1
|
Ecevitoglu A, Beard KR, Srynath S, Edelstein GA, Olivares-Garcia R, Martinez-Verdu A, Meka N, Correa M, Salamone JD. Pharmacological characterization of sex differences in the effects of dopaminergic drugs on effort-based decision making in rats. Psychopharmacology (Berl) 2024; 241:2033-2044. [PMID: 38842701 DOI: 10.1007/s00213-024-06615-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Accepted: 05/12/2024] [Indexed: 06/07/2024]
Abstract
RATIONALE Motivational dysfunctions related to effort exertion are common in psychiatric disorders. Dopamine systems regulate exertion of effort and effort-based choice in humans and rodents. OBJECTIVES Previous rodent studies mainly employed male rats, and it is imperative to conduct studies in male and female rats. METHODS The present studies compared the effort-related effects of IP injections of the dopamine antagonists ecopipam and haloperidol, and the vesicular monoamine transport-2 inhibitor tetrabenazine (TBZ), in male and female rats using the fixed ratio 5/chow feeding choice task. RESULTS Ecopipam (0.05-0.2 mg/kg) and haloperidol (0.05-0.15 mg/kg) induced a low-effort bias, decreasing lever pressing and increasing chow intake in males and females in the same dose range. With lever pressing, there was a modest but significant dose x sex interaction after ecopipam injection, but there was no significant interaction after administration of haloperidol. In the first study with TBZ (0.25-1.0 mg/kg), there was a robust sex difference. TBZ shifted choice from lever pressing to chow intake in male rats, but was ineffective in females. In a second experiment, 2.0 mg/kg affected choice behavior in both males and females. TBZ increased accumbens c-Fos immunoreactivity in a sex-dependent manner, with males significantly increasing at 1.0 mg/kg, while females showed augmented immunoreactivity at 2.0 mg/kg. CONCLUSIONS The neural and behavioral effects of TBZ differed across sexes, emphasizing the importance of conducting studies in male and female rats. This research has implications for understanding the effort-related motivational dysfunctions seen in psychopathology.
Collapse
Affiliation(s)
- Alev Ecevitoglu
- Department of Psychological Sciences, University of Connecticut, Storrs, CT, USA
| | - Kathryn R Beard
- Department of Psychological Sciences, University of Connecticut, Storrs, CT, USA
| | - Sonia Srynath
- Department of Psychological Sciences, University of Connecticut, Storrs, CT, USA
| | - Gayle A Edelstein
- Department of Psychological Sciences, University of Connecticut, Storrs, CT, USA
| | - Regulo Olivares-Garcia
- Department of Psychological Sciences, University of Connecticut, Storrs, CT, USA
- Àrea de Psicobiologia, Universitat Jaume I, Campus de Riu Sec, Castelló, 12071, Spain
| | - Andrea Martinez-Verdu
- Department of Psychological Sciences, University of Connecticut, Storrs, CT, USA
- Àrea de Psicobiologia, Universitat Jaume I, Campus de Riu Sec, Castelló, 12071, Spain
| | - Nicolette Meka
- Department of Psychological Sciences, University of Connecticut, Storrs, CT, USA
| | - Merce Correa
- Department of Psychological Sciences, University of Connecticut, Storrs, CT, USA
- Àrea de Psicobiologia, Universitat Jaume I, Campus de Riu Sec, Castelló, 12071, Spain
| | - John D Salamone
- Department of Psychological Sciences, University of Connecticut, Storrs, CT, USA.
| |
Collapse
|
2
|
Ayon-Olivas M, Wolf D, Andreska T, Granado N, Lüningschrör P, Ip CW, Moratalla R, Sendtner M. Dopaminergic Input Regulates the Sensitivity of Indirect Pathway Striatal Spiny Neurons to Brain-Derived Neurotrophic Factor. BIOLOGY 2023; 12:1360. [PMID: 37887070 PMCID: PMC10604681 DOI: 10.3390/biology12101360] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Revised: 10/13/2023] [Accepted: 10/19/2023] [Indexed: 10/28/2023]
Abstract
Motor dysfunction in Parkinson's disease (PD) is closely linked to the dopaminergic depletion of striatal neurons and altered synaptic plasticity at corticostriatal synapses. Dopamine receptor D1 (DRD1) stimulation is a crucial step in the formation of long-term potentiation (LTP), whereas dopamine receptor D2 (DRD2) stimulation is needed for the formation of long-term depression (LTD) in striatal spiny projection neurons (SPNs). Tropomyosin receptor kinase B (TrkB) and its ligand brain-derived neurotrophic factor (BDNF) are centrally involved in plasticity regulation at the corticostriatal synapses. DRD1 activation enhances TrkB's sensitivity for BDNF in direct pathway spiny projection neurons (dSPNs). In this study, we showed that the activation of DRD2 in cultured striatal indirect pathway spiny projection neurons (iSPNs) and cholinergic interneurons causes the retraction of TrkB from the plasma membrane. This provides an explanation for the opposing synaptic plasticity changes observed upon DRD1 or DRD2 stimulation. In addition, TrkB was found within intracellular structures in dSPNs and iSPNs from Pitx3-/- mice, a genetic model of PD with early onset dopaminergic depletion in the dorsolateral striatum (DLS). This dysregulated BDNF/TrkB signaling might contribute to the pathophysiology of direct and indirect pathway striatal projection neurons in PD.
Collapse
Affiliation(s)
- Maurilyn Ayon-Olivas
- Institute of Clinical Neurobiology, University Hospital Wuerzburg, 97078 Wuerzburg, Germany
| | - Daniel Wolf
- Institute of Clinical Neurobiology, University Hospital Wuerzburg, 97078 Wuerzburg, Germany
| | - Thomas Andreska
- Institute of Clinical Neurobiology, University Hospital Wuerzburg, 97078 Wuerzburg, Germany
| | - Noelia Granado
- Instituto Cajal, Consejo Superior de Investigaciones Científicas (CSIC), 28002 Madrid, Spain
- CIBERNED, Instituto de Salud Carlos III, 28002 Madrid, Spain
| | - Patrick Lüningschrör
- Institute of Clinical Neurobiology, University Hospital Wuerzburg, 97078 Wuerzburg, Germany
| | - Chi Wang Ip
- Department of Neurology, University Hospital Wuerzburg, 97080 Wuerzburg, Germany
| | - Rosario Moratalla
- Instituto Cajal, Consejo Superior de Investigaciones Científicas (CSIC), 28002 Madrid, Spain
- CIBERNED, Instituto de Salud Carlos III, 28002 Madrid, Spain
| | - Michael Sendtner
- Institute of Clinical Neurobiology, University Hospital Wuerzburg, 97078 Wuerzburg, Germany
| |
Collapse
|
3
|
Gerfen CR. Segregation of D1 and D2 dopamine receptors in the striatal direct and indirect pathways: An historical perspective. Front Synaptic Neurosci 2023; 14:1002960. [PMID: 36741471 PMCID: PMC9892636 DOI: 10.3389/fnsyn.2022.1002960] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Accepted: 12/05/2022] [Indexed: 01/20/2023] Open
Abstract
The direct and indirect striatal pathways form a cornerstone of the circuits of the basal ganglia. Dopamine has opponent affects on the function of these pathways due to the segregation of the D1- and D2-dopamine receptors in the spiny projection neurons giving rise to the direct and indirect pathways. An historical perspective is provided on the discovery of dopamine receptor segregation leading to models of how the direct and indirect affect motor behavior.
Collapse
|
4
|
Tam RW, Keung AJ. Human Pluripotent Stem Cell-Derived Medium Spiny Neuron-like Cells Exhibit Gene Desensitization. Cells 2022; 11:cells11091411. [PMID: 35563715 PMCID: PMC9100557 DOI: 10.3390/cells11091411] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Revised: 04/17/2022] [Accepted: 04/20/2022] [Indexed: 02/04/2023] Open
Abstract
Gene desensitization in response to a repeated stimulus is a complex phenotype important across homeostatic and disease processes, including addiction, learning, and memory. These complex phenotypes are being characterized and connected to important physiologically relevant functions in rodent systems but are difficult to capture in human models where even acute responses to important neurotransmitters are understudied. Here through transcriptomic analysis, we map the dynamic responses of human stem cell-derived medium spiny neuron-like cells (hMSN-like cells) to dopamine. Furthermore, we show that these human neurons can reflect and capture cellular desensitization to chronic versus acute administration of dopamine. These human cells are further able to capture complex receptor crosstalk in response to the pharmacological perturbations of distinct dopamine receptor subtypes. This study demonstrates the potential utility and remaining challenges of using human stem cell-derived neurons to capture and study the complex dynamic mechanisms of the brain.
Collapse
|
5
|
Mori T, Yamashita K, Takahashi K, Mano S, Sato D, Narita M. Characterization of the discriminative stimulus effect of quinpirole: Further evidence for functional interaction between central dopamine D 1/D 2-receptors. Pharmacol Biochem Behav 2021; 213:173314. [PMID: 34919902 DOI: 10.1016/j.pbb.2021.173314] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/06/2021] [Revised: 12/07/2021] [Accepted: 12/08/2021] [Indexed: 11/17/2022]
Abstract
Dysfunction of the central dopamine D2-receptor-related network has been proposed to play a critical role in dopamine-related diseases, such as schizophrenia and drug dependence. Generally, the stimulation of dopamine D2-receptors on medium spiny neurons (MSN) induces several behavioral effects, such as sedation, hallucination, aversion and motivation. Furthermore, such physiological responses through dopamine D2-receptor-containing MSN (D2-MSN) may be synchronized with the activity of dopamine D1-receptor-containing MSN (D1-MSN), or both may exhibit dual agonistic/antagonistic innervation. In the present study, we characterized the discriminative stimulus effect of the selective dopamine D2-receptor agonist quinpirole to further investigate the "D1/D2-MSN" interaction using dopamine-related agents, hallucinogens and sedatives in rats. Among dopamine receptor agonists, only selective dopamine D2-receptor agonists substituted for the discriminative stimulus effects of quinpirole. Neither the δ-opioid receptor agonist SNC80 nor the adenosine A2A-receptor antagonist istradefylline, both of which may act on D2-MSNs, substituted for the discriminative stimulus effects of quinpirole. Interestingly, the dopamine D1-receptor antagonist SCH23390 and the GABAB-receptor agonist baclofen, but not hallucinogens or sedatives, substituted for the discriminative stimulus effects of quinpirole. These results suggest that stimulation of central dopamine D2-receptors exerts a distinct discriminative stimulus effect, and blockade of dopamine D1-receptors and agonistic modulation of GABAB-receptors may share the discriminative stimulus effect via the activation of central dopamine D2-receptors.
Collapse
Affiliation(s)
- Tomohisa Mori
- Department of Pharmacology, Hoshi University School of Pharmacy and Pharmaceutical Sciences, 2-4-41 Ebara, Shinagawa-ku, Tokyo 142-8501, Japan.
| | - Kensuke Yamashita
- Department of Pharmacology, Hoshi University School of Pharmacy and Pharmaceutical Sciences, 2-4-41 Ebara, Shinagawa-ku, Tokyo 142-8501, Japan
| | - Ko Takahashi
- Department of Pharmacology, Hoshi University School of Pharmacy and Pharmaceutical Sciences, 2-4-41 Ebara, Shinagawa-ku, Tokyo 142-8501, Japan
| | - Shinsei Mano
- Department of Pharmacology, Hoshi University School of Pharmacy and Pharmaceutical Sciences, 2-4-41 Ebara, Shinagawa-ku, Tokyo 142-8501, Japan
| | - Daisuke Sato
- Department of Pharmacology, Hoshi University School of Pharmacy and Pharmaceutical Sciences, 2-4-41 Ebara, Shinagawa-ku, Tokyo 142-8501, Japan
| | - Minoru Narita
- Department of Pharmacology, Hoshi University School of Pharmacy and Pharmaceutical Sciences, 2-4-41 Ebara, Shinagawa-ku, Tokyo 142-8501, Japan; Division of Cancer Pathophysiology, National Cancer Center Research Institute, 5-1-1 Tsukiji, Chuo-ku, Tokyo 104-0045, Japan.
| |
Collapse
|
6
|
Giacometti LL, Barker JM. Comorbid HIV infection and alcohol use disorders: Converging glutamatergic and dopaminergic mechanisms underlying neurocognitive dysfunction. Brain Res 2019; 1723:146390. [PMID: 31421128 PMCID: PMC6766419 DOI: 10.1016/j.brainres.2019.146390] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2019] [Revised: 08/02/2019] [Accepted: 08/13/2019] [Indexed: 10/26/2022]
Abstract
Alcohol use disorders (AUDs) are highly comorbid with human immunodeficiency virus (HIV) infection, occurring at nearly twice the rate in HIV positive individuals as in the general population. Individuals with HIV who consume alcohol show worse long-term prognoses and may be at elevated risk for the development of HIV-associated neurocognitive disorders. The direction of this relationship is unclear, and likely multifactorial. Chronic alcohol exposure and HIV infection independently promote cognitive dysfunction and further may interact to exacerbate neurocognitive deficits through effects on common targets, including corticostriatal glutamate and dopamine neurotransmission. Additionally, drug and alcohol use is likely to reduce treatment adherence, potentially resulting in accelerated disease progression and subsequent neurocognitive impairment. The development of neurocognitive impairments may further reduce cognitive control over behavior, resulting in escalating alcohol use. This review will examine the complex relationship between HIV infection and alcohol use, highlighting impacts on dopamine and glutamate systems by which alcohol use and HIV act independently and in tandem to alter corticostriatal circuit structure and function to dysregulate cognitive function.
