural circuits. Here, we have tested the hypothesis that neurones in different laminae of the spinal dorsal horn differ in their electrophysiological properties. Whole-cell patch-clamp recordings from dorsal horn neurones in a rat transverse spinal cord slice preparation were used to record active and passive membrane properties. Neurones from superficial dorsal horn laminae had higher membrane resistances and broader action potentials than deep dorsal horn neurones. Action potential thresholds were highest in lamina II neurones, representing low membrane excitability. Five types of firing patterns were identified in response to depolarising current injections. Tonic-firing neurones discharged action potentials at regular intervals throughout the current pulse. Delayed-firing neurones showed a delayed onset of firing in response to current injections that was due to activation of a transient voltage-dependent outward current, presumably an A-current. Another group of neurones fired a short initial burst of action potentials. Single-spiking neurones discharged only one action potential at the onset of a depolarising pulse. Phasic-bursting neurones showed irregular bursts of action potentials. Firing patterns were unequally distributed among laminae. Tonic-firing neurones were numerous in lamina I and deeper laminae but were not found in lamina II. Delayed-firing neurones were encountered in laminae I and II but not in deeper laminae. Most of the neurones showing an initial burst were found in lamina II. These differences in membrane and discharge properties probably contribute to lamina-specific processing of sensory, including nociceptive, information.
Collapse
Affiliation(s)
- Ruth Ruscheweyh
- Institute of Physiology and Pathophysiology, University of Heidelberg, Heidelberg, Germany
| | | |
Collapse
|
29
|
Abstract
Previous studies have reported that the mRNAs encoding the cloned mu-opioid receptor (MOR1) and the cloned delta-opioid receptor (DOR1) are expressed in the dorsal root ganglia (DRG) of rats. In the present study, we determined the sizes of DRG neurons expressing DOR1 and MOR1 mRNAs and examined whether or not DRG neurons were likely to be the source of the DOR1 and MOR1 immunoreactivity previously observed in the spinal dorsal horn. DRG neurons were labeled in five male Sprague-Dawley rats by applying Fluoro-Gold (FG) topically to the dorsal root entry zone. Five-micrometer cryostat sections were cut, and in situ hybridization was performed using full-length cRNA probes labeled with 35S-UTP. The distribution of sizes of DRG neuronal profiles (1372 neuronal profiles were evaluated) ranged from 98 to 2081 microm(2) and was similar to those found in previous reports. Of 583 retrogradely labeled neuronal profiles in DRGs, 246 (40 +/- 14%, mean +/- SD, n = 5) expressed MOR1 mRNA. Of 789 DRG cell profiles from sections that were hybridized for DOR1 mRNA, 687 (85 +/- 18%, mean +/- SD, n = 5) were labeled for DOR1. The proportion of DRG cell profiles expressing DOR1 mRNA was significantly higher than that expressing MOR1 mRNA (P < 0.0001, chi-square test). No significant differences were observed between small (less than or = 700 microm(2)) and large (> 700 microm(2)) FG-labeled neurons in the proportions labeled for either MOR1 mRNA (202/497 vs. 44/86, P > 0.2, chi-square test) or DOR1 mRNA (555/651 vs. 132/138, P > 0.3, chi-square test). Most FG-labeled neurons that expressed either MOR1 mRNA or DOR1 mRNA (82.1 and 80.8%, respectively) were smaller than 700 microm(2). In addition to cells expressing a single opioid receptor, individual DRG neurons were observed that expressed both MOR1 and DOR1. In a sample of 25 DRG neurons expressing MOR1-mRNA, 23 also expressed DOR1 mRNA. Within the spinal cord itself, DOR1 and MOR1 mRNAs had different patterns of expression. Both were expressed in the dorsal horn, but of the two, only MOR1 message was expressed in the superficial dorsal horn. We conclude that both small and large DRG neurons express DOR1 and MOR1 mRNAs, but most cells expressing these mRNAs are small. In addition, some DRG neurons express both MOR1 and DOR1 mRNAs. Finally, both DOR1 and MOR1 in the spinal dorsal horn originate, at least in part, from DRG neurons.
Collapse
Affiliation(s)
- H Wang
- Department of Neuroscience, University of Minnesota, Minneapolis, Minnesota 55455, USA
| | | |
Collapse
|
30
|
Ruscheweyh R, Sandkühler J. Differential actions of spinal analgesics on mono-versus polysynaptic Adelta-fibre-evoked field potentials in superficial spinal dorsal horn in vitro. Pain 2000; 88:97-108. [PMID: 11098104 DOI: 10.1016/s0304-3959(00)00325-0] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Abstract
Processing of nociceptive information can be modulated at various levels in spinal cord that may range from changes of neurotransmitter release from primary afferent Adelta- or C-fibres to excitability changes of spinal interneurones or motoneurones. The site and mechanism of action of spinal analgesics has been assessed with a number of in vivo and in vitro methods with sometimes conflicting results. Here, we have used transverse spinal cord slices with attached dorsal roots to simultaneously record mono- and polysynaptic Adelta-fibre-evoked field potentials in superficial spinal dorsal horn. Two classical spinal analgesics, morphine and clonidine, and the metabotropic glutamate receptor agonist (IS,3R)-1-aminocyclopentane-1,3-dicarboxylic acid ((1S,3R)-ACPD) differentially affected mono- and polysynaptic Adelta-fibre-evoked transmission in spinal dorsal horn. Polysynaptic responses were dose-dependently inhibited while the monosynaptic response remained unaffected. These results suggest that spinal analgesics may preferentially affect polysynaptic but not monosynaptic Adelta-fibre-evoked responses in superficial spinal dorsal horn.
