1
|
Yang WZ, Xie H, Du X, Zhou Q, Xiao Y, Zhao Z, Jia X, Xu J, Zhang W, Cai S, Li Z, Fu X, Hua R, Cai J, Chang S, Sun J, Sun H, Xu Q, Ni X, Tu H, Zheng R, Xu X, Wang H, Fu Y, Wang L, Li X, Yang H, Yao Q, Yu T, Shen Q, Shen WL. A parabrachial-hypothalamic parallel circuit governs cold defense in mice. Nat Commun 2023; 14:4924. [PMID: 37582782 PMCID: PMC10427655 DOI: 10.1038/s41467-023-40504-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Accepted: 08/01/2023] [Indexed: 08/17/2023] Open
Abstract
Thermal homeostasis is vital for mammals and is controlled by brain neurocircuits. Yet, the neural pathways responsible for cold defense regulation are still unclear. Here, we found that a pathway from the lateral parabrachial nucleus (LPB) to the dorsomedial hypothalamus (DMH), which runs parallel to the canonical LPB to preoptic area (POA) pathway, is also crucial for cold defense. Together, these pathways make an equivalent and cumulative contribution, forming a parallel circuit. Specifically, activation of the LPB → DMH pathway induced strong cold-defense responses, including increases in thermogenesis of brown adipose tissue (BAT), muscle shivering, heart rate, and locomotion. Further, we identified somatostatin neurons in the LPB that target DMH to promote BAT thermogenesis. Therefore, we reveal a parallel circuit governing cold defense in mice, which enables resilience to hypothermia and provides a scalable and robust network in heat production, reshaping our understanding of neural circuit regulation of homeostatic behaviors.
Collapse
Affiliation(s)
- Wen Z Yang
- Shanghai Institute for Advanced Immunochemical Studies & School of Life Science and Technology, Shanghaitech University, Shanghai, 201210, China
| | - Hengchang Xie
- Shanghai Institute for Advanced Immunochemical Studies & School of Life Science and Technology, Shanghaitech University, Shanghai, 201210, China
- Institute of Neuroscience, State Key Laboratory of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, 200031, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Xiaosa Du
- Shanghai Institute for Advanced Immunochemical Studies & School of Life Science and Technology, Shanghaitech University, Shanghai, 201210, China
| | - Qian Zhou
- Shanghai Institute for Advanced Immunochemical Studies & School of Life Science and Technology, Shanghaitech University, Shanghai, 201210, China
- Institute of Neuroscience, State Key Laboratory of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, 200031, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yan Xiao
- Shanghai Institute for Advanced Immunochemical Studies & School of Life Science and Technology, Shanghaitech University, Shanghai, 201210, China
| | - Zhengdong Zhao
- Shanghai Institute for Advanced Immunochemical Studies & School of Life Science and Technology, Shanghaitech University, Shanghai, 201210, China
| | - Xiaoning Jia
- Shanghai Institute for Advanced Immunochemical Studies & School of Life Science and Technology, Shanghaitech University, Shanghai, 201210, China
| | - Jianhui Xu
- Thermoregulation and Inflammation Laboratory, Chengdu Medical College, Chengdu, Sichuan, 610500, China
| | - Wen Zhang
- Institute of Neuroscience, State Key Laboratory of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, 200031, China
| | - Shuang Cai
- Guizhou Key Laboratory of Anesthesia and Organ Protection, Zunyi Medical University, Zunyi, 563006, China
| | - Zhangjie Li
- Shanghai Institute for Advanced Immunochemical Studies & School of Life Science and Technology, Shanghaitech University, Shanghai, 201210, China
| | - Xin Fu
- Shanghai Institute for Advanced Immunochemical Studies & School of Life Science and Technology, Shanghaitech University, Shanghai, 201210, China
| | - Rong Hua
- Department of General Surgery, Huashan Hospital, Fudan University, Shanghai, 200433, China
| | - Junhao Cai
- Shanghai Institute for Advanced Immunochemical Studies & School of Life Science and Technology, Shanghaitech University, Shanghai, 201210, China
| | - Shuang Chang
- Shanghai Institute for Advanced Immunochemical Studies & School of Life Science and Technology, Shanghaitech University, Shanghai, 201210, China
| | - Jing Sun
- Shanghai Institute for Advanced Immunochemical Studies & School of Life Science and Technology, Shanghaitech University, Shanghai, 201210, China
| | - Hongbin Sun
- Shanghai Institute for Advanced Immunochemical Studies & School of Life Science and Technology, Shanghaitech University, Shanghai, 201210, China
| | - Qingqing Xu
- Institute of life sciences, Chongqing Medical University, Chongqing, 400044, China
| | - Xinyan Ni
- Shanghai Institute for Advanced Immunochemical Studies & School of Life Science and Technology, Shanghaitech University, Shanghai, 201210, China
| | - Hongqing Tu
- Shanghai Institute for Advanced Immunochemical Studies & School of Life Science and Technology, Shanghaitech University, Shanghai, 201210, China
| | - Ruimao Zheng
- Department of Anatomy, Histology and Embryology, Health Science Center, Peking University, Beijing, 100871, China
- Neuroscience Research Institute, Peking University, Beijing, 100871, China
| | - Xiaohong Xu
- Institute of Neuroscience, State Key Laboratory of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, 200031, China
| | - Hong Wang
- Brain Cognition and Brain Disease Institute (BCBDI), Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences; Shenzhen-Hong Kong Institute of Brain Science-Shenzhen Fundamental Research Institutions, Shenzhen, 518055, China
| | - Yu Fu
- Institute of Molecular and Cell Biology, Agency for Science, Technology and Research (A*STAR), Singapore, 138667, Singapore
| | - Liming Wang
- Institute of Molecular Physiology, Shenzhen Bay Laboratory, Shenzhen, 518055, China
| | - Xi Li
- Institute of life sciences, Chongqing Medical University, Chongqing, 400044, China
| | - Haitao Yang
- Shanghai Institute for Advanced Immunochemical Studies & School of Life Science and Technology, Shanghaitech University, Shanghai, 201210, China
| | - Qiyuan Yao
- Department of General Surgery, Huashan Hospital, Fudan University, Shanghai, 200433, China
| | - Tian Yu
- Guizhou Key Laboratory of Anesthesia and Organ Protection, Zunyi Medical University, Zunyi, 563006, China.
| | - Qiwei Shen
- Department of General Surgery, Huashan Hospital, Fudan University, Shanghai, 200433, China.
| | - Wei L Shen
- Shanghai Institute for Advanced Immunochemical Studies & School of Life Science and Technology, Shanghaitech University, Shanghai, 201210, China.
| |
Collapse
|
2
|
Lamptey RNL, Sun C, Layek B, Singh J. Neurogenic Hypertension, the Blood-Brain Barrier, and the Potential Role of Targeted Nanotherapeutics. Int J Mol Sci 2023; 24:2213. [PMID: 36768536 PMCID: PMC9916775 DOI: 10.3390/ijms24032213] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Revised: 01/13/2023] [Accepted: 01/16/2023] [Indexed: 01/26/2023] Open
Abstract
Hypertension is a major health concern globally. Elevated blood pressure, initiated and maintained by the brain, is defined as neurogenic hypertension (NH), which accounts for nearly half of all hypertension cases. A significant increase in angiotensin II-mediated sympathetic nervous system activity within the brain is known to be the key driving force behind NH. Blood pressure control in NH has been demonstrated through intracerebrovascular injection of agents that reduce the sympathetic influence on cardiac functions. However, traditional antihypertensive agents lack effective brain permeation, making NH management extremely challenging. Therefore, developing strategies that allow brain-targeted delivery of antihypertensives at the therapeutic level is crucial. Targeting nanotherapeutics have become popular in delivering therapeutics to hard-to-reach regions of the body, including the brain. Despite the frequent use of nanotherapeutics in other pathological conditions such as cancer, their use in hypertension has received very little attention. This review discusses the underlying pathophysiology and current management strategies for NH, as well as the potential role of targeted therapeutics in improving current treatment strategies.
Collapse
Affiliation(s)
| | | | - Buddhadev Layek
- Department of Pharmaceutical Sciences, School of Pharmacy, College of Health Professions, North Dakota State University, Fargo, ND 58105, USA
| | - Jagdish Singh
- Department of Pharmaceutical Sciences, School of Pharmacy, College of Health Professions, North Dakota State University, Fargo, ND 58105, USA
| |
Collapse
|
3
|
Nasimi A, Haddad F, Mirzaei-Damabi N, Rostami B, Hatam M. Another controller system for arterial pressure. AngII-vasopressin neural network of the parvocellular paraventricular nucleus may regulate arterial pressure during hypotension. Brain Res 2021; 1769:147618. [PMID: 34400123 DOI: 10.1016/j.brainres.2021.147618] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Revised: 08/05/2021] [Accepted: 08/09/2021] [Indexed: 02/07/2023]
Abstract
Angiotensin II (AngII) immunoreactive cells, fibers and receptors, were found in the parvocelluar region of paraventricular nucleus (PVNp) and AngII receptors are present on vasopressinergic neurons. However, the mechanism by which vasopressin (AVP) and AngII may interact to regulate arterial pressure is not known. Thus, we tested the cardiovascular effects of blockade of the AngII receptors on AVP neurons and blockade of vasopressin V1a receptors on AngII neurons. We also explored whether the PVNp vasopressin plays a regulatory role during hypotension in anesthetized rat or not. Hypovolemic-hypotension was induced by gradual bleeding from femoral venous catheter. Either AngII or AVP injected into the PVNp produced pressor and tachycardia responses. The responses to AngII were blocked by V1a receptor antagonist. The responses to AVP were partially attenuated by AT1 antagonist and greatly attenuated by AT2 antagonist. Hemorrhage augmented the pressor response to AVP, indicating that during hemorrhage, sensitivity of PVNp to vasopressin was increased. By hemorrhagic-hypotension and bilateral blockade of V1a receptors of the PVNp, we found that vasopressinergic neurons of the PVNp regulate arterial pressure towards normal during hypotension. Taken together these findings and our previous findings about angII (Khanmoradi and Nasimi, 2017a) for the first time, we found that a mutual cooperative system of angiotensinergic and vasopressinergic neurons in the PVNp is a major regulatory controller of the cardiovascular system during hypotension.