Collapse
Affiliation(s)
- Laura L Giacometti
- Department of Pharmacology and Physiology, Drexel University College of Medicine, United States
| | - Jacqueline M Barker
- Department of Pharmacology and Physiology, Drexel University College of Medicine, United States.
| |
Collapse
|
7
|
Abudukeyoumu N, Hernandez-Flores T, Garcia-Munoz M, Arbuthnott GW. Cholinergic modulation of striatal microcircuits. Eur J Neurosci 2018; 49:604-622. [PMID: 29797362 PMCID: PMC6587740 DOI: 10.1111/ejn.13949] [Citation(s) in RCA: 88] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2017] [Revised: 03/30/2018] [Accepted: 04/04/2018] [Indexed: 12/15/2022]
Abstract
The purpose of this review is to bridge the gap between earlier literature on striatal cholinergic interneurons and mechanisms of microcircuit interaction demonstrated with the use of newly available tools. It is well known that the main source of the high level of acetylcholine in the striatum, compared to other brain regions, is the cholinergic interneurons. These interneurons provide an extensive local innervation that suggests they may be a key modulator of striatal microcircuits. Supporting this idea requires the consideration of functional properties of these interneurons, their influence on medium spiny neurons, other interneurons, and interactions with other synaptic regulators. Here, we underline the effects of intrastriatal and extrastriatal afferents onto cholinergic interneurons and discuss the activation of pre‐ and postsynaptic muscarinic and nicotinic receptors that participate in the modulation of intrastriatal neuronal interactions. We further address recent findings about corelease of other transmitters in cholinergic interneurons and actions of these interneurons in striosome and matrix compartments. In addition, we summarize recent evidence on acetylcholine‐mediated striatal synaptic plasticity and propose roles for cholinergic interneurons in normal striatal physiology. A short examination of their role in neurological disorders such as Parkinson's, Huntington's, and Tourette's pathologies and dystonia is also included.
Collapse
Affiliation(s)
| | | | | | - Gordon W Arbuthnott
- Okinawa Institute of Science and Technology Graduate University, Okinawa, Japan
| |
Collapse
|
8
|
Qvist P, Eskildsen SF, Hansen B, Baragji M, Ringgaard S, Roovers J, Paternoster V, Molgaard S, Corydon TJ, Stødkilde-Jørgensen H, Glerup S, Mors O, Wegener G, Nyengaard JR, Børglum AD, Christensen JH. Brain volumetric alterations accompanied with loss of striatal medium-sized spiny neurons and cortical parvalbumin expressing interneurons in Brd1 +/- mice. Sci Rep 2018; 8:16486. [PMID: 30405140 PMCID: PMC6220279 DOI: 10.1038/s41598-018-34729-5] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2018] [Accepted: 10/22/2018] [Indexed: 12/17/2022] Open
Abstract
Schizophrenia is a common and severe mental disorder arising from complex gene-environment interactions affecting brain development and functioning. While a consensus on the neuroanatomical correlates of schizophrenia is emerging, much of its fundamental pathobiology remains unknown. In this study, we explore brain morphometry in mice with genetic susceptibility and phenotypic relevance to schizophrenia (Brd1+/− mice) using postmortem 3D MR imaging coupled with histology, immunostaining and regional mRNA marker analysis. In agreement with recent large-scale schizophrenia neuroimaging studies, Brd1+/− mice displayed subcortical abnormalities, including volumetric reductions of amygdala and striatum. Interestingly, we demonstrate that structural alteration in striatum correlates with a general loss of striatal neurons, differentially impacting subpopulations of medium-sized spiny neurons and thus potentially striatal output. Akin to parvalbumin interneuron dysfunction in patients, a decline in parvalbumin expression was noted in the developing cortex of Brd1+/− mice, mainly driven by neuronal loss within or near cortical layer V, which is rich in corticostriatal projection neurons. Collectively, our study highlights the translational value of the Brd1+/− mouse as a pre-clinical tool for schizophrenia research and provides novel insight into its developmental, structural, and cellular pathology.
Collapse
Affiliation(s)
- Per Qvist
- iPSYCH, The Lundbeck Foundation Initiative for Integrative Psychiatric Research, Aarhus, Denmark. .,Department of Biomedicine, Aarhus University, Aarhus, Denmark. .,iSEQ, Centre for Integrative Sequencing, Aarhus University, Aarhus, Denmark.
| | - Simon F Eskildsen
- Center of Functionally Integrative Neuroscience, Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| | - Brian Hansen
- Center of Functionally Integrative Neuroscience, Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| | | | - Steffen Ringgaard
- The MR Research Centre, Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| | - Jolien Roovers
- Department of Biomedicine, Aarhus University, Aarhus, Denmark
| | - Veerle Paternoster
- iPSYCH, The Lundbeck Foundation Initiative for Integrative Psychiatric Research, Aarhus, Denmark.,Department of Biomedicine, Aarhus University, Aarhus, Denmark.,iSEQ, Centre for Integrative Sequencing, Aarhus University, Aarhus, Denmark
| | - Simon Molgaard
- Department of Biomedicine, Aarhus University, Aarhus, Denmark
| | - Thomas Juhl Corydon
- Department of Biomedicine, Aarhus University, Aarhus, Denmark. .,Department of Ophthalmology, Aarhus University Hospital, Aarhus, Denmark.
| | | | - Simon Glerup
- Department of Biomedicine, Aarhus University, Aarhus, Denmark
| | - Ole Mors
- iPSYCH, The Lundbeck Foundation Initiative for Integrative Psychiatric Research, Aarhus, Denmark.,iSEQ, Centre for Integrative Sequencing, Aarhus University, Aarhus, Denmark.,Psychosis Research Unit, Aarhus University Hospital, Risskov, Denmark
| | - Gregers Wegener
- Translational Neuropsychiatry Unit, Aarhus University Hospital, Aarhus, Denmark
| | - Jens R Nyengaard
- Core Center for Molecular Morphology, Section for Stereology and Microscopy, Centre for Stochastic Geometry and Advanced Bioimaging, Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| | - Anders D Børglum
- iPSYCH, The Lundbeck Foundation Initiative for Integrative Psychiatric Research, Aarhus, Denmark.,Department of Biomedicine, Aarhus University, Aarhus, Denmark.,iSEQ, Centre for Integrative Sequencing, Aarhus University, Aarhus, Denmark.,Psychosis Research Unit, Aarhus University Hospital, Risskov, Denmark
| | - Jane H Christensen
- iPSYCH, The Lundbeck Foundation Initiative for Integrative Psychiatric Research, Aarhus, Denmark.,Department of Biomedicine, Aarhus University, Aarhus, Denmark.,iSEQ, Centre for Integrative Sequencing, Aarhus University, Aarhus, Denmark
| |
Collapse
|
9
|
What does the Fos say? Using Fos-based approaches to understand the contribution of stress to substance use disorders. Neurobiol Stress 2018; 9:271-285. [PMID: 30450391 PMCID: PMC6234265 DOI: 10.1016/j.ynstr.2018.05.004] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2018] [Revised: 05/08/2018] [Accepted: 05/25/2018] [Indexed: 02/06/2023] Open
Abstract
Despite extensive research efforts, drug addiction persists as a largely unmet medical need. Perhaps the biggest challenge for treating addiction is the high rate of recidivism. While many factors can promote relapse in abstinent drug users, the contribution of stress is particularly problematic, as stress is uncontrollable and pervasive in the lives of those struggling with addiction. Thus, understanding the neurocircuitry that underlies the influence of stress on drug seeking is critical for guiding treatment. Preclinical research aimed at defining this neurocircuitry has, in part, relied upon the use of experimental approaches that allow visualization of cellular and circuit activity that corresponds to stressor-induced drug seeking in rodent relapse models. Much of what we have learned about the mechanisms that mediate stressor-induced relapse has been informed by studies that have used the expression of the immediate early gene, cfos, or its protein product, Fos, as post-mortem activity markers. In this review we provide an overview of the rodent models used to study stressor-induced relapse and briefly summarize what is known about the underlying neurocircuitry before describing the use of cfos/Fos-based approaches. In addition to reviewing findings obtained using this approach, its advantages and limitations are considered. Moreover, new techniques that leverage the expression profile of cfos to tag and manipulate cells based on their activity patterns are discussed. The intent of the review is to guide the interpretation of old and design of new studies that utilize cfos/Fos-based strategies to study the neurocircuitry that contributes to stress-related drug use.
Collapse
|
10
|
ERK/MAPK Signaling Is Required for Pathway-Specific Striatal Motor Functions. J Neurosci 2017; 37:8102-8115. [PMID: 28733355 DOI: 10.1523/jneurosci.0473-17.2017] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2017] [Revised: 05/29/2017] [Accepted: 07/01/2017] [Indexed: 12/15/2022] Open
Abstract
The ERK/MAPK intracellular signaling pathway is hypothesized to be a key regulator of striatal activity via modulation of synaptic plasticity and gene transcription. However, prior investigations into striatal ERK/MAPK functions have yielded conflicting results. Further, these studies have not delineated the cell-type-specific roles of ERK/MAPK signaling due to the reliance on globally administered pharmacological ERK/MAPK inhibitors and the use of genetic models that only partially reduce total ERK/MAPK activity. Here, we generated mouse models in which ERK/MAPK signaling was completely abolished in each of the two distinct classes of medium spiny neurons (MSNs). ERK/MAPK deletion in D1R-MSNs (direct pathway) resulted in decreased locomotor behavior, reduced weight gain, and early postnatal lethality. In contrast, loss of ERK/MAPK signaling in D2R-MSNs (indirect pathway) resulted in a profound hyperlocomotor phenotype. ERK/MAPK-deficient D2R-MSNs exhibited a significant reduction in dendritic spine density, markedly suppressed electrical excitability, and suppression of activity-associated gene expression even after pharmacological stimulation. Our results demonstrate the importance of ERK/MAPK signaling in governing the motor functions of the striatal direct and indirect pathways. Our data further show a critical role for ERK in maintaining the excitability and plasticity of D2R-MSNs.SIGNIFICANCE STATEMENT Alterations in ERK/MAPK activity are associated with drug abuse, as well as neuropsychiatric and movement disorders. However, genetic evidence defining the functions of ERK/MAPK signaling in striatum-related neurophysiology and behavior is lacking. We show that loss of ERK/MAPK signaling leads to pathway-specific alterations in motor function, reduced neuronal excitability, and the inability of medium spiny neurons to regulate activity-induced gene expression. Our results underscore the potential importance of the ERK/MAPK pathway in human movement disorders.
Collapse
|
11
|
Xue B, Chen EC, He N, Jin DZ, Mao LM, Wang JQ. Integrated regulation of AMPA glutamate receptor phosphorylation in the striatum by dopamine and acetylcholine. Neuropharmacology 2016; 112:57-65. [PMID: 27060412 DOI: 10.1016/j.neuropharm.2016.04.005] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2015] [Revised: 04/01/2016] [Accepted: 04/05/2016] [Indexed: 12/16/2022]
Abstract
Dopamine (DA) and acetylcholine (ACh) signals converge onto protein kinase A (PKA) in medium spiny neurons of the striatum to control cellular and synaptic activities of these neurons, although underlying molecular mechanisms are less clear. Here we measured phosphorylation of the α-amino-3-hydroxy-5-methylisoxazole-4-propionic acid receptor (AMPAR) at a PKA site (S845) as an indicator of AMPAR responses in adult rat brains in vivo to explore how DA and ACh interact to modulate AMPARs. We found that subtype-selective activation of DA D1 receptors (D1Rs), D2 receptors (D2Rs), or muscarinic M4 receptors (M4Rs) induced specific patterns of GluA1 S845 responses in the striatum. These defined patterns support a local multitransmitter interaction model in which D2Rs inhibited an intrinsic inhibitory element mediated by M4Rs to enhance the D1R efficacy in modulating AMPARs. Consistent with this, selective enhancement of M4R activity by a positive allosteric modulator resumed the cholinergic inhibition of D1Rs. In addition, D1R and D2R coactivation recruited GluA1 and PKA preferentially to extrasynaptic sites. In sum, our in vivo data support an existence of a dynamic DA-ACh balance in the striatum which actively modulates GluA1 AMPAR phosphorylation and trafficking. This article is part of the Special Issue entitled 'Ionotropic glutamate receptors'.
Collapse
Affiliation(s)
- Bing Xue
- Department of Basic Medical Science, School of Medicine, University of Missouri-Kansas City, Kansas City, MO 64108, USA
| | - Elton C Chen
- Department of Anesthesiology, School of Medicine, University of Missouri-Kansas City, Kansas City, MO 64108, USA
| | - Nan He
- Department of Basic Medical Science, School of Medicine, University of Missouri-Kansas City, Kansas City, MO 64108, USA
| | - Dao-Zhong Jin
- Department of Basic Medical Science, School of Medicine, University of Missouri-Kansas City, Kansas City, MO 64108, USA
| | - Li-Min Mao
- Department of Basic Medical Science, School of Medicine, University of Missouri-Kansas City, Kansas City, MO 64108, USA
| | - John Q Wang
- Department of Basic Medical Science, School of Medicine, University of Missouri-Kansas City, Kansas City, MO 64108, USA; Department of Anesthesiology, School of Medicine, University of Missouri-Kansas City, Kansas City, MO 64108, USA; Beijing Institute of Brain Disorders, Capital Medical University, Beijing, China.
| |
Collapse
|
12
|
Transcription factors FOXA1 and FOXA2 maintain dopaminergic neuronal properties and control feeding behavior in adult mice. Proc Natl Acad Sci U S A 2015; 112:E4929-38. [PMID: 26283356 DOI: 10.1073/pnas.1503911112] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Midbrain dopaminergic (mDA) neurons are implicated in cognitive functions, neuropsychiatric disorders, and pathological conditions; hence understanding genes regulating their homeostasis has medical relevance. Transcription factors FOXA1 and FOXA2 (FOXA1/2) are key determinants of mDA neuronal identity during development, but their roles in adult mDA neurons are unknown. We used a conditional knockout strategy to specifically ablate FOXA1/2 in mDA neurons of adult mice. We show that deletion of Foxa1/2 results in down-regulation of tyrosine hydroxylase, the rate-limiting enzyme of dopamine (DA) biosynthesis, specifically in dopaminergic neurons of the substantia nigra pars compacta (SNc). In addition, DA synthesis and striatal DA transmission were reduced after Foxa1/2 deletion. Furthermore, the burst-firing activity characteristic of SNc mDA neurons was drastically reduced in the absence of FOXA1/2. These molecular and functional alterations lead to a severe feeding deficit in adult Foxa1/2 mutant mice, independently of motor control, which could be rescued by L-DOPA treatment. FOXA1/2 therefore control the maintenance of molecular and physiological properties of SNc mDA neurons and impact on feeding behavior in adult mice.