Collapse
Affiliation(s)
- Ruth Ruscheweyh
- Institute of Physiology and Pathophysiology, Heidelberg University, Im Neuenheimer Feld 326, 69120 Heidelberg, Germany
| | | |
Collapse
|
31
|
Tong Y, Chabot JG, Shen SH, O'Dowd BF, George SR, Quirion R. Ontogenic profile of the expression of the mu opioid receptor gene in the rat telencephalon and diencephalon: an in situ hybridization study. J Chem Neuroanat 2000; 18:209-22. [PMID: 10781737 DOI: 10.1016/s0891-0618(00)00043-0] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Abstract
The developmental profile of mu (mu) opioid receptor gene expression has been characterized in the embryonic, postnatal and adult rat brain by in situ hybridization histochemistry. By ED12, mu opioid receptor mRNA was detectable in the deep neuroepithelium of the cortical plate. In the developing rat central nervous system (ED13-PD40), transcripts were seen over numerous telencephalic and diencephalic structures, such as the olfactory bulb, caudate-putamen, nucleus accumbens, amygdaloid complex, hippocampal formation, hypothalamus and thalamus. In the vast majority of brain regions examined, the developmental profile of the mu opioid receptor gene expression is similar to that of its translated protein as established using receptor autoradiography. Once a hybridization signal is detected in the prenatal period, it gradually increased to reach maximal levels during the second and third postnatal weeks. By the end of the third postnatal week, mu opioid receptor mRNA levels decreased to reach amounts seen in adulthood. Our study demonstrates that mu opioid receptor gene expression is seen very early on in the embryonic rat brain with transient increases observed during the critical period of neurogenesis, neuronal migration and synaptogenesis, suggesting a role of this opioid receptor subtype in brain developmental processes.
Collapse
Affiliation(s)
- Y Tong
- Douglas Hospital Research Centre, Department of Psychiatry, McGill University, 6875 LaSalle Blvd, Verdun, Canada
| | | | | | | | | | | |
Collapse
|
32
|
|
33
|
Abstract
Although neuropeptide FF (NPFF) is generally considered an anti-opioid, its intrathecal administration produces analgesia. In the present study, the stable analog 1DMe ([D.Tyr(1), (NMe)Phe(3)]neuropeptide FF) was used in quantitative autoradiographic experiments in combination with surgical and chemical lesions to precisely localize NPFF receptors in the rat spinal cord. Ligation of lumbar dorsal spinal roots revealed the presence of NPFF receptors in dorsal root fibers and it induced a significant accumulation of [(125)I]1DMe-specific binding on the side peripheral to the ligature, demonstrating that a population of NPFF receptors is synthesized in dorsal root ganglia and migrates anterogradely towards primary afferent nerve endings. Complete mid-thoracic spinal cord transection failed to modify the [(125)I]1DMe labeling density in the dorsal horn, indicating that NPFF receptors are not located on the descending fiber terminals. In contrast, unilateral microinjections of kainic acid into the dorsal horn dramatically reduced [(125)I]1DMe-specific binding in the superficial layers, revealing localization of a population of NPFF receptors on the spinal intrinsic neurons. NPFF receptor binding was not modified during the development of spinal opioid tolerance. The pre- and postsynaptic localization of spinal NPFF receptors provide further support for heterogeneity in the pain modulation by NPFF and related agonists.
Collapse
Affiliation(s)
- C Gouardères
- Institut de Pharmacologie et de Biologie Structurale, CNRS, Toulouse, France
| | | | | | | | | |
Collapse
|
34
|
Kohno T, Kumamoto E, Higashi H, Shimoji K, Yoshimura M. Actions of opioids on excitatory and inhibitory transmission in substantia gelatinosa of adult rat spinal cord. J Physiol 1999; 518 ( Pt 3):803-13. [PMID: 10420016 PMCID: PMC2269468 DOI: 10.1111/j.1469-7793.1999.0803p.x] [Citation(s) in RCA: 148] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
1. The actions of opioid receptor agonists on synaptic transmission in substantia gelatinosa (SG) neurones in adult (6- to 10-week-old) rat spinal cord slices were examined by use of the blind whole-cell patch-clamp technique. 2. Both the mu-receptor agonist DAMGO (1 microM) and the delta-receptor agonist DPDPE (1 microM) reduced the amplitude of glutamatergic excitatory postsynaptic currents (EPSCs) which were monosynaptically evoked by stimulating Adelta afferent fibres. Both also decreased the frequency of miniature EPSCs without affecting their amplitude. 3. In contrast, the kappa-receptor agonist U-69593 (1 microM) had little effect on the evoked and miniature EPSCs. 4. The effects of DAMGO and DPDPE were not seen in the presence of the mu-receptor antagonist CTAP (1 microM) and the delta-receptor antagonist naltrindole (1 microM), respectively. 5. Neither DAMGO nor DPDPE at 1 microM affected the responses of SG neurones to bath-applied AMPA (10 microM). 6. Evoked and miniature inhibitory postsynaptic currents (IPSCs), mediated by either the GABAA or the glycine receptor, were unaffected by the mu-, delta- and kappa-receptor agonists. Similar results were also obtained in SG neurones in young adult (3- to 4-week-old) rat spinal cord slices. 7. These results indicate that opioids suppress excitatory but not inhibitory synaptic transmission, possibly through the activation of mu- and delta- but not kappa-receptors in adult rat spinal cord SG neurones; these actions are presynaptic in origin. Such an action of opioids may be a possible mechanism for the antinociception produced by their intrathecal administration.