Collapse
Affiliation(s)
- Ali Nasimi
- Dept. of Physiology, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Fatemeh Haddad
- Dept. of Physiology, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Nafiseh Mirzaei-Damabi
- Dept. of Physiology, Shiraz University of Medical Sciences, Shiraz, Iran; Epilepsy Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Bahar Rostami
- Dept. of Physiology, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Masoumeh Hatam
- Dept. of Physiology, Shiraz University of Medical Sciences, Shiraz, Iran.
| |
Collapse
|
4
|
The Expression of Galanin in the Parafacial Respiratory Group and its Effects on Respiration in Neonatal Rats. Neuroscience 2018; 384:1-13. [PMID: 29772344 DOI: 10.1016/j.neuroscience.2018.05.009] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2016] [Revised: 05/02/2018] [Accepted: 05/04/2018] [Indexed: 11/23/2022]
Abstract
The inhibitory peptide galanin is expressed within the retrotrapezoidal nucleus (RTN) - a key central chemoreceptor site that also contains the active expiratory oscillator. It was previously reported that microinjection of galanin into pre-Bötzinger complex - containing the inspiratory oscillator - exerts inhibitory effects on inspiratory motor output and respiratory rhythm. In neonatal rats, the present study aimed to investigate: (1) expression of galanin within the parafacial respiratory group (pFRG), which overlaps anatomically and functionally with the adult RTN, and; (2) effects of galanin on respiratory rhythm using the in vitro brainstem-spinal cord preparation. We showed that 14 ± 2% of Phox2b-immunoreactive (ir) neurons in the parafacial region were also galanin-ir. Galanin peptide expression was confirmed within 3/9 CO2-sensitive, Phox2b-ir Pre-Inspiratory neurons (Pre-I) recorded in parafacial region. Bath application of galanin (0.1-0.2 µM): (1) decreased the duration of membrane depolarization in both Pre-I and inspiratory pFRG neurons, and; (2) decreased the number of C4 bursts that were associated with each burst in Pre-I neurons within the pFRG. In preparations showing episodic breathing at baseline, the respiratory patterning reverted to the 'normal' pattern of single, uniformly rhythmic C4 bursts (n = 10). In preparations with normal respiratory patterning at baseline, slowing of C4 rhythm (n = 7) resulted although rhythmic bursting in recorded Pre-I neurons remained unperturbed (n = 6). This study therefore demonstrates that galanin is expressed within the pFRG of neonatal rats, including neurons that are intrinsically chemosensitive. Overall the peptide has an inhibitory effect on inspiratory motor output, as previously shown in adults.
Collapse
|
5
|
|
6
|
Spirovski D, Li Q, Pilowsky PM. Brainstem galanin-synthesizing neurons are differentially activated by chemoreceptor stimuli and represent a subpopulation of respiratory neurons. J Comp Neurol 2011; 520:154-73. [DOI: 10.1002/cne.22723] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
7
|
Hindmarch CCT, Fry M, Smith PM, Yao ST, Hazell GGJ, Lolait SJ, Paton JFR, Ferguson AV, Murphy D. The transcriptome of the medullary area postrema: the thirsty rat, the hungry rat and the hypertensive rat. Exp Physiol 2011; 96:495-504. [DOI: 10.1113/expphysiol.2010.056515] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
8
|
Galanin microinjection into the PreBötzinger or the Bötzinger Complex terminates central inspiratory activity and reduces responses to hypoxia and hypercapnia in rat. Respir Physiol Neurobiol 2009; 167:299-306. [DOI: 10.1016/j.resp.2009.06.003] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2009] [Revised: 05/04/2009] [Accepted: 06/06/2009] [Indexed: 11/18/2022]
|
9
|
Abbott SBG, Pilowsky PM. Galanin microinjection into rostral ventrolateral medulla of the rat is hypotensive and attenuates sympathetic chemoreflex. Am J Physiol Regul Integr Comp Physiol 2009; 296:R1019-26. [DOI: 10.1152/ajpregu.90885.2008] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Galanin is present in neurons in the brain that are important in the control of arterial pressure, and intracisternal administration of galanin evokes hypotension, but the site of action is unknown. In urethane-anesthetized, vagotomized mechanically ventilated Sprague-Dawley rats ( n = 34), we investigated the effects of microinjecting galanin (1 mM, 50 nl, 50 pmol) into the rostral ventrolateral medulla on resting splanchnic sympathetic nerve activity, arterial pressure, heart rate, and phrenic nerve activity. Second, we determined the effect of microinjecting galanin into the rostral ventrolateral medulla on the cardiovascular response to stimulation of central and peripheral chemoreceptors, arterial baroreceptors, and the somatosympathetic reflex. Galanin caused a prolonged reduction in resting splanchnic sympathetic nerve activity (−37.0 ± 7.2% of baseline), mean arterial pressure (−17.0 ± 3.5 mmHg), and heart rate (−25.0 ± 9.1 beats/min). Galanin increased the sympathoinhibitory response to aortic depressor nerve stimulation by 51.8%, had no effect on the somatosympathetic reflex, and markedly attenuated the effect of hypercapnia and hypoxia on arterial pressure (by 65% and 92.4% of control, respectively). These results suggest a role for galanin neurotransmission in the integration of the cardiovascular responses to hypoxia, hypercapnia, and the sympathetic baroreflex in the rostral ventrolateral medulla. The data suggest that galanin may be an important peptide in the homeostatic regulation of chemosensory reflexes.
Collapse
|
10
|
Stornetta RL, Spirovski D, Moreira TS, Takakura AC, West GH, Gwilt JM, Pilowsky PM, Guyenet PG. Galanin is a selective marker of the retrotrapezoid nucleus in rats. J Comp Neurol 2009; 512:373-83. [PMID: 19006184 DOI: 10.1002/cne.21897] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
The rat retrotrapezoid nucleus (RTN) contains CO(2)-activated neurons that contribute to the central chemoreflex and to breathing automaticity. These neurons have two known markers, the transcription factor Phox2b and vesicular glutamate transporter 2 (VGLUT2). Noncatecholaminergic galanin-immunoreactive (ir) neurons within a region of the lower brainstem that seems identical to what is currently defined as the RTN have been previously described. Here we ask whether these galanin-expressing neurons are the same cells as the recently characterized CO(2)-sensitive neurons of the RTN. By using in situ hybridization, we found that pre-pro-galanin (PPGal) mRNA is expressed by an isolated cluster of neurons that is co-extensive with the RTN as defined by a population of strongly Phox2b-ir neurons devoid of tyrosine hydroxylase (Phox2b(+)/TH(-) neurons). This bilateral structure contains about 1,000 PPGal mRNA-positive neurons in the rat. The PPGal mRNA-positive neurons were Phox2b(+)/TH(-) and as susceptible to destruction by the toxin [Sar(9), Met (O(2))(11)]-substance P as the rest of the RTN Phox2b(+)/TH(-) cells of the RTN. CO(2)-activated neurons were recorded in the RTN of anesthetized rats and were labeled with biotinamide. Many of those cells (7/17, 41%, five rats) contained PPGal-mRNA. In conclusion, galanin mRNA is a very specific marker of the glutamatergic Phox2b(+)/TH(-) neurons of the RTN, but galanin mRNA identifies only half of these putative central respiratory chemoreceptors.
Collapse
Affiliation(s)
- Ruth L Stornetta
- Department of Pharmacology, University of Virginia, Charlottesville, Virginia 22908, USA.
| | | | | | | | | | | | | | | |
Collapse
|
11
|
Shimamura M, Shimizu M, Yagami T, Funabashi T, Kimura F, Kuroiwa Y, Misu Y, Goshima Y. L-3,4-dihydroxyphenylalanine-induced c-Fos expression in the CNS under inhibition of central aromatic L-amino acid decarboxylase. Neuropharmacology 2006; 50:909-16. [PMID: 16504219 DOI: 10.1016/j.neuropharm.2006.01.001] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2005] [Revised: 12/16/2005] [Accepted: 01/04/2006] [Indexed: 12/01/2022]
Abstract
L-3,4-dihydroxyphenylalanine (DOPA) is a neurotransmitter candidate. To map the DOPAergic system functionally, DOPA-induced c-Fos expression was detected under inhibition of central aromatic L-amino acid decarboxylase (AADC). In rats treated with a central AADC inhibitor, DOPA significantly increased the number of c-Fos-positive nuclei in the paraventricular nuclei (PVN) and the nucleus tractus solitarii (NTS), and showed a tendency to increase in the supraoptic nuclei (SON), but not in the striatum. On the other hand, DOPA with a peripheral AADC inhibitor elevated the level of c-Fos-positive nuclei in the four regions, suggesting that DOPA itself induces c-Fos expression in the SON, PVN and NTS. In rats treated with 6-hydroxydopamine (6-OHDA) to lesion the nigrostriatal dopamine (DA) pathway, DOPA significantly induced c-Fos expression in the four regions under the inhibition of peripheral AADC. However, under the inhibition of central AADC, DOPA did not significantly increase the number of c-Fos-positive nuclei in the four regions, suggesting that DOPA at least in part induces c-Fos expression through its conversion to DA. It was likely that the 6-OHDA lesion enhanced the response to DA, but attenuated that to DOPA itself. In conclusion, we proposed that the SON, PVN and NTS include target sites for DOPA itself.