Collapse
|
13
|
Su J, Miao Q, Miao P, Zhao Y, Zhang Y, Chen N, Zhang Y, Ma S. Pharmacokinetics and Brain Distribution and Metabolite Identification of Coptisine, a Protoberberine Alkaloid with Therapeutic Potential for CNS Disorders, in Rats. Biol Pharm Bull 2015; 38:1518-28. [PMID: 26228628 DOI: 10.1248/bpb.b15-00293] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Coptisine (COP), a protoberberine alkaloid (PBA) from Chinese medicinal plants (such as family Berberidaceae), may be useful for improving central nervous system disorders. However, its pharmacokinetics, disposition and metabolism are not well defined. In the present study, a liquid chromatography-tandem mass spectrometry (LC-MS/MS) method was established for the analysis of COP in biological samples. To better understand its in vivo pharmacological activities, COP concentrations in rat plasma were determined after oral (50 mg/kg) and intravenous administration (10 mg/kg). For the brain distribution study, the concentration of COP in five different regions was examined after intravenous administration at 10 mg/kg. Pharmacokinetic parameters from the COP concentration-time profiles in plasma and brain, and the brain-to-plasma coefficient (Kp, brain) were calculated by non-compartmental analysis. The metabolites of COP in rats in vivo and in vitro (urine, bile, liver microsomes and intestinal bacteria incubation) were also identified. Seventeen metabolites, including 11 unconjugated metabolites formed by hydroxylation, hydrogenation, demethylation, dehydrogenation, demethylation, and 6 glucuronide and sulfate conjugates were identified for the first time. The results suggested that COP had low oral bioavailability of 8.9% and a short (plasma) half-life (T1/2=0.71 h) in rats. After intravenous administration, it quickly crossed the blood-brain barrier, accumulating at higher concentrations and then was slowly eliminated from different brain regions. Moreover, COP was transformed into metabolites through multiple metabolic pathways in vivo and in vitro. These results should help to promote further research on COP and contribute to clarifying the metabolic pathways of PBAs.
Collapse
Affiliation(s)
- Jin Su
- School of Chinese Materia Medica, Beijing University of Chinese Medicine
| | | | | | | | | | | | | | | |
Collapse
|
14
|
Koganemaru G, Abe H, Kuramashi A, Ebihara K, Matsuo H, Funahashi H, Yasuda K, Ikeda T, Nishimori T, Ishida Y. Effects of cabergoline and rotigotine on tacrine-induced tremulous jaw movements in rats. Pharmacol Biochem Behav 2014; 126:103-8. [PMID: 25265240 DOI: 10.1016/j.pbb.2014.09.015] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/16/2014] [Revised: 09/14/2014] [Accepted: 09/20/2014] [Indexed: 11/28/2022]
Abstract
OBJECTIVES We examined the effects of two dopamine agonists, cabergoline and rotigotine, on tacrine-induced tremor and c-Fos expression in rats. METHODS Rats received intraperitoneal injection of cabergoline (0.5, 1.0, or 5.0mg/kg), rotigotine (1.0, 2.5, or 10.0mg/kg), or vehicle 30min before intraperitoneal injection of tacrine (5.0mg/kg). The number of tremulous jaw movements (TJMs) after tacrine administration was counted for 5min. Animals were sacrificed 2h later under deep anesthesia, and the brain sections were immunostained in order to evaluate the c-Fos expression. RESULTS Induction of TJMs by tacrine was dose-dependently reduced by pretreatment with cabergoline and rotigotine. The number of c-Fos-positive cells was significantly enhanced in the medial striatum, nucleus accumbens core, and nucleus accumbens shell after tacrine administration, and the enhanced expression of c-Fos in these three regions was significantly attenuated by cabergoline, while rotigotine suppressed c-Fos expression in two regions except the nucleus accumbens core. CONCLUSIONS These results suggest that tacrine-induced TJMs would be relieved by either cabergoline or rotigotine and that anticholinesterase-induced TJMs and the ameliorating effects of dopamine agonists would relate to neuronal activation in the striatum and nucleus accumbens.
Collapse
Affiliation(s)
- Go Koganemaru
- Department of Psychiatry, Faculty of Medicine, University of Miyazaki, 5200 Kihara, Kiyotake, Miyazaki-city, Miyazaki 889-1692, Japan
| | - Hiroshi Abe
- Department of Psychiatry, Faculty of Medicine, University of Miyazaki, 5200 Kihara, Kiyotake, Miyazaki-city, Miyazaki 889-1692, Japan.
| | - Aki Kuramashi
- Department of Psychiatry, Faculty of Medicine, University of Miyazaki, 5200 Kihara, Kiyotake, Miyazaki-city, Miyazaki 889-1692, Japan
| | - Kosuke Ebihara
- Department of Psychiatry, Faculty of Medicine, University of Miyazaki, 5200 Kihara, Kiyotake, Miyazaki-city, Miyazaki 889-1692, Japan
| | - Hisae Matsuo
- Department of Psychiatry, Faculty of Medicine, University of Miyazaki, 5200 Kihara, Kiyotake, Miyazaki-city, Miyazaki 889-1692, Japan
| | - Hideki Funahashi
- Department of Psychiatry, Faculty of Medicine, University of Miyazaki, 5200 Kihara, Kiyotake, Miyazaki-city, Miyazaki 889-1692, Japan
| | - Kazuya Yasuda
- Department of Psychiatry, Faculty of Medicine, University of Miyazaki, 5200 Kihara, Kiyotake, Miyazaki-city, Miyazaki 889-1692, Japan; Department of Pharmacy, Faculty of Medicine, University of Miyazaki Hospital, 5200 Kihara, Kiyotake, Miyazaki-city, Miyazaki 889-1692, Japan
| | - Tetsuya Ikeda
- Division of Neurobiology, Faculty of Medicine, University of Miyazaki, 5200 Kihara, Kiyotake, Miyazaki-city, Miyazaki 889-1692, Japan
| | - Toshikazu Nishimori
- Department of Psychiatry, Faculty of Medicine, University of Miyazaki, 5200 Kihara, Kiyotake, Miyazaki-city, Miyazaki 889-1692, Japan
| | - Yasushi Ishida
- Department of Psychiatry, Faculty of Medicine, University of Miyazaki, 5200 Kihara, Kiyotake, Miyazaki-city, Miyazaki 889-1692, Japan
| |
Collapse
|
15
|
Godar SC, Mosher LJ, Di Giovanni G, Bortolato M. Animal models of tic disorders: a translational perspective. J Neurosci Methods 2014; 238:54-69. [PMID: 25244952 DOI: 10.1016/j.jneumeth.2014.09.008] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2014] [Revised: 09/09/2014] [Accepted: 09/11/2014] [Indexed: 12/30/2022]
Abstract
Tics are repetitive, sudden movements and/or vocalizations, typically enacted as maladaptive responses to intrusive premonitory urges. The most severe tic disorder, Tourette syndrome (TS), is a childhood-onset condition featuring multiple motor and at least one phonic tic for a duration longer than 1 year. The pharmacological treatment of TS is mainly based on antipsychotic agents; while these drugs are often effective in reducing tic severity and frequency, their therapeutic compliance is limited by serious motor and cognitive side effects. The identification of novel therapeutic targets and development of better treatments for tic disorders is conditional on the development of animal models with high translational validity. In addition, these experimental tools can prove extremely useful to test hypotheses on the etiology and neurobiological bases of TS and related conditions. In recent years, the translational value of these animal models has been enhanced, thanks to a significant re-organization of our conceptual framework of neuropsychiatric disorders, with a greater focus on endophenotypes and quantitative indices, rather than qualitative descriptors. Given the complex and multifactorial nature of TS and other tic disorders, the selection of animal models that can appropriately capture specific symptomatic aspects of these conditions can pose significant theoretical and methodological challenges. In this article, we will review the state of the art on the available animal models of tic disorders, based on genetic mutations, environmental interventions as well as pharmacological manipulations. Furthermore, we will outline emerging lines of translational research showing how some of these experimental preparations have led to significant progress in the identification of novel therapeutic targets for tic disorders.
Collapse
Affiliation(s)
- Sean C Godar
- Department of Pharmacology and Toxicology, School of Pharmacy; University of Kansas, Lawrence, KS, USA
| | - Laura J Mosher
- Department of Pharmacology and Toxicology, School of Pharmacy; University of Kansas, Lawrence, KS, USA
| | - Giuseppe Di Giovanni
- Department of Physiology and Biochemistry, University of Malta, Msida, Malta; School of Biosciences, Cardiff University, Cardiff, UK
| | - Marco Bortolato
- Department of Pharmacology and Toxicology, School of Pharmacy; University of Kansas, Lawrence, KS, USA; Consortium for Translational Research on Aggression and Drug Abuse (ConTRADA), University of Kansas, Lawrence, KS, USA.
| |
Collapse
|
16
|
Yetnikoff L, Lavezzi HN, Reichard RA, Zahm DS. An update on the connections of the ventral mesencephalic dopaminergic complex. Neuroscience 2014; 282:23-48. [PMID: 24735820 DOI: 10.1016/j.neuroscience.2014.04.010] [Citation(s) in RCA: 130] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2014] [Revised: 04/03/2014] [Accepted: 04/04/2014] [Indexed: 12/21/2022]
Abstract
This review covers the intrinsic organization and afferent and efferent connections of the midbrain dopaminergic complex, comprising the substantia nigra, ventral tegmental area and retrorubral field, which house, respectively, the A9, A10 and A8 groups of nigrostriatal, mesolimbic and mesocortical dopaminergic neurons. In addition, A10dc (dorsal, caudal) and A10rv (rostroventral) extensions into, respectively, the ventrolateral periaqueductal gray and supramammillary nucleus are discussed. Associated intrinsic and extrinsic connections of the midbrain dopaminergic complex that utilize gamma-aminobutyric acid (GABA), glutamate and neuropeptides and various co-expressed combinations of these compounds are considered in conjunction with the dopamine-containing systems. A framework is provided for understanding the organization of massive afferent systems descending and ascending to the midbrain dopaminergic complex from the telencephalon and brainstem, respectively. Within the context of this framework, the basal ganglia direct and indirect output pathways are treated in some detail. Findings from rodent brain are briefly compared with those from primates, including humans. Recent literature is emphasized, including traditional experimental neuroanatomical and modern gene transfer and optogenetic studies. An attempt was made to provide sufficient background and cite a representative sampling of earlier primary papers and reviews so that people new to the field may find this to be a relatively comprehensive treatment of the subject.
Collapse
Affiliation(s)
- L Yetnikoff
- Department of Pharmacological and Physiological Science, Saint Louis University School of Medicine, 1402 S. Grand Boulevard, Saint Louis, MO 63104, United States.
| | - H N Lavezzi
- Department of Pharmacological and Physiological Science, Saint Louis University School of Medicine, 1402 S. Grand Boulevard, Saint Louis, MO 63104, United States
| | - R A Reichard
- Department of Pharmacological and Physiological Science, Saint Louis University School of Medicine, 1402 S. Grand Boulevard, Saint Louis, MO 63104, United States
| | - D S Zahm
- Department of Pharmacological and Physiological Science, Saint Louis University School of Medicine, 1402 S. Grand Boulevard, Saint Louis, MO 63104, United States.
| |
Collapse
|
17
|
Nunes EJ, Randall PA, Hart EE, Freeland C, Yohn SE, Baqi Y, Müller CE, López-Cruz L, Correa M, Salamone JD. Effort-related motivational effects of the VMAT-2 inhibitor tetrabenazine: implications for animal models of the motivational symptoms of depression. J Neurosci 2013; 33:19120-30. [PMID: 24305809 PMCID: PMC3850037 DOI: 10.1523/jneurosci.2730-13.2013] [Citation(s) in RCA: 101] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2013] [Revised: 10/11/2013] [Accepted: 10/15/2013] [Indexed: 11/21/2022] Open
Abstract
Motivated behaviors are often characterized by a high degree of behavioral activation, and work output and organisms frequently make effort-related decisions based upon cost/benefit analyses. Moreover, people with major depression and other disorders often show effort-related motivational symptoms such as anergia, psychomotor retardation, and fatigue. It has been suggested that tasks measuring effort-related choice behavior could be used as animal models of the motivational symptoms of depression, and the present studies characterized the effort-related effects of the vesicular monoamine transport (VMAT) inhibitor tetrabenazine. Tetrabenazine produces depressive symptoms in humans and, because of its selective inhibition of VMAT-2, it preferentially depletes dopamine (DA). Rats were assessed using a concurrent fixed-ratio 5/chow feeding choice task that is known to be sensitive to dopaminergic manipulations. Tetrabenazine shifted response choice in rats, producing a dose-related decrease in lever pressing and a concomitant increase in chow intake. However, it did not alter food intake or preference in parallel free-feeding choice studies. The effects of tetrabenazine on effort-related choice were reversed by the adenosine A2A antagonist MSX-3 and the antidepressant bupropion. A behaviorally active dose of tetrabenazine decreased extracellular DA in nucleus accumbens and increased expression of DARPP-32 in accumbens medium spiny neurons in a pattern indicative of reduced transmission at both D1 and D2 DA receptors. These experiments demonstrate that tetrabenazine, which is used in animal models to produce depression-like effects, can alter effort-related choice behavior. These studies have implications for the development of animal models of the motivational symptoms of depression and related disorders.