Collapse
MESH Headings
- Animals
- Benzeneacetamides
- Electric Stimulation
- Electrophysiology
- Enkephalin, Ala(2)-MePhe(4)-Gly(5)-
- Enkephalin, D-Penicillamine (2,5)-
- Enkephalins/pharmacology
- Evoked Potentials/drug effects
- Excitatory Postsynaptic Potentials/drug effects
- Excitatory Postsynaptic Potentials/physiology
- In Vitro Techniques
- Male
- Membrane Potentials/drug effects
- Membrane Potentials/physiology
- Opioid Peptides/pharmacology
- Patch-Clamp Techniques
- Pyrrolidines/pharmacology
- Rats
- Rats, Sprague-Dawley
- Receptors, Opioid, delta/agonists
- Receptors, Opioid, kappa/agonists
- Receptors, Opioid, mu/agonists
- Spinal Cord/drug effects
- Spinal Cord/physiology
- Substantia Gelatinosa/drug effects
- Substantia Gelatinosa/physiology
- Synaptic Transmission/drug effects
Collapse
Affiliation(s)
- T Kohno
- Department of Physiology, Saga Medical School, Saga 849-8501, Japan
| | | | | | | | | |
Collapse
|
35
|
Abstract
The distribution of mu opioid receptors was studied in human fetal spinal cords between 12-13 and 24-25 wk gestational ages. Autoradiographic localisation using [3H] DAMGO revealed the presence of mu receptors in the dorsal horn at all age groups with a higher density in the superficial laminae (I-II). A biphasic expression was noted. Receptor density increased in the dorsal horn, including the superficial laminae, between 12-13 and 16-17 wk. This could be associated with a spurt in neurogenesis. The density increased again at 24-25 wk in laminae I-II which resembled the adult pattern of distribution. A dramatic proliferation of cells was noted from the region of the ventricular zone between 16-17 and 24-25 wk. These were considered to be glial cells from their histological features. Mu receptor expression was noted over a large area of the spinal cord including the lateral funiculus at 24-25 wk. This may be due to receptor expression by glial cells. The study presents evidence of mu receptor expression by both neurons and glia during early development of human spinal cord.
Collapse
Affiliation(s)
- S B Ray
- Department of Anatomy, All India Institute of Medical Sciences, Ansari Nagar, New Delhi.
| | | |
Collapse
|
36
|
Hohmann AG, Briley EM, Herkenham M. Pre- and postsynaptic distribution of cannabinoid and mu opioid receptors in rat spinal cord. Brain Res 1999; 822:17-25. [PMID: 10082879 DOI: 10.1016/s0006-8993(98)01321-3] [Citation(s) in RCA: 143] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
In vitro receptor binding and quantitative autoradiography were used to assess the pre- and postsynaptic distribution of cannabinoid receptors in the cervical dorsal horn of the rat spinal cord. An extensive unilateral dorsal rhizotomy was performed across seven or eight successive spinal segments from C3 to T1 or T2. The densities of cannabinoid and mu opioid receptors in the central (C6) spinal segment were assessed 2, 4, 8, and 16 days post rhizotomy and compared with those of untreated rats. Rhizotomy induced approximately a 50% ipsilateral loss in the [3H]CP55,940 binding to spinal cannabinoid receptors that was maximal at 8 days post-rhizotomy. By comparison, the binding of [3H][d-Ala2-MePhe4, Gly-ol5]enkephalin (DAMGO) to mu receptors was depleted approximately 60% in near-adjacent sections. By contrast, changes in [3H]CP55,940 binding contralateral to the deafferentation were largely absent at all post-lesion delays. These data suggest that under conditions in which a spinal segment is completely deafferented, approximately 50% of cannabinoid receptors in the cervical (C6) dorsal horn reside presynaptically on central terminals of primary afferents. The present data provide anatomical evidence for presynaptic as well as postsynaptic localization of cannabinoid receptors in the spinal dorsal horn.
Collapse
MESH Headings
- Analgesics/pharmacology
- Analgesics, Opioid/pharmacology
- Animals
- Arachidonic Acids/pharmacology
- Autoradiography
- Calcium Channel Blockers/pharmacology
- Cyclohexanols/pharmacology
- Endocannabinoids
- Enkephalin, Ala(2)-MePhe(4)-Gly(5)-
- Enkephalins/pharmacology
- Functional Laterality
- Male
- Neurons, Afferent/chemistry
- Neurons, Afferent/drug effects
- Polyunsaturated Alkamides
- Presynaptic Terminals/chemistry
- Rats
- Rats, Sprague-Dawley
- Receptors, Cannabinoid
- Receptors, Drug/analysis
- Receptors, Opioid, mu/agonists
- Receptors, Opioid, mu/analysis
- Rhizotomy
- Spinal Cord/chemistry
- Spinal Cord/cytology
- Tritium
Collapse
Affiliation(s)
- A G Hohmann
- Section on Functional Neuroanatomy, National Institute of Mental Health, Building 36, Room 2D15, Bethesda, MD 20892-4070, USA.