Collapse
Affiliation(s)
- M Shimamura
- Department of Neurology, Yokohama City University Graduate School of Medicine, Yokohama 236-0004, Japan
| | | | | | | | | | | | | | | |
Collapse
|
12
|
Ferrari MFR, Fior-Chadi DR. Differential expression of nNOS mRNA and protein in the nucleus tractus solitarii of young and aged Wistar–Kyoto and spontaneously hypertensive rats. J Hypertens 2005; 23:1683-90. [PMID: 16093913 DOI: 10.1097/01.hjh.0000179163.68634.c3] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
OBJECTIVE To examine neuronal nitric oxide synthase (nNOS) mRNA and protein in the nucleus tractus solitarii (NTS) and paraventricular hypothalamic nucleus (PVN) of Wistar-Kyoto (WKY) and spontaneously hypertensive rats (SHR) during their life span. METHODS By means of in situ hybridization and immunohistochemistry, we evaluated nNOS mRNA and protein in the NTS and PVN of 15-day- and 1-, 2-, 4-, 8- and 12-month-old SHR and WKY rats. RESULTS Two patterns of nNOS expression were observed in two subnuclei of the NTS: medial (NTSm) and central (NTSce). NTSce of the SHR exhibited higher nNOS mRNA and protein expression in all ages analyzed when compared to the age-matched WKY. Increased amounts of nNOS mRNA and protein were seen in the NTSm only during the early life of SHR (15 days to 4 months) when compared to WKY, suggesting a special role of this circuitry before the establishment of hypertension. No changes were seen in nNOS mRNA and protein expression in the PVN of the SHR in comparison to the WKY in all periods. nNOS analysis during the life span showed either a decrease or no change in nNOS mRNA expression in NTS or PVN associated with increased nNOS protein at some analyzed periods, suggesting the differential regulation of nNOS mRNA and protein during aging. CONCLUSIONS Data suggest that different NTS subnuclei exhibit nNOS changes in different phases of the life of SHR and this might be important during the development of hypertension in these animals.
Collapse
Affiliation(s)
- Merari F R Ferrari
- Department of Physiology, Institute of Biosciences, University of São Paulo, Rua do Matão, Travessa 14, Cidade universitaria São Paulo, SP 05508-900, Brazil
| | | |
Collapse
|
13
|
Buller KM, Allen T, Wilson LD, Munro F, Day TA. A critical role for the parabrachial nucleus in generating central nervous system responses elicited by a systemic immune challenge. J Neuroimmunol 2004; 152:20-32. [PMID: 15223234 DOI: 10.1016/j.jneuroim.2004.03.013] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2003] [Revised: 01/26/2004] [Accepted: 03/15/2004] [Indexed: 11/21/2022]
Abstract
Using Fos immunolabelling as a marker of neuronal activation, we investigated the role of the parabrachial nucleus in generating central neuronal responses to the systemic administration of the proinflammatory cytokine interleukin-1beta (1 microg/kg, i.a.). Relative to intact animals, parabrachial nucleus lesions significantly reduced the number of Fos-positive cells observed in the central amygdala (CeA), the bed nucleus of the stria terminalis (BNST), and the ventrolateral medulla (VLM) after systemic interleukin-1beta. In a subsequent experiment in which animals received parabrachial-directed deposits of a retrograde tracer, it was found that many neurons located in the nucleus tractus solitarius (NTS) and the VLM neurons were both retrogradely labelled and Fos-positive after interleukin-1beta administration. These results suggest that the parabrachial nucleus plays a critical role in interleukin-1beta-induced Fos expression in CeA, BNST and VLM neurons and that neurons of the NTS and VLM may serve to trigger or at least influence changes in parabrachial nucleus activity that follows systemic interleukin-1beta administration.
Collapse
Affiliation(s)
- K M Buller
- Department of Physiology and Pharmacology, School of Biomedical Sciences, University of Queensland, St. Lucia, QLD 4072, Australia.
| | | | | | | | | |
Collapse
|
14
|
Pirnik Z, Mravec B, Kubovcakova L, Mikkelsen JD, Kiss A. Hypertonic Saline and Immobilization Induce Fos Expression in Mouse Brain Catecholaminergic Cell Groups: Colocalization with Tyrosine Hydroxylase and Neuropeptide Y. Ann N Y Acad Sci 2004; 1018:398-404. [PMID: 15240395 DOI: 10.1196/annals.1296.049] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
The aim of the present study was to reveal stress-type dependent differences in hindbrain catecholaminergic (CA) cells and parabrachial nuclei (PBN) in the wild-type mouse. Neuronal activities were evaluated based on the incidence of Fos-labeling analyzed 60 min after injection of hypertonic saline (HS; 400 microL, 1.5 M, i.p.) or 120 min of immobilization (IMO) stress. The phenotypic nature of neurons was identified by costaining of Fos with either tyrosine hydroxylase (TH) or the neuropeptide Y (NPY) antibody. Generally, HS elicited broader Fos-staining than IMO. In comparison with IMO, HS induced more extensive Fos activation in the nucleus tractus solitarii-area postrema complex, and in TH- and NPY-positive cells in the A1 and C1 areas. Locus coeruleus (LC) cells displayed similar Fos activation after HS and IMO, and both stimuli also evoked evident TH-Fos colocalizations. Both stimuli also induced TH-Fos costainings in the A5 area. In contrast, IMO failed to activate PBN cells. The data indicate that the activity of TH and NPY hindbrain neurons responds differently to HS and IMO stress, supporting the notion that different stressors have different effects on the activity of autonomic centers.
Collapse
Affiliation(s)
- Zdeno Pirnik
- D.Sci., Institute of Experimental Endocrinology, Slovak Academy of Sciences, Vlarska str. 3, 833 06 Bratislava, Slovakia
| | | | | | | | | |
Collapse
|
15
|
Buller KM, Crane JW, Day TA. The central nucleus of the amygdala; a conduit for modulation of HPA axis responses to an immune challenge? Stress 2001; 4:277-87. [PMID: 22432147 DOI: 10.3109/10253890109014752] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Physical stressors such as infection, inflammation and tissue injury elicit activation of the hypothalamic-pituitary-adrenal (HPA) axis. This response has significant implications for both immune and central nervous system function. Investigations in rats into the neural substrates responsible for HPA axis activation to an immune challenge have predominantly utilized an experimental paradigm involving the acute administration of the pro-inflammatory cytokine interleukin- 1β (IL-1β). It is well recognized that medial parvocellular corticotrophin-releasing factor cells of the paraventricular nucleus (mPVN CRF) are critical in generating HPA axis responses to an immune challenge but little is known about how peripheral immune signals can activate and/or modulate the mPVN CRF cells. Studies that have examined the afferent control of the mPVN CRF cell response to systemic IL-1β have centred largely on the inputs from brainstem catecholamine cells. However, other regulatory neuronal populations also merit attention and one such region is a component of the limbic system, the central nucleus of the amygdala (CeA). A large number of CeA cells are recruited following systemic IL-lβ administration and there is a significant body of work indicating that the CeA can influence HPA axis function. However, the contribution of the CeA to HPA axis responses to an immune challenge is only just beginning to be addressed. This review examines three aspects of HPA axis control by systemic IL-1β: (i) whether the CeA has a role in generating HPA axis responses to systemic IL-1β, (ii) the identity of the neural connections between the CeA and mPVN CRF cells that might be important to HPA axis responses and(iii) the mechanisms by which systemic IL-Iβ triggers the recruitment of CeA cells.
Collapse
Affiliation(s)
- K M Buller
- Department of Physiology and Pharmacology, School of Biomedical Sciences, University of Queensland, Brisbane, Qld 4072, Australia.
| | | | | |
Collapse
|
16
|
Guan JL, Wang QP, Lu S, Shioda S. Reciprocal synaptic relationships between angiotensin II-containing neurons and enkephalinergic neurons in the rat area postrema. Synapse 2001; 41:112-7. [PMID: 11400177 DOI: 10.1002/syn.1065] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
A preembedding double immunostaining technique was used to study synaptic relationships between angiotensin-II-like immunoreactive and enkephalin-like immunoreactive neurons in the rat area postrema. The angiotensin-II-like immunoreactive neurons were detected by silver-gold intensification of the DAB reaction results while the enkephalin-like immunoreactive neurons were detected by simple ABC-DAB reaction. The synaptic relationships were reciprocal between the two neurons. Most of the synapses found between these two neurons were the presynaptic enkephalin-like immunoreactive axon terminals that made synapses on the angiotensin-II-like immunoreactive perikarya and dendrites. Both the axo-somatic and axo-dendritic synapses were symmetrical. However, although angiotensin-II-like immunoreactive axon terminals also made synapses on enkephalin-like perikarya and dendrites, the axo-somatic synapses were symmetrical, while the axo-dendritic synapses were asymmetrical. The present results confirm the presence of angiotensin-II-like immunoreactive neurons in the area postrema and suggest that these angiotensinergic neurons in the area postrema may play a role in the regulation of blood pressure via coordinated synaptic interactions with enkephalinergic neurons.