Collapse
Affiliation(s)
- Eric J. Nunes
- Department of Psychology, University of Connecticut, Storrs, Connecticut 06269-1020
| | - Patrick A. Randall
- Department of Psychology, University of Connecticut, Storrs, Connecticut 06269-1020
| | - Evan E. Hart
- Department of Psychology, University of Connecticut, Storrs, Connecticut 06269-1020
| | - Charlotte Freeland
- Department of Psychology, University of Connecticut, Storrs, Connecticut 06269-1020
| | - Samantha E. Yohn
- Department of Psychology, University of Connecticut, Storrs, Connecticut 06269-1020
| | - Younis Baqi
- Universität Bonn, Pharma-Zentrum Bonn, Pharmazeutisches Institut, Pharmazeutische Chemie, 53121 Bonn, Germany, and
| | - Christa E. Müller
- Universität Bonn, Pharma-Zentrum Bonn, Pharmazeutisches Institut, Pharmazeutische Chemie, 53121 Bonn, Germany, and
| | - Laura López-Cruz
- Àrea de Psicobiologia, Campus de Riu Sec, Universitat Jaume I, 12071 Castelló, Spain
| | - Mercè Correa
- Department of Psychology, University of Connecticut, Storrs, Connecticut 06269-1020
- Àrea de Psicobiologia, Campus de Riu Sec, Universitat Jaume I, 12071 Castelló, Spain
| | - John D. Salamone
- Department of Psychology, University of Connecticut, Storrs, Connecticut 06269-1020
| |
Collapse
|
18
|
Podurgiel S, Nunes E, Yohn S, Barber J, Thompson A, Milligan M, Lee C, López-Cruz L, Pardo M, Valverde O, Lendent C, Baqi Y, Müller C, Correa M, Salamone J. The vesicular monoamine transporter (VMAT-2) inhibitor tetrabenazine induces tremulous jaw movements in rodents: Implications for pharmacological models of parkinsonian tremor. Neuroscience 2013; 250:507-19. [DOI: 10.1016/j.neuroscience.2013.07.008] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2013] [Revised: 06/29/2013] [Accepted: 07/03/2013] [Indexed: 11/17/2022]
|
19
|
Lawhorn C, Edusei E, Zhou Y, Ho A, Kreek MJ. Acute binge pattern cocaine administration induces region-specific effects in D1-r- and D2-r-expressing cells in eGFP transgenic mice. Neuroscience 2013; 253:123-31. [PMID: 24001687 DOI: 10.1016/j.neuroscience.2013.08.032] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2013] [Revised: 07/22/2013] [Accepted: 08/20/2013] [Indexed: 10/26/2022]
Abstract
Cocaine addiction is driven by genetic, neurologic and environmental components. The D1-like (D1 and D5) and D2-like (D2, D3 and D4) families of dopamine receptors play an important role in modulating the effects of cocaine administration on drug-seeking behavior. The advent of bacterial artificial chromosome-eGFP (enhanced green fluorescent protein) transgenic mice that express eGFP driven by the endogenous D1-receptor (D1-r) or D2-receptor (D2-r) promoters provides a unique opportunity to distinguish between these subpopulations of cells. In an effort to identify cocaine-induced alterations in D1-r- versus D2-r-expressing cells during the initial stages of addiction, we examined cells that expressed D1-rs in Drd1-eGFP mice, or D2-rs in Drd2-eGFP mice, after an acute, 1-day binge pattern of cocaine administration. We used multiphoton confocal microscopy and Visiopharm© software, to conduct unbiased stereological counts of D1-r-labeled or D2-r-labeled cells in various striatal regions. Mice were sacrificed at 30 min and 24-h post cocaine or saline administration. Compared to saline controls, Drd1-eGFP mice that received cocaine had a higher count of D1-r-labeled cells in the dorsolateral (DL) striatum, at the 30-min and 24-h time-points. No changes in the nucleus accumbens (NAc) core or shell were observed in Drd1-eGFP mice. Drd2-eGFP mice that received cocaine had fewer D2-r-labeled cells in the DL striatum and NAc core compared to saline controls. This effect was observed at the 30-min time-point but not at 24h. Drd2-eGFP mice that received cocaine also had fewer numbers of D2-r-labeled cells in the NAc core compared to saline controls, but no significant differences in the number of D2-r-labeled cells in the NAc shell. These results suggest that acute binge pattern cocaine administration may induce region-specific alterations in D1-r or D2-receptor gene expression, and may help elucidate the differential role of dopamine receptors in the initial stages of the addiction cycle.
Collapse
Affiliation(s)
- C Lawhorn
- The Rockefeller University, The Laboratory of the Biology of Addictive Diseases, 1230 York Avenue, New York, NY 10065, United States.
| | | | | | | | | |
Collapse
|
20
|
Saint-Preux F, Bores LR, Tulloch I, Ladenheim B, Kim R, Thanos PK, Volkow ND, Cadet JL. Chronic co-administration of nicotine and methamphetamine causes differential expression of immediate early genes in the dorsal striatum and nucleus accumbens of rats. Neuroscience 2013; 243:89-96. [PMID: 23562942 DOI: 10.1016/j.neuroscience.2013.03.052] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2013] [Revised: 02/28/2013] [Accepted: 03/26/2013] [Indexed: 11/25/2022]
Abstract
Nicotine and methamphetamine (METH) cause addiction by triggering neuroplastic changes in brain reward pathways though they each engage distinct molecular targets (nicotine receptors and dopamine transporters respectively). Addiction to both drugs is very prevalent, with the vast majority of METH users also being smokers of cigarettes. This co-morbid occurrence thus raised questions about potential synergistic rewarding effects of the drugs. However, few studies have investigated the chronic neurobiological changes associated with co-morbid nicotine and METH addiction. Here we investigated the effects of these two drugs alone and in combination on the expression of several immediate early genes (IEGs) that are sensitive to drug exposures. Chronic exposure to either nicotine or METH caused significant decreases in the expression of fosb, fra1, and fra2 in the nucleus accumbens (NAc) but not in the dorsal striatum whereas the drug combination increased fra2 expression in both structures. Except for junB mRNA levels that were decreased by the three drug treatments in the NAc, there were no significant changes in the Jun family members. Of the Egr family members, NAc egr2 expression was decreased after nicotine and the drug combination whereas NAc egr3 was decreased after METH and the drug combination. The drug combination also increased striatal egr3 expression. The Nr4a family member, nr4a2/nurr1, showed increased striatal expression after all three drug treatments, while striatal nr4a3/nor-1 expression was increased by the drug combination whereas NAc nr4a1/nurr77 was decreased by nicotine and the drug combination. These observations suggest that, when given in combination, the two drugs exert distinct effects on the expression of IEGs in dopaminergic projection areas from those elicited by each drug alone. The significance of these changes in IEG expression and in other molecular markers in fostering co-morbid METH and nicotine abuse needs to be further evaluated.
Collapse
Affiliation(s)
- F Saint-Preux
- Molecular Neuropsychiatry Research Branch, NIDA IRP, Baltimore, MD 21224, USA
| | | | | | | | | | | | | | | |
Collapse
|
21
|
Agnoli L, Mainolfi P, Invernizzi RW, Carli M. Dopamine D1-like and D2-like receptors in the dorsal striatum control different aspects of attentional performance in the five-choice serial reaction time task under a condition of increased activity of corticostriatal inputs. Neuropsychopharmacology 2013; 38:701-14. [PMID: 23232445 PMCID: PMC3671986 DOI: 10.1038/npp.2012.236] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
We investigated the interaction between the corticostriatal glutamatergic afferents and dopamine D1-like and D2-like receptors in the dorsomedial striatum (dm-STR) in attention and executive response control in the five-choice serial reaction time (5-CSRT) task. The competitive NMDA receptor antagonist 3-(R)-2-carboxypiperazin-4-propyl-1-phosphonic acid (CPP) injected in the mPFC impaired accuracy and increased premature and perseverative responding, raising GLU, DA, and GABA release in the dm-STR. The D1-like antagonist SCH23390 injected in the dm-STR reversed the CPP-induced accuracy deficit but did not affect the increase in perseverative responding. In contrast, the D2-like antagonist haloperidol injected in the dm-STR reduced the CPP-induced increase in perseverative responding but not the accuracy deficit. The different roles of dorsal striatal D1-like and D2-like receptor were further supported by the finding that activation of D1-like receptor in the dm-STR by SKF38393 impaired accuracy but not perseverative responding while the D2-like agonist quinpirole injected in the dm-STR increased perseverative responding but did not affect accuracy. These findings suggest that integration of cortical information by D1-like receptors in the dm-STR is a key mechanism of the input selection process of attention while the integration of corticostriatal signals by D2-like receptors preserves the ability to switch from one act/response to the next in a complex motor sequence, thus providing for behavioral flexibility.
Collapse
Affiliation(s)
- Laura Agnoli
- Department of Neuroscience, Laboratory of Neurochemistry and Behavior, Istituto di Ricerche Farmacologiche ‘Mario Negri', via G. La Masa 19, Milano, Italy
| | - Pierangela Mainolfi
- Department of Neuroscience, Laboratory of Neurochemistry and Behavior, Istituto di Ricerche Farmacologiche ‘Mario Negri', via G. La Masa 19, Milano, Italy
| | - Roberto W Invernizzi
- Department of Neuroscience, Laboratory of Neurochemistry and Behavior, Istituto di Ricerche Farmacologiche ‘Mario Negri', via G. La Masa 19, Milano, Italy
| | - Mirjana Carli
- Department of Neuroscience, Laboratory of Neurochemistry and Behavior, Istituto di Ricerche Farmacologiche ‘Mario Negri', via G. La Masa 19, Milano, Italy,Department of Neuroscience, Laboratory of Neurochemistry and Behavior, Istituto di Ricerche Farmacologiche ‘Mario Negri', via G. La Masa 19, Milano 20156, Italy. Tel: +39 0239014466, Fax: +39 023546277, E-mail:
| |
Collapse
|
22
|
Segovia KN, Correa M, Lennington JB, Conover JC, Salamone JD. Changes in nucleus accumbens and neostriatal c-Fos and DARPP-32 immunoreactivity during different stages of food-reinforced instrumental training. Eur J Neurosci 2012; 35:1354-67. [PMID: 22462413 DOI: 10.1111/j.1460-9568.2012.08036.x] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
Abstract
Nucleus accumbens is involved in several aspects of instrumental behavior, motivation and learning. Recent studies showed that dopamine (DA) release in the accumbens shell was significantly increased on the first day of training on a fixed ratio (FR) 5 schedule (i.e. the transition from FR1 to FR5) compared with those rats that continued FR1 training, even though the rats on their first day of FR5 training received less food reinforcement than rats continuing on the FR1 schedule. Additionally, the second day of FR5 responding was marked by a significant increase in DA release in accumbens core. The present studies employed immunohistochemical methods to characterize the changes in cellular markers of accumbens and neostriatal neural activity that occur during various stages of food-reinforced FR5 training. c-Fos and DARPP-32 immunoreactivity in accumbens shell was significantly increased on the first day of FR5 training, while core c-Fos and DARPP-32 expression showed large increases on the second day of FR5 training. Additional studies showed that c-Fos and DARPP-32 expression in neostriatum increased after more extensive training. Double-labeling studies with immunofluorescence methods indicated that increases in accumbens c-Fos and DARPP-32 expression were primarily seen in substance-P-positive neurons. These increases in accumbens c-Fos and DARPP-32 immunoreactivity seen during the initial phases of FR training may reflect several factors, including novelty, learning, stress or the presentation of a work-related challenge to the organism. Moreover, it appears that the separate subregions of the striatal complex are differentially activated at distinct phases of instrumental training.
Collapse
Affiliation(s)
- Kristen N Segovia
- Department of Psychology, University of Connecticut, Storrs, CT 06269-1020, USA
| | | | | | | | | |
Collapse
|
23
|
Abstract
Striatal cholinergic interneurons are pivotal modulators of the striatal circuitry involved in action selection and decision making. Although nicotinic receptors are important transducers of acetylcholine release in the striatum, muscarinic receptors are more pervasive and have been more thoroughly studied. In this review, the effects of muscarinic receptor signaling on the principal cell types in the striatum and its canonical circuits will be discussed, highlighting new insights into their role in synaptic integration and plasticity. These studies, and those that have identified new circuit elements driven by activation of nicotinic receptors, make it clear that temporally patterned activity in cholinergic interneurons must play an important role in determining the effects on striatal circuitry. These effects could be critical to the response to salient environmental stimuli that serve to direct behavior.