| | | | | |
Collapse
|
37
|
Xi MC, Liu RH, Yamuy J, Morales FR, Chase MH. Naloxone reduces the amplitude of IPSPs evoked in lumbar motoneurons by reticular stimulation during carbachol-induced motor inhibition. Brain Res 1999; 819:155-9. [PMID: 10082872 DOI: 10.1016/s0006-8993(98)01299-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
During active sleep or carbachol-induced motor inhibition, electrical stimulation of the medullary nucleus reticularis gigantocellularis (NRGc) evoked large amplitude, glycinergic inhibitory postsynaptic potentials (IPSPs) in cat motoneurons. The present study was directed to determine whether these IPSPs, that are specific to the state of active sleep, are modulated by opioid peptides. Accordingly, intracellular recordings were obtained from lumbar motoneurons of acute decerebrate cats during carbachol-induced motor inhibition while an opiate receptor antagonist, naloxone, was microiontophoretically released next to the recorded cells. Naloxone reversibly reduced by 26% the mean amplitude of NRGc-evoked IPSPs (1.9+/-0.2 mV (S.E.M.) vs. 1.4+/-0.2 mV; n=11, control and naloxone, respectively, p<0.05), but had no effect on the other waveform parameters of these IPSPs (e.g., latency-to-onset, latency-to-peak, duration, etc.). The mean resting membrane potential, input resistance and membrane time constant of motoneurons following naloxone ejection were not statistically different from those of the control. These data indicate that opioid peptides have a modulatory effect on NRGc-evoked IPSPs during carbachol-induced motor inhibition. We therefore suggest that endogenous opioid peptides may act as neuromodulators to regulate inhibitory glycinergic synaptic transmission at motoneurons during active sleep.
Collapse
Affiliation(s)
- M C Xi
- Department of Physiology and the Brain Research Institute, UCLA School of Medicine, University of California, Los Angeles, CA 90095, USA
| | | | | | | | | |
Collapse
|
38
|
Monteillet-Agius G, Fein J, Anton B, Evans CJ. ORL-1 and mu opioid receptor antisera label different fibers in areas involved in pain processing. J Comp Neurol 1998; 399:373-83. [PMID: 9733084 DOI: 10.1002/(sici)1096-9861(19980928)399:3<373::aid-cne6>3.0.co;2-y] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Mu opioid receptors (MOR) mediate the analgesic effects of opioid drugs such as morphine. The opioid receptor-like (ORL-1) receptor is structurally related to opioid receptors and the ORL-1 receptor agonist, orphanin FQ/nociceptin, induces analgesia at the spinal level, but appears to recruit different circuitry than that used by mu opioids. When administered intracerebroventricularly, orphanin FQ/nociceptin produces hyperalgesia and/or reverses opioid analgesia. The functionally distinct actions elicited by MOR and ORL-1 receptors, which activate similar intracellular signaling systems and show similar regional distributions, could be explained by their differential cellular localization. By using double label immunohistochemistry and confocal microscopy, the present study investigates the distribution of MOR and ORL-1 receptors in regions of the rat nervous system that are involved with nociceptive processing. In general co-localization of MOR and ORL-1 receptor immunoreactivity was not observed in either perikarya or neuropil in the dorsal root ganglia, nor in the Lissauer's tract and superficial laminae of the spinal cord. Likewise, there was no evidence for co-localization of these receptors within the periaqueductal gray, the nucleus raphe magnus, the gigantocellular reticular nucleus, and the nucleus of the solitary tract. These observations indicate that MOR and ORL-1 receptors are expressed predominantly on different fiber systems in these regions. This differential distribution is consistent with the distinct pharmacology of ORL-1 and MOR receptor agonists and suggests that the antisera to MOR and ORL-1 receptors may provide useful markers for further investigations of analgesic and counteranalgesic pathways modulating pain perception.
Collapse
MESH Headings
- Amino Acid Sequence
- Animals
- Antibodies, Monoclonal
- Antibody Specificity
- Fluorescent Antibody Technique
- Ganglia, Spinal/chemistry
- Ganglia, Spinal/cytology
- Ganglia, Spinal/physiology
- Immunoenzyme Techniques
- Male
- Molecular Sequence Data
- Nerve Fibers/chemistry
- Nerve Fibers/physiology
- Nociceptors/physiology
- Pain/metabolism
- Periaqueductal Gray/chemistry
- Periaqueductal Gray/cytology
- Periaqueductal Gray/physiology
- Raphe Nuclei/chemistry
- Raphe Nuclei/cytology
- Raphe Nuclei/physiology
- Rats
- Rats, Sprague-Dawley
- Receptors, Opioid/analysis
- Receptors, Opioid/genetics
- Receptors, Opioid/immunology
- Receptors, Opioid, mu/analysis
- Receptors, Opioid, mu/immunology
- Solitary Nucleus/chemistry
- Solitary Nucleus/cytology
- Solitary Nucleus/physiology
- Spinal Cord/chemistry
- Spinal Cord/cytology
- Spinal Cord/physiology
- Nociceptin Receptor
Collapse
Affiliation(s)
- G Monteillet-Agius
- Department of Psychiatry and Biobehavioral Sciences, Neuropsychiatric Institute, University of California Los Angeles, 90024-1759, USA.
| | | | | | | |
Collapse
|
39
|
Hao JX, Yu W, Wiesenfeld-Hallin Z, Xu XJ. Treatment of chronic allodynia in spinally injured rats: effects of intrathecal selective opioid receptor agonists. Pain 1998; 75:209-17. [PMID: 9583756 DOI: 10.1016/s0304-3959(97)00221-2] [Citation(s) in RCA: 23] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
We examined the effects of intrathecal (i.t.) selective opioid receptor agonists in alleviating mechanical and cold allodynia in spinally injured rats. Both DAMGO ([D-Ala2,N-Me-Phe4,Gly5-ol]-enkephalin, a mu-opioid receptor agonist) and DPDPE ([D-Phe2,D-Phe5]-enkephalin, a delta-opioid receptor agonist) dose-dependently relieved the chronic allodynia-like behavior at doses selective for their respective receptors. The anti-allodynic effect of DAMGO and DPDPE was reversed by the selective mu- and delta-opioid receptor antagonists CTOP (D-Phe-Cys-Tyr-D-Trp-Orn-Thr-Pen-Thr-NH2) and naltrindole, respectively. In contrast, the selective kappa-opioid receptor agonist U50488H did not alleviate the allodynia-like behavior, but rather enhanced it. The anti-nociceptive and anti-allodynic effect of i.t. DAMGO was blocked by U50488H. Thus, activation of spinal mu- and delta-, but not kappa-opioid receptors produced anti-allodynic effect in this model of central pain. Drugs which act selectively on opioid receptor subtypes may be useful in managing chronic central pain of spinal cord origin.