Collapse
Affiliation(s)
- J L Guan
- Department of Anatomy, Showa University School of Medicine, Tokyo 142-8555, Japan
| | | | | | | |
Collapse
|
17
|
Guan JL, Wang QP, Shioda S. Observation of the ultrastructure and synaptic relationships of angiotensin II-like immunoreactive neurons in the rat area postrema. Synapse 2000; 38:231-7. [PMID: 11020225 DOI: 10.1002/1098-2396(20001201)38:3<231::aid-syn1>3.0.co;2-t] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
The ultrastructure and synaptic relationships of the angiotensin II-containing neurons in the area postrema of the rat were studied by immunocytochemistry using the avidin-biotin-complex-DAB method, and also using silver-gold intensification following the DAB reaction. At the light microscopic level, the angiotensin II-like immunoreactive neurons were observed within the area postrema, especially in the upper region. At the electron microscopic level, the angiotensin II-like immunoreactive cell bodies were observed as having a round, unindented nucleus. The nuclei of these neurons were not immunostained. The angiotensin II-like immunoreactive axon terminals often contained a few dense core vesicles in addition to many small clear synaptic vesicles. Numerous axon terminals were found to make synapses on immunonegative dendrites; they were also found to make synapses on angiotensin II-like immunoreactive dendrites. Many angiotensin II-like immunoreactive dendrites received synapses from immunonegative axon terminals. Although angiotensin II-like immunoreactive cell bodies were sometimes postsynaptic to immunoreactive axon terminals, they did not receive synapses from immunonegative axon terminals. These results provide solid morphological evidence of AP endogenous angiotensin II and confirm that in spite of circulating angiotensin II, the local neurons in the AP may also play an important role in angiotensin II-induced cardiovascular regulation.
Collapse
Affiliation(s)
- J L Guan
- Department of Anatomy, Showa University School of Medicine, Tokyo, Japan
| | | | | |
Collapse
|
18
|
Sweerts BW, Jarrott B, Lawrence AJ. Acute and chronic restraint stress: effects on [125I]-galanin binding in normotensive and hypertensive rat brain. Brain Res 2000; 873:318-29. [PMID: 10930562 DOI: 10.1016/s0006-8993(00)02558-0] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
The neuropeptide galanin (GAL) has been implicated in the neural response to a number of stressors including restraint; however, the effect of restraint stress on GAL receptor density in the central nervous system (CNS) has not been investigated. Normotensive (Wistar-Kyoto; WKY) and hypertensive (spontaneously hypertensive; SHR) rats were subjected to a daily 60-min restraint stress paradigm for 0 (control), 1, 3, 5 or 10 consecutive days, and the density of [125I]-GAL binding sites following exposure to restraint was compared between strains using quantitative autoradiography. Significant differences in basal (no stress) levels of GAL receptor density between WKY and SHR were detected in regions such as the central nucleus of the amygdala (Ce) and ventromedial hypothalamus (VMH) (P<0.05). In WKY, restraint stress (1 day) induced significant decreases in GAL receptor density in forebrain regions such as the Ce (-41%) and medial nucleus of the amygdala (-41%) (P<0.05). Chronic restraint (10 days) did not induce significant decreases in these nuclei in WKY, indicating that forebrain neurons containing GAL receptors in WKY possessed a functional ability to adapt to repeated restraint. In addition, restraint stress induced significant decreases in GAL receptor density in SHR in regions such as the lateral parabrachial nucleus (-43%; 5 days of restraint) and hypoglossal nucleus ( approximately -18% for entire restraint period) (P<0.05). In conclusion, restraint stress resulted in region- and strain-specific alterations in GAL receptor density, some of which may contribute to the altered stress response previously observed in hypertensive rats. The results clearly support the hypothesis that neuropeptides such as GAL are an integral component of the neural response to psychological stress, although the functional significance of the changes in GAL receptor density described in this study awaits elucidation.
Collapse
Affiliation(s)
- B W Sweerts
- Department of Pharmacology, Monash University, Wellington Road, Victoria 3800, Clayton, Australia
| | | | | |
Collapse
|
19
|
Krukoff TL, MacTavish D, Jhamandas JH. Effects of restraint stress and spontaneous hypertension on neuropeptide Y neurones in the brainstem and arcuate nucleus. J Neuroendocrinol 1999; 11:715-23. [PMID: 10447810 DOI: 10.1046/j.1365-2826.1999.00391.x] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Neuropeptide Y (NPY) is found in autonomic neurones and participates in regulation of autonomic functions. To investigate the role of NPY in the stress response in normo- and hypertensive rats, activation of brainstem and arcuate nucleus (ARC) NPY neurones and levels of NPY mRNA in the ARC were measured in response to restraint stress in adult spontaneously hypertensive rats (SHRs) and two strains of normotensive rats. Controls from each strain were not restrained. Sections of the brain were prepared for Fos immunohistochemistry and NPY in-situ hybridization to identify activated NPY neurones in the nucleus of the tractus solitarii (NTS), ventrolateral medulla (VLM), and ARC. NPY mRNA levels were quantified in the ARC. In the NTS and VLM of restrained rats, approximately 33% and 75%, respectively, of NPY neurones were activated. No differences among strains were found. In the ARC, about 36% of neurones activated by restraint contained NPY mRNA with no differences found among strains. In unrestrained rats, NPY mRNA levels were significantly elevated in SHRs compared to the normotensive rats. Restraint led to significant decreases in mRNA levels in all strains and mRNA levels among strains were no longer different from one another. These data show that NPY likely participates as a neurotransmitter in the autonomic pathways utilized during stress and originating in the NTS, VLM, and ARC. On the other hand, the decreased gene expression of NPY in the ARC in response to restraint stress argues against a role for activation of autonomic pathways or the hypothalamo-pituitary-adrenal (HPA) axis by NPY from the ARC of stressed rats. The elevated NPY gene expression in resting SHRs compared to normotensive rats is abrogated after restraint, suggesting that this gene is differentially regulated in SHRs compared to normotensive rats.
Collapse
Affiliation(s)
- T L Krukoff
- Department of Cell Biology and Anatomy, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Alberta, Canada.
| | | | | |
Collapse
|
20
|
Ally A. Ventrolateral medullary control of cardiovascular activity during muscle contraction. Neurosci Biobehav Rev 1998; 23:65-86. [PMID: 9861613 DOI: 10.1016/s0149-7634(97)00069-9] [Citation(s) in RCA: 52] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
An overview of the role of ventrolateral medulla (VLM) in regulation of cardiovascular activity is presented. A summary of VLM anatomy and its functional relation to other areas in the central nervous system is described. Over the past few years, various studies have investigated the VLM and its involvement in cardiovascular regulation during static muscle contraction, a type of static exercise as seen, for example, during knee extension or hand-grip exercise. Understanding the neural mechanisms that are responsible for regulation of cardiovascular activity during static muscle contraction is of particular interest since it helps understand circulatory adjustments in response to an increase in physical activity. This review surveys the role of several receptors and neurotransmitters in the VLM that are associated with changes in mean arterial pressure and heart rate during static muscle contraction in anesthetized animals. Possible mechanisms in the VLM that modulate cardiovascular changes during static muscle contraction are summarized and discussed. Localized administration of an excitatory amino-acid antagonist into the rostral portion of the VLM (RVLM) attenuates increases in blood pressure and heart rate during static muscle contraction, whereas its administration into the caudal part of the VLM (CVLM) augments these responses. Opioid or 5-HT1A receptor stimulation in the RVLM, but not in the CVLM, attenuates cardiovascular responses to muscle contraction. Furthermore, intravenous, intracerebroventricular or intracisternal injection of an alpha 2-adrenoceptor agonist or a cholinesterase inhibitor attenuates increases in blood pressure and heart rate during static muscle contraction. Finally, the possible involvement of endogenous neurotransmitters in the RVLM and the CVLM associated with cardiovascular responses during static muscle contraction is discussed. An overview of the role of the VLM in the overall cardiovascular control network in the brain is presented and critically reviewed.
Collapse
Affiliation(s)
- A Ally
- Department of Pharmacology, University of New England, College of Osteopathic Medicine, Biddeford, ME 04005, USA.
| |
Collapse
|
21
|
Jhamandas J, Harris K, Petrov T, Yang H, Jhamandas K. Activation of neuropeptide FF neurons in the brainstem nucleus tractus solitarius following cardiovascular challenge and opiate withdrawal. J Comp Neurol 1998. [DOI: 10.1002/(sici)1096-9861(19981214)402:2<210::aid-cne6>3.0.co;2-c] [Citation(s) in RCA: 23] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
22
|
Veening JG, Coolen LM, Spooren WJ, Joosten H, van Oorschot R, Mos J, Ronken E, Olivier B. Patterns of c-fos expression induced by fluvoxamine are different after acute vs. chronic oral administration. Eur Neuropsychopharmacol 1998; 8:213-26. [PMID: 9716316 DOI: 10.1016/s0924-977x(97)00072-2] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
Fluvoxamine is a selective serotonin (5-HT) reuptake inhibitor (SSRI) with a broad spectrum of behavioral and therapeutic effects, e.g. in depressive illness. We used the expression of c-fos, after both acute and chronic oral administration of fluvoxamine in the rat, to study its immediate and long-term effects, in relation to the distribution of Galanin (GAL) and Vasoactive Intestinal Polypeptide (VIP). After acute oral administration, most consistent increases were apparent in (parts of); the nucleus of the solitary tract, medial part; the lateral parabrachial nucleus, external part; the bed nucleus of the stria terminalis, dorsolateral part; and the central nucleus of the amygdala, lateral part. After chronic administration, distribution of Fos-IR was similar to acute administration, although numbers of Fos-IR neurons were no longer significantly different from control values. It is concluded that activation of 5-HT3-receptors in the caudal brainstem or gastro-intestinal afferents of the vagal nerve may play a role in the observed pattern of Fos-IR after fluvoxamine administration. The relationship with the antidepressant effects of fluvoxamine needs further investigations.