Collapse
Affiliation(s)
- Joshua A Goldberg
- Department of Physiology, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| | | | | |
Collapse
|
24
|
Bonito-Oliva A, Feyder M, Fisone G. Deciphering the Actions of Antiparkinsonian and Antipsychotic Drugs on cAMP/DARPP-32 Signaling. Front Neuroanat 2011; 5:38. [PMID: 21808606 PMCID: PMC3136733 DOI: 10.3389/fnana.2011.00038] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2011] [Accepted: 06/27/2011] [Indexed: 02/06/2023] Open
Abstract
The basal ganglia are affected by several neuropsychiatric and neurodegenerative diseases, many of which are treated with drugs acting on the dopamine system. For instance, the loss of dopaminergic input to the striatum, which is the main pathological feature of Parkinson’s disease, is counteracted by administering the dopamine precursor, L-DOPA. Furthermore, psychotic disorders, including schizophrenia, are treated with drugs that act as antagonists at the D2-type of dopamine receptor (D2R). The use of L-DOPA and typical antipsychotic drugs, such as haloperidol, is limited by the emergence of motor side-effects, particularly after prolonged use. Striatal medium spiny neurons (MSNs) represent an ideal tool to investigate the molecular changes implicated in these conditions. MSNs receive a large glutamatergic innervation from cortex, thalamus, and limbic structures, and are controlled by dopaminergic projections originating in the midbrain. There are two large populations of striatal MSNs, which differ based on their connectivity to the output nuclei of the basal ganglia and on their ability to express dopamine D1 receptors (D1Rs) or D2Rs. Administration of L-DOPA promotes cAMP signaling and activates the dopamine- and cAMP-regulated phosphoprotein of 32 kDa (DARPP-32) in the D1R-expressing MSNs, which form the striatonigral, or direct pathway. Conversely, haloperidol activates the cAMP/DARPP-32 cascade in D2R-expressing MSNs, which form the striatopallidal, or indirect pathway. This review describes the effects produced on downstream effector proteins by stimulation of cAMP/DARPP-32 signaling in these two groups of MSNs. Particular emphasis is given to the regulation of the GluR1 subunit of the α-amino-3-hydroxyl-5-methyl-4-isoxazole-propionate glutamate receptor, the extracellular signal-regulated protein kinases 1 and 2, focusing on functional role and potential pathological relevance.
Collapse
|
25
|
Antipsychotic-induced catalepsy is attenuated in mice lacking the M4 muscarinic acetylcholine receptor. Eur J Pharmacol 2011; 656:39-44. [PMID: 21269601 DOI: 10.1016/j.ejphar.2011.01.018] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2010] [Revised: 12/10/2010] [Accepted: 01/07/2011] [Indexed: 11/23/2022]
Abstract
A delicate balance exists between the central dopaminergic and cholinergic neurotransmitter systems with respect to motor function. An imbalance can result in motor dysfunction as observed in Parkinson's disease patients and in patients treated with antipsychotic compounds. Cholinergic receptor antagonists can alleviate extrapyramidal symptoms in Parkinson's disease and motor side effects induced by antipsychotics. The effects of anticholinergics are mediated by muscarinic receptors of which five subtypes (M(1)-M(5)) exist. Muscarinic M(4) receptors are found at high concentrations in motor parts of the striatum, suggesting a role for muscarinic M(4) receptors in the motor side effects of antipsychotics, and in the alleviation of these side effects by anticholinergics. Here we investigated the potential role of the muscarinic M(4) receptor in catalepsy induced by antipsychotics (haloperidol and risperidone) as well as the anti-cataleptic effects of the non-selective anticholinergic drug scopolamine in fully backcrossed muscarinic M(4) receptor knockout mice. The drug-induced catalepsy was strongly attenuated, but not abolished, in M(4) knockout mice as compared to wild-type controls. Scopolamine further attenuated the cataleptic response in M(4) knockout mice, suggesting that non-M(4) muscarinic receptors also participate in the anti-cataleptic effects. In conclusion, these data indicate an important role for M(4) receptors in antipsychotic-induced motor side effects and suggest that M(4) receptors could be a target for future pharmacological treatment of antipsychotic-induced as well as idiopathic parkinsonism.
Collapse
|
26
|
Akundi RS, Huang Z, Eason J, Pandya JD, Zhi L, Cass WA, Sullivan PG, Büeler H. Increased mitochondrial calcium sensitivity and abnormal expression of innate immunity genes precede dopaminergic defects in Pink1-deficient mice. PLoS One 2011; 6:e16038. [PMID: 21249202 PMCID: PMC3020954 DOI: 10.1371/journal.pone.0016038] [Citation(s) in RCA: 139] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2010] [Accepted: 12/05/2010] [Indexed: 11/24/2022] Open
Abstract
Background PTEN-induced kinase 1 (PINK1) is linked to recessive Parkinsonism (EOPD). Pink1 deletion results in impaired dopamine (DA) release and decreased mitochondrial respiration in the striatum of mice. To reveal additional mechanisms of Pink1-related dopaminergic dysfunction, we studied Ca2+ vulnerability of purified brain mitochondria, DA levels and metabolism and whether signaling pathways implicated in Parkinson's disease (PD) display altered activity in the nigrostriatal system of Pink1−/− mice. Methods and Findings Purified brain mitochondria of Pink1−/− mice showed impaired Ca2+ storage capacity, resulting in increased Ca2+ induced mitochondrial permeability transition (mPT) that was rescued by cyclosporine A. A subpopulation of neurons in the substantia nigra of Pink1−/− mice accumulated phospho-c-Jun, showing that Jun N-terminal kinase (JNK) activity is increased. Pink1−/− mice 6 months and older displayed reduced DA levels associated with increased DA turnover. Moreover, Pink1−/− mice had increased levels of IL-1β, IL-12 and IL-10 in the striatum after peripheral challenge with lipopolysaccharide (LPS), and Pink1−/− embryonic fibroblasts showed decreased basal and inflammatory cytokine-induced nuclear factor kappa-β (NF-κB) activity. Quantitative transcriptional profiling in the striatum revealed that Pink1−/− mice differentially express genes that (i) are upregulated in animals with experimentally induced dopaminergic lesions, (ii) regulate innate immune responses and/or apoptosis and (iii) promote axonal regeneration and sprouting. Conclusions Increased mitochondrial Ca2+ sensitivity and JNK activity are early defects in Pink1−/− mice that precede reduced DA levels and abnormal DA homeostasis and may contribute to neuronal dysfunction in familial PD. Differential gene expression in the nigrostriatal system of Pink1−/− mice supports early dopaminergic dysfunction and shows that Pink1 deletion causes aberrant expression of genes that regulate innate immune responses. While some differentially expressed genes may mitigate neurodegeneration, increased LPS-induced brain cytokine expression and impaired cytokine-induced NF-κB activation may predispose neurons of Pink1−/− mice to inflammation and injury-induced cell death.
Collapse
Affiliation(s)
- Ravi S. Akundi
- Department of Anatomy and Neurobiology, University of Kentucky College of Medicine, Lexington, Kentucky, United States of America
| | - Zhenyu Huang
- Department of Anatomy and Neurobiology, University of Kentucky College of Medicine, Lexington, Kentucky, United States of America
| | - Joshua Eason
- Department of Anatomy and Neurobiology, University of Kentucky College of Medicine, Lexington, Kentucky, United States of America
| | - Jignesh D. Pandya
- Department of Anatomy and Neurobiology, University of Kentucky College of Medicine, Lexington, Kentucky, United States of America
| | - Lianteng Zhi
- Department of Anatomy and Neurobiology, University of Kentucky College of Medicine, Lexington, Kentucky, United States of America
| | - Wayne A. Cass
- Department of Anatomy and Neurobiology, University of Kentucky College of Medicine, Lexington, Kentucky, United States of America
| | - Patrick G. Sullivan
- Department of Anatomy and Neurobiology, University of Kentucky College of Medicine, Lexington, Kentucky, United States of America
- Spinal Cord and Brain Injury Research Center, University of Kentucky College of Medicine, Lexington, Kentucky, United States of America
| | - Hansruedi Büeler
- Department of Anatomy and Neurobiology, University of Kentucky College of Medicine, Lexington, Kentucky, United States of America
- * E-mail:
| |
Collapse
|
27
|
Giannakopoulou D, Armata I, Mitsacos A, Shashidharan P, Giompres P. Modulation of the basal ganglia dopaminergic system in a transgenic mouse exhibiting dystonia-like features. J Neural Transm (Vienna) 2010; 117:1401-9. [PMID: 21136125 DOI: 10.1007/s00702-010-0521-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2010] [Accepted: 10/31/2010] [Indexed: 12/24/2022]
Abstract
Dystonia is a movement disorder characterized by involuntary excessive muscle activity and abnormal postures. There are data supporting the hypothesis that basal ganglia dysfunction, and specifically dopaminergic system dysfunction, plays a role in dystonia. In the present study, we used hyperkinetic transgenic mice generated as a model of DYT1 dystonia and compared the basal ganglia dopaminergic system between transgenic mice exhibiting hyperkinesia (affected), transgenic mice not showing movement abnormalities (unaffected), and non-transgenic littermates. A decrease in the density of striatal D2 binding sites, measured by [³H]raclopride binding, and D2 mRNA expression in substantia nigra pars compacta (SNpc) was revealed in affected and unaffected transgenic mice when compared with non-transgenic. No difference in D1 receptor binding and DAT binding, measured by [³H]SCH23390 and [³H]WIN35428 binding, respectively, was found in striatum of transgenic animals. In SNpc, increased levels of DAT binding sites were observed in affected and unaffected animals compared to non-transgenic, whereas no change in DAT mRNA expression was found. Our results show selective neurochemical changes in the basal ganglia dopaminergic system, suggesting a possible involvement in the pathophysiology of dystonia-like motor hyperactivity.
Collapse
Affiliation(s)
- Dimitra Giannakopoulou
- Laboratory of Human and Animal Physiology, Department of Biology, University of Patras, 26500 Patra, Greece
| | | | | | | | | |
Collapse
|
28
|
Bertran-Gonzalez J, Hervé D, Girault JA, Valjent E. What is the Degree of Segregation between Striatonigral and Striatopallidal Projections? Front Neuroanat 2010; 4. [PMID: 20953289 PMCID: PMC2955397 DOI: 10.3389/fnana.2010.00136] [Citation(s) in RCA: 96] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2010] [Accepted: 09/13/2010] [Indexed: 11/13/2022] Open
Abstract
In contrast to most other brain regions, in the striatum the output neurons (the medium-sized spiny neurons, MSNs) are GABAergic and act by inhibiting their targets. The standard model of the basal ganglia is built on the segregation of information processing in the direct and indirect pathways, which act in opposing directions to control movement. The MSNs participating in these two pathways can be identified according to their projection sites and the proteins they express. The differential expression of two of the five known dopamine receptor subtypes, D1 and D2, in the two populations of MSNs is of particular importance, since it confers to dopamine the ability to exert opposite functional modulation on the direct and indirect pathways. However, beyond this simple view of the striatal output organization, anatomical studies questioned the segregation of direct and indirect projections to the SNr, while other studies disclosed variable degrees of overlapping expression of dopamine receptor subtypes in striatal MSNs. New ways to address these issues have emerged recently, using mouse models in which specific populations of striatal neurons are genetically tagged. Here, we review classical and recent studies supporting the segregation of striatonigral and striatopallidal neurons. We also consider this issue at a functional level by focusing on the regulation of striatal signaling pathways in the two populations of MSNs, which clearly emphasize their profound differences. We discuss the anatomical and functional evidence challenging some aspects of this segregation and outline questions that are still to be addressed.
Collapse
|
29
|
Wang C, Zhou J, Wang S, Ye M, Jiang C, Fan G, Zou H. Combined Comparative and Chemical Proteomics on the Mechanisms of levo-Tetrahydropalmatine-Induced Antinociception in the Formalin Test. J Proteome Res 2010; 9:3225-34. [DOI: 10.1021/pr1001274] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Affiliation(s)
- Chen Wang
- Department of Pharmaceutical Analysis, School of Pharmacy, Second Military Medical University, No.325 Guohe Road, Shanghai 200433, People's Republic of China, Division of Biotechnology, Dalian Institute of Chemical Physics, CAS, No.457 Zhongshan Road, Dalian 116023, People's Republic of China, Laboratory of Stress Medicine, Department of Nautical Medicine, Second Military Medical University, No.800 Xiangyin Road, Shanghai 200433, People's Republic of China, and Shanghai Key Laboratory for Pharmaceutical
| | - Jiangrui Zhou
- Department of Pharmaceutical Analysis, School of Pharmacy, Second Military Medical University, No.325 Guohe Road, Shanghai 200433, People's Republic of China, Division of Biotechnology, Dalian Institute of Chemical Physics, CAS, No.457 Zhongshan Road, Dalian 116023, People's Republic of China, Laboratory of Stress Medicine, Department of Nautical Medicine, Second Military Medical University, No.800 Xiangyin Road, Shanghai 200433, People's Republic of China, and Shanghai Key Laboratory for Pharmaceutical
| | - Shuowen Wang
- Department of Pharmaceutical Analysis, School of Pharmacy, Second Military Medical University, No.325 Guohe Road, Shanghai 200433, People's Republic of China, Division of Biotechnology, Dalian Institute of Chemical Physics, CAS, No.457 Zhongshan Road, Dalian 116023, People's Republic of China, Laboratory of Stress Medicine, Department of Nautical Medicine, Second Military Medical University, No.800 Xiangyin Road, Shanghai 200433, People's Republic of China, and Shanghai Key Laboratory for Pharmaceutical
| | - Mingliang Ye
- Department of Pharmaceutical Analysis, School of Pharmacy, Second Military Medical University, No.325 Guohe Road, Shanghai 200433, People's Republic of China, Division of Biotechnology, Dalian Institute of Chemical Physics, CAS, No.457 Zhongshan Road, Dalian 116023, People's Republic of China, Laboratory of Stress Medicine, Department of Nautical Medicine, Second Military Medical University, No.800 Xiangyin Road, Shanghai 200433, People's Republic of China, and Shanghai Key Laboratory for Pharmaceutical
| | - Chunlei Jiang
- Department of Pharmaceutical Analysis, School of Pharmacy, Second Military Medical University, No.325 Guohe Road, Shanghai 200433, People's Republic of China, Division of Biotechnology, Dalian Institute of Chemical Physics, CAS, No.457 Zhongshan Road, Dalian 116023, People's Republic of China, Laboratory of Stress Medicine, Department of Nautical Medicine, Second Military Medical University, No.800 Xiangyin Road, Shanghai 200433, People's Republic of China, and Shanghai Key Laboratory for Pharmaceutical
| | - Guorong Fan
- Department of Pharmaceutical Analysis, School of Pharmacy, Second Military Medical University, No.325 Guohe Road, Shanghai 200433, People's Republic of China, Division of Biotechnology, Dalian Institute of Chemical Physics, CAS, No.457 Zhongshan Road, Dalian 116023, People's Republic of China, Laboratory of Stress Medicine, Department of Nautical Medicine, Second Military Medical University, No.800 Xiangyin Road, Shanghai 200433, People's Republic of China, and Shanghai Key Laboratory for Pharmaceutical
| | - Hanfa Zou
- Department of Pharmaceutical Analysis, School of Pharmacy, Second Military Medical University, No.325 Guohe Road, Shanghai 200433, People's Republic of China, Division of Biotechnology, Dalian Institute of Chemical Physics, CAS, No.457 Zhongshan Road, Dalian 116023, People's Republic of China, Laboratory of Stress Medicine, Department of Nautical Medicine, Second Military Medical University, No.800 Xiangyin Road, Shanghai 200433, People's Republic of China, and Shanghai Key Laboratory for Pharmaceutical
| |
Collapse
|
30
|
Knab AM, Lightfoot JT. Does the difference between physically active and couch potato lie in the dopamine system? Int J Biol Sci 2010; 6:133-50. [PMID: 20224735 PMCID: PMC2836544 DOI: 10.7150/ijbs.6.133] [Citation(s) in RCA: 104] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2009] [Accepted: 03/02/2010] [Indexed: 01/04/2023] Open
Abstract
Obesity and other inactivity related diseases are increasing at an alarming rate especially
in Western societies. Because of this, it is important to understand the regulating mechanisms
involved in physical activity behavior. Much research has been done in regard to the
psychological determinants of physical activity behavior; however, little is known about the
underlying genetic and biological factors that may contribute to regulation of this complex
trait. It is true that a significant portion of any trait is regulated by genetic and
biological factors. In the case of voluntary physical activity behavior, these regulating
mechanisms appear to be concentrated in the central nervous system. In particular, the dopamine
system has been shown to regulate motor movement, as well as motivation and reward behavior.