Collapse
MESH Headings
- 3,4-Dichloro-N-methyl-N-(2-(1-pyrrolidinyl)-cyclohexyl)-benzeneacetamide, (trans)-Isomer/therapeutic use
- Analgesics, Non-Narcotic/therapeutic use
- Analgesics, Opioid/antagonists & inhibitors
- Analgesics, Opioid/therapeutic use
- Animals
- Behavior, Animal/physiology
- Chronic Disease
- Drug Interactions
- Enkephalin, Ala(2)-MePhe(4)-Gly(5)-
- Enkephalin, D-Penicillamine (2,5)-
- Enkephalins/antagonists & inhibitors
- Enkephalins/therapeutic use
- Female
- Hypesthesia/drug therapy
- Hypesthesia/etiology
- Hypesthesia/psychology
- Injections, Spinal
- Nociceptors/drug effects
- Rats
- Rats, Sprague-Dawley
- Receptors, Opioid/agonists
- Spinal Cord Injuries/complications
Collapse
Affiliation(s)
- J X Hao
- Department of Medical Laboratory Sciences and Technology, Karolinska Institute, Huddinge University Hospital, Sweden
| | | | | | | |
Collapse
|
40
|
Zhang X, Bao L, Shi TJ, Ju G, Elde R, Hökfelt T. Down-regulation of mu-opioid receptors in rat and monkey dorsal root ganglion neurons and spinal cord after peripheral axotomy. Neuroscience 1998; 82:223-40. [PMID: 9483516 DOI: 10.1016/s0306-4522(97)00240-6] [Citation(s) in RCA: 148] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
To understand the role of opioids and their receptors in chronic pain following peripheral nerve injury, we have studied the mu-opioid receptor in rat and monkey lumbar 4 and 5 dorsal root ganglion neurons and the superficial dorsal horn of the spinal cord under normal circumstances and after peripheral axotomy. Our results show that many small neurons in rat and monkey dorsal root ganglia, and some medium-sized and large neurons in rat dorsal root ganglia, express mu-opioid receptor-like immunoreactivity. Most of these neurons contain calcitonin gene-related peptide. The mu-opioid receptor was closely associated with the somatic plasmalemma of the dorsal root ganglion neurons. Both mu-opioid receptor-immunoreactive nerve fibers and cell bodies were observed in lamina II of the dorsal horn. The highest intensity of mu-opioid receptor-like immunoreactivity was observed in the deep part of lamina II. Most mu-opioid receptor-like immunoreactivity in the dorsal horn originated from spinal neurons. A few mu-opioid receptor-positive peripheral afferent terminals in the rat and monkey dorsal horn were calcitonin gene-related peptide-immunoreactive. In addition to pre- and post-junctional receptors in rat and monkey dorsal horn neurons, mu-opioid receptors were localized on the presynaptic membrane of some synapses of primary afferent terminals in the monkey dorsal horn. Peripheral axotomy caused a reduction in the number and intensity of mu-opioid receptor-positive neurons in the rat and monkey dorsal root ganglia, and of mu-opioid receptor-like immunoreactivity in the dorsal horn of the spinal cord. The decrease in mu-opioid receptor-like immunoreactivity was more pronounced in the monkey than in the rat dorsal root ganglia and spinal cord. It is probable that there was a parallel trans-synaptic down-regulation of mu-opioid-like immunoreactivity in local dorsal horn neurons of the monkey. These data suggest that one factor underlying the well known insensitivity of neuropathic pain to opioid analgesics could be due to a marked reduction in the number of mu-opioid receptors in the axotomized sensory neurons and in interneurons in the dorsal horn of the spinal cord.
Collapse
Affiliation(s)
- X Zhang
- Department of Neuroscience, Karolinska Institute, Stockholm, Sweden
| | | | | | | | | | | |
Collapse
|
41
|
Waele JP, Gianoulakis C. Characterization of the mu and delta Opioid Receptors in the Brain of the C57BL/6 and DBA/2 Mice, Selected for Their Differences in Voluntary Ethanol Consumption. Alcohol Clin Exp Res 1997. [DOI: 10.1111/j.1530-0277.1997.tb03834.x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
42
|
Coggeshall RE, Carlton SM. Receptor localization in the mammalian dorsal horn and primary afferent neurons. BRAIN RESEARCH. BRAIN RESEARCH REVIEWS 1997; 24:28-66. [PMID: 9233541 DOI: 10.1016/s0165-0173(97)00010-6] [Citation(s) in RCA: 199] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
The dorsal horn of the spinal cord is a primary receiving area for somatosensory input and contains high concentrations of a large variety of receptors. These receptors tend to congregate in lamina II, which is a major receiving center for fine, presumably nociceptive, somatosensory input. There are rapid reorganizations of many of these receptors in response to various stimuli or pathological situations. These receptor localizations in the normal and their changes after various pertubations modify present concepts about the wiring diagram of the nervous system. Accordingly, the present work reviews the receptor localizations and relates them to classic organizational patterns in the mammalian dorsal horn.