Collapse
Affiliation(s)
- J G Veening
- Dept. of Anatomy and Embryology, Fac. of Medical Sciences, University of Nijmegen, Netherlands.
| | | | | | | | | | | | | | | |
Collapse
|
23
|
Xu L, Collister JP, Osborn JW, Brooks VL. Endogenous ANG II supports lumbar sympathetic activity in conscious sodium-deprived rats: role of area postrema. THE AMERICAN JOURNAL OF PHYSIOLOGY 1998; 275:R46-55. [PMID: 9688959 DOI: 10.1152/ajpregu.1998.275.1.r46] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
This study tests the hypothesis that the area postrema (AP) is necessary for endogenous ANG II to chronically maintain lumbar sympathetic nerve activity (LSNA) and heart rate (HR) in conscious sodium-deprived rats. The effect of the ANG II type 1-receptor antagonist, losartan, on LSNA and HR was determined in rats that were either AP lesioned (APX) or sham lesioned. The sham rats were divided into groups, with (SFR) or without (SAL) food restriction, to control for the decreased food intake of APX rats. Before losartan, basal mean arterial pressure (MAP), HR, and baroreflex control of LSNA and HR were similar between groups, with the exception of lower maximal reflex LSNA and higher maximal gain of the HR-MAP curve in APX rats. In all groups, losartan similarly shifted (P < 0.01) the LSNA-MAP curve to the left without altering maximal gain. Losartan also decreased (P < 0.05) minimal LSNA in all groups, and suppressed (P < 0.01) maximal LSNA (% of control) in SFR (240 +/- 13 to 205 +/- 15) and SAL (231 +/- 21 to 197 +/- 26) but not APX (193 +/- 10 to 185 +/- 8) rats. In general, losartan similarly shifted the HR-MAP curve to a lower MAP in all groups. The results suggest that the AP is not necessary for endogenous ANG II to chronically support LSNA and HR at basal and elevated MAP levels in sodium-deprived rats. However, the AP is required for endogenous ANG II to increase maximal reflex LSNA at low MAP levels.
Collapse
Affiliation(s)
- L Xu
- Department of Physiology and Pharmacology, The Oregon Health Sciences University, Portland, Oregon 97201-3098, USA
| | | | | | | |
Collapse
|
24
|
Dawson CA, Jhamandas JH, Krukoff TL. Activation by systemic angiotensin II of neurochemically identified neurons in rat hypothalamic paraventricular nucleus. J Neuroendocrinol 1998; 10:453-9. [PMID: 9688348 DOI: 10.1046/j.1365-2826.1998.00225.x] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Using the immunohistochemical localization of the protein product of the immediate early gene, c-fos, to localize activated neurons in the paraventricular nucleus of the hypothalamus (PVN), we studied the chemical phenotypes of neurons activated by circulating angiotensin II (AII). We determined the proportions of activated PVN neurons that expressed AII type I receptor-like immunoreactivity (AT1-L) or the neurohormones vasopressin (VP) and oxytocin (OXY). In addition, we identified activated PVN neurons that putatively produce nitric oxide (NO) on the basis of histochemical staining for nicotinamide adenine dinucleotide phosphate diaphorase (NADPH-d). Conscious rats received intravenous AII infusions at a rate sufficient to elevate mean arterial pressure by 40-60 mmHg for 90 min; control rats received infusions of vehicle. Brains were prepared for double immunohistochemistry [Fos-like immunoreactivity (FLI)/AT1-L, FLI/VP or FLI/OXY] or FLI/ NADPH-d histochemistry. Systemic AII infusions led to activation of 149+/-14 PVN neurons per section. In contrast, control animals showed activation of 21+/-6 PVN neurons per section. AII infusions elicited the activation of the following numbers of chemically identified PVN neurons per section: AT1-L, 24+/-5; VP, 26+/-5; OXY, 11+/-2; NADPH-d, 22+/-4. Control animals had few activated PVN neurons per section. For each of the chemically identified populations of PVN neurons, the following proportions were activated: AT1-L, 12.5%; VP, 15.2%; OXY, 7.2%; NADPH-d, 17.3%. The results suggest that PVN neurons producing the AT1 receptor, VP, OXY, and NO, participate in the mediation of the central responses to circulating AII.
Collapse
Affiliation(s)
- C A Dawson
- Department of Cell Biology, Faculty of Medicine, University of Alberta, Edmonton, Canada
| | | | | |
Collapse
|
25
|
Zhu DN, Moriguchi A, Mikami H, Higaki J, Ogihara T. Central amino acids mediate cardiovascular response to angiotensin II in the rat. Brain Res Bull 1998; 45:189-97. [PMID: 9443839 DOI: 10.1016/s0361-9230(97)00338-9] [Citation(s) in RCA: 41] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
To elucidate the role of the rostral ventrolateral medulla (RVLM) in cardiovascular control through the release of central amino acid neurotransmitters, experiments were performed in Sprague-Dawley (normotensive) rats and spontaneously hypertensive rats (SHR) anesthetized with urethane by using microdialysis sampling from the RVLM for determination of amino acid neurotransmitters. The baseline release of the excitatory amino acid neurotransmitter, glutamate (GLU) from the RVLM in SHR was higher and those of the inhibitory amino acid neurotransmitters, glycine (GLY), taurine (TAU), and gamma-aminobutyric acid (GABA), were lower than in normotensive rats. Microinjection of angiotensin II (ANG II) into the RVLM caused a dose-dependent increase in mean arterial pressure (MAP) and heart rate (HR), accompanied by increased release of GLU in the RVLM. In contrast, microinjection of the ANG II type 1 receptor (AT1) antagonist CV 11974 into the RVLM reduced MAP and HR, accompanied by increased release of GLY, TAU and GABA. These changes in MAP and HR after administration of ANG II or AT1 antagonist were partially blocked by the use of the corresponding antagonist of each amino acid neurotransmitter. Furthermore, these effects were more prominently seen in SHR than in normotensive rats. These results suggest that the release of amino acid neurotransmitters mediate the cardiovascular effects of the angiotensin system in the RVLM, which may be involved in the generation of hypertension in SHR.
Collapse
Affiliation(s)
- D N Zhu
- Department of Geriatric Medicine, Osaka University Medical School, Suita, Japan
| | | | | | | | | |
Collapse
|
26
|
Plochocka-Zulinska D, Krukoff TL. Increased gene expression of neuronal nitric oxide synthase in brain of adult spontaneously hypertensive rats. BRAIN RESEARCH. MOLECULAR BRAIN RESEARCH 1997; 48:291-7. [PMID: 9332726 DOI: 10.1016/s0169-328x(97)00101-0] [Citation(s) in RCA: 57] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Neuronal nitric oxide is hypothesized to participate in regulation of autonomic function by decreasing sympathetic output to the periphery. This hypothesis predicts that gene expression of neuronal nitric oxide synthase is increased during states of heightened sympathetic activity. To test the hypothesis, we measured gene expression in the spontaneously hypertensive rat (SHR), a genetic model of hypertension in which sympathetic activity is correlated with increasing pressure. SHRs and two strains of control rats (Wistar-Kyoto [WKY] and Sprague-Dawley [SD]) at 4 weeks (pre-hypertensive) and 14 weeks (established hypertension) of age were used to measure gene expression in hypothalamus, dorsal pons, dorsal medulla, rostral ventrolateral medulla, and caudal ventrolateral medulla. Semi-quantitative reverse transcription-polymerase chain reactions and in situ hybridization were used to measure changes in neuronal nitric oxide synthase mRNA. No significant differences were found in any of the areas studied among the three strains of rats in the 4-week rats. At 14 weeks significant increases in gene expression were found in the hypothalamus (73% compared to WKYs, 104% compared to SDs), dorsal medulla (31% and 45%), and caudal ventrolateral medulla (24% and 27%) of SHRs. In situ hybridization revealed that neurons expressing the synthase gene in the hypothalamus were found primarily in the paraventricular (both parvo- and magnocellular divisions) and supraoptic nuclei. These data show that gene expression of neuronal nitric oxide synthase is increased in central autonomic centers in animals with increased sympathetic activity and they support the hypothesis that nitric oxide plays an important role in maintenance of homeostatic balance through modulation of sympathetic activity.
Collapse
Affiliation(s)
- D Plochocka-Zulinska
- Department of Cell Biology and Anatomy, Faculty of Medicine, University of Alberta, Edmonton, Canada
| | | |
Collapse
|
27
|
Krukoff TL, Mactavish D, Jhamandas JH. Activation by hypotension of neurons in the hypothalamic paraventricular nucleus that project to the brainstem. J Comp Neurol 1997; 385:285-96. [PMID: 9268128 DOI: 10.1002/(sici)1096-9861(19970825)385:2<285::aid-cne7>3.0.co;2-y] [Citation(s) in RCA: 59] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
To investigate the involvement of neuronal nitric oxide (NO) in the response of the brain to changes in blood pressure, we studied the activation of putative NO-producing neurons in the paraventricular nucleus of the hypothalamus (PVN) in rats whose mean arterial pressures (MAPs) were decreased by 40-50% with hemorrhage (HEM) or infusion of sodium nitroprusside (NP). Activation was assessed on the basis of expression of the immediate early gene, c-fos; putative NO-producing neurons were identified with the histochemical stain for nicotinamide adenine dinucleotide phosphate-diaphorase (NADPH-d); and the proportions of neurons projecting to the nucleus of the tractus solitarius (NTS) and/or caudal ventrolateral medulla (CVLM) were determined with retrograde tracing techniques. No differences were found for results obtained from HEM and NP animals. Three to four percent of activated PVN neurons projected to the NTS or CVLM. Conversely, approximately 33% and 16% of neurons projecting to the NTS and CVLM, respectively, were activated. About 43% of NADPH-d neurons in the PVN were activated. Of PVN neurons projecting to the NTS or CVLM, 38% and 32%, respectively, were NADPH-d positive. About 11% of NADPH-d PVN neurons projected to the NTS or CVLM. An average of 3 NADPH-d neurons per section were activated and projected to either target. Finally, 7 PVN cells per section sent collateral branches to the NTS and CVLM; 2 or 3 of these cells per section were also activated by decreases in arterial pressure. No NADPH-d cells were found that sent collateral branches to the NTS and CVLM. This study shows that decreases in MAP activate PVN neurons that project, singly and through collaterals, to the NTS and CVLM. A relatively high proportion of the singly projecting neurons is NADPH-d positive. These results support the contention that descending projections from the PVN to the brainstem play an important role in the physiological response to decreases in arterial pressure and suggest that NO may participate in this response.