The pattern of regulation of voluntary physical activity by the dopamine system is yet to be
fully elucidated. This review will summarize what is known about the dopamine system and
regulation of physical activity, and will present a hypothesis of how this signaling pathway is
mechanistically involved in regulating voluntary physical activity behavior. Future research in
this area will aid in developing personalized strategies to prevent inactivity related
diseases.
Collapse
Affiliation(s)
- Amy M Knab
- Department of Kinesiology, University of North Carolina, Charlotte, NC, USA.
| | | |
Collapse
|
31
|
Wang C, Wang S, Fan G, Zou H. Screening of antinociceptive components in Corydalis yanhusuo W.T. Wang by comprehensive two-dimensional liquid chromatography/tandem mass spectrometry. Anal Bioanal Chem 2010; 396:1731-40. [PMID: 20101504 DOI: 10.1007/s00216-009-3409-1] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2009] [Revised: 11/13/2009] [Accepted: 12/15/2009] [Indexed: 11/27/2022]
Abstract
Formalin-induced pain models were used in rats to evaluate the antinociceptive effect of the total alkaloids of Corydalis yanhusuo (TAC). The results indicated that formalin-evoked spontaneous nociceptive responses (licking behavior) could be inhibited significantly by giving (intragingival) TAC at a single dose of 150 mg/kg. Subsequently, an online comprehensive two-dimensional biochromatography method with a silica-bonded human serum albumin (HSA) column in the first dimension and a monolithic ODS column in the second was developed. The absorbed bioactive components were screened by comparing and contrasting the components detected in the plasma and striatum with those in TAC. More than 100 compounds were separated and detected in the TAC, among which 13 compounds were identified. About 40 compounds (seven compounds identified) were absorbed into the plasma with appropriate concentrations and about 20 compounds (four compounds identified) passed through the blood-brain barrier into the striatum. Of interest, four compounds (protopine, glaucine, tetrahydropalmatine, and corydaline) which were reported to possess profound antinociceptive effects exhibited high concentrations in the striatum. This may result from their synergistic effects in regulating the formalin-induced nociception. The results indicated that the comprehensive two-dimensional biochromatography method developed is capable of screening the bioactive components in Corydalis yanhusuo and providing valuable information for understanding the mechanisms by which Corydalis yanhusuo alleviates nociception.
Collapse
Affiliation(s)
- Chen Wang
- Department of Pharmaceutical Analysis, School of Pharmacy, Second Military Medical University, 325 Guohe Road, Shanghai, 200433, China
| | | | | | | |
Collapse
|
32
|
Pollack AE, Thomas LI. D1 priming enhances both D1- and D2-mediated rotational behavior and striatal Fos expression in 6-hydroxydopamine lesioned rats. Pharmacol Biochem Behav 2010; 94:346-51. [DOI: 10.1016/j.pbb.2009.09.016] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/17/2009] [Revised: 09/11/2009] [Accepted: 09/24/2009] [Indexed: 10/20/2022]
|
33
|
Cenci MA, Konradi C. Maladaptive striatal plasticity in L-DOPA-induced dyskinesia. PROGRESS IN BRAIN RESEARCH 2010; 183:209-33. [PMID: 20696322 DOI: 10.1016/s0079-6123(10)83011-0] [Citation(s) in RCA: 166] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/02/2022]
Abstract
Dopamine (DA) replacement therapy with l-DOPA remains the most effective treatment for Parkinson's disease, but causes dyskinesia (abnormal involuntary movements) in the vast majority of the patients. The basic mechanisms of l-DOPA-induced dyskinesia (LID) have become the object of intense research focusing on neurochemical and molecular adaptations in the striatum. Here we review this vast literature and highlight trends that converge into a unifying pathophysiological interpretation. We propose that the core molecular alteration of striatal neurons in LID consists in an inability to turn down supersensitive signaling responses downstream of DA D1 receptors (where supersensitivity is primarily caused by DA denervation). The sustained activation of intracellular signaling pathways induced by each dose of l-DOPA leads to abnormal cellular plasticity and high bioenergetic expenditure. The over-exploitation of signaling pathways and energy reserves during treatment impairs the ability of striatal neurons to dynamically gate cortically driven motor commands. LID thus exemplifies a disorder where 'too much' molecular plasticity leads to plasticity failure in the striatum.
Collapse
Affiliation(s)
- M Angela Cenci
- Basal Ganglia Pathophysiology Unit, Department of Experimental Medical Science, Lund University, Lund, Sweden.
| | | |
Collapse
|
34
|
Valjent E, Bertran-Gonzalez J, Hervé D, Fisone G, Girault JA. Looking BAC at striatal signaling: cell-specific analysis in new transgenic mice. Trends Neurosci 2009; 32:538-47. [DOI: 10.1016/j.tins.2009.06.005] [Citation(s) in RCA: 144] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2009] [Revised: 06/05/2009] [Accepted: 06/08/2009] [Indexed: 01/30/2023]
|
35
|
Strick CA, James LC, Fox CB, Seeger TF, Menniti FS, Schmidt CJ. Alterations in gene regulation following inhibition of the striatum-enriched phosphodiesterase, PDE10A. Neuropharmacology 2009; 58:444-51. [PMID: 19765598 DOI: 10.1016/j.neuropharm.2009.09.008] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2008] [Revised: 08/31/2009] [Accepted: 09/08/2009] [Indexed: 11/16/2022]
Abstract
PDE10A is a member of the phosphodiesterase superfamily highly enriched within medium spiny neurons (MSN) in mammalian striatum. We have used inhibitors of PDE10A and quantitative measures of mRNA to demonstrate that PDE10A controls striatal gene expression by regulating MSN cyclic nucleotide signaling pathways. Acute treatment with PDE10A inhibitors produces rapid and transient transcription of the immediate early gene cfos in rat striatum. Although inhibition of PDE10A causes accumulation of both cAMP and cGMP, the increase in striatal cfos expression appears to depend on changes in cAMP, since the increase is present in mice deficient in nNOS which fail to increase cGMP in response to PDE10A inhibition. Consistent with its expression in a majority of striatal MSN, PDE10A inhibition significantly induces expression of both substance P and enkephalin, neuropeptide markers for the direct and indirect striatal output pathways, respectively. These findings support the hypothesis that PDE10A modulates signal transduction in both striatal output pathways and suggest that PDE10A inhibitors may offer a unique approach to the treatment of schizophrenia.
Collapse
Affiliation(s)
- Christine A Strick
- Neuroscience Research Unit, Pfizer Global Research and Development, Groton/New London Laboratories, Eastern Point Road 8220/405, Groton, CT 06340, USA.
| | | | | | | | | | | |
Collapse
|
36
|
Wiecki TV, Riedinger K, von Ameln-Mayerhofer A, Schmidt WJ, Frank MJ. A neurocomputational account of catalepsy sensitization induced by D2 receptor blockade in rats: context dependency, extinction, and renewal. Psychopharmacology (Berl) 2009; 204:265-77. [PMID: 19169674 PMCID: PMC3049926 DOI: 10.1007/s00213-008-1457-4] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/13/2007] [Accepted: 12/27/2008] [Indexed: 12/01/2022]
Abstract
RATIONALE Repeated haloperidol treatment in rodents results in a day-to-day intensification of catalepsy (i.e., sensitization). Prior experiments suggest that this sensitization is context-dependent and resistant to extinction training. OBJECTIVES The aim of this study was to provide a neurobiological mechanistic explanation for these findings. MATERIALS AND METHODS We use a neurocomputational model of the basal ganglia and simulate two alternative models based on the reward prediction error and novelty hypotheses of dopamine function. We also conducted a behavioral rat experiment to adjudicate between these models. Twenty male Sprague-Dawley rats were challenged with 0.25 mg/kg haloperidol across multiple days and were subsequently tested in either a familiar or novel context. RESULTS Simulation results show that catalepsy sensitization, and its context dependency, can be explained by "NoGo" learning via simulated D2 receptor antagonism in striatopallidal neurons, leading to increasingly slowed response latencies. The model further exhibits a non-extinguishable component of catalepsy sensitization due to latent NoGo representations that are prevented from being expressed, and therefore from being unlearned, during extinction. In the rat experiment, context dependency effects were not dependent on the novelty of the context, ruling out the novelty model's account of context dependency. CONCLUSIONS Simulations lend insight into potential complex mechanisms leading to context-dependent catalepsy sensitization, extinction, and renewal.
Collapse
Affiliation(s)
- Thomas V Wiecki
- Max Planck Institute for Biological Cybernetics, Tübingen, Germany.
| | | | | | | | | |
Collapse
|
37
|
Betz AJ, Vontell R, Valenta J, Worden L, Sink KS, Font L, Correa M, Sager TN, Salamone JD. Effects of the adenosine A 2A antagonist KW 6002 (istradefylline) on pimozide-induced oral tremor and striatal c-Fos expression: comparisons with the muscarinic antagonist tropicamide. Neuroscience 2009; 163:97-108. [PMID: 19467297 DOI: 10.1016/j.neuroscience.2009.05.040] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2009] [Revised: 05/04/2009] [Accepted: 05/18/2009] [Indexed: 10/20/2022]
Abstract
Typical antipsychotic drugs, including haloperidol and pimozide, have been shown to produce parkinsonian motor effects such as akinesia and tremor. Furthermore, there is an antagonistic interaction between adenosine A(2A) and dopamine D(2) receptors in the basal ganglia, which is important for motor functions related to the production of parkinsonian symptoms. Several experiments were conducted to assess the effects of the selective adenosine A(2A) antagonist KW 6002 on both the motor and cellular effects of subchronic administration of pimozide. The motor test employed was tremulous jaw movements, which is used as a model of parkinsonian tremor. In addition, c-Fos expression in the ventrolateral neostriatum, which is the striatal area most associated with tremulous jaw movements, was used as a marker of striatal cell activity in animals that were tested in the behavioral experiments. Repeated administration of 1.0 mg/kg pimozide induced tremulous jaw movements and increased ventrolateral striatal c-Fos expression, while administration of 20.0 mg/kg of the atypical antipsychotic quetiapine did not. The tremulous jaw movements induced by pimozide were significantly reduced by co-administration of either the adenosine A(2A) antagonist KW 6002 or the muscarinic antagonist tropicamide. Pimozide-induced increases in ventrolateral striatal c-Fos expression were reduced by a behaviorally effective dose of KW 6002, but c-Fos expression in pimozide-treated rats was actually increased by tropicamide. These results indicate that two different drug manipulations that act to reduce tremulous jaw movements can have different effects on DA antagonist-induced c-Fos expression, suggesting that adenosine A(2A) antagonism and muscarinic receptor antagonism exert their motor effects by acting on different striatal circuits.