Collapse
Affiliation(s)
- R E Coggeshall
- Department of Anatomy and Neurosciences, University of Texas Medical Branch, Galveston 77555-1069, USA
| | | |
Collapse
|
43
|
Ma W, Ribeiro-da-Silva A, De Koninck Y, Radhakrishnan V, Cuello AC, Henry JL. Substance P and enkephalin immunoreactivities in axonal boutons presynaptic to physiologically identified dorsal horn neurons. An ultrastructural multiple-labelling study in the cat. Neuroscience 1997; 77:793-811. [PMID: 9070753 DOI: 10.1016/s0306-4522(96)00510-6] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
A combination of intracellular electrophysiological recording and injection of horseradish peroxidase with ultrastructural immunocytochemistry was used to investigate the synaptic interplay between substance P- and enkephalin-immunoreactive axonal boutons and three types of functionally characterized dorsal horn neurons in the cat spinal cord. The dorsal horn neurons were classified as nociceptive specific, wide dynamic range and non-nociceptive based on their responses to innocuous and noxious stimuli. Most of the nociceptive neurons (either nociceptive specific or wide dynamic range) contained enkephalin immunoreactivity, but none of the non-nociceptive neurons were positive for enkephalin. Three types of immunoreactive boutons were found in contact with the functionally characterized dorsal horn neurons. These boutons were positive for either substance P, enkephalin, or substance P+enkephalin. Quantitative analysis revealed that the percentages of substance P-immunoreactive boutons apposed to the cell bodies, proximal dendrites and distal dendrites of nociceptive neurons were significantly higher than those of non-nociceptive neurons. Furthermore, the percentages of substance P+enkephalin-immunoreactive axonal boutons apposed to the distal dendrites of nociceptive neurons were significantly higher than those of non-nociceptive neurons and the percentages of enkephalin-immunoreactive boutons apposed to the cell bodies and proximal dendrites of nociceptive neurons were significantly higher than in non-nociceptive neurons. Finally, neither enkephalin-immunoreactive nor substance P+enkephalin-immunoreactive boutons were ever seen presynaptic to substance P-immunoreactive boutons. These results provide evidence of an anatomical substrate within the dorsal horn for the interaction of substance P-mediated with enkephalin-mediated mechanisms. The data support the idea that the modulation of nociceptive input in the dorsal horn by enkephalinergic neurons occurs mainly via a postsynaptic mechanism, and thus suggest that dorsal horn enkephalinergic neurons participate in a local inhibitory feedback loop in a distinct pathway from the previously postulated opioid-mediated depression of substance P release from primary afferent terminals.
Collapse
Affiliation(s)
- W Ma
- Department of Pharmacology and Therapeutics, McGill University, Montreal, Quebec, Canada
| | | | | | | | | | | |
Collapse
|
44
|
Kemp T, Spike RC, Watt C, Todd AJ. The mu-opioid receptor (MOR1) is mainly restricted to neurons that do not contain GABA or glycine in the superficial dorsal horn of the rat spinal cord. Neuroscience 1996; 75:1231-8. [PMID: 8938756 DOI: 10.1016/0306-4522(96)00333-8] [Citation(s) in RCA: 71] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
The mu-opioid receptor MOR1 is present on primary afferent axons and a population of neurons in the superficial dorsal horn of the rat spinal cord. In order to determine which types of neuron possess the receptor we carried out pre-embedding immunocytochemistry with antibody to MOR1 and combined this with a post-embedding method to detect GABA and glycine in the rat. MOR1 immunoreactivity was seen on many small neurons in lamina II and a few in the dorsal part of lamina III. Although immunostaining was mainly restricted to the cell bodies and dendrites of these neurons, in some cases it was possible to see their axons, and a few of these entered lamina III. One hundred and thirty-nine MOR1-immunoreactive cells were tested with GABA and glycine antibodies, and the great majority of these (131 of 139; 94%) were not GABA or glycine immunoreactive, while the remainder showed GABA but not glycine immunoreactivity. These results suggest that most of the cells in the superficial dorsal horn which possess MOR1 are excitatory interneurons. They support the hypothesis that part of the action of mu-opioid agonists, such as morphine, involves the inhibition of excitatory interneurons which convey input from nociceptors to neurons in the deep dorsal horn, thus interrupting the flow of nociceptive information through polysynaptic pathways in the spinal cord.
Collapse
Affiliation(s)
- T Kemp
- Laboratory of Human Anatomy, University of Glasgow, U.K
| | | | | | | |
Collapse
|
45
|
Gouardères C, kar S, Zajac JM. Presence of neuropeptide FF receptors on primary afferent fibres of the rat spinal cord. Neuroscience 1996; 74:21-7. [PMID: 8843074 DOI: 10.1016/0306-4522(96)00122-4] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
A radioiodinated analogue of neuropeptide FF, [125I][D. Tyr1,(NMe) Phe3]neuropeptide FF, was used as a selective probe to label neuropeptide FF receptors in the rat spinal cord. Following neonatal capsaicin treatment, dorsal rhizotomy or sciatic nerve section, the distribution and possible alterations of spinal cord specific [125I][D.Tyr1,(NMe)Phe3]neuropeptide FF binding sites were evaluated using in vitro quantitative receptor autoradiography. In normal rats, the highest densities of sites were observed in the superficial layers of the dorsal horn (laminae I-II) whereas moderate to low amounts of labelling were seen in the deeper (III-VI) laminae, around the central canal, and in the ventral horn. Capsaicin-treated rats showed a bilateral decrease (47%) in [125I][D.Tyr1,(NMe)Phe3]neuropeptide FF binding in all spinal areas. Unilateral sciatic nerve section and unilateral dorsal rhizotomy induced significant depletions (15-27%) in [125I][D.Tyr1,(NMe)Phe3]neuropeptide FF labelling in the ipsilateral dorsal horn. These results suggest that a proportion of neuropeptide FF receptors is located on primary afferent terminals of the dorsal horn and could thus play a role in the modulation of nociceptive transmission.