Collapse
Affiliation(s)
- T L Krukoff
- Department of Cell Biology and Anatomy, Faculty of Medicine, University of Alberta, Edmonton, Canada.
| | | | | |
Collapse
|
28
|
Abstract
Nitric oxide (NO) is a gaseous neurotransmitter that may mediate a decrease in sympathetic output to the periphery. This implication predicts that NO-producing neurons in the brain are activated in animals experiencing increased levels of sympathetic activity. To test this prediction, we subjected three groups of experimental rats to differing levels of environmental stimulation for 1 hour: minimal stimulation, moderate stimulation, and restraint stress. NO-producing neurons were histochemically visualized in sections of the brain, and activation of these neurons was assessed according to the neuronal expression of the immediate early gene c-fos. Constitutive activation of NO-producing neurons was found in the hypothalamus (paraventricular and supraoptic nuclei), dorsal raphe nuclei, and spinal nucleus of the trigeminal nerve of minimally stimulated rats. When animals were subjected to a novel environment (moderate stimulation), additional NO-producing neurons were activated in the medial septum, medial amygdala, hypothalamic nuclei (lateral, periventricular, and posterior), colliculi, nucleus raphe obscurus, medial vestibular nucleus, nucleus of the tractus solitarius, and several components of the ventrolateral medulla. Restraint stress caused the activation of NO-producing neurons in all of these areas, often in increasing numbers, and the activation of additional NO-producing neurons in the diagonal band of Broca, lateral and medial preoptic areas, basomedial and basolateral amygdalar nuclei, hypothalamic nuclei (dorsomedial, retrochiasmatic supraoptic, and circularis), nucleus raphe pontus, lateral parabrachial nucleus, and pontine nuclei. Expressed as a proportion of NO-producing neurons per section, the largest percentages (>20%) of double-stained neurons were found in the basolateral amygdala (46%), hypothalamic paraventricular nucleus (35%), corpora quadrigemina (estimated at 40%), dorsal raphe (45%), nuclei raphe pontus (33%) and obscurus (63%), lateral parabrachial nucleus (22%), medial vestibular nucleus (25%), lateral division of the nucleus paragigantocellularis (26%), and lateral reticular nucleus (35%). Evidence from other studies increasingly supports the concept that NO plays a generalized role in autonomic regulation by decreasing sympathetic output. Our results show that more NO-producing neurons were activated during stress than during minimal or moderate levels of stimulation. Together, the evidence suggests that NO is a neurochemical messenger that is utilized by individual autonomic neurons as the organism responds to increased levels of sympathetic activity.
Collapse
Affiliation(s)
- T L Krukoff
- Department of Anatomy and Cell Biology, Faculty of Medicine, University of Alberta, Edmonton, Canada.
| | | |
Collapse
|
29
|
Abstract
This article is designed as an introduction to the major theoretical models in the field of regulation of eating behavior, and a selective review of relevant neurobiological data. We first critically consider the paradigm of homeostasis as it relates to body energy content, and argue that additional theoretical constructs will be needed to account for the complexity of eating behavior in both nonhumans and humans. We then summarize some of the methods available to the neuroscientist in this area, and address some of their limitations. We review treatments and potential mechanisms that increase food intake, including deprivation, antimetabolites, norepinephrine, and several peptides including neuropeptide Y. We next review treatments that decrease food intake, including a variety of humoral, gastrointestinal, and pancreatic factors, as well as examine central pathways of satiety. This includes a discussion of leptin and other potential anorectic agents. We conclude with a discussion of human obesity and anorexias, and prospects for pharmacotherapy of eating disorders. We emphasize throughout that most regions of the human brain probably make some contribution to feeding behavior, and so a focus on any one area of transmitter/hormone is an unrealistic approach both in basic and applied areas.
Collapse
Affiliation(s)
- N E Rowland
- Department of Psychology, University of Florida, Gainesville 32611-2250, USA
| | | | | |
Collapse
|
30
|
Koegler FH, Ritter S. Feeding induced by pharmacological blockade of fatty acid metabolism is selectively attenuated by hindbrain injections of the galanin receptor antagonist, M40. OBESITY RESEARCH 1996; 4:329-36. [PMID: 8822757 DOI: 10.1002/j.1550-8528.1996.tb00240.x] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Galanin has been shown to stimulate feeding when injected intracranially in rats. Lesion and Fos studies have shown that the neural pathway for feeding stimulated by mercaptoacetate (MA)-induced blockade of fatty acid oxidation includes several structures rich in galanin cell bodies or terminals. In the present experiment, we examined the role of hindbrain galanin in feeding stimulated by MA. We found that galanin (1 nmol) stimulates feeding when injected in the nucleus of the solitary tract (NTS), a site that is crucial for MA-induced feeding, or into the fourth ventricle (4V, 1 or 5 nmol) and that NTS or 4V injections of the galanin receptor antagonist, M40 (1.5 or 5 nmol), completely blocked feeding induced by MA (68 mg/kg). The effect of the M40 appeared to be specific for MA-induced feeding, since M40 did not significantly attenuate either feeding induced by the antimetabolic glucose analog, 2-deoxy-D-glucose (2DG, 100 or 200 mg/kg), or deprivation-induced water intake. Results suggest that feeding induced by decreased fatty acid oxidation relies upon galaninergic terminals in the hindbrain. Furthermore, results indicate that hindbrain neurons involved in MA-induced feeding differ neurochemically from those important for 2DG-induced feeding.
Collapse
Affiliation(s)
- F H Koegler
- Department of Veterinary Comparative Anatomy, Pharmacology and Physiology, College of Veterinary Medicine, Washington State University, Pullman 99164-6520, USA
| | | |
Collapse
|
31
|
Jhamandas JH, Petrov T, Harris KH, Vu T, Krukoff TL. Parabrachial nucleus projection to the amygdala in the rat: electrophysiological and anatomical observations. Brain Res Bull 1996; 39:115-26. [PMID: 8846113 DOI: 10.1016/0361-9230(95)02084-5] [Citation(s) in RCA: 80] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
The amygdala, an important limbic forebrain centre, is the recipient of projections from a number of autonomic brainstem nuclei including the pontine parabrachial nucleus. This study examined the influence of electrical stimulation of the parabrachial nucleus on the excitability of amygdala neurons and their response to two cardiovascular stimuli, namely baroreceptor activation and the administration of systemic angiotensin II. We also defined the chemical identity of some amygdala neurons that receive parabrachial nucleus projections by combining the transport of the anterograde tracer Phaseolus vulgaris leucoagglutinin injected into the parabrachial nucleus with immunocytochemical labelling of neurotensin and galanin profiles within the amygdala. In urethane-anesthetized rats, stimulation of parabrachial nucleus evoked four basic types of synaptic responses in amygdala cells: (1) a short duration (< 100 ms) excitation in 75 of 167 neurons, (2) a longer duration (> 100 ms) excitatory response in 36 neurons, (3) an inhibitory response in 32 cells, and (4) more complex responses consisting of excitation-inhibition or inhibition-excitation sequences in the remainder of the cells. Thirty-seven of 72 amygdala neurons activated synaptically by parabrachial nucleus stimulation also responded to baroreceptor activation or intravenous angiotensin II. Anatomical data revealed the presence of Phaseolus vulgaris leucoagglutinin labelled terminals predominantly within the lateral, medial, and capsular subdivisions of the central nucleus of amygdala. Phaseolus vulgaris leucoagglutinin varicosities and boutons were observed apposed to the neurotensin and galanin neuronal perikarya within the central nucleus of amygdala. The electrophysiological results provide a framework whereby parabrachial nucleus efferents influence the activity of amygdala neurons that are responsive to cardiovascular stimuli. Furthermore, the anatomical data indicate that a portion of the parabrachial nucleus input is directed toward galanin and neurotensin neurons within the central nucleus of amygdala.