Collapse
Affiliation(s)
- A J Betz
- Department of Psychology, University of Connecticut, Storrs, CT 06269-1020, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
38
|
Caster JM, Kuhn CM. Maturation of coordinated immediate early gene expression by cocaine during adolescence. Neuroscience 2009; 160:13-31. [PMID: 19245875 PMCID: PMC2668738 DOI: 10.1016/j.neuroscience.2009.01.001] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2008] [Revised: 11/13/2008] [Accepted: 01/01/2009] [Indexed: 11/17/2022]
Abstract
Adolescence may be a critical period for drug addiction. Young adolescent male rats have greater locomotor responses than adults after acute low dose cocaine administration. Further, repeated cocaine administration produces as much or more conditioned place preference but reduced locomotor sensitization in adolescents compared to adults. Acute activation of neurons by cocaine induces long-term changes in behavior by activating transcriptional complexes. The purpose of the present study was to correlate cocaine-induced locomotor activity with neuronal activation in subregions of the striatum and cortex by acute cocaine in young adolescent (postnatal (PN) 28) and adult (PN 65) male rats by measuring the induction of the plasticity-associated immediate early genes (IEGs) c-fos and zif268 using in situ hybridization. Animals were treated with saline, low (10 mg/kg), or high (40 mg/kg) dose cocaine in locomotor activity chambers and killed 30 min later. Low dose cocaine induced more locomotor activity and striatal c-fos expression in adolescents than adults whereas high dose cocaine induced more locomotor activity, striatal c-fos, and striatal zif268 expression in adults. Locomotor activity correlated with the expression of both genes in adults but correlated with striatal c-fos only in adolescents. Finally, there was a significant correlation between the expression of c-fos and zif268 in the adult striatum but not in adolescents. Our results suggest that the coordinated expression of transcription factors by cocaine continues to develop during adolescence. The immature regulation of transcription factors by cocaine could explain why adolescents show unique sensitivity to specific long-term behavioral alterations following cocaine treatment.
Collapse
Affiliation(s)
- J M Caster
- Department of Pharmacology and Cancer Biology, Research Park Building 2, Room 100B, Box 3813, Duke University Medical Center, Durham, NC 27710, USA
| | | |
Collapse
|
39
|
Striatal dopamine and glutamate receptors modulate methamphetamine-induced cortical Fos expression. Neuroscience 2009; 161:1114-25. [PMID: 19374938 DOI: 10.1016/j.neuroscience.2009.04.023] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2008] [Revised: 04/07/2009] [Accepted: 04/09/2009] [Indexed: 11/22/2022]
Abstract
Methamphetamine (mAMPH) is a psychostimulant drug that increases extracellular levels of monoamines throughout the brain. It has previously been observed that a single injection of mAMPH increases immediate early gene (IEG) expression in both the striatum and cerebral cortex. Moreover, this effect is modulated by dopamine and glutamate receptors since systemic administration of dopamine or glutamate antagonists has been found to alter mAMPH-induced striatal and cortical IEG expression. However, because dopamine and glutamate receptors are found in extra-striatal as well as striatal brain regions, studies employing systemic injection of dopamine or glutamate antagonists fail to localize the effects of mAMPH-induced activation. In the present experiments, the roles of striatal dopamine and glutamate receptors in mAMPH-induced gene expression in the striatum and cerebral cortex were examined. The nuclear expression of Fos, the protein product of the IEG c-fos, was quantified in both the striatum and the cortex of animals receiving intrastriatal dopamine or glutamate antagonist administration. Intrastriatal infusion of dopamine (D1 or D2) or glutamate [N-methyl-D-aspartic acid (NMDA) or alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA)] antagonists affected not only mAMPH-induced striatal, but also cortical, Fos expression. Overall, the effects of the antagonists occurred dose-dependently, in both the infused and non-infused hemispheres, with greater influences occurring in the infused hemisphere. Finally, unilateral intrastriatal infusion of dopamine or glutamate antagonists changed the behavior of the rats from characteristic mAMPH-induced stereotypy to rotation ipsilateral to the infusion. These results demonstrate that mAMPH's actions on striatal dopamine and glutamate receptors modulate the widespread cortical activation induced by mAMPH. It is hypothesized that dopamine release from nigrostriatal terminals modulates activity within striatal efferent pathways, thereby disinhibiting thalamo-cortical circuits. By extension, these results suggest processes through which repeated exposure to mAMPH might influence cortical function in mAMPH abusers.
Collapse
|
40
|
Opposing patterns of signaling activation in dopamine D1 and D2 receptor-expressing striatal neurons in response to cocaine and haloperidol. J Neurosci 2008; 28:5671-85. [PMID: 18509028 DOI: 10.1523/jneurosci.1039-08.2008] [Citation(s) in RCA: 455] [Impact Index Per Article: 26.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Psychostimulants and other drugs of abuse activate extracellular signal-regulated kinase (ERK) in the striatum, through combined stimulation of dopamine D(1) receptors (D1Rs) and glutamate NMDA receptors. Antipsychotic drugs activate similar signaling proteins in the striatum by blocking dopamine D(2) receptors (D2Rs). However, the neurons in which these pathways are activated by psychotropic drugs are not precisely identified. We used transgenic mice, in which enhanced green fluorescent protein (EGFP) expression was driven by D1R promoter (drd1a-EGFP) or D2R promoter (drd2-EGFP). We confirmed the expression of drd1a-EGFP in striatonigral and drd2-EGFP in striatopallidal neurons. Drd2-EGFP was also expressed in cholinergic interneurons, whereas no expression of either promoter was detected in GABAergic interneurons. Acute cocaine treatment increased phosphorylation of ERK and its direct or indirect nuclear targets, mitogen- and stress-activated kinase-1 (MSK1) and histone H3, exclusively in D1R-expressing output neurons in the dorsal striatum and nucleus accumbens. Cocaine-induced expression of c-Fos and Zif268 predominated in D1R-expressing neurons but was also observed in D2R-expressing neurons. One week after repeated cocaine administration, cocaine-induced signaling responses were decreased, with the exception of enhanced ERK phosphorylation in dorsal striatum. The responses remained confined to D1R neurons. In contrast, acute haloperidol injection activated phosphorylation of ERK, MSK1, and H3 only in D2R neurons and induced c-fos and zif268 predominantly in these neurons. Our results demonstrate that cocaine and haloperidol specifically activate signaling pathways in two completely segregated populations of striatal output neurons, providing direct evidence for the selective mechanisms by which these drugs exert their long-term effects.
Collapse
|
41
|
Yamamoto N, Soghomonian JJ. Time-course of SKF-81297-induced increase in glutamic acid decarboxylase 65 and 67 mRNA levels in striatonigral neurons and decrease in GABA(A) receptor alpha1 subunit mRNA levels in the substantia nigra, pars reticulata, in adult rats with a unilateral 6-hydroxydopamine lesion. Neuroscience 2008; 154:1088-99. [PMID: 18495353 PMCID: PMC2483836 DOI: 10.1016/j.neuroscience.2008.04.015] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2007] [Revised: 04/09/2008] [Accepted: 04/14/2008] [Indexed: 11/15/2022]
Abstract
Striatal projection neurons use GABA as their neurotransmitter and express the rate-limiting synthesizing enzyme glutamic acid decarboxylase (GAD) and the vesicular GABA transporter vGAT. The chronic systemic administration of an agonist of dopamine D1/D5-preferring receptors is known to alter GAD mRNA levels in striatonigral neurons in intact and dopamine-depleted rats. In the present study, the effects of a single or subchronic systemic administration of the dopamine D1/D5-preferring receptor agonist SKF-81297 on GAD65, GAD67, PPD and vGAT mRNA levels in the striatum and GABA(A) receptor alpha1 subunit mRNA levels in the substantia nigra, pars reticulata, were measured in rats with a unilateral 6-hydroxydopamine (6-OHDA) lesion. After a single injection of SKF-81297, striatal GAD65 mRNA levels were significantly increased at 3 but not 72 h. In contrast, striatal GAD67 mRNA levels were increased and nigral alpha1 mRNA levels were decreased at 72 but not 3 h. Single cell analysis on double-labeled sections indicated that increased GAD or vGAT mRNA levels after acute SKF-81297 occurred in striatonigral neurons identified by their lack of preproenkephalin expression. Subchronic SKF-81297 induced significant increases in striatal GAD67, GAD65, preprodynorphin and vGAT mRNA levels and decreases in nigral alpha1 mRNA levels. In the striatum contralateral to the 6-OHDA lesion, subchronic but not acute SKF-81297 induced a significant increase in GAD65 mRNA levels. The other mRNA levels were not significantly altered. Finally, striatal GAD67 mRNA levels were negatively correlated with nigral alpha1 mRNA levels in the dopamine-depleted but not dopamine-intact side. The results suggest that different signaling pathways are involved in the modulation by dopamine D1/D5 receptors of GAD65 and GAD67 mRNA levels in striatonigral neurons. They also suggest that the down-regulation of nigral GABA(A) receptors is linked to the increase in striatal GAD67 mRNA levels in the dopamine-depleted striatum.
Collapse
Affiliation(s)
- N Yamamoto
- Department of Anatomy and Neurobiology, Boston University School of Medicine, 715 Albany Street, Room L1004, Boston, MA 02118, USA
| | | |
Collapse
|
42
|
David V, Matifas A, Gavello-Baudy S, Decorte L, Kieffer BL, Cazala P. Brain regional Fos expression elicited by the activation of mu- but not delta-opioid receptors of the ventral tegmental area: evidence for an implication of the ventral thalamus in opiate reward. Neuropsychopharmacology 2008; 33:1746-59. [PMID: 17895918 DOI: 10.1038/sj.npp.1301529] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Both mu-opioid receptors (MORs) and delta-opioid receptors (DORs) are expressed in the ventral tegmental area (VTA) and are thought to be involved in the addictive properties of opiates. However, their respective contributions to opiate reward remain unclear. We used intracranial self-administration (ICSA) to study the rewarding effects of morphine microinjections into the VTA of male and female MOR-/- and DOR-/- mice. In brains of mice tested for intra-VTA morphine self-administration, we analyzed regional Fos protein expression to investigate the neural circuitry underlying this behavior. Male and female WT and DOR-/- mice exhibited similar self-administration performances, whereas knockout of the MOR gene abolished intra-VTA morphine self-administration at all doses tested. Naloxone (4 mg/kg) disrupted this behavior in WT and DOR mutants, without triggering physical signs of withdrawal. Morphine ICSA was associated with an increase in Fos within the nucleus accumbens, striatum, limbic cortices, amygdala, hippocampus, the lateral mammillary nucleus (LM), and the ventral posteromedial thalamus (VPM). This latter structure was found to express high levels of Fos exclusively in self-administering WT and DOR-/- mice. Abolition of morphine reward in MOR-/- mice was associated with a decrease in Fos-positive neurons in the mesocorticolimbic dopamine system, amygdala, hippocampus (CA1), LM, and a complete absence within the VPM. We conclude that (i) VTA MORs, but not DORs, are critical for morphine reward and (ii) the role of VTA-thalamic projections in opiate reward deserves to be further explored.
Collapse
MESH Headings
- Analysis of Variance
- Animals
- Behavior, Animal/drug effects
- Brain/anatomy & histology
- Brain/drug effects
- Brain/metabolism
- Cell Count/methods
- Conditioning, Operant/drug effects
- Female
- Gene Expression Regulation/drug effects
- Gene Expression Regulation/physiology
- Male
- Mice
- Mice, Inbred C57BL
- Mice, Knockout
- Morphine/administration & dosage
- Naloxone/pharmacology
- Narcotic Antagonists/pharmacology
- Narcotics/administration & dosage
- Neurons/drug effects
- Neurons/metabolism
- Oncogene Proteins v-fos/genetics
- Oncogene Proteins v-fos/metabolism
- Reaction Time/drug effects
- Reaction Time/physiology
- Receptors, Opioid, delta/deficiency
- Receptors, Opioid, delta/metabolism
- Receptors, Opioid, mu/deficiency
- Receptors, Opioid, mu/metabolism
- Self Administration
- Ventral Tegmental Area/cytology
- Ventral Tegmental Area/drug effects
- Ventral Tegmental Area/metabolism
Collapse
Affiliation(s)
- Vincent David
- Centre de Neurosciences Intégratives et Cognitives, CNRS UMR 5228/Universités de Bordeaux 1 et 2, Talence, France.
| | | | | | | | | | | |
Collapse
|
43
|
Frank MJ, Scheres A, Sherman SJ. Understanding decision-making deficits in neurological conditions: insights from models of natural action selection. Philos Trans R Soc Lond B Biol Sci 2007; 362:1641-54. [PMID: 17428775 PMCID: PMC2440777 DOI: 10.1098/rstb.2007.2058] [Citation(s) in RCA: 119] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Models of natural action selection implicate fronto-striatal circuits in both motor and cognitive 'actions'. Dysfunction of these circuits leads to decision-making deficits in various populations. We review how computational models provide insights into the mechanistic basis for these deficits in Parkinson's patients and those with ventromedial frontal damage. We then consider implications of the models for understanding behaviour and cognition in attention-deficit/hyperactivity disorder (ADHD). Incorporation of cortical noradrenaline function into the model improves action selection in noisy environments and accounts for response variability in ADHD. We close with more general clinical implications.