Collapse
Affiliation(s)
- C Gouardères
- Laboratoire de Pharmacologie et de Toxicologie Fondamentales, C.N.R.S., Toulouse, France
| | | | | |
Collapse
|
46
|
Roumy M, Zajac JM. Effects of neuropeptide FF on intracellular Ca2+ in mouse spinal ganglion neurons. Eur J Pharmacol 1996; 306:291-5. [PMID: 8813643 DOI: 10.1016/0014-2999(96)00210-5] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Intracellular Ca2+ was measured in freshly dissociated mouse dorsal root ganglion neurons by using Fluo3 as fluorescent Ca2+ probe. Short perifusions (5-10 s) with 30 mM K+ induced a sharp rise in fluorescence due to the entry of Ca2+ ions, in particular through L and N voltage sensitive Ca2+ channels opened by the action potentials that were triggered by depolarization. Perifusions with 1 or 10 nM (1DMe)Y8Fa (DYL(NMe)FQPQRFamide), a neuropeptide FF analog, suppressed the rise in fluorescence induced by short (5-10 s) K+ perifusions within 30 min. However, when K+ perifusions of longer duration were applied, Fluo3 fluorescence rose after an increased latency. Two other analogs, (2DMe)Y8Fa (DYDL(NMe)FQPQRFamide) and (3D)Y8Fa (DYDLDFQPQRFamide), had the same effect; similarly neuropeptide FF (FLFQPQRFamide, 1 nM, 30 min) reduced intracellular Ca2+ rise during depolarization. These features indicate that neuropeptide FF and its analogs exert their pharmacological effects by reducing the [Ca2+]i transient induced by short depolarizations.
Collapse
Affiliation(s)
- M Roumy
- Laboratoire de Pharmacologie et Toxicologie Fondamentales, CNRS, Toulouse, France
| | | |
Collapse
|
47
|
Ding YQ, Kaneko T, Nomura S, Mizuno N. Immunohistochemical localization of mu-opioid receptors in the central nervous system of the rat. J Comp Neurol 1996; 367:375-402. [PMID: 8698899 DOI: 10.1002/(sici)1096-9861(19960408)367:3<375::aid-cne5>3.0.co;2-2] [Citation(s) in RCA: 277] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Of the three major types of opioid receptors ( mu, delta, kappa) in the nervous system, mu-opioid receptor shows the highest affinity for morphine that exerts powerful effects on nociceptive, autonomic, and psychological functions. So far, at least two isoforms of mu-opioid receptors have been cloned from rat brain. The present study attempted to examine immunohistochemically the distribution of mu-opioid receptors in the rat central nervous system with two kinds of antibodies to recently cloned mu-opioid receptors (MOR1 and MOR1B). One antibody recognized a specific site for MOR1, and the other bound to a common site for MOR1 and MOR1B. Intense MOR1-like immunoreactivity (LI) was seen in the 'patch' areas and subcallosal streak in the striatum, medial habenular nucleus, medial terminal nucleus of the accessory optic tract, interpeduncular nucleus, median raphe nucleus, parabrachial nuclei, locus coeruleus, ambiguous nucleus, nucleus of the solitary tract, and laminae I and II of the medullary and spinal dorsal horns. Many other regions, including the cerebral cortex, amygdala, thalamus, and hypothalamus, also contained many neuronal elements with MOR1-LI. The distribution pattern of the immunoreactivity revealed with the antibody to the common site for MOR1 and MOR1B (MOR1/1B-LI) was almost the same as that of MOR1-LI. Both MOR1-LI and MOR1/1B-LI were primarily located in neuronal cell bodies and dendrites. However, the immunoreactivities were observed in the accessory optic tract, fasciculus retroflexus, solitary tract, and primary afferent fibers in the superficial layers of the medullary and spinal dorsal horns. The presynaptic location of MOR1-LI and MOR1/1B-LI was confirmed by lesion experiments: Enucleation, placing a lesion in the medial habenular nucleus, removal of the nodose ganglion, or dorsal rhizotomy resulted in a clear reduction of the immunoreactivities, respectively, in the nuclei of the accessory optic tract, some subnuclei of the interpeduncular nucleus, nucleus of the solitary tract, or laminae I and II of the spinal dorsal horn. The results indicate that the mu-opioid receptors are widely distributed in the brain and spinal cord, mainly postsynaptically and occasionally presynaptically. Opioids, including morphine, may inhibit the excitation of neurons via the postsynaptic mu-opioid receptors, and also suppress the release of neurotransmitters and/or neuromodulators from axon terminals through the presynaptic mu-opioid receptors.