Collapse
Affiliation(s)
- J H Jhamandas
- Department of Medicine (Neurology), University of Alberta, Edmonton, Canada
| | | | | | | | | |
Collapse
|
32
|
Petrov T, Krukoff TL, Jhamandas JH. Convergent influence of the central nucleus of the amygdala and the paraventricular hypothalamic nucleus upon brainstem autonomic neurons as revealed by c-fos expression and anatomical tracing. J Neurosci Res 1995; 42:835-45. [PMID: 8847745 DOI: 10.1002/jnr.490420612] [Citation(s) in RCA: 41] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Combinations of anatomical tracing with detection of Fos (the protein product of the immediate early gene c-fos) consequent to the stimulation of the central nucleus of the amygdala were used to explore the possibility that the hypothalamic paraventricular nucleus participates in the activation of brainstem neurons in the nucleus of the solitary tract and ventrolateral medulla. After injections of the anterograde tracer Phaseolus vulgaris leucoagglutinin in the paraventricular nucleus, labeled fibers and varicosities were found to impinge on catecholaminergic and non-catecholaminergic Fos-positive neurons in the brainstem. After injections of a retrograde tracer in the nucleus of the solitary tract or ventrolateral medulla, we observed that some of the Fos-positive neurons within the parvocellular paraventricular nucleus that project to the brainstem were catecholaminergic or oxytocinergic. The results indicate that direct and indirect inputs from the amygdala may influence the activity of autonomic neurons in the brainstem. The paraventricular nucleus, via its direct projections onto catecholaminergic and non-catecholaminergic neurons, may participate in activation of brainstem neurons. Activated catecholaminergic and oxytocinergic parvocellular neurons in the paraventricular nucleus may be involved in the transmission of autonomic signals from the amygdala toward the brainstem.
Collapse
Affiliation(s)
- T Petrov
- Department of Anatomy, Faculty of Medicine, University of Alberta, Edmonton, Canada
| | | | | |
Collapse
|
33
|
Wallois F, Gros F, Masmoudi K, Larnicol N. C-Fos-like immunoreactivity in the cat brainstem evoked by sneeze-inducing air puff stimulation of the nasal mucosa. Brain Res 1995; 687:143-54. [PMID: 7583299 DOI: 10.1016/0006-8993(95)00487-b] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Sneeze is one of the most important protective reflex of the respiratory tract. It is elicited from trigeminal peripheral fields and results in major changes in the discharge patterns of the medullary respiratory-related neurons. The pattern of c-Fos-like immunoreactivity evoked by sneezing was explored as a structural approach to the networks involved in this particular model of trigemino--respiratory interactions. Sneezes were elicited in anaesthetized adult cats by driving air puffs to the superior nasal meatus through a catheter. Additional cats were used as controls for anaesthesia and for catheter insertion into the nostril. In sneezing cats, immunoreactivity was evoked in projection areas of the ethmoidal afferents which innervate the superior nasal meatus, e.g. the subnuclei caudalis, interpolaris and in the interstitial islands of the trigeminal sensory complex. Immunoreactivity was also markedly enhanced in the areas devoted to respiratory control in the medulla (solitary complex, nucleus retroambiguus) and in the pontine parabrachial area. C-Fos expression was also evoked in the lateral aspect of the parvicellular reticular formation in sneezing cats. This area might be of major importance in the adaptation of the ventilatory system to expulsive functions.
Collapse
Affiliation(s)
- F Wallois
- Laboratoire de Neurophysiologie, CNRS URA 1331, UFR de Médecine, Université de Picardie, Amiens, France
| | | | | | | |
Collapse
|
34
|
Berk ML, Smith SE. Local and commissural neuropeptide-containing projections of the nucleus of the solitary tract to the dorsal vagal complex in the pigeon. J Comp Neurol 1994; 347:369-96. [PMID: 7529775 DOI: 10.1002/cne.903470305] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
The neuropeptide content of neurons of the nucleus of the solitary tract (NTS), which have local and commissural projections to the dorsal motor nucleus of the vagus (DMNX) and to NTS, were demonstrated in the pigeon (Columba livia) by using a combined fluorescein-bead retrograde-transport-immunofluorescence technique. The specific peptides studied were bombesin, cholecystokinin, enkephalin, galanin, neuropeptide Y, neurotensin, and substance P. Perikarya immunoreactive for bombesin were located in medial tier subnuclei of NTS and the caudal NTS. Most galanin- and substance P-immunoreactive cells were found in subnucleus medialis ventralis. Cells immunoreactive for neuropeptide Y were found in the medial tier of NTS and in the lateral tier, especially in subnucleus lateralis dorsalis intermedius. The majority of enkephalin- and neurotensin-immunoreactive cells were found centrally in subnuclei medialis dorsalis and medialis intermedius. Cells immunoreactive for cholecystokinin were located in subnuclei lateralis dorsalis pars anterior, medialis superficialis, and the caudal NTS. Based on the presence of retrogradely labeled cells, numerous neurons of the medial tier of NTS, but extremely few lateral tier NTS neurons, had projections to the ipsilateral and contralateral DMNX and NTS. The number of retrogradely labeled NTS cells was always greater ipsilaterally than contralaterally. The percentages of peptide-immunoreactive NTS cells that projected to the ipsilateral and contralateral DMNX were in the ranges of 29-61% and 10-48%, respectively. The percentages of peptide-immunoreactive NTS cells that projected to the contralateral NTS ranged from 13 to 60%. Peptide-immunoreactive NTS cells that have local and commissural projections to DMNX and NTS may act as interneurons in vagovagal reflex pathways and in the integration of visceral sensory and forebrain input to NTS and DMNX.
Collapse
Affiliation(s)
- M L Berk
- Department of Anatomy, Cell and Neurobiology, Marshall University School of Medicine, Huntington, West Virginia 25755-9350
| | | |
Collapse
|
35
|
Del Fiacco M, Quartu M. Somatostatin, galanin and peptide histidine isoleucine in the newborn and adult human trigeminal ganglion and spinal nucleus: immunohistochemistry, neuronal morphometry and colocalization with substance P. J Chem Neuroanat 1994; 7:171-84. [PMID: 7531454 DOI: 10.1016/0891-0618(94)90027-2] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
By means of indirect immunofluorescence the neuropeptides somatostatin, galanin and peptide histidine isoleucine were localized in cell bodies, nerve fibres and terminal-like elements in the ganglion and spinal nucleus of the human trigeminal nerve in perinatal and adult ages. No immunoreactivity to vasoactive intestinal polypeptide was observed. In the gasserian ganglion somatostatin-, galanin- and peptide histidine isoleucine-containing neurons and nerve fibres occurred frequently in pre- and full-term newborns, but were scarce to absent in adults. Somatostatin- and galanin-positive pericellular basket-like structures around non-immunoreactive perikarya were observed in newborn specimens. Immunoreactivity to somatostatin, galanin and peptide histidine isoleucine labelled nerve fibers and punctate and felt-like nerve terminals in the pars interpolaris and subnucleus caudalis of the spinal trigeminal nucleus, with immunostaining and distribution patterns characteristic for each peptide. In addition, somatostatin-containing neuronal cell bodies frequently were detected. At variance with those containing somatostatin, the number of galanin- and peptide histidine isoleucine-like immunoreactive elements were dramatically reduced in the adult tissue compared to the newborn one. Double immunostaining revealed that each of the three peptides partially colocalizes with substance P, the degree of coexistence being very low for somatostatin/substance P and high for galanin/substance P and peptide histidine isoleucine/substance P both in the gasserian ganglion and in the spinal nucleus. The results obtained suggest that somatostatin, galanin and peptide histidine isoleucine may play functional roles in primary sensory neurons and at the first synaptic level of the human trigeminal sensory system.
Collapse
Affiliation(s)
- M Del Fiacco
- Dipartimento di Citomorfologia, University of Cagliari, Italy
| | | |
Collapse
|
36
|
Cunningham ET, Miselis RR, Sawchenko PE. The relationship of efferent projections from the area postrema to vagal motor and brain stem catecholamine-containing cell groups: an axonal transport and immunohistochemical study in the rat. Neuroscience 1994; 58:635-48. [PMID: 7513390 DOI: 10.1016/0306-4522(94)90087-6] [Citation(s) in RCA: 113] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
The area postrema has been implicated as a major station for the processing of visceral sensory information, involved primarily in eliciting rapid homeostatic responses to fluid and nutrient imbalances. Yet the precise relationship of efferent projections from the area postrema to medullary motor and relay nuclei involved in such functions remains unclear. In this study, axonal transport and immunohistochemical techniques were used to investigate the relationship of efferent projections from the area postrema to vagal motor neurons and medullary catecholamine-containing cell groups in the rat. The results may be summarized as follows: (1) The area postrema gives rise to dense inputs to the commissural and medial parts of the nucleus of the solitary tract. Many of these projections are intimately associated with catecholamine-containing neurons in the A2 and C2 cell groups, including a particularly prominent input to a caudally placed cluster of adrenergic neurons (the C2d cell group) in the dorsal aspect of the medial part of the nucleus of the solitary tract. (2) The area postrema provides a dense input to the external lateral part of the parabrachial nucleus. (3) The area postrema does not project significantly to vagal motor neurons in either the dorsal motor nucleus or the nucleus ambiguus, although the possibility for inputs to distal dendrites of dorsal vagal motor neurons cannot be excluded. (4) En route to the parabrachial nucleus, axons of area postrema neurons traverse the regions of the A1, C1 and A5 cell groups, although these fibers make few arborizations, suggesting little functional contact. Together, these results suggest that sensory information received by the area postrema is dispatched to a restricted set of neurons in the commissural, medial, and dorsal parts of the nucleus of the solitary tract, most probably including catecholamine-containing cells in the A2, C2, and C2d cell groups, and to the external lateral portion of the parabrachial nucleus. The targets of area postrema projections are, in turn, in a position to effect adaptive changes in the activities of hypothalamic neurosecretory neurons, vagal motor neurons, and limbic forebrain regions in response to perturbations in fluid and nutrient homeostasis.