Collapse
Affiliation(s)
- Michael J Frank
- Departments of Psychology and Neurology, Program in Neuroscience, University of Arizona Tucson, AZ 85721, USA.
| | | | | |
Collapse
|
44
|
Lee J, Rushlow WJ, Rajakumar N. L-type calcium channel blockade on haloperidol-induced c-Fos expression in the striatum. Neuroscience 2007; 149:602-16. [PMID: 17913375 DOI: 10.1016/j.neuroscience.2007.08.013] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2006] [Revised: 08/01/2007] [Accepted: 09/05/2007] [Indexed: 11/19/2022]
Abstract
Haloperidol-induced c-Fos expression in the lateral part of the neostriatum has been correlated with motor side effects while c-Fos induction in the medial part of the neostriatum and the nucleus accumbens is thought to be associated with the therapeutic effects of the drug. Induction of c-Fos in the striatum by haloperidol involves dopamine D(2) (DA D(2)) receptor antagonism and is dependent on activation of N-methyl-d-aspartate (NMDA) receptors and L-type Ca(2+) channels. In the current study, pretreatment with L-type Ca(2+) channel blockers suppressed haloperidol-induced c-Fos throughout the neostriatum and the nucleus accumbens at 2 h postinjection. However, elevated c-Fos protein expression was observed only in the lateral part of the neostriatum at 5 h postinjection of haloperidol following pretreatment of L-type Ca(2+) channel blocker compared with rats pretreated with vehicle alone. In addition, pretreatment prolonged the duration of haloperidol-induced catalepsy in rats. Infusions of L-type Ca(2+) channel blockers directly into the neostriatum mimicked similar patterns of changes in haloperidol-induced c-Fos expression. Prolonged expression of c-Fos was not observed following coadministration of nifedipine and a dopamine D(1) (DA D(1)) receptor agonist, SKF 81297, but could be mimicked by the DA D(2/3) receptor antagonist raclopride, suggesting that the phenomenon is likely related to DA D(2) receptor antagonism. Moreover, the expression levels of haloperidol-induced zif 268 and haloperidol-induced phosphorylated CREB and phosphorylated Elk-1 were also substantially elevated for a prolonged period of time in the lateral, but not the medial part of the neostriatum, following blockade of L-type Ca(2+) channels. Collectively, the results suggest that coadministration of L-type Ca(2+) channel blockers affects haloperidol signaling in the lateral part of the neostriatum and may exacerbate the development of acute motor side effects.
Collapse
Affiliation(s)
- J Lee
- Department of Anatomy & Cell Biology, University of Western Ontario, London, Ontario N6A 5C1, Canada
| | | | | |
Collapse
|
45
|
Frank MJ, Moustafa AA, Haughey HM, Curran T, Hutchison KE. Genetic triple dissociation reveals multiple roles for dopamine in reinforcement learning. Proc Natl Acad Sci U S A 2007; 104:16311-6. [PMID: 17913879 PMCID: PMC2042203 DOI: 10.1073/pnas.0706111104] [Citation(s) in RCA: 479] [Impact Index Per Article: 26.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2007] [Indexed: 11/18/2022] Open
Abstract
What are the genetic and neural components that support adaptive learning from positive and negative outcomes? Here, we show with genetic analyses that three independent dopaminergic mechanisms contribute to reward and avoidance learning in humans. A polymorphism in the DARPP-32 gene, associated with striatal dopamine function, predicted relatively better probabilistic reward learning. Conversely, the C957T polymorphism of the DRD2 gene, associated with striatal D2 receptor function, predicted the degree to which participants learned to avoid choices that had been probabilistically associated with negative outcomes. The Val/Met polymorphism of the COMT gene, associated with prefrontal cortical dopamine function, predicted participants' ability to rapidly adapt behavior on a trial-to-trial basis. These findings support a neurocomputational dissociation between striatal and prefrontal dopaminergic mechanisms in reinforcement learning. Computational maximum likelihood analyses reveal independent gene effects on three reinforcement learning parameters that can explain the observed dissociations.
Collapse
Affiliation(s)
- Michael J Frank
- Department of Psychology and Program in Neuroscience, University of Arizona, Tucson, AZ 85721, USA.
| | | | | | | | | |
Collapse
|
46
|
Gooch CM, Wiener M, Portugal GS, Matell MS. Evidence for separate neural mechanisms for the timing of discrete and sustained responses. Brain Res 2007; 1156:139-51. [PMID: 17506998 DOI: 10.1016/j.brainres.2007.04.035] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2006] [Revised: 04/12/2007] [Accepted: 04/13/2007] [Indexed: 10/23/2022]
Abstract
Methamphetamine (MAP), an indirect dopamine agonist, has been shown to produce a leftward shift in the time of responding under operant response protocols that encourage repetitive responding (e.g., lever pressing). Given the involvement of striatal dopamine activity in the control of discrete motor behavior, as well as in the timing of these responses, an important question arises as to whether a dissociation is possible between changes in the timing of discrete responding and timing of other behaviors. Rats were trained on a modified peak-interval (PI) procedure such that reward was contingent upon the presence of the animal's snout in a nosepoke apparatus at the target time, as an alternative to the typical requirement of a discrete head entry response. Thus spatial selection, but not necessarily motor behavior, at the appropriate time was required to receive a reward. Rats were given MAP in one of 3 doses (0.5, 1.0, or 1.5 mg/kg), or a saline control injection before PI sessions to determine whether the drug elicits a dose-dependent effect on timing of spatial position, as it has been shown to do for discrete behaviors. Following administration of MAP, the peak time of the proportion of time spent in the nosepoke did not change, while the peak time of the rate of response shifted to the left. Single-trial analysis revealed a similar pattern: Position of response step functions defined by being in the nosepoke did not shift, but step functions based on response rate changed with increasing doses of MAP. These data support a model of multiple timing processes controlling different behaviors, at least one of which is specific to discrete motor behavior and is modifiable by dopamine.
Collapse
Affiliation(s)
- Cynthia M Gooch
- Psychology Department, Villanova University, Villanova, PA 19085, USA.
| | | | | | | |
Collapse
|
47
|
Acquas E, Pisanu A, Spiga S, Plumitallo A, Zernig G, Di Chiara G. Differential effects of intravenous R,S-(�)-3,4-methylenedioxymethamphetamine (MDMA, Ecstasy) and its S(+)- and R(?)-enantiomers on dopamine transmission and extracellular signal regulated kinase phosphorylation (pERK) in the rat nucleus accumbens shell and core. J Neurochem 2007; 102:121-32. [PMID: 17564678 DOI: 10.1111/j.1471-4159.2007.04451.x] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
R,S(+/-)-3,4-methylenedioxymethamphetamine (R,S(+/-)-MDMA, 'Ecstasy') is known to stimulate dopamine (DA) transmission in the nucleus accumbens (NAc). In order to investigate the post-synaptic correlates of pre-synaptic changes in DA transmission and their relationship with MDMA enantiomers, we studied the effects of R,S(+/-)-MDMA, S(+)-MDMA, and R(-)-MDMA on extracellular DA and phosphorylated extracellular signal regulated kinase (pERK) in the NAc shell and core. Male Sprague-Dawley rats, implanted with a catheter in the femoral vein and vertical concentric dialysis probes in the NAc shell and core, were administered i.v. saline, R,S(+/-)-MDMA, S(+)-MDMA, or R(-)-MDMA. Extracellular DA was monitored by in vivo microdialysis with HPLC. Intravenous R,S(+/-)-MDMA (0.64, 1, and 2 mg/kg) increased dialysate DA, preferentially in the shell, in a dose-related manner. S(+)-MDMA exerted similar effects but at lower doses than R,S(+/-)-MDMA, while R(-)-MDMA (1 and 2 mg/kg) failed to affect dialysate DA. R,S(+/-)- and S(+)-MDMA but not R(-)-MDMA increased ERK phosphorylation (expressed as density/neuron and number of pERK-positive neurons/area) in both subdivisions of the NAc. The administration of the D1 receptor antagonist, SCH 39166, prevented the increase in pERK elicited by R,S(+/-)-MDMA and S(+)-MDMA, while the D2/3 receptor antagonist, raclopride, increased pERK in the NAc core per se but failed to affect the R,S(+/-)-MDMA-elicited stimulation of pERK. The present results provide evidence that the DA stimulant effects of racemic MDMA are accounted for by the S(+)-enantiomer and that pERK may represent a post-synaptic correlate of the stimulant effect of R,S(+/-)-MDMA on D1-dependent DA transmission.
Collapse
Affiliation(s)
- Elio Acquas
- Department of Toxicology, University of Cagliari, Cagliari, Italy
| | | | | | | | | | | |
Collapse
|
48
|
Zold CL, Ballion B, Riquelme LA, Gonon F, Murer MG. Nigrostriatal lesion induces D2-modulated phase-locked activity in the basal ganglia of rats. Eur J Neurosci 2007; 25:2131-44. [PMID: 17439497 DOI: 10.1111/j.1460-9568.2007.05475.x] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
There is a debate as to what modifications of neuronal activity underlie the clinical manifestations of Parkinson's disease and the efficacy of antiparkinsonian pharmacotherapy. Previous studies suggest that release of GABAergic striatopallidal neurons from D2 receptor-mediated inhibition allows spreading of cortical rhythms to the globus pallidus (GP) in rats with 6-hydroxydopamine-induced nigrostriatal lesions. Here this abnormal spreading was thoroughly investigated. In control urethane-anaesthetized rats most GP neurons were excited during the active part of cortical slow waves ('direct-phase' neurons). Two neuronal populations having opposite phase relationships with cortical and striatal activity coexisted in the GP of 6-hydroxydopamine-lesioned rats. 'Inverse-phase' GP units exhibited reduced firing coupled to striatal activation during slow waves, suggesting that this GP oscillation was driven by striatopallidal hyperactivity. Half of the pallidonigral neurons identified by antidromic stimulation exhibited inverse-phase activity. Therefore, spreading of inverse-phase oscillations through pallidonigral axons might contribute to the abnormal direct-phase cortical entrainment of basal ganglia output described previously. Systemic administration of the D2 agonist quinpirole to 6-hydroxydopamine-lesioned rats reduced GP inverse-phase coupling with slow waves, and this effect was reversed by the D2 antagonist eticlopride. Because striatopallidal hyperactivity was only slightly reduced by quinpirole, other mechanisms might have contributed to the effect of quinpirole on GP oscillations. These results suggest that antiparkinsonian efficacy may rely on other actions of D2 agonists on basal ganglia activity. However, abnormal slow rhythms may promote enduring changes in functional connectivity along the striatopallidal axis, contributing to D2 agonist-resistant clinical signs of parkinsonism.
Collapse
Affiliation(s)
- Camila L Zold
- Laboratorio de Fisiología de Circuitos Neuronales, Departamento de Fisiología y Biofísica, Facultad de Medicina, Universidad de Buenos Aires. Paraguay 2155, Ciudad de Buenos Aires (CP1121), Argentina.
| | | | | | | | | |
Collapse
|
49
|
Belluscio MA, Riquelme LA, Murer MG. Striatal dysfunction increases basal ganglia output during motor cortex activation in parkinsonian rats. Eur J Neurosci 2007; 25:2791-804. [PMID: 17561844 DOI: 10.1111/j.1460-9568.2007.05527.x] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
During movement, inhibitory neurons in the basal ganglia output nuclei show complex modulations of firing, which are presumptively driven by corticostriatal and corticosubthalamic input. Reductions in discharge should facilitate movement by disinhibiting thalamic and brain stem nuclei while increases would do the opposite. A proposal that nigrostriatal dopamine pathway degeneration disrupts trans-striatal pathways' balance resulting in sustained overactivity of basal ganglia output nuclei neurons and Parkinson's disease clinical signs is not fully supported by experimental evidence, which instead shows abnormal synchronous oscillatory activity in animal models and patients. Yet, the possibility that variation in motor cortex activity drives transient overactivity in output nuclei neurons in parkinsonism has not been explored. In Sprague-Dawley rats with 6-hydroxydopamine (6-OHDA)-induced nigrostriatal lesions, approximately 50% substantia nigra pars reticulata (SNpr) units show abnormal cortically driven slow oscillations of discharge. Moreover, these units selectively show abnormal responses to motor cortex stimulation consisting in augmented excitations of an odd latency, which overlapped that of inhibitory responses presumptively mediated by the trans-striatal direct pathway in control rats. Delivering D1 or D2 dopamine agonists into the striatum of parkinsonian rats by reverse microdialysis reduced these abnormal excitations but had no effect on pathological oscillations. The present study establishes that dopamine-deficiency related changes of striatal function contribute to producing abnormally augmented excitatory responses to motor cortex stimulation in the SNpr. If a similar transient overactivity of basal ganglia output were driven by motor cortex input during movement, it could contribute to impeding movement initiation or execution in Parkinson's disease.
Collapse
Affiliation(s)
- Mariano A Belluscio
- Laboratorio de Fisiología de Circuitos Neuronales, Departamento de Fisiología y Biofísica, Facultad de Medicina, Universidad de Buenos Aires, Paraguay, Ciudad de Buenos Aires (CP1121), Argentina.
| | | | | |
Collapse
|
50
|
Cho DI, Quan W, Oak MH, Choi HJ, Lee KY, Kim KM. Functional interaction between dopamine receptor subtypes for the regulation of c-fos expression. Biochem Biophys Res Commun 2007; 357:1113-8. [PMID: 17462594 DOI: 10.1016/j.bbrc.2007.04.066] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2007] [Accepted: 04/11/2007] [Indexed: 11/25/2022]
Abstract
Dopaminergic drugs increase the expression of the proto-oncogene, c-fos, in the brain, which is involved in the coordination of neurobiological changes caused by repeated cocaine or amphetamine use. This study examined the roles of five dopamine receptor subtypes on the c-fos promoter activity. D(1)R or D(5)R significantly increased the expression of c-fos promoter by activating protein kinase A. However, D(2)R, D(3)R, or D(4)R did not show any noticeable effects. The co-expression of D(1)R/D(3)R or D(1)R/D(2)R synergistically activated the basal and agonist-induced expression of the c-fos promoter, respectively. The Ral guanine-nucleotide-dissociation-stimulator-like, which was found to interact with the 3rd cytoplasmic loop of D(3)R, mediated the inhibitory activity of D(3)R in c-fos expression. In summary, the expression of the c-fos promoter was increased by the D1-like receptors and enhanced synergistically by the D2-like receptors via the modulation of cellular cAMP. D(3)R inhibited the expression of the c-fos promoter through an interaction with RGL.
Collapse
Affiliation(s)
- Dong-Im Cho
- Research Institute of Drug Development, College of Pharmacy, Chonnam National University, Kwang-Ju 500-757, Republic of Korea
| | | | | | | | | | | |
Collapse
|