Collapse
Affiliation(s)
- Y Q Ding
- Department of Morphological Brain Science, Faculty of Medicine, Kyoto University, Japan
| | | | | | | |
Collapse
|
48
|
Gouardères C, Jhamandas K, Sutak M, Zajac JM. Role of opioid receptors in the spinal antinociceptive effects of neuropeptide FF analogues. Br J Pharmacol 1996; 117:493-501. [PMID: 8821539 PMCID: PMC1909318 DOI: 10.1111/j.1476-5381.1996.tb15217.x] [Citation(s) in RCA: 86] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
1. Neuropeptide FF (NPFF) has been shown to produce antinociceptive effects and enhance morphine-induced antinociception after intrathecal (i.t.) injection. In this study, the spinal effects of two NPFF analogues, -D-Tyr1,(NMe)Phe3-NPFF (1DMe) and [D-Tyr1,D-Leu2,D-Phe3]NPFF (3D), which are resistant to degradation and exhibit a high affinity for NPFF binding sites, were examined in tests of thermal and mechanical nociception. 2. 1DMe and 3D produced potent dose-dependent spinal antinociception in the tail-flick test. On a molar basis, 1DMe was 20 and 50 times more potent than 3D and morphine, respectively, and high doses of 1DMe and 3D produced a sustained antinociceptive effect without visible signs of motor impairment. 3. Spinal antinociceptive effects produced by 1DMe (0.86 nmol) or 3D (8.6 nmol) were significantly reduced by i.t. co-administration of naloxone (11 nmol) or i.t. pre-administration of D-Phe-Cys-Tyr-D-Trp-Orn-Thr-Pen-Thr-NH2 (CTOP, 9.25 nmol) or beta-funaltrexamine (beta-FNA, 2 nmol) or naltrindole (2.2 nmol). The doses of the mu-antagonists (CTOP and beta-FNA) or the delta-antagonist (naltrindole) used in 1DMe and 3D experiments blocked the antinociceptive effects of mu- or delta-receptor-selective agonists. 4. When administered in combination with antinociceptive doses of the mu-receptor agonist, morphine (13.2 nmol) or the delta-receptor agonist, [D-Ala2]deltorphin I (20 nmol), sub-effective dose of 1DMe or 3D (0.009 nmol) enhanced and prolonged the spinal effects of these opioid agonists. 5. The results of this study show that spinal mu- and delta-opioid receptors play a role in antinociception produced by NPFF analogues. These results also suggest a role for NPFF in modulation of nociceptive signals at the spinal level.
Collapse
Affiliation(s)
- C Gouardères
- Laboratoire de Pharmacologie et de Toxicologie Fondamentales, CNRS, Toulouse, France
| | | | | | | |
Collapse
|
49
|
Fernandez-Galinski SM, Monells J, Espadaler JM, Pol O, Puig MM. Effects of subarachnoid lidocaine, meperidine and fentanyl on somatosensory and motor evoked responses in awake humans. Acta Anaesthesiol Scand 1996; 40:39-46. [PMID: 8904258 DOI: 10.1111/j.1399-6576.1996.tb04386.x] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Although the effects of local anaesthetics (LA) on motor and sensory transmission in the spinal cord have been described, the effects of opioids are controversial. Our aim was to evaluate the action of clinically relevant doses of subarachnoid (SA) meperidine (MP) and fentanyl (FN), on somatosensory (SSEP) and cortical motor evoked responses (CMER) in awake subjects. Thirty ASA I-II patients scheduled for infra umbilical surgery received SA (N = 10/group): 1 mg/kg lidocaine (LD), 1 mg/kg MP or 25 mu g FN. SSEP elicited by stimulation of the posterior tibial nerve at the ankle, and cortical motor evoked response at rest (r-CMER) and during facilitation (f-CMER) were obtained prior and 30 min after treatment. Conduction at the proximal segment of the motor nerve (F-wave) was evaluated by stimulation of the posterior tibial nerve at the popliteal fossa. Motor/sensory block and side effects were clinically assessed. LD completely abolished SSEP and CMER. At the same dose, MP abolished SSEP in 40% of the patients, while r-CMER and f-CMER were absent in 70% and 30%, respectively; in addition, the F-wave was absent in 50% of the patients. Fentanyl induced small changes in the latencies of SSEP and F-wave; however, a 28% decrease in the amplitude of the f-CMER (P<0.05) was observed. Pruritus was present in 60% of patients in the FN group (P<0.006). Our results show that while LD and MP block sensory and motor conduction at the spinal roots, FN seems to decrease the excitability of the spinal interneurons in the corticospinal tract.
Collapse
|
50
|
Lombard MC, Simonnet G, Zajac JM, Besson JM, Allard M. Distribution of neuropeptide FF (FLFQPQRFamide) receptors in the adult rat spinal cord: effects of dorsal rhizotomy and neonatal capsaicin. Neuroscience 1995; 68:1229-35. [PMID: 8544996 DOI: 10.1016/0306-4522(95)00182-i] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
By using quantitative autoradiography and highly selective iodinated ligands, we quantified modifications in neuropeptide FF binding sites in the superficial layers (laminae I and II) of the cervical (C6-C8 segments) and lumbar (L3-L5 segments) enlargements in two models: (i) rats neonatally treated with capsaicin; (ii) rat submitted 15 days before to unilateral dorsal rhizotomies. We comparatively analysed the distribution of mu-opioid binding sites in the same animals. We have shown that the [125I]YLFQPQRFamide (neuropeptide FF sites) labelling is not significantly modified following selective damage of fine afferent fibres by neonatal capsaicin treatment. In the cervical and lumbar enlargements, capsaicin-treated/control binding ratios for [125I]YLFQPQRFamide were 0.90 and 0.86, respectively. While unilateral dorsal rhizotomy induced a drastic decrease in [125I]FK-33-824 labelling in the side ipsilateral to the lesion as compared to the intact side of (yielding ratios of 0.29 and 0.31 for cervical and lumbar levels, respectively), [125I]YLFQPQRFamide labelling was not significantly modified, yielding ratios of 0.98 and 0.91 for cervical and lumbar levels, respectively. These data suggest that, in contrast with a majority of mu-opioid receptors, neuropeptide FF receptors are not located on fine primary afferent fibers carrying nociceptive information from the fore- or hindlimb in the rat. This preferential postsynaptic localization, together with the reported "morphine modulating" action of this peptide, support the proposal of a role for neuropeptide FF in intraspinal modulation of nociceptive input.
Collapse
Affiliation(s)
- M C Lombard
- Unité de Recherche de Neurobiologie Pharmacologique, INSERM U.161, Paris, France
| | | | | | | | | |
Collapse
|