Collapse
Affiliation(s)
- E T Cunningham
- Laboratory of Neuronal Structure and Function, Salk Institute for Biological Studies, San Diego, CA 92186
| | | | | |
Collapse
|
37
|
Wang Z, Liu RH, Fung SJ, Reddy VK, Barnes CD. Immunohistochemical localization of glutamate-containing neurons in the lateral reticular nucleus projecting to the cerebellar vermis in the kitten. Neurosci Lett 1993; 164:117-20. [PMID: 7908727 DOI: 10.1016/0304-3940(93)90871-h] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
The lateral reticular nucleus (LRN) and afferents to the cerebellum are known to contain glutamate-like immunoreactive (Glu-LI) neurons and axons, respectively. However, such a direct link between the Glu-LI LRN neurons and the cerebellar vermal cortex has not been identified. In this study we have combined the retrograde transport of rhodamine labeled latex microspheres and immunofluorescence histochemistry to determine the locations of Glu-LI neurons of the kitten reticulocerebellar system. Following microsphere injections into the cerebellar vermis (lobules V-VII), retrogradely labeled neurons were encountered throughout the rostrocaudal extent of the LRN. More than 60% (n = 3 kittens) of these retrogradely labeled neurons were immunostained for Glu-like immunoreactivity. Our observations of the Glu-like immunoreactivity in a majority of the reticulocerebellar neurons suggest that Glu in these neurons may participate in LRN's control of target neuron activities in the cerebellar vermis of kittens.
Collapse
Affiliation(s)
- Z Wang
- Department of Veterinary and Comparative Anatomy, Pharmacology and Physiology, Washington State University, Pullman 99164-6520
| | | | | | | | | |
Collapse
|
38
|
Zidichouski JA, Jhamandas JH. Electrophysiological characterization of excitatory amino acid responses in rat lateral parabrachial neurons in vitro. Brain Res 1993; 611:313-21. [PMID: 8101466 DOI: 10.1016/0006-8993(93)90518-r] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
The pontine parabrachial nucleus (PBN) is a major recipient of a diverse array of autonomic-related information from the caudal brainstem. Recent data indicate the presence of glutamate-like immunoreactivity within this nucleus. The effect of specific excitatory amino acid (EAA) receptor agonists and antagonists were studied in the lateral PBN (LPBN) by the use of whole-cell patch recordings in an in vitro brainstem slice preparation. Under current and voltage clamp conditions, independent bath applications of N-methyl-D-aspartate (NMDA; 10 microM), quisqualic acid (QUIS; 10 microM) and kainic acid (kainate; 10 microM) evoked membrane depolarization and an inward current in 28 of 31 LPBN neurons. In voltage clamp mode, the NMDA current (INMDA) was undetectable at potentials negative to -70 mV and a small inward current was observed at more depolarized potentials. However, in the absence of external Mg2+, the voltage dependence of INMDA was similar to that observed for QUIS and kainate. The allosteric modulation of the NMDA receptor by the strychnine-insensitive glycine binding site was examined by the application of the amino acid D-serine (0.5 mM). A marked and sustained potentiation of the steady-state INMDA (-60 mV holding potential) was observed. The selective NMDA-antagonist DL-2-amino-5-phosphonovaleric acid (APV; 10 microM) completely and reversibly blocked the NMDA-induced current, that was maximized in the absence of external Mg2+. Furthermore, this dose of APV was found to reversibly reduce the firing frequency of spontaneously active LPBN neurons.(ABSTRACT TRUNCATED AT 250 WORDS)
Collapse
Affiliation(s)
- J A Zidichouski
- Department of Medicine (Neurology), University of Alberta, Edmonton, Canada
| | | |
Collapse
|
39
|
Petrov T, Krukoff TL, Jhamandas JH. Branching projections of catecholaminergic brainstem neurons to the paraventricular hypothalamic nucleus and the central nucleus of the amygdala in the rat. Brain Res 1993; 609:81-92. [PMID: 8099526 DOI: 10.1016/0006-8993(93)90858-k] [Citation(s) in RCA: 125] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
In this study, we have employed triple fluorescent-labelling to reveal the distribution of catecholaminergic neurons within three brainstem areas which supply branching collateral input to the central nucleus of the amygdala (CNA) and the hypothalamic paraventricular nucleus (PVN): the ventrolateral medulla (VLM), the nucleus of the solitary tract (NTS) and the locus coeruleus (LC). The catecholaminergic identity of the neurons was revealed by immunocytochemical detection of the biosynthetic enzyme, tyrosine hydroxylase. The projections were defined by injections of two retrograde tracers, rhodamine- and fluorescein-labelled latex microspheres, in the CNA and PVN, respectively. In the VLM and NTS, the greatest incidence of neurons which contained both retrograde tracers was found at the level of the area postrema. These neurons were mainly located within the confines of the A1/C1 (VLM) and A2 (NTS) catecholaminergic neuronal groups. Double-projecting neurons in the LC (A6) were distributed randomly within the nucleus. It was found that 15% in the VLM, 10% in the NTS and 5% in the LC of the retrogradely labelled cells projected via branching collaterals to the PVN and CNA. One half of these neurons in the VLM and NTS were catecholaminergic, in contrast to the LC where virtually all double-retrogradely labelled neurons revealed tyrosine hydroxylase immunoreactivity. In the other brainstem catecholaminergic cell groups (A5, A7, C3), no catecholaminergic neurons were found that supplied branching collaterals to the CNA and PVN. Our results indicate that brainstem neurons may be involved in the simultaneous transmission of autonomic-related signals to the CNA and the PVN. Catecholamines are involved in these pathways as chemical messengers. Brainstem catecholaminergic and non-catecholaminergic neurons, through collateral branching inputs may provide coordinated signalling of visceral input to rostral forebrain sites. This may lead to a synchronized response of the CNA and PVN for the maintenance of homeostasis.
Collapse
Affiliation(s)
- T Petrov
- Department of Anatomy and Cell Biology, Faculty of Medicine, University of Alberta, Edmonton, Canada
| | | | | |
Collapse
|
40
|
Krukoff TL, Harris KH, Jhamandas JH. Efferent projections from the parabrachial nucleus demonstrated with the anterograde tracer Phaseolus vulgaris leucoagglutinin. Brain Res Bull 1993; 30:163-72. [PMID: 7678381 DOI: 10.1016/0361-9230(93)90054-f] [Citation(s) in RCA: 194] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Efferent projections from the parabrachial complex (PBN) were studied in the rat using the anterograde tracer, Phaseolus vulgaris leucoagglutinin (PHA-L). Projections to the hypothalamus (ventromedial, dorsomedial, paraventricular, and supraoptic nuclei) originate primarily in the lateral PBN (1PBN). The amygdalar central nucleus (ACE) receives strong projections from all parts of the PBN although the external 1PBN projects primarily to the lateral ACE. Whereas the projections to the lateral bed nucleus of the stria terminalis, median preoptic nucleus, diagonal band of Broca, and lateral preoptic area originate primarily from the 1PBN, those to the insular cortex arise from the medial PBN (mPBN). The mPBN projects to the ventral posteromedial thalamus and the 1PBN and mPBN project to the zona incerta. Descending projections from the mPBN and Kölliker-Fuse area target the commissural nucleus tractus solitarius (NTS); the mPBN projects to the more rostral NTS. Similarly, the caudal parvicellular reticular formation (RF) receives projections from the mPBN and 1PBN, whereas input to the rostral RF arises from the former. All compartments of the PBN project to the ventrolateral medulla, although the projections arising from the 1PBN are densest. Finally, the raphe nuclei and periaqueductal gray receive some projections from most PBN divisions. These pathways provide a potential means whereby autonomic information can be relayed through the PBN to other structures important in regulating autonomic functions.
Collapse
Affiliation(s)
- T L Krukoff
- Department of Anatomy and Cell Biology, University of Alberta, Edmonton, Canada
| | | | | |
Collapse
|
41
|
Ergene E, Dunbar JC, Barraco RA. Visceroendocrine responses elicited by neuropeptide Y in the nucleus tractus solitarius. Brain Res Bull 1993; 32:461-5. [PMID: 8221137 DOI: 10.1016/0361-9230(93)90291-i] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Neuropeptide Y (NPY) has been shown to be localized in a number of CNS regions, including the nucleus tractus solitarius (NTS). In this meeting report, a brief overview is presented of recent studies from our laboratory examining the role of NPY in NTS-mediated mechanisms of cardiorespiratory and visceroendocrine regulation. Microinjections of NPY, NPY analogs, or C-terminal NPY fragments were made into the subpostremal NTS of anesthetized spontaneously breathing rats. NPY elicited pronounced dose-related depressor responses, bradycardia, and reductions in respiratory minute volume. The overall cardiorespiratory response pattern elicited by NPY was mimicked by NPY, a fragment of NPY exhibiting selective agonist properties at presynaptic Y2 receptors, whereas the Y1 receptor-selective analog, [Leu31,Pro34]NPY, and the C-terminal inactive fragment, NPY, were found to be ineffective. In an effort to further characterize intrinsic NTS mechanisms mediating the NPY-evoked response pattern, NPY microinjections were similarly made in a group of rats with bilateral glossopharyngeovagotomy (G-vagotomy) and in a group of rats decerebrated at the supracollicular level. The results showed that whereas decerebration did not appreciably affect the NTS-mediated cardiorespiratory responses elicited by NPY, G-vagotomy enhanced the NPY-evoked hypotension while at the same time abolishing the NPY-evoked bradycardia and reductions in tidal volume. Taken together, these observations with G-vagotomized animals, along with the results from microinjection studies using selective ligands for NPY receptors, suggest that NPY may modulate primary visceral afferent information via activation of Y2 receptors distributed at presynaptic sites in the subpostremal NTS.(ABSTRACT TRUNCATED AT 250 WORDS)
Collapse
Affiliation(s)
- E Ergene
- Department of Physiology, Wayne State University, School of Medicine, Detroit, MI 48201
| | | | | |
Collapse